1
|
Masrour M, Khanmohammadi S, Habibzadeh A, Fallahtafti P. LncRNA MALAT1 as diagnostic and prognostic biomarker in colorectal cancers: A systematic review and meta-analysis. PLoS One 2024; 19:e0308009. [PMID: 39471147 PMCID: PMC11521308 DOI: 10.1371/journal.pone.0308009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/16/2024] [Indexed: 11/01/2024] Open
Abstract
OBJECTIVE This study investigated the relationship between the long non-coding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) expression and colorectal cancer (CRC) using a thorough systematic review and meta-analysis. METHODS Under the PRISMA guidelines, a systematic review was conducted on studies published from the databases' inception to September 18, 2023. Prognostic value and diagnostic accuracy were explored. Additionally, the association between levels of MALAT1 expression and pathological features was investigated. The statistical analysis was performed using the "meta" package of R. RESULTS Among the pathological parameters examined, based on three studies involving 51 cases of metastatic CRC and 135 cases of non-metastatic CRC, a statistically significant correlation was found between the expression level of MALAT1 and distant metastasis, with an OR of 16.0118 (95% CI: 4.5618-56.2015). Three studies involving 378 cases reported overall survival and had a pooled HR of 2.3854 (95% CI: 1.3272-4.2875). Three studies involving 436 cases reported disease-free survival and had a pooled HR of 2.4772 (95% CI: 1.3774-4.4549). All prognosis studies utilized tumor tissue samples as specimens to assess the expression level of MALAT1. Case-to-control diagnostic studies with 126 cases and 126 controls had a pooled AUC value of 0.6173 (95% CI: 0.5436-0.6909), a pooled sensitivity of 0.675 (95% CI: 0.324-0.900), and a pooled specificity of 0.771 (95% CI: 0.685-0.839). CONCLUSIONS The expression of MALAT1 in CRC is highly correlated with distant metastasis and has an impact on survival and prognosis. MALAT1 could also be employed as a diagnostic biomarker. More prospective studies should be performed to assess the MALAT1 diagnostic potential in the early stages of CRC.
Collapse
Affiliation(s)
- Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shaghayegh Khanmohammadi
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parisa Fallahtafti
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Lin Y, Zhao W, Pu R, Lv Z, Xie H, Li Y, Zhang Z. Long non‑coding RNAs as diagnostic and prognostic biomarkers for colorectal cancer (Review). Oncol Lett 2024; 28:486. [PMID: 39185489 PMCID: PMC11342420 DOI: 10.3892/ol.2024.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the 3rd most common cancer globally and is the 2nd leading cause of cancer-related death. Owing to the lack of specific early symptoms and the limitations of existing early diagnostic methods, most patients with CRC are diagnosed at advanced stages. To overcome these challenges, researchers have increasingly focused on molecular biomarkers, with particular interest in long non-coding RNAs (lncRNAs). These non-protein-coding RNAs, which exceed 200 nucleotides in length, play critical roles in the development and progression of CRC. The stability and detectability of lncRNAs in the circulatory system make them promising candidate biomarkers. The analysis of circulating lncRNAs in peripheral blood represents a potential option for minimally invasive diagnostic tests based on liquid biopsy samples. The present review aimed to evaluate the efficacy of lncRNAs with altered expression levels in peripheral blood as diagnostic markers for CRC. Additionally, the clinical significance of lncRNAs as prognostic markers for this disease were summarized.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Ruonan Pu
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Ying Li
- Department of Ultrasonography, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| |
Collapse
|
3
|
Lin Y, Zhao W, Lv Z, Xie H, Li Y, Zhang Z. The functions and mechanisms of long non-coding RNA in colorectal cancer. Front Oncol 2024; 14:1419972. [PMID: 39026978 PMCID: PMC11254705 DOI: 10.3389/fonc.2024.1419972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
CRC poses a significant challenge in the global health domain, with a high number of deaths attributed to this disease annually. If CRC is detected only in its advanced stages, the difficulty of treatment increases significantly. Therefore, biomarkers for the early detection of CRC play a crucial role in improving patient outcomes and increasing survival rates. The development of a reliable biomarker for early detection of CRC is particularly important for timely diagnosis and treatment. However, current methods for CRC detection, such as endoscopic examination, blood, and stool tests, have certain limitations and often only detect cases in the late stages. To overcome these constraints, researchers have turned their attention to molecular biomarkers, which are considered a promising approach to improving CRC detection. Non-invasive methods using biomarkers such as mRNA, circulating cell-free DNA, microRNA, LncRNA, and proteins can provide more reliable diagnostic information. These biomarkers can be found in blood, tissue, stool, and volatile organic compounds. Identifying molecular biomarkers with high sensitivity and specificity for the early and safe, economic, and easily measurable detection of CRC remains a significant challenge for researchers.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Ying Li
- Ultrasonography Department, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| |
Collapse
|
4
|
Bagheri R, Ghorbian M, Ghorbian S. Tumor circulating biomarkers in colorectal cancer. Cancer Treat Res Commun 2023; 38:100787. [PMID: 38194840 DOI: 10.1016/j.ctarc.2023.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
CRC is a major global health concern and is responsible for a significant number of cancer-related deaths each year. The successful treatment of CRC becomes more difficult when it goes undetected until it has advanced to a later stage. Diagnostic biomarkers can play a critical role in the early detection of CRC, which leads to improved patient outcomes and increased survival rates. It is important to develop reliable biomarkers for the early detection of CRC to enable timely diagnosis and treatment. To date, CRC detection methods such as endoscopy, blood, and stool tests are imperfect and often only identify cases in the later stages of the disease. To overcome these limitations, researchers are turning to molecular biomarkers as a promising avenue for improving CRC detection. Diagnostic information can be provided more reliably through a noninvasive approach using biomarkers such as mRNA, circulating cell-free DNA, micro-RNA, long non-coding RNA, and proteins. These biomarkers can be found in blood, tissue, feces, and volatile organic compounds. The identification of molecular biomarkers with high sensitivity and specificity for early detection of CRC that are safe, cost-effective, and easily measurable remains a significant challenge for researchers. In this article, we will explore the latest advancements in blood-based diagnostic biomarkers for CRC and their potential impact on improving patient survival rates.
Collapse
Affiliation(s)
- Raana Bagheri
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Mohsen Ghorbian
- Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran
| | - Saeid Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran.
| |
Collapse
|
5
|
Kasprzak A. Prognostic Biomarkers of Cell Proliferation in Colorectal Cancer (CRC): From Immunohistochemistry to Molecular Biology Techniques. Cancers (Basel) 2023; 15:4570. [PMID: 37760539 PMCID: PMC10526446 DOI: 10.3390/cancers15184570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and severe malignancies worldwide. Recent advances in diagnostic methods allow for more accurate identification and detection of several molecular biomarkers associated with this cancer. Nonetheless, non-invasive and effective prognostic and predictive testing in CRC patients remains challenging. Classical prognostic genetic markers comprise mutations in several genes (e.g., APC, KRAS/BRAF, TGF-β, and TP53). Furthermore, CIN and MSI serve as chromosomal markers, while epigenetic markers include CIMP and many other candidates such as SERP, p14, p16, LINE-1, and RASSF1A. The number of proliferation-related long non-coding RNAs (e.g., SNHG1, SNHG6, MALAT-1, CRNDE) and microRNAs (e.g., miR-20a, miR-21, miR-143, miR-145, miR-181a/b) that could serve as potential CRC markers has also steadily increased in recent years. Among the immunohistochemical (IHC) proliferative markers, the prognostic value regarding the patients' overall survival (OS) or disease-free survival (DFS) has been confirmed for thymidylate synthase (TS), cyclin B1, cyclin D1, proliferating cell nuclear antigen (PCNA), and Ki-67. In most cases, the overexpression of these markers in tissues was related to worse OS and DFS. However, slowly proliferating cells should also be considered in CRC therapy (especially radiotherapy) as they could represent a reservoir from which cells are recruited to replenish the rapidly proliferating population in response to cell-damaging factors. Considering the above, the aim of this article is to review the most common proliferative markers assessed using various methods including IHC and selected molecular biology techniques (e.g., qRT-PCR, in situ hybridization, RNA/DNA sequencing, next-generation sequencing) as prognostic and predictive markers in CRC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
6
|
Barbagallo C, Stella M, Ferrara C, Caponnetto A, Battaglia R, Barbagallo D, Di Pietro C, Ragusa M. RNA-RNA competitive interactions: a molecular civil war ruling cell physiology and diseases. EXPLORATION OF MEDICINE 2023:504-540. [DOI: 10.37349/emed.2023.00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 09/02/2023] Open
Abstract
The idea that proteins are the main determining factors in the functioning of cells and organisms, and their dysfunctions are the first cause of pathologies, has been predominant in biology and biomedicine until recently. This protein-centered view was too simplistic and failed to explain the physiological and pathological complexity of the cell. About 80% of the human genome is dynamically and pervasively transcribed, mostly as non-protein-coding RNAs (ncRNAs), which competitively interact with each other and with coding RNAs generating a complex RNA network regulating RNA processing, stability, and translation and, accordingly, fine-tuning the gene expression of the cells. Qualitative and quantitative dysregulations of RNA-RNA interaction networks are strongly involved in the onset and progression of many pathologies, including cancers and degenerative diseases. This review will summarize the RNA species involved in the competitive endogenous RNA network, their mechanisms of action, and involvement in pathological phenotypes. Moreover, it will give an overview of the most advanced experimental and computational methods to dissect and rebuild RNA networks.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Michele Stella
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | | | - Angela Caponnetto
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosalia Battaglia
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
7
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Aydın E, Saus E, Chorostecki U, Gabaldón T. A hybrid approach to assess the structural impact of long noncoding RNA mutations uncovers key
NEAT1
interactions in colorectal cancer. IUBMB Life 2023. [PMID: 36971476 DOI: 10.1002/iub.2710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/25/2023] [Indexed: 03/29/2023]
Abstract
Long noncoding RNAs (lncRNAs) are emerging players in cancer and they entail potential as prognostic biomarkers or therapeutic targets. Earlier studies have identified somatic mutations in lncRNAs that are associated with tumor relapse after therapy, but the underlying mechanisms behind these associations remain unknown. Given the relevance of secondary structure for the function of some lncRNAs, some of these mutations may have a functional impact through structural disturbance. Here, we examined the potential structural and functional impact of a novel A > G point mutation in NEAT1 that has been recurrently observed in tumors of colorectal cancer patients experiencing relapse after treatment. Here, we used the nextPARS structural probing approach to provide first empirical evidence that this mutation alters NEAT1 structure. We further evaluated the potential effects of this structural alteration using computational tools and found that this mutation likely alters the binding propensities of several NEAT1-interacting miRNAs. Differential expression analysis on these miRNA networks shows upregulation of Vimentin, consistent with previous findings. We propose a hybrid pipeline that can be used to explore the potential functional effects of lncRNA somatic mutations.
Collapse
Affiliation(s)
- Efe Aydın
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Ester Saus
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS). Plaça Eusebi Güell, Barcelona, Spain
| | - Uciel Chorostecki
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS). Plaça Eusebi Güell, Barcelona, Spain
| | - Toni Gabaldón
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS). Plaça Eusebi Güell, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
9
|
Islam Khan MZ, Law HKW. Suppression of small nucleolar RNA host gene 8 (SNHG8) inhibits the progression of colorectal cancer cells. Noncoding RNA Res 2023; 8:224-232. [PMID: 36860208 PMCID: PMC9969251 DOI: 10.1016/j.ncrna.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies around the world with high mortality. Accumulating evidences demonstrate that long non-coding RNAs (lncRNAs) play critical roles in CRC tumorigenesis by regulating different pathways of carcinogenesis. SNHG8 (small nucleolar RNA host gene 8), a lncRNA, is highly expressed in several cancers and acts as an oncogene that promotes cancer progression. However, the oncogenic role of SNHG8 in CRC carcinogenesis and the underlying molecular mechanisms remain unknown. In this study, we explored the role of SNHG8 in CRC cell lines by performing a series of functional experiments. Similar to the data reported in the Encyclopedia of RNA Interactome, our RT-qPCR results showed that SNHG8 expression was significantly upregulated in CRC cell lines (DLD-1, HT-29, HCT-116, and SW480) compared to the normal colon cell line (CCD-112CoN). We performed dicer-substrate siRNA transfection to knockdown the expression of SNHG8 in HCT-116 and SW480 cell lines which were expressing high levels of SNHG8. SNHG8 knockdown significantly reduced CRC cell growth and proliferation by inducing autophagy and apoptosis pathways through the AKT/AMPK/mTOR axis. We performed wound healing migration assay and demonstrated that SNHG8 knockdown significantly increased migration index in both cell lines, indicating reduced migration abilities of cells. Further investigation showed that SNHG8 knockdown suppresses epithelial to mesenchymal transition and reduces cellular migratory properties of CRC cells. Taken together, our study suggests that SNHG8 acts as an oncogene in CRC through the mTOR-dependent autophagy, apoptosis, and EMT pathways. Our study provides a better understanding the role of SNHG8 in CRC at molecular level and SNHG8 might be used as novel therapeutic target for CRC management.
Collapse
|
10
|
El-Tanani M, Nsairat H, Mishra V, Mishra Y, Aljabali AAA, Serrano-Aroca Á, Tambuwala MM. Ran GTPase and Its Importance in Cellular Signaling and Malignant Phenotype. Int J Mol Sci 2023; 24:ijms24043065. [PMID: 36834476 PMCID: PMC9968026 DOI: 10.3390/ijms24043065] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
Ran is a member of the Ras superfamily of proteins, which primarily regulates nucleocytoplasmic trafficking and mediates mitosis by regulating spindle formation and nuclear envelope (NE) reassembly. Therefore, Ran is an integral cell fate determinant. It has been demonstrated that aberrant Ran expression in cancer is a result of upstream dysregulation of the expression of various factors, such as osteopontin (OPN), and aberrant activation of various signaling pathways, including the extracellular-regulated kinase/mitogen-activated protein kinase (ERK/MEK) and phosphatidylinositol 3-kinase/Protein kinase B (PI3K/Akt) pathways. In vitro, Ran overexpression has severe effects on the cell phenotype, altering proliferation, adhesion, colony density, and invasion. Therefore, Ran overexpression has been identified in numerous types of cancer and has been shown to correlate with tumor grade and the degree of metastasis present in various cancers. The increased malignancy and invasiveness have been attributed to multiple mechanisms. Increased dependence on Ran for spindle formation and mitosis is a consequence of the upregulation of these pathways and the ensuing overexpression of Ran, which increases cellular dependence on Ran for survival. This increases the sensitivity of cells to changes in Ran concentration, with ablation being associated with aneuploidy, cell cycle arrest, and ultimately, cell death. It has also been demonstrated that Ran dysregulation influences nucleocytoplasmic transport, leading to transcription factor misallocation. Consequently, patients with tumors that overexpress Ran have been shown to have a higher malignancy rate and a shorter survival time compared to their counterparts.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Correspondence:
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| |
Collapse
|
11
|
Barbagallo C, Stella M, Broggi G, Russo A, Caltabiano R, Ragusa M. Genetics and RNA Regulation of Uveal Melanoma. Cancers (Basel) 2023; 15:775. [PMID: 36765733 PMCID: PMC9913768 DOI: 10.3390/cancers15030775] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Uveal melanoma (UM) is the most common intraocular malignant tumor and the most frequent melanoma not affecting the skin. While the rate of UM occurrence is relatively low, about 50% of patients develop metastasis, primarily to the liver, with lethal outcome despite medical treatment. Notwithstanding that UM etiopathogenesis is still under investigation, a set of known mutations and chromosomal aberrations are associated with its pathogenesis and have a relevant prognostic value. The most frequently mutated genes are BAP1, EIF1AX, GNA11, GNAQ, and SF3B1, with mutually exclusive mutations occurring in GNAQ and GNA11, and almost mutually exclusive ones in BAP1 and SF3B1, and BAP1 and EIF1AX. Among chromosomal aberrations, monosomy of chromosome 3 is the most frequent, followed by gain of chromosome 8q, and full or partial loss of chromosomes 1 and 6. In addition, epigenetic mechanisms regulated by non-coding RNAs (ncRNA), namely microRNAs and long non-coding RNAs, have also been investigated. Several papers investigating the role of ncRNAs in UM have reported that their dysregulated expression affects cancer-related processes in both in vitro and in vivo models. This review will summarize current findings about genetic mutations, chromosomal aberrations, and ncRNA dysregulation establishing UM biology.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| | - Michele Stella
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia—Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia—Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| |
Collapse
|
12
|
Bhal S, Kundu CN. Targeting crosstalk of signaling pathways in cancer stem cells: a promising approach for development of novel anti-cancer therapeutics. Med Oncol 2023; 40:82. [PMID: 36662310 DOI: 10.1007/s12032-022-01905-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/21/2022] [Indexed: 01/21/2023]
Abstract
Wnt, Hedgehog (Hh), and Notch signaling pathways are the evolutionarily conserved signaling pathways that regulate the embryonic development and also play crucial role in maintaining stemness properties of cancer stem cells (CSCs) and inducing epithelial-to-mesenchymal transition (EMT), metastasis, and angiogenesis. It has been highly challenging to inhibit the CSCs growth and proliferation as these are capable of evading chemotherapeutic drugs and cause cancer recurrence through multiple signaling pathways. Therefore, novel therapeutic strategies to target the key players involved in the crosstalk of these signaling pathways need to be developed. In this review, we have identified the interacting molecules of Wnt, Hh, and Notch pathways responsible for enhancing the malignant properties of CSCs. Analyzing the functions of these crosstalk molecules will help us to find an approach toward the development of new anti-cancer drugs for inhibition of CSCs growth and progression. Long non-coding RNAs (LncRNAs) play a significant role in various cellular processes, like chromatin remodeling, epigenetic modifications, transcriptional, and post-transcriptional regulations. Here, we have highlighted the research findings suggesting the involvement of LncRNAs in maintenance of the stemness properties of CSCs through modulation of the above-mentioned signaling pathways. We have also discussed about the different therapeutic approaches targeting those key players responsible for mediating the crosstalk between the pathways. Overall, this review article will surely help the cancer biologists to design novel anti-CSCs agents that will open up a new horizon in the field of anti-cancer therapeutics.
Collapse
Affiliation(s)
- Subhasmita Bhal
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
13
|
Sung WJ, Hong J. Targeting lncRNAs of colorectal cancers with natural products. Front Pharmacol 2023; 13:1050032. [PMID: 36699052 PMCID: PMC9868597 DOI: 10.3389/fphar.2022.1050032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Non-coding RNA (ncRNA) is one of the functional classes of RNA that has a regulatory role in various cellular processes, such as modulation of disease onset, progression, and prognosis. ncRNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been actively studied in recent years. The change in ncRNA levels is being actively studied in numerous human diseases, especially auto-immune disorders and cancers; however, targeting and regulating ncRNA with natural products to cure cancer has not been fully established. Recently many groups reported the relationship between ncRNA and natural products showing promising effects to serve as additional therapeutic approaches to cure cancers. This mini-review summarizes the aspects of lncRNAs related to cancer biology focusing on colorectal cancers that natural products can target.
Collapse
Affiliation(s)
- Woo Jung Sung
- Department of Pathology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Jaewoo Hong
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea,*Correspondence: Jaewoo Hong,
| |
Collapse
|
14
|
Curcumin Targeting Non-Coding RNAs in Colorectal Cancer: Therapeutic and Biomarker Implications. Biomolecules 2022; 12:biom12101339. [PMID: 36291546 PMCID: PMC9599102 DOI: 10.3390/biom12101339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is one of the most common gastrointestinal malignancies, with high incidence rates, a low rate of early diagnosis, and complex pathogenesis. In recent years, there has been progress made in its diagnosis and treatment methods, but tumor malignant proliferation and metastasis after treatment still seriously affect the survival and prognosis of patients. Therefore, it is an extremely urgent task of current medicine to find new anti-tumor drugs with high efficiency and safety and low toxicity. Curcumin has shown potent anti-tumor and anti-inflammatory effects and is considered a hot spot in the research and development of anti-tumor drugs due to its advantages of precise efficacy, lower toxic side effects, and less drug resistance. Recent studies have revealed that curcumin has anti-tumor effects exerted on the epigenetic regulation of tumor-promoting/tumor-suppressing gene expression through the alteration of expression levels of non-coding RNAs (e.g., lncRNAs, miRNAs, and circRNAs). Herein, we summarize the interaction between curcumin and non-coding RNAs on the occurrence and development of colorectal cancer. The information complied in this review will serve as a scientific and reliable basis and viewpoint for the clinical application of non-coding RNAs in colorectal cancer.
Collapse
|
15
|
De Martino M, Esposito F, Capone M, Pallante P, Fusco A. Noncoding RNAs in Thyroid-Follicular-Cell-Derived Carcinomas. Cancers (Basel) 2022; 14:cancers14133079. [PMID: 35804851 PMCID: PMC9264824 DOI: 10.3390/cancers14133079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Thyroid tumors represent the most common neoplastic pathology of the endocrine system. Mutations occurring in oncogenes and tumor suppressor genes are responsible for thyroid carcinogenesis; however, the complete mutational landscape characterizing these neoplasias has not been completely unveiled. It has been established that only the 2% of the human genome codes for proteins, suggesting that the vast majority of the genome has regulatory capabilities, which, if altered, could account for the onset of cancer. Hence, many scientific efforts are currently focused on the characterization of the heterogeneous class of noncoding RNAs, which represent an abundant part of the transcribed noncoding genome. In this review, we mainly focus on the involvement of microRNAs, long noncoding RNAs, and pseudogenes in thyroid cancer. The determination of the diagnosis, prognosis, and treatment of thyroid cancers based on the evaluation of the noncoding RNA network could allow the implementation of a more personalized approach to fighting these pathologies. Abstract Among the thyroid neoplasias originating from follicular cells, we can include well-differentiated carcinomas, papillary (PTC) and follicular (FTC) thyroid carcinomas, and the undifferentiated anaplastic (ATC) carcinomas. Several mutations in oncogenes and tumor suppressor genes have already been observed in these malignancies; however, we are still far from the comprehension of their full regulation-altered landscape. Even if only 2% of the human genome has the ability to code for proteins, most of the noncoding genome is transcribed, constituting the heterogeneous class of noncoding RNAs (ncRNAs), whose alterations are associated with the development of several human diseases, including cancer. Hence, many scientific efforts are currently focused on the elucidation of their biological role. In this review, we analyze the scientific literature regarding the involvement of microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and pseudogenes in FTC, PTC, and ATC. Recent findings emphasized the role of lncRNAs in all steps of cancer progression. In particular, lncRNAs may control progression steps by regulating the expression of genes and miRNAs involved in cell proliferation, apoptosis, epithelial–mesenchymal transition, and metastatization. In conclusion, the determination of the diagnosis, prognosis, and treatment of cancer based on the evaluation of the ncRNA network could allow the implementation of a more personalized approach to fighting thyroid tumors.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
| | - Francesco Esposito
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
| | - Maria Capone
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Napoli, Italy
| | - Pierlorenzo Pallante
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Correspondence: (P.P.); (A.F.)
| | - Alfredo Fusco
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Napoli, Italy
- Correspondence: (P.P.); (A.F.)
| |
Collapse
|
16
|
Comprehensive Analyses of Stromal-Immune Score-Related Competing Endogenous RNA Networks In Colon Adenocarcinoma. DISEASE MARKERS 2022; 2022:4235305. [PMID: 35607443 PMCID: PMC9124109 DOI: 10.1155/2022/4235305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022]
Abstract
Although recent clinical investigations emphasize the roles of myriad diversities of RNAs in stromal and immune components in the tumor microenvironment, especially in colon adenocarcinoma, however, analyses of “competing endogenous RNAs (ceRNA)” network in association with stromal and immune scores have yet to be determined. This study was conducted to explore the regulatory mechanisms of a stromal-immune score-based ceRNA network in colon adenocarcinoma. Stromal and immune scores of colon adenocarcinoma tumor samples were calculated by using the ESTIMATE algorithm. Differential expression analysis between samples with high/low stromal and immune scores was performed, followed by functional annotation for the overlapping DEmRNAs. The ceRNA network was constructed by differential expression analysis, prediction of RNA-RNA interaction, and correlation with clinicopathological parameters of the patients, which were further verified by external datasets and experiments. Colon adenocarcinoma patients having higher immune scores exhibited prolonged overall survival. RNA dataset analyses from TCGA revealed aberrant expressions of a total of 2052 mRNAs, 108 lncRNAs, and 70 miRNAs between high and low stromal/immune groups. Functional annotation mapped the differentially overexpressed mRNAs for immune-associated GO terms. To construct the ceRNA network, a total of 48 lncRNAs, 40 miRNAs, and 199 mRNAs were sorted out. A dysregulated ceRNA network consisting of 6 lncRNAs, 11 miRNAs, and 39 mRNAs was constructed by comparing RNA expressions between cancer as well as adjacent normal tissues. The ceRNA regulatory axis “MIAT/miR-532-3p/STC1” was regarded as a potential hit by the comprehensive analysis. The RT-qPCR assay showed upregulation of MIAT and STC1 while downregulation of hsa-miR-532-3p expression in cancer. Thus, our study highlights the potential role of a stromal-immune score-based ceRNA network in the colon adenocarcinoma microenvironment. The ceRNA axis MIAT/miR-532-3p/STC1 could serve as a promising therapeutic target for colon adenocarcinoma.
Collapse
|
17
|
Wu Z, Ju Q. Non-Coding RNAs Implicated in the Tumor Microenvironment of Colorectal Cancer: Roles, Mechanisms and Clinical Study. Front Oncol 2022; 12:888276. [PMID: 35574420 PMCID: PMC9096125 DOI: 10.3389/fonc.2022.888276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. The morbidity and mortality rates have been increasing all over the world. It is critical to elucidate the mechanism of CRC occurrence and development. However, tumor microenvironment (TME) includes immune cells, fibroblasts, endothelial cells, cytokines, chemokines and other components that affect the progression of CRC and patients' prognosis. Non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) without protein-coding ability have been shown to engage in tumor microenvironment-mediated angiogenesis and metastasis. Therefore, clarifying the mechanism of ncRNAs regulating the microenvironment is very important to develop the therapeutic target of CRC and improve the survival time of patients. This review focuses on the role and mechanism of ncRNAs in the CRC microenvironment and puts forward possible clinical treatment strategies.
Collapse
Affiliation(s)
| | - Qiang Ju
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Novel Diagnostic Biomarkers in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23020852. [PMID: 35055034 PMCID: PMC8776048 DOI: 10.3390/ijms23020852] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is still a leading cause of cancer death worldwide. Less than half of cases are diagnosed when the cancer is locally advanced. CRC is a heterogenous disease associated with a number of genetic or somatic mutations. Diagnostic markers are used for risk stratification and early detection, which might prolong overall survival. Nowadays, the widespread use of semi-invasive endoscopic methods and feacal blood tests characterised by suboptimal accuracy of diagnostic results has led to the detection of cases at later stages. New molecular noninvasive tests based on the detection of CRC alterations seem to be more sensitive and specific then the current methods. Therefore, research aiming at identifying molecular markers, such as DNA, RNA and proteins, would improve survival rates and contribute to the development of personalized medicine. The identification of “ideal” diagnostic biomarkers, having high sensitivity and specificity, being safe, cheap and easy to measure, remains a challenge. The purpose of this review is to discuss recent advances in novel diagnostic biomarkers for tumor tissue, blood and stool samples in CRC patients.
Collapse
|
19
|
Shafabakhsh R, Arianfar F, Vosough M, Mirzaei HR, Mahjoubin-Tehran M, Khanbabaei H, Kowsari H, Shojaie L, Azar MEF, Hamblin MR, Mirzaei H. Autophagy and gastrointestinal cancers: the behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther 2021; 28:1229-1255. [PMID: 33432087 DOI: 10.1038/s41417-020-00272-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers comprise a heterogeneous group of complex disorders that affect different organs, including esophagus, stomach, gallbladder, liver, biliary tract, pancreas, small intestine, colon, rectum, and anus. Recently, an explosion in nucleic acid-based technologies has led to the discovery of long non-coding RNAs (lncRNAs) that have been found to possess unique regulatory functions. This class of RNAs is >200 nucleotides in length, and is characterized by their lack of protein coding. LncRNAs exert regulatory effects in GI cancer development by affecting different functions such as the proliferation and metastasis of cancer cells, apoptosis, glycolysis and angiogenesis. Over the past few decades, considerable evidence has revealed the important role of autophagy in both GI cancer progression and suppression. In addition, recent studies have confirmed a significant correlation between lncRNAs and the regulation of autophagy. In this review, we summarize how lncRNAs play a behind the scenes role in the pathogenesis of GI cancers through regulation of autophagy.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Arianfar
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Kowsari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
20
|
He RZ, Jiang J, Hu X, Lei M, Li J, Luo W, Duan L, Hu Z, Mo YY, Luo DX, Peng WX. Stabilization of UCA1 by N6-methyladenosine RNA methylation modification promotes colorectal cancer progression. Cancer Cell Int 2021; 21:616. [PMID: 34809621 PMCID: PMC8609784 DOI: 10.1186/s12935-021-02288-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
Background UCA1 is frequently upregulated in a variety of cancers, including CRC, and it can play an oncogenic role by various mechanisms. However, how UCA1 is regulated in cancer is largely unknown. In this study, we aimed to determine whether RNA methylation at N6-methyladenosine (m6A) can impact UCA1 expression in colorectal cancer (CRC). Methods qRT-PCR was performed to detect the level of UCA1 and IGF2BP2 in CRC samples. CRISPR/Cas9 was employed to knockout (KO) UCA1, METTL3 and WTAP in DLD-1 and HCT-116 cells, while rescue experiments were carried out to re-express METTL3 and WTAP in KO cells. Immunoprecipitation using m6A antibody was performed to determine the m6A modification of UCA1. In vivo pulldown assays using S1m tagging combined with site-direct mutagenesis was carried out to confirm the recognition of m6A-modified UCA1 by IGF2BP2. Cell viability was measured by MTT and colony formation assays. The expression of UCA1 and IGF2BP2 in TCGA CRC database was obtained from GEPIA (http://gepia.cancer-pku.cn). Results Our results revealed that IGF2BP2 serves as a reader for m6A modified UCA1 and that adenosine at 1038 of UCA1 is critical to the recognition by IGF2BP2. Importantly, we showed that m6A writers, METTL3 and WTAP positively regulate UCA1 expression. Mechanically, IGF2BP2 increases the stability of m6A-modified UCA1. Clinically, IGF2BP2 is upregulated in CRC tissues compared with normal tissues. Conclusion These results suggest that m6A modification is an important factor contributing to upregulation of UCA1 in CRC tissues. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02288-x.
Collapse
Affiliation(s)
- Rong-Zhang He
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jing Jiang
- Center of Medical Laboratory, The First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000, China
| | - Xinglin Hu
- Department of Dermatology, Affiliated the First People's Hospital of Chenzhou of University of South China, Chenzhou, 423000, China
| | - Ming Lei
- Department of Clinical Laboratory, The First People's Hospital of Changde City, Changde, 415003, China
| | - Jia Li
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China
| | - Weihao Luo
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China
| | - Lili Duan
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China
| | - Zheng Hu
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China
| | - Yin-Yuan Mo
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Di-Xian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Guangdong, 518000, China.
| | - Wan-Xin Peng
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA. .,National Clinical Research Center for Child Health, National Children's Regional Medical Center, the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052, China.
| |
Collapse
|
21
|
Gu J, Dong L, Wang Y, Nie W, Liu W, Zhao JA. LINC01224 promotes colorectal cancer progression through targeting miR-485-5p/MYO6 axis. World J Surg Oncol 2021; 19:281. [PMID: 34535152 PMCID: PMC8449439 DOI: 10.1186/s12957-021-02389-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are related to colorectal cancer (CRC) development. However, the role and mechanism of lncRNA LINC01224 in CRC development are largely unknown. Methods LINC01224, Yin Yang 1 (YY1), microRNA (miR)-485-5p, and myosins of class VI (MYO6) levels were examined using quantitative reverse transcription polymerase chain reaction and western blotting. Functional analyses were processed through CCK-8, colony formation, flow cytometry, transwell, and xenograft analyses. Dual-luciferase reporter, chromatin immunoprecipitation (ChIP), RNA immunoprecipitation, and pull-down assays were conducted to analyze the binding interaction. Results LINC01224 abundance was elevated in CRC tissue samples and cell lines. Elevated LINC01224 might indicate the lower 5-year overall survival in 52 CRC patients. LINC01224 was upregulated via the transcription factor YY1. LINC01224 knockdown restrained CRC cell proliferation, migration, and invasion and increased apoptosis. MiR-485-5p was sponged by LINC01224, and miR-485-5p downregulation relieved the influence of LINC01224 interference on CRC progression. MYO6 was targeted via miR-485-5p and regulated via LINC01224/miR-485-5p axis. MiR-485-5p overexpression suppressed CRC cell proliferation, migration, and invasion and facilitated apoptosis. MYO6 upregulation mitigated the role of miR-485-5p. LINC01224 knockdown decreased xenograft tumor growth. Conclusion YY1-induced LINC01224 regulates CRC development via modulating miR-485-5p/MYO6 axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02389-x.
Collapse
Affiliation(s)
- Jingfeng Gu
- Department of General Surgery, the First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, Hebei, China
| | - Liang Dong
- Department of Medical Service, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yun Wang
- Department of Emergency, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenjia Nie
- Department of Medical Service, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wencong Liu
- Department of Ultrasonography, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ji-An Zhao
- Department of General Surgery, the First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, Hebei, China.
| |
Collapse
|
22
|
Li X, Yu H, Wei Z, Gou X, Liang S, Liu F. A Novel Prognostic Model Based on Autophagy-Related Long Non-Coding RNAs for Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:711736. [PMID: 34414116 PMCID: PMC8370088 DOI: 10.3389/fonc.2021.711736] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is one of the most common malignant tumors of the urinary system, of which the clear cell renal cell carcinoma (ccRCC) accounts for the most subtypes. The increasing discoveries of abundant autophagy-related long non-coding RNAs (ARLNRs) lead to a resurgent interest in evaluating their potential on prognosis prediction. Based on a large number of ccRCC gene samples from TCGA and clinics, ARLNRs analysis will provide a novel perspective into this field. Methods We calculated the autophagy scores of each sample according to the expression levels of autophagy-related genes (ARGs) and screened the survival-related ARLNRs (sARLNRs) of ccRCC patients by Cox regression analysis. The high-risk group and the low-risk group were distinguished by the median score of the autophagy-related risk score (ARRS) model. The functional annotations were detected by gene set enrichment analysis (GSEA) and principal component analysis (PCA). The expression levels of two kinds of sARLNRs in the renal tumor and adjacent normal tissues and cell lines were verified. Results There were 146 ARLNRs selected by Pearson analysis. A total of 30 sARLNRs were remarkably correlated with the clinical outcomes of ccRCC patients. Eleven sARLNRs (AC002553.1, AC092611.2, AL360181.2, AP002807.1, AC098484.1, AL513218.1, AC008735.2, MHENCR, AC020907.4, AC011462.4, and AC008870.2) with the highest prognosis value were recruited to establish the ARRS in which the overall survival (OS) in the high-risk group was shorter than that in the low-risk group. ARRS could be treated as an independent prognostic factor and has significant correlations with OS. The distributions of autophagy genes were different between the high-risk group and the low-risk group. In addition, we also found that the expression levels of AC098484.1 in ccRCC cell lines and tumor tissues were lower than those in HK-2 and adjacent normal tissues, but AL513218.1 showed the inverse level. Furthermore, the AC098484.1 expressed decreasingly with the more advanced T-stages, but AL513218.1 gradually increased. Conclusion Our study identified and verified some sARLNRs with clinical significances and revealed their potential values on predicting prognoses of ccRCC patients, which may provide a novel perspective for autophagy-related research and clinical decisions.
Collapse
Affiliation(s)
- Xinyuan Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Haitao Yu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Zongjie Wei
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Simin Liang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fu Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Beklen H, Yildirim E, Kori M, Turanli B, Arga KY. Systems-level biomarkers identification and drug repositioning in colorectal cancer. World J Gastrointest Oncol 2021. [DOI: 10.4251/wjgo.v13.i7.463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
24
|
Beklen H, Yildirim E, Kori M, Turanli B, Arga KY. Systems-level biomarkers identification and drug repositioning in colorectal cancer. World J Gastrointest Oncol 2021; 13:638-661. [PMID: 34322194 PMCID: PMC8299930 DOI: 10.4251/wjgo.v13.i7.638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the most commonly diagnosed fatal cancer in both women and men worldwide. CRC ranked second in mortality and third in incidence in 2020. It is difficult to diagnose CRC at an early stage as there are no clinical symptoms. Despite advances in molecular biology, only a limited number of biomarkers have been translated into routine clinical practice to predict risk, prognosis and response to treatment. In the last decades, systems biology approaches at the omics level have gained importance. Over the years, several biomarkers for CRC have been discovered in terms of disease diagnosis and prognosis. On the other hand, a few drugs are being developed and used in clinics for the treatment of CRC. However, the development of new drugs is very costly and time-consuming as the research and development takes about 10 years and more than $1 billion. Therefore, drug repositioning (DR) could save time and money by establishing new indications for existing drugs. In this review, we aim to provide an overview of biomarkers for the diagnosis and prognosis of CRC from the systems biology perspective and insights into DR approaches for the prevention or treatment of CRC.
Collapse
Affiliation(s)
- Hande Beklen
- Department of Bioengineering, Marmara University, Istanbul 34722, Turkey
| | - Esra Yildirim
- Department of Bioengineering, Marmara University, Istanbul 34722, Turkey
| | - Medi Kori
- Department of Bioengineering, Marmara University, Istanbul 34722, Turkey
| | - Beste Turanli
- Department of Bioengineering, Marmara University, Istanbul 34722, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, Istanbul 34722, Turkey
| |
Collapse
|
25
|
Aghabozorgi AS, Sharif S, Jafarzadeh-Esfehani R, Vakili S, Abbaszadegan MR. Role of miRNA gene variants in the susceptibility and pharmacogenetics of colorectal cancer. Pharmacogenomics 2021; 22:303-318. [PMID: 33733820 DOI: 10.2217/pgs-2020-0159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most significant challenges in the field of cancer pathology. miRNAs are among the genetic factors associated with the disease. Although many studies have reviewed the expression patterns of various miRNAs in CRC, few studies have focused on different variants of miRNA. In the present review, miRNA variants have been categorized into three subgroups, including miRNA variants that predict susceptibility to CRC, miRNA variants that predict the clinical parameters of CRC and finally, miRNA variants that predict the pharmacological aspects of CRC. Moreover, a comprehensive review of potentially functional miRNA-associated SNPs as well as their importance as candidate cancer biomarkers are discussed.
Collapse
Affiliation(s)
| | - Samaneh Sharif
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Saba Vakili
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
26
|
Zhang W, Wang Z, Cai G, Huang P. Circ_DOCK1 regulates USP11 through miR-132-3p to control colorectal cancer progression. World J Surg Oncol 2021; 19:67. [PMID: 33685455 PMCID: PMC7941900 DOI: 10.1186/s12957-021-02173-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background Circular RNAs (circRNAs) take part in colorectal cancer malignancies. CircRNA dedicator of cytokinesis 1 (circ_DOCK1) is involved in colorectal cancer progression, but the mechanism underlying this circRNA that takes part in colorectal cancer development remains largely undetermined. Methods Tumor and normal para-cancerous tissues were collected from 42 colorectal cancer patients. Human colorectal cancer cell lines (HCT116 and SW480) were used for the experiments in vitro. Circ_DOCK1, microRNA (miR)-132-3p, and ubiquitin-specific protease 11 (USP11) levels were measured through quantitative real-time polymerase chain reaction and Western blotting. Cell growth, metastasis, and apoptosis were investigated via colony formation, 5-ethynyl-2′-deoxyuridine (EdU) staining, MTT, flow cytometry, Western blotting, and transwell analyses. The target association was evaluated via dual-luciferase reporter analysis, RNA pull-down, and immunoprecipitation (RIP). Xenograft assay was performed using HCT116 cells. USP11 and Ki67 levels in tumor tissues were detected via immunohistochemistry. Results Circ_DOCK1 expression was enhanced in colorectal cancer tissues and cells. Silencing circ_DOCK1 repressed cell growth, migration, and invasion, and facilitated apoptosis. Circ_DOCK1 sponged miR-132-3p, and miR-132-3p silence mitigated the effect of circ_DOCK1 interference on cell growth, metastasis, and apoptosis. MiR-132-3p targeted USP11, and circ_DOCK1 could regulate USP11 level by miR-132-3p. MiR-132-3p suppressed cell growth, metastasis, and apoptosis, and USP11 attenuated these effects. Knockdown of circ_DOCK1 decreased colorectal cancer cell xenograft tumor growth. Conclusion Circ_DOCK1 interference suppressed cell growth and metastasis, and increased apoptosis of colorectal cancer via decreasing USP11 by increasing miR-132-3p. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02173-x.
Collapse
Affiliation(s)
- Weitong Zhang
- Department of Anorectal Surgery, Hainan General Hospital, No. 19 Xiuhua Road, Haikou, 570311, Hainan, China
| | - Zhenfen Wang
- Department of Anorectal Surgery, Hainan General Hospital, No. 19 Xiuhua Road, Haikou, 570311, Hainan, China
| | - Guohao Cai
- Department of Anorectal Surgery, Hainan General Hospital, No. 19 Xiuhua Road, Haikou, 570311, Hainan, China
| | - Ping Huang
- Department of Anorectal Surgery, Hainan General Hospital, No. 19 Xiuhua Road, Haikou, 570311, Hainan, China.
| |
Collapse
|
27
|
Brex D, Barbagallo C, Mirabella F, Caponnetto A, Battaglia R, Barbagallo D, Caltabiano R, Broggi G, Memeo L, Di Pietro C, Purrello M, Ragusa M. LINC00483 Has a Potential Tumor-Suppressor Role in Colorectal Cancer Through Multiple Molecular Axes. Front Oncol 2021; 10:614455. [PMID: 33552987 PMCID: PMC7855711 DOI: 10.3389/fonc.2020.614455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are the most heterogeneous class of non-protein-coding RNAs involved in a broad spectrum of molecular mechanisms controlling genome function, including the generation of complex networks of RNA-RNA competitive interactions. Accordingly, their dysregulation contributes to the onset of many tumors, including colorectal cancer (CRC). Through a combination of in silico approaches (statistical screening of expression datasets) and in vitro analyses (enforced expression, artificial inhibition, or activation of pathways), we identified LINC00483 as a potential tumor suppressor lncRNA in CRC. LINC00483 was downregulated in CRC biopsies and metastases and its decreased levels were associated with severe clinical features. Inhibition of the MAPK pathway and cell cycle arrest by starvation induced an upregulation of LINC00483, while the epithelial to mesenchymal transition activation by TGFβ-1 and IL-6 caused its down-modulation. Moreover, enforced expression of LINC00483 provoked a slowing down of cell migration rate without affecting cell proliferation. Since LINC00483 was predominantly cytoplasmic, we hypothesized a “miRNA sponge” role for it. Accordingly, we computationally reconstructed the LINC00483/miRNA/mRNA axes and evaluated the expression of mRNAs in different experimental conditions inducing LINC00483 alteration. By this approach, we identified a set of mRNAs sharing the miRNA response elements with LINC00483 and modulated in accordance with it. Moreover, we found that LINC00483 is potentially under negative control of transcription factor HNF4α. In conclusion, we propose that LINC00483 is a tumor suppressor in CRC that, through an RNA-RNA network, may control cell migration and participate in proliferation signaling.
Collapse
Affiliation(s)
- Duilia Brex
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Federica Mirabella
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| |
Collapse
|
28
|
LncRNA LINC00518 Acts as an Oncogene in Uveal Melanoma by Regulating an RNA-Based Network. Cancers (Basel) 2020; 12:cancers12123867. [PMID: 33371395 PMCID: PMC7767460 DOI: 10.3390/cancers12123867] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Uveal melanoma (UM) is the most frequent primary tumor of the eye in adults. Although molecular alterations on protein-coding genes have been associated with the development of UM, the role of non-coding RNAs and their competitive endogenous networks remain poorly investigated. Starting from a computational analysis on UM expression dataset deposited in The Cancer Genome Atlas, we identified the long non-coding RNA LINC00518 as a potential oncogene. We then experimentally evaluated LINC00518 and its supposed RNA signaling in human biopsies and in vitro functional assays. The results obtained suggest that LINC00518, under potential transcriptional control by MITF, regulates an RNA–RNA network promoting cancer-related processes (i.e., cell proliferation and migration). These findings open the way to the characterization of the unknown RNA signaling associated with UM and pave the way to the exploitation of a potential target for RNA-based therapeutics. Abstract Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults; little is known about the contribution of non-coding RNAs (ncRNAs) to UM pathogenesis. Competitive endogenous RNA (ceRNA) networks based on RNA–RNA interactions regulate physiological and pathological processes. Through a combined approach of in silico and experimental biology, we investigated the expression of a set of long non-coding RNAs (lncRNAs) in patient biopsies, identifying LINC00518 as a potential oncogene in UM. The detection of LINC00518 dysregulation associated with several in vitro functional assays allowed us to investigate its ceRNA regulatory network and shed light on its potential involvement in cancer-related processes, such as epithelial to mesenchymal transition (EMT) and CoCl2-induced hypoxia-like response. In vitro transient silencing of LINC00518 impaired cell proliferation and migration, and affected mRNA expression of LINGO2, NFIA, OTUD7B, SEC22C, and VAMP3. A “miRNA sponge” and “miRNA protector” model have been hypothesized for LINC00518-induced regulation of mRNAs. In vitro inhibition of MITF suggested its role as a potential activator of LINC00518 expression. Comprehensively, LINC00518 may be considered a new oncogene in UM and a potential target for RNA-based therapeutic approaches.
Collapse
|
29
|
SNORA71A Promotes Colorectal Cancer Cell Proliferation, Migration, and Invasion. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8284576. [PMID: 33083486 PMCID: PMC7559222 DOI: 10.1155/2020/8284576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Small nucleolar RNAs (snoRNAs) play a crucial role during colorectal cancer (CRC) development. The study of SNORA71A is few, and its role in CRC is unknown. This study focused on screening abnormal snoRNAs in CRC and exploring the role of key snoRNA in CRC. The expression pattern of snoRNAs in 3 CRC and 3 normal colon tissues was detected via small RNA sequencing. The six candidate snoRNAs were identified by quantitative PCR (qPCR). Subsequently, the expression level of SNORA71A was further verified through the Cancer Genome Atlas (TCGA) data analysis and qPCR. The CCK8 and transwell assays were used to detect the functional role of SNORA71A in CRC cells. The integrated analysis of snoRNA expression profile indicated that a total 107 snoRNAs were significantly differentially expressed (DE) in CRC tissues compared with normal tissues, including 45 upregulated and 62 downregulated snoRNAs. Bioinformatics analysis revealed that the DE snoRNAs were mainly implicated in "detection of chemical stimulus involved in sensory perception of smell" and "sensory perception of smell" in the biological process. The DE snoRNAs were preferentially enriched in "olfactory transduction" and "glycosphingolipid biosynthesis-ganglio series pathway." The expression of SNORA71A was upregulated in CRC tissues and cells. SNORA71A expression showed statistically significant correlations with TNM stage (P = 0.0196) and lymph node metastasis (P = 0.0189) and can serve as biomarkers for CRC. Importantly, SNORA71A significantly facilitated the CRC cell proliferation, migration, and invasion. Our findings indicate that SNORA71A screened by sequencing acted as an oncogene and promoted proliferation, migration, and invasion ability of CRC cells.
Collapse
|
30
|
Esmaeili M, Keshani M, Vakilian M, Esmaeili M, Peymani M, Seyed Forootan F, Chau TL, Göktuna SI, Zaker SR, Nasr Esfahani MH, Ghaedi K. Role of non-coding RNAs as novel biomarkers for detection of colorectal cancer progression through interaction with the cell signaling pathways. Gene 2020; 753:144796. [PMID: 32450203 DOI: 10.1016/j.gene.2020.144796] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer which affects the colon and the rectum. Approximately one third of annual CRC mortality occurs due to the late detection of this type of cancer. Therefore, there is an urgent need for more powerful diagnostic and prognostic tools for identification and treatment of colorectal tumorigenesis. Non-coding RNAs (ncRNAs) have been implicated in the pathology of CRC and also linked to metastasis, proliferation, differentiation, migration, angiogenesis and apoptosis in numerous cancers. Recently, attention has turned towards ncRNAs as specific targets for diagnosis, prognosis and treatment of various types of cancers, including CRC. In this review, we have tried to outline the roles of ncRNAs, and their involvement in signaling pathways responsible for the progression of CRC.
Collapse
Affiliation(s)
- Mohadeseh Esmaeili
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran.
| | - Maryam Keshani
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran.
| | - Mehrdad Vakilian
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain; Department of Cellular Biology, Genetics and Physiology, Faculty of Science, University of Malaga (UMA), Málaga, Spain.
| | - Maryam Esmaeili
- Department of Cellular Biotechnology, Cell Science Research Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Department of Cellular Biotechnology, Cell Science Research Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Farzad Seyed Forootan
- Department of Cellular Biotechnology, Cell Science Research Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Legal Medicine Research Centre, Legal Medicine Organization, Tehran, Iran.
| | - Tieu Lan Chau
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey.
| | - Serkan Ismail Göktuna
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey; National Nanotechnology Research Institute (UNAM), Bilkent University, Ankara, Turkey.
| | - Sayed Rasoul Zaker
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mohammad Hossein Nasr Esfahani
- Department of Cellular Biotechnology, Cell Science Research Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Department of Cellular Biotechnology, Cell Science Research Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
31
|
Wang W, Tang X, Qu H, He Q. Translation regulatory long non-coding RNA 1 represents a potential prognostic biomarker for colorectal cancer. Oncol Lett 2020; 19:4077-4087. [PMID: 32391108 PMCID: PMC7204641 DOI: 10.3892/ol.2020.11532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/05/2020] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have attracted a lot of attention for their role in the development, progression and prognosis of colorectal cancer (CRC). However, little is known on the clinical significance of the translation regulatory lncRNA 1 (TRERNA1) in CRC. The present study aimed to explore the clinical value of TRERNA1 in patients with CRC. A total of 89 cancer-associated lncRNA genes were analyzed using the RT2 lncRNA PCR array Human Cancer PathwayFinder. Following the PCR array, reverse transcription-quantitative (RT-q)PCR was conducted to identify the differential expression of TRERNA1 between 130 CRC and corresponding non-tumorous adjacent tissues. Additionally, the association between TRERNA1 expression and clinical characteristics was analyzed. Furthermore, TRERNA1 expression was knocked down via small interfering RNAs. The results of the PCR array and RT-qPCR revealed that TRERNA1 expression was significantly upregulated in CRC tissues compared with in adjacent normal tissues. TRERNA1 upregulation was positively associated with distant metastasis, perineural invasion, TNM stage, node metastasis stage and tumor diameter. Multivariate analysis revealed that patients with higher TRERNA1 expression had a shorter overall survival (OS) time and a less favorable prognosis compared with those in the low TRERNA1 expression group. Knockdown of TRERNA1 inhibited invasion and metastasis of CRC cells via regulating Snail expression. In conclusion, TRERNA1 expression was upregulated in CRC tissues. High expression levels of TRERNA1 may be associated with poor OS times, a less favorable prognosis and lymph node metastasis in patients with CRC. TRERNA1 may therefore serve as a useful and novel biomarker for CRC lymph node metastasis and prognosis.
Collapse
Affiliation(s)
- Weijia Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.,Department of General Surgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Xiaolong Tang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hui Qu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qingsi He
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
32
|
Che Y, Fu L. Aberrant expression and regulatory network of splicing factor-SRSF3 in tumors. J Cancer 2020; 11:3502-3511. [PMID: 32284746 PMCID: PMC7150454 DOI: 10.7150/jca.42645] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing facilitates the splicing of precursor RNA into different isoforms. Alternatively spliced transcripts often exhibit antagonistic functions or differential temporal or spatial expression patterns. There is increasing evidence that alternative splicing, especially by the serine-arginine rich (SR) protein family, leads to abnormal expression patterns and is closely related to the development of cancer. SRSF3, also known as SRp20, is a splicing factor. Through alternative splicing, it plays important roles in regulating various biological functions, such as cell cycle, cell proliferation, migration and invasion, under pathological and physiological conditions. Deregulation of SRSF3 is an essential feature of cancers. SRSF3 is also considered a candidate therapeutic target. Therefore, the involvement of abnormal splicing in tumorigenesis and the regulation of splicing factors deserve further analysis and discussion. Here, we summarize the function of SRSF3-regulated alternative transcripts in cancer cell biology at different stages of tumor development and the regulation of SRSF3 in tumorigenesis.
Collapse
Affiliation(s)
- Yingying Che
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Lin Fu
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| |
Collapse
|
33
|
Ren L, Zhang Z, Feng Y, Luo M, Hao Z. MicroRNA-876-5p represses the cell proliferation and invasion of colorectal cancer through suppressing YAP signalling via targeting RASAL2. Clin Exp Pharmacol Physiol 2020; 47:867-876. [PMID: 31990059 DOI: 10.1111/1440-1681.13264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Aberrant expression of microRNA-876-5p (miR-876-5p) is implicated in the progression of multiple human cancers. However, the potential role of miR-876-5p in colorectal cancer remains poorly understood. The purpose of the current study was to investigate the potential role of miR-876-5p in colorectal cancer. miR-876-5p expression was significantly downregulated in colorectal cancer tissues and cell lines compared with normal controls. Gain-of-function assays revealed that miR-876-5p overexpression effectively repressed the malignant behaviours of colorectal cancer cells, including cell proliferation, colony formation, and invasion. Bioinformatics analysis predicted that RAS protein activator like 2 (RASAL2), a potential oncogene for colorectal cancer, is a putative miR-876-5p target gene. A luciferase reporter assay confirmed that miR-876-5p directly binds to the 3'-untranslated region (UTR) of RASAL2. Furthermore, both RASAL2 messenger RNA (mRNA) and protein expression were negatively modulated by miR-876-5p in colorectal cancer cells. Notably, there was an inverse correlation between miR-876-5p and RASAL2 expression in colorectal cancer tissue specimens. Moreover, miR-876-5p was involved in regulating the activation of Yes-associated protein (YAP) signalling through inhibiting RASAL2. However, the miR-876-5p-mediated antitumour effect on colorectal cancer cells was partially reversed by restoring RASAL2 expression. Notably, miR-876-5p upregulation impeded the tumour growth of colorectal cancer cells in vivo in nude mice. Overall, these results demonstrated that miR-876-5p exerts an antitumour function in colorectal cancer by targeting RASAL2 to suppress YAP signalling activation. These findings highlight the importance of the miR-876-5p/RASAL2/YAP axis in colorectal cancer progression and suggest that miR-876-5p is a potential therapeutic target for treating colorectal cancer.
Collapse
Affiliation(s)
- Li Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhiyong Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yun Feng
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miaosha Luo
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhiming Hao
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
34
|
Naeli P, Pourhanifeh MH, Karimzadeh MR, Shabaninejad Z, Movahedpour A, Tarrahimofrad H, Mirzaei HR, Bafrani HH, Savardashtaki A, Mirzaei H, Hamblin MR. Circular RNAs and gastrointestinal cancers: Epigenetic regulators with a prognostic and therapeutic role. Crit Rev Oncol Hematol 2020; 145:102854. [PMID: 31877535 PMCID: PMC6982584 DOI: 10.1016/j.critrevonc.2019.102854] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Both environmental and genetic factors are involved in the initiation and development of gastrointestinal cancer. Covalent closed circular RNAs (circRNAs) are produced by a mechanism called "back-splicing" from mRNAs. They are highly stable and show cell and tissue specific expression patterns. Although some functions such as "microRNA sponge" and "RNA binding protein sponge" have been reported for a small number of circRNAs, the function of thousands of other circRNAs is still unknown. Dysregulation of circRNAs has been reported in many GI cancers and are involved in metastasis and invasion. CircRNAs have been reported to be useful as prognostic markers and targets for developing new treatments. We first describe the properties and biogenesis of circRNAs. We then summarize recent reports about circRNA functions, expression status, and their potential to be used as biomarkers in GI cancers including, gastric cancer, colorectal cancer, esophageal cancer, hepatocellular carcinoma, gallbladder cancer and pancreatic cancer.
Collapse
Affiliation(s)
- Parisa Naeli
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran.
| | | | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, School of Basic Sciences, TarbiatModares University, Tehran, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hassan Hassani Bafrani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
35
|
Abstract
Despite advanced clinical treatments, mortality in patients with metastatic colorectal cancer (CRC) remains high. Three critical determinants in CRC progression include the epithelial proliferation checkpoints, epithelial-to-mesenchymal transition (EMT) and inflammatory cytokines in the tumour microenvironment. Genes involved in these three processes are regulated at the transcriptional and post-transcriptional level. Recent studies revealed previously unappreciated roles of non-coding ribonucleic acids (ncRNAs) in modulating the proliferation checkpoints, EMT, and inflammatory gene expression in CRC. In this review, we will discuss the mechanisms underlying the roles of ncRNAs in CRC as well as examine future perspectives in this field. Better understanding of ncRNA biology will provide novel targets for future therapeutic development.
Collapse
Affiliation(s)
- Shengyun Ma
- Cellular and Molecular Medicine, University of California , San Diego, USA
| | - Tianyun Long
- Cellular and Molecular Medicine, University of California , San Diego, USA
| | | |
Collapse
|
36
|
Zhang H, Lu Y, Wu J, Feng J. LINC00460 Hypomethylation Promotes Metastasis in Colorectal Carcinoma. Front Genet 2019; 10:880. [PMID: 31632435 PMCID: PMC6779110 DOI: 10.3389/fgene.2019.00880] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/21/2019] [Indexed: 01/06/2023] Open
Abstract
Introduction: Epigenetic alterations and aberrantly expressed long noncoding RNAs (lncRNAs) are pervasive in colorectal cancer (CRC) tumorigenesis. DNA methylation could control lncRNA expression and play an important role in tumor initiation and progression. However, the DNA methylation that regulates lncRNAs in CRC remains poorly characterized. Materials and Methods: In our research, we integrated dysregulated expression and methylation of lncRNAs between colorectal tumor and adjacent mucosa tissues from The Cancer Genome Atlas database. With the use of this strategy, LINC00460, the most frequently epigenetically activated, was identified and further verified in the Cancer Cell Line Encyclopedia and Gene Expression Omnibus databases. Results: Patients with high expression of LINC00460 are prone to metastasis and are associated with poor prognosis. Abnormally expressed LINC00460 could be used as an independent prognostic risk factor for disease-free survival. Knockdown of LINC00460 promotes colon cancer cell invasion and migration in vitro. Conclusion: In summary, our results suggest that DNA methylation-regulated LINC00460 could promote CRC metastasis and serve as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Hui Zhang
- Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Ya Lu
- Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jianzhong Wu
- Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jifeng Feng
- Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
37
|
Perilli L, Tessarollo S, Albertoni L, Curtarello M, Pastò A, Brunetti E, Fassan M, Rugge M, Indraccolo S, Amadori A, Bortoluzzi S, Zanovello P. Silencing of miR-182 is associated with modulation of tumorigenesis through apoptosis induction in an experimental model of colorectal cancer. BMC Cancer 2019; 19:821. [PMID: 31429725 PMCID: PMC6700772 DOI: 10.1186/s12885-019-5982-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND miR-182-5p (miR-182) is an oncogenic microRNA (miRNA) found in different tumor types and one of the most up-regulated miRNA in colorectal cancer (CRC). Although this microRNA is expressed in the early steps of tumor development, its role in driving tumorigenesis is unclear. METHODS The effects of miR-182 silencing on transcriptomic profile were investigated using two CRC cell lines characterized by different in vivo biological behavior, the MICOL-14h-tert cell line (dormant upon transfer into immunodeficient hosts) and its tumorigenic variant, MICOL-14tum. Apoptosis was studied by annexin/PI staining and cleaved Caspase-3/PARP analysis. The effect of miR-182 silencing on the tumorigenic potential was addressed in a xenogeneic model of MICOL-14tum transplant. RESULTS Endogenous miR-182 expression was higher in MICOL-14tum than in MICOL-14h-tert cells. Interestingly, miR-182 silencing had a strong impact on gene expression profile, and the positive regulation of apoptotic process was one of the most affected pathways. Accordingly, annexin/PI staining and caspase-3/PARP activation demonstrated that miR-182 treatment significantly increased apoptosis, with a prominent effect in MICOL-14tum cells. Moreover, a significant modulation of the cell cycle profile was exerted by anti-miR-182 treatment only in MICOL-14tum cells, where a significant increase in the fraction of cells in G0/G1 phases was observed. Accordingly, a significant growth reduction and a less aggressive histological aspect were observed in tumor masses generated by in vivo transfer of anti-miR-182-treated MICOL-14tum cells into immunodeficient hosts. CONCLUSIONS Altogether, these data indicate that increased miR-182 expression may promote cell proliferation, suppress the apoptotic pathway and ultimately confer aggressive traits on CRC cells.
Collapse
Affiliation(s)
- Lisa Perilli
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Sofia Tessarollo
- Genetics and Molecular Biology Unit, ULSS 8 Berica, Vicenza, Italy
| | - Laura Albertoni
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Matteo Curtarello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Anna Pastò
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Efrem Brunetti
- Department of Surgery, Oncology and Gastroenterology, Immunology & Oncology Section, University of Padova, Padua, Italy
| | - Matteo Fassan
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Massimo Rugge
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Alberto Amadori
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, Immunology & Oncology Section, University of Padova, Padua, Italy
| | | | - Paola Zanovello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy. .,Department of Surgery, Oncology and Gastroenterology, Immunology & Oncology Section, University of Padova, Padua, Italy.
| |
Collapse
|
38
|
Ragusa M, Barbagallo D, Chioccarelli T, Manfrevola F, Cobellis G, Di Pietro C, Brex D, Battaglia R, Fasano S, Ferraro B, Sellitto C, Ambrosino C, Roberto L, Purrello M, Pierantoni R, Chianese R. CircNAPEPLD is expressed in human and murine spermatozoa and physically interacts with oocyte miRNAs. RNA Biol 2019; 16:1237-1248. [PMID: 31135264 DOI: 10.1080/15476286.2019.1624469] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) have a critical role in the control of gene expression. Their function in spermatozoa (SPZ) is unknown to date. Twenty-eight genes, involved in SPZ/testicular and epididymal physiology, were given in circBase database to find which of them may generate circular transcripts. We focused on circNAPEPLDiso1, one of the circular RNA isoforms of NAPEPLD transcript, because expressed in human and murine SPZ. In order to functionally characterize circNAPEPLDiso1 as potential microRNA (miRNA) sponge, we performed circNAPEPLDiso1-miR-CATCH and then profiled the expression of 754 miRNAs, by using TaqMan® Low Density Arrays. Among them, miRNAs 146a-5p, 203a-3p, 302c-3p, 766-3p and 1260a (some of them previously shown to be expressed in the oocyte), resulted enriched in circNAPEPLDiso1-miR-CATCHed cell lysate: the network of interactions generated from their validated targets was centred on a core of genes involved in the control of cell cycle. Moreover, computational analysis of circNAPEPLDiso1 sequence also showed its potential translation in a short form of NAPEPLD protein. Interestingly, the expression analysis in murine-unfertilized oocytes revealed low and high levels of circNAPEPLDiso1 and circNAPEPLDiso2, respectively. After fertilization, circNAPEPLDiso1 expression significantly increased, instead circNAPEPLDiso2 expression appeared constant. Based on these data, we suggest that SPZ-derived circNAPEPLDiso1 physically interacts with miRNAs primarily involved in the control of cell cycle; we hypothesize that it may represent a paternal cytoplasmic contribution to the zygote and function as a miRNA decoy inside the fertilized oocytes to regulate the first stages of embryo development. This role is proposed here for the first time.
Collapse
Affiliation(s)
- Marco Ragusa
- a Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania , Catania , Italy.,b Oasi Research Institute - IRCCS , Troina , Italy
| | - Davide Barbagallo
- a Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania , Catania , Italy
| | - Teresa Chioccarelli
- c Dipartimento di Medicina Sperimentale, sez "F. Bottazzi", Università della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Francesco Manfrevola
- c Dipartimento di Medicina Sperimentale, sez "F. Bottazzi", Università della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Gilda Cobellis
- c Dipartimento di Medicina Sperimentale, sez "F. Bottazzi", Università della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Cinzia Di Pietro
- a Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania , Catania , Italy
| | - Duilia Brex
- a Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania , Catania , Italy
| | - Rosalia Battaglia
- a Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania , Catania , Italy
| | - Silvia Fasano
- c Dipartimento di Medicina Sperimentale, sez "F. Bottazzi", Università della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Bruno Ferraro
- d UOSD di Fisiopatologia della Riproduzione, Presidio Ospedaliero di Marcianise , Caserta , Italy
| | - Carolina Sellitto
- d UOSD di Fisiopatologia della Riproduzione, Presidio Ospedaliero di Marcianise , Caserta , Italy
| | - Concetta Ambrosino
- e Dipartimento di Scienze e Tecnologie, Università del Sannio , Benevento , Italy
| | - Luca Roberto
- f IRGS, Biogem , Ariano Irpino, Avellino , Italy
| | - Michele Purrello
- a Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania , Catania , Italy
| | - Riccardo Pierantoni
- c Dipartimento di Medicina Sperimentale, sez "F. Bottazzi", Università della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Rosanna Chianese
- c Dipartimento di Medicina Sperimentale, sez "F. Bottazzi", Università della Campania "Luigi Vanvitelli" , Napoli , Italy
| |
Collapse
|
39
|
Siddiqui H, Al-Ghafari A, Choudhry H, Al Doghaither H. Roles of long non-coding RNAs in colorectal cancer tumorigenesis: A Review. Mol Clin Oncol 2019; 11:167-172. [PMID: 31281651 DOI: 10.3892/mco.2019.1872] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/16/2019] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are newly identified potential biological and gene regulators. Similar to other cell-free circulating cancer-related nucleic acids, lncRNAs are released in the peripheral circulation of cancer patients and allow for non-invasive gene expression assessment. lncRNAs are considered to be promising biomarkers for cancer prognosis and diagnosis. Several lncRNAs have been found to regulate developmental processes in a number of biological disorders. Recent studies indicated that lncRNAs are associated with numerous diseases, most notably cancer, as they were found to be highly expressed or silenced in a number of human cancers, including colorectal cancer (CRC). Despite advances in the current detection methods, over half of cancer patients succumb to the disease, as several CRC cases are diagnosed at an advanced stage. Due to the lack of non-invasive and low-cost prognostic and diagnostic tests for CRC, the identification of novel, potentially effective biomarkers has been attracting increasing attention in recent cancer research. The present review focused on the most widely applied lncRNAs in cancer detection, including CRC, in vitro.
Collapse
Affiliation(s)
- Halima Siddiqui
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 23817, Kingdom of Saudi Arabia
| | - Ayat Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 23817, Kingdom of Saudi Arabia.,Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 23817, Kingdom of Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 23817, Kingdom of Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 23817, Kingdom of Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 23817, Kingdom of Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah 23817, Kingdom of Saudi Arabia
| | - Huda Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 23817, Kingdom of Saudi Arabia
| |
Collapse
|
40
|
Siveen KS, Raza A, Ahmed EI, Khan AQ, Prabhu KS, Kuttikrishnan S, Mateo JM, Zayed H, Rasul K, Azizi F, Dermime S, Steinhoff M, Uddin S. The Role of Extracellular Vesicles as Modulators of the Tumor Microenvironment, Metastasis and Drug Resistance in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11060746. [PMID: 31146452 PMCID: PMC6628238 DOI: 10.3390/cancers11060746] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, with high morbidity and mortality rates. A number of factors including modulation of the tumor microenvironment, high metastatic capability, and resistance to treatment have been associated with CRC disease progression. Recent studies have documented that tumor-derived extracellular vesicles (EVs) play a significant role in intercellular communication in CRC via transfer of cargo lipids, proteins, DNA and RNAs to the recipient tumor cells. This transfer influences a number of immune-related pathways leading to activation/differentiation/expression of immune cells and modulation of the tumor microenvironment that plays a significant role in CRC progression, metastasis, and drug resistance. Furthermore, tumor-derived EVs are secreted in large amounts in biological fluids of CRC patients and as such the expression analysis of EV cargoes have been associated with prognosis or response to therapy and may be a source of therapeutic targets. This review aims to provide a comprehensive insight into the role of EVs in the modulation of the tumor microenvironment and its effects on CRC progression, metastasis, and drug resistance. On the other hand, the potential role of CRC derived EVs as a source of biomarkers of response and therapeutic targets will be discussed in detail to understand the dynamic role of EVs in CRC diagnosis, treatment, and management.
Collapse
Affiliation(s)
- Kodappully S Siveen
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Eiman I Ahmed
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Abdul Q Khan
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Kirti S Prabhu
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Shilpa Kuttikrishnan
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Jericha M Mateo
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Hatem Zayed
- College of Health Sciences, Department of Biomedical Sciences, Qatar University, Doha P.O. Box 2713, Qatar.
| | - Kakil Rasul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Fouad Azizi
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| | - Martin Steinhoff
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
- Department of Dermatology Venereology, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar.
- Weill Cornell-Medicine, Doha P.O. Box 24811, Qatar.
- Weill Cornell University, New York, NY 10065, USA.
| | - Shahab Uddin
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
| |
Collapse
|
41
|
Cui YS, Song YP, Fang BJ. The role of long non-coding RNAs in multiple myeloma. Eur J Haematol 2019; 103:3-9. [PMID: 30985973 DOI: 10.1111/ejh.13237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
Multiple myeloma (MM) is still an incurable disease, and its pathogenesis involves cytogenetics and epigenetics. In recent years, the roles of long non-coding RNAs (lncRNAs) in MM have been deeply studied by scholars. LncRNAs are defined as a class of non-protein-coding transcripts greater than 200 nucleotides in length, which are involved in a large spectrum of biological processes, including proliferation, differentiation, apoptosis, invasion, and chromatin remodeling. However, little is known about the specific mechanisms of these lncRNAs. They can act as oncogenic and/or tumor-suppressive factors in the development and progression of MM. But that how do they work remains unclear. In this review, the recent progress in the study of functional lncRNAs associated with MM was summarized and the present knowledge about their expression and roles was discussed, to provide guidance for the in-depth functional study of lncRNAs.
Collapse
Affiliation(s)
- Yu-Shan Cui
- Department of Hematology, Henan Institute of Haematology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong-Ping Song
- Department of Hematology, Henan Institute of Haematology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Bai-Jun Fang
- Department of Hematology, Henan Institute of Haematology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
42
|
Wu H, Zou Q, He H, Liang Y, Lei M, Zhou Q, Fan D, Shen L. Long non-coding RNA PCAT6 targets miR-204 to modulate the chemoresistance of colorectal cancer cells to 5-fluorouracil-based treatment through HMGA2 signaling. Cancer Med 2019; 8:2484-2495. [PMID: 30938104 PMCID: PMC6536993 DOI: 10.1002/cam4.1809] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is still the third most common cancer in the world with a limited prognosis due to the chemoresistance of CRC cells to 5‐fluorouracil (5‐FU)‐based chemotherapy. In our previous study, we revealed that miR‐204 overexpression could sensitize CRC cell to 5‐FU treatment through targeting HMGA2/PI3K signaling pathway; however, miR‐204 expression in CRC tissues is abnormally downregulated. Long non‐coding RNAs (lncRNAs) dysregulation has been reported in human diseases, including cancer. Also, lncRNA can regulate cancer cell proliferation, invasion, migration, as well as chemoresistance. LncRNA prostate cancer‐associated transcript 6 (PCAT6) acts as an oncogene in many cancers; herein, PCAT6 expression was abnormally upregulated in CRC tissues and cell lines, suggesting its potential role in CRC. Further, we assessed the specific function and mechanism of PCAT6 in CRC. Furthermore, we revealed that PCAT6 knockdown attenuated CRC chemoresistance to 5‐FU through miR‐204/HMGA2/PI3K; miR‐204 inhibition could partially reverse the effect of PCAT6 knockdown. Taken together, we demonstrate that the abnormal PCAT6 overexpression inhibits miR‐204 expression in CRC, thereby promoting HMGA2/PI3K signaling activity, ultimately enhancing the chemoresistance of CRC cells to 5‐FU; PCAT6 represents a promising target for dealing with CRC chemoresistance.
Collapse
Affiliation(s)
- Haijun Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiongyan Zou
- Department of Breast and Thyroid, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong He
- Department of Medical Records Information, The First Hospital of Changsha, Changsha, China
| | - Yu Liang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Mingjun Lei
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Fan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Zhen Y, Nan Y, Guo S, Zhang L, Li G, Yue S, Liu X. Knockdown of NEAT1 repressed the malignant progression of glioma through sponging miR-107 and inhibiting CDK14. J Cell Physiol 2018; 234:10671-10679. [PMID: 30480816 DOI: 10.1002/jcp.27727] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/22/2018] [Indexed: 01/03/2023]
Abstract
Aberrant expressions of long noncoding RNAs (lncRNAs) contribute to carcinogenesis via regulating tumor suppressors or oncogenes. LncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been recognized as an oncogene to promote tumor progression of many cancers. However, the function of NEAT1 in glioma remains poorly discovered. Currently, we focused on the role of NEAT1 in glioma. Here, we found that NEAT1 was greatly upregulated in glioma cells compared with normal human astrocytes (NHAs). Meanwhile, miR-107 was significantly downregulated in glioma cell lines. Then, we observed that knockdown of NEAT1 suppressed the growth and invasion of glioma cells including U251 and SW1783 cells. Reversely, overexpression of NEAT1 dramatically induced glioma cell survival, increased cell colony formation, and promoted cell invasion ability. Subsequently, bioinformatics analysis was performed to predict the correlation between NEAT1 and miR-107. Moreover, it was revealed that NEAT1 could modulate miR-107 via serving as an endogenous sponge of miR-107. The direct binding correlation between NEAT1 and miR-107 was validated in our study. In addition, cyclin dependent kinase 14 (CDK14) was predicted as an messenger RNA target of miR-107 and the association between them was confirmed in our research. Moreover, we implied that NEAT1 demonstrated its biological functions via regulating miR-107 and CDK14 in vivo. In summary, our findings indicated that NEAT1/miR-107/CDK14 axis participated in glioma development. NEAT1 could act as a significant prognostic biomarker in glioma progression.
Collapse
Affiliation(s)
- Yingwei Zhen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shewei Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Longzhou Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ge Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Saichao Yue
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Expression of long non-coding RNA CCHE1 in colorectal carcinoma: correlations with clinicopathological features and ERK/COX-2 pathway. Mol Biol Rep 2018; 46:657-667. [DOI: 10.1007/s11033-018-4521-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/22/2018] [Indexed: 12/25/2022]
|
45
|
Jin Y, Yu LL, Zhang B, Liu CF, Chen Y. Circular RNA hsa_circ_0000523 regulates the proliferation and apoptosis of colorectal cancer cells as miRNA sponge. ACTA ACUST UNITED AC 2018; 51:e7811. [PMID: 30403259 PMCID: PMC6233523 DOI: 10.1590/1414-431x20187811] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022]
Abstract
Among the novel class of endogenous long non-coding RNAs, circular RNA (circRNA) is known as a key regulator in the development and progression of different cancers. Its function and mechanism in the tumorigenesis of colorectal cancer, however, has not been well studied. This study thus aimed to investigate potential regulation of colorectal cancer by circRNAs and the corresponding regulatory mechanism. We demonstrated that the expression of circRNA hsa_circ_0000523 (also known as circ_006229) was down-regulated in different colorectal cancer cell lines. It was also found that interference of hsa_circ_0000523 induced proliferation and suppressed apoptosis of colorectal cancer cells, the proliferation rate of which was reduced by the overexpression of hsa_circ_0000523. In addition, we found that miR-31 could recognize hsa_circ_0000523 sequence and that it acted as a "sponge" of miR-31, indirectly regulating Wnt/β-catenin signaling pathway, which was involved in the progression of colorectal cancer. The results suggested that the expression of hsa_circ_0000523 correlated to the tumorigenesis of colorectal cancer cells. In addition, as a sponge of miR-31, the low level of hsa_circ_0000523 led to activation of Wnt/β-catenin signaling pathway, inducing the subsequent progress of colorectal cancer.
Collapse
Affiliation(s)
- Y Jin
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Zhejiang, China
| | - L L Yu
- Department of Anesthesiology, the Children's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - B Zhang
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Zhejiang, China
| | - C F Liu
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Zhejiang, China
| | - Y Chen
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Zhejiang, China
| |
Collapse
|
46
|
Liu L, Meng T, Yang XH, Sayim P, Lei C, Jin B, Ge L, Wang HJ. Prognostic and predictive value of long non-coding RNA GAS5 and mircoRNA-221 in colorectal cancer and their effects on colorectal cancer cell proliferation, migration and invasion. Cancer Biomark 2018; 22:283-299. [PMID: 29630521 DOI: 10.3233/cbm-171011] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND LncRNA and microRNA play an important role in the development of human cancers; they can act as a tumor suppressor gene or an oncogene. LncRNA GAS5, originating from the separation from tumor suppressor gene cDNA subtractive library, is considered as an oncogene in several kinds of cancers. The expression of miR-221 affects tumorigenesis, invasion and metastasis in multiple types of human cancers. However, there's very little information on the role LncRNA GAS5 and miR-221 play in CRC. Therefore, we conducted this study in order to analyze the association of GAS5 and miR-221 with the prognosis of CRC and preliminary study was done on proliferation, metastasis and invasion of CRC cells. In the present study, we demonstrate the predictive value of long non-coding RNA GAS5 (lncRNA GAS5) and mircoRNA-221 (miR-221) in the prognosis of colorectal cancer (CRC) and their effects on CRC cell proliferation, migration and invasion. METHODS One hundred and fifty-eight cases with CRC patients and 173 cases of healthy subjects that with no abnormalities, who've been diagnosed through colonoscopy between January 2012 and January 2014 were selected for the study. After the clinicopathological data of the subjects, tissue, plasma and exosomes were collected, lncRNA GAS5 and miR-221 expressions in tissues, plasma and exosomes were measured by reverse transcription quantitative polymerase chain reaction (RT-qPCR). The diagnostic values of lncRNA GAS5 and miR-221 expression in tissues, plasma and exosomes in patients with CRC were analyzed using receiver operating characteristic curve (ROC). Lentiviral vector was constructed for the overexpression of lncRNA GAS5, and SW480 cell line was used for the transfection of the experiment and assigned into an empty vector and GAS5 groups. The cell proliferation, migration and invasion were tested using a cell counting kit-8 assay and Transwell assay respectively. RESULTS The results revealed that LncRNA GAS5 was upregulated while the miR-221 was downregulated in the tissues, plasma and exosomes of patients with CRC. The results of ROC showed that the expressions of both lncRNA GAS5 and miR-221 in the tissues, plasma and exosomes had diagnostic value in CRC. While the LncRNA GAS5 expression in tissues, plasma and exosomes were associated with the tumor node metastasis (TNM) stage, Dukes stage, lymph node metastasis (LNM), local recurrence rate and distant metastasis rate, the MiR-221 expression in tissues, plasma and exosomes were associated with tumor size, TNM stage, Dukes stage, LNM, local recurrence rate and distant metastasis rate. LncRNA GAS5 and miR-221 expression in tissues, plasma and exosomes were found to be independent prognostic factors for CRC. Following the overexpression of GAS5, the GAS5 expressions was up-regulated and miR-221 expression was down-regulated; the rate of cell proliferation, migration and invasion were decreased.
Collapse
|
47
|
Ferlita AL, Battaglia R, Andronico F, Caruso S, Cianci A, Purrello M, Pietro CD. Non-Coding RNAs in Endometrial Physiopathology. Int J Mol Sci 2018; 19:ijms19072120. [PMID: 30037059 PMCID: PMC6073439 DOI: 10.3390/ijms19072120] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 12/18/2022] Open
Abstract
The Human Genome Project led to the discovery that about 80% of our DNA is transcribed in RNA molecules. Only 2% of the human genome is translated into proteins, the rest mostly produces molecules called non-coding RNAs, which are a heterogeneous class of RNAs involved in different steps of gene regulation. They have been classified, according to their length, into small non-coding RNAs and long non-coding RNAs, or to their function, into housekeeping non-coding RNAs and regulatory non-coding RNAs. Their involvement has been widely demonstrated in all cellular processes, as well as their dysregulation in human pathologies. In this review, we discuss the function of non-coding RNAs in endometrial physiology, analysing their involvement in embryo implantation. Moreover, we explore their role in endometrial pathologies such as endometrial cancer, endometriosis and chronic endometritis.
Collapse
Affiliation(s)
- Alessandro La Ferlita
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Francesca Andronico
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Salvatore Caruso
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy.
| | - Antonio Cianci
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy.
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
48
|
James de Bony E, Bizet M, Van Grembergen O, Hassabi B, Calonne E, Putmans P, Bontempi G, Fuks F. Comprehensive identification of long noncoding RNAs in colorectal cancer. Oncotarget 2018; 9:27605-27629. [PMID: 29963224 PMCID: PMC6021240 DOI: 10.18632/oncotarget.25218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/06/2018] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers in humans and a leading cause of cancer-related deaths worldwide. As in the case of other cancers, CRC heterogeneity leads to a wide range of clinical outcomes and complicates therapy. Over the years, multiple factors have emerged as markers of CRC heterogeneity, improving tumor classification and selection of therapeutic strategies. Understanding the molecular mechanisms underlying this heterogeneity remains a major challenge. A considerable research effort is therefore devoted to identifying additional features of colorectal tumors, in order to better understand CRC etiology and to multiply therapeutic avenues. Recently, long noncoding RNAs (lncRNAs) have emerged as important players in physiological and pathological processes, including CRC. Here we looked for lncRNAs that might contribute to the various colorectal tumor phenotypes. We thus monitored the expression of 4898 lncRNA genes across 566 CRC samples and identified 282 lncRNAs reflecting CRC heterogeneity. We then inferred potential functions of these lncRNAs. Our results highlight lncRNAs that may participate in the major processes altered in distinct CRC cases, such as WNT/β-catenin and TGF-β signaling, immunity, the epithelial-to-mesenchymal transition (EMT), and angiogenesis. For several candidates, we provide experimental evidence supporting our functional predictions that they may be involved in the cell cycle or the EMT. Overall, our work identifies lncRNAs associated with key CRC characteristics and provides insights into their respective functions. Our findings constitute a further step towards understanding the contribution of lncRNAs to CRC heterogeneity. They may open new therapeutic opportunities.
Collapse
Affiliation(s)
- Eric James de Bony
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Machine Learning Group, Computer Science Department, Université Libre de Bruxelles, 1050 Brussels, Belgium
- Inter-University Institute of Bioinformatics, Brussels, Université Libre de Bruxelles–Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Olivier Van Grembergen
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Bouchra Hassabi
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Pascale Putmans
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Gianluca Bontempi
- Machine Learning Group, Computer Science Department, Université Libre de Bruxelles, 1050 Brussels, Belgium
- Inter-University Institute of Bioinformatics, Brussels, Université Libre de Bruxelles–Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
49
|
Barbagallo C, Brex D, Caponnetto A, Cirnigliaro M, Scalia M, Magnano A, Caltabiano R, Barbagallo D, Biondi A, Cappellani A, Basile F, Di Pietro C, Purrello M, Ragusa M. LncRNA UCA1, Upregulated in CRC Biopsies and Downregulated in Serum Exosomes, Controls mRNA Expression by RNA-RNA Interactions. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:229-241. [PMID: 30195762 PMCID: PMC6023947 DOI: 10.1016/j.omtn.2018.05.009] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) contribute to the onset of many neoplasias through RNA-RNA competitive interactions; in addition, they could be secreted by cancer cells into biological fluids, suggesting their potential diagnostic application. By analyzing the expression of 17 lncRNAs and 31 circRNAs in biopsies and serum exosomes from colorectal cancer (CRC) patients through qRT-PCR, we detected CCAT1, CCAT2, HOTAIR, and UCA1 upregulation and CDR1AS, MALAT1, and TUG1 downregulation in biopsies. In serum exosomes, UCA1 was downregulated, while circHIPK3 and TUG1 were upregulated. Combined receiver operating characteristic (ROC) curves of TUG1:UCA1 and circHIPK3:UCA1 showed high values of sensitivity and specificity. Through in vitro (i.e., RNA silencing and mitogen-activated protein kinase [MAPK] inhibition) and in silico analyses (i.e., expression correlation and RNA-RNA-binding prediction), we found that UCA1 could (1) be controlled by MAPKs through CEBPB; (2) sequester miR-135a, miR-143, miR-214, and miR-1271, protecting ANLN, BIRC5, IPO7, KIF2A, and KIF23 from microRNA (miRNA)-induced degradation; and (3) interact with mRNA 3'-UTRs, preventing miRNA binding. UCA1 and its co-regulated antisense LINC01764 could interact and reciprocally mask their own miRNA-binding sites. Functional enrichment analysis of the RNA-RNA network controlled by UCA1 suggested its potential involvement in cellular migration. The UCA1 regulatory axis would represent a promising target to develop innovative RNA-based therapeutics against CRC.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Duilia Brex
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Matilde Cirnigliaro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Marina Scalia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Antonio Magnano
- Digestive Endoscopy Service, Vittorio Emanuele Hospital, Catania 95124, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania 95123, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Antonio Biondi
- Department of Surgery, Vittorio Emanuele Hospital, University of Catania, Catania 95124, Italy
| | - Alessandro Cappellani
- Department of Surgery, Vittorio Emanuele Hospital, University of Catania, Catania 95124, Italy
| | - Francesco Basile
- Department of Surgery, Vittorio Emanuele Hospital, University of Catania, Catania 95124, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina (EN) 94018, Italy.
| |
Collapse
|
50
|
Di Pietro C, Caruso S, Battaglia R, Iraci Sareri M, La Ferlita A, Strino F, Bonaventura G, Di Mauro M, Barcellona ML, Perciavalle V, Purrello M, Cianci A. MiR-27a-3p and miR-124-3p, upregulated in endometrium and serum from women affected by Chronic Endometritis, are new potential molecular markers of endometrial receptivity. Am J Reprod Immunol 2018; 80:e12858. [DOI: 10.1111/aji.12858] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/27/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Cinzia Di Pietro
- Biology and Genetics Section; Department of Biomedical and Biotechnological Sciences; University of Catania; Catania Italy
| | - Salvatore Caruso
- Department of General Surgery and Medical Surgical Specialties; University of Catania; Catania Italy
| | - Rosalia Battaglia
- Biology and Genetics Section; Department of Biomedical and Biotechnological Sciences; University of Catania; Catania Italy
| | - Marco Iraci Sareri
- Department of General Surgery and Medical Surgical Specialties; University of Catania; Catania Italy
| | - Alessandro La Ferlita
- Biology and Genetics Section; Department of Biomedical and Biotechnological Sciences; University of Catania; Catania Italy
| | - Fabrizio Strino
- Biology and Genetics Section; Department of Biomedical and Biotechnological Sciences; University of Catania; Catania Italy
| | - Gabriele Bonaventura
- Biochemistry Section; Department of Pharmaceutical Science; University of Catania; Catania Italy
| | - Maurizio Di Mauro
- Department of Clinical and Experimental Medicine; University of Catania; Catania Italy
| | - Maria Luisa Barcellona
- Biochemistry Section; Department of Pharmaceutical Science; University of Catania; Catania Italy
| | - Vincenzo Perciavalle
- Physiology Section; Department of Biomedical and Biotechnological Sciences; University of Catania; Catania Italy
| | - Michele Purrello
- Biology and Genetics Section; Department of Biomedical and Biotechnological Sciences; University of Catania; Catania Italy
| | - Antonio Cianci
- Department of General Surgery and Medical Surgical Specialties; University of Catania; Catania Italy
| |
Collapse
|