1
|
Chuang YC, Ou JHJ. Hepatitis B virus entry, assembly, and egress. Microbiol Mol Biol Rev 2024; 88:e0001424. [PMID: 39440957 DOI: 10.1128/mmbr.00014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
SUMMARYHepatitis B virus (HBV) is an important human pathogen that chronically infects approximately 250 million people in the world, resulting in ~1 million deaths annually. This virus is a hepatotropic virus and can cause severe liver diseases including cirrhosis and hepatocellular carcinoma. The entry of HBV into hepatocytes is initiated by the interaction of its envelope proteins with its receptors. This is followed by the delivery of the viral nucleocapsid to the nucleus for the release of its genomic DNA and the transcription of viral RNAs. The assembly of the viral capsid particles may then take place in the nucleus or the cytoplasm and may involve cellular membranes. This is followed by the egress of the virus from infected cells. In recent years, significant research progresses had been made toward understanding the entry, the assembly, and the egress of HBV particles. In this review, we discuss the molecular pathways of these processes and compare them with those used by hepatitis delta virus and hepatitis C virus , two other hepatotropic viruses that are also enveloped. The understanding of these processes will help us to understand how HBV replicates and causes diseases, which will help to improve the treatments for HBV patients.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - J-H James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
2
|
Zeng Y, Zhu C, Huang E, Xun Z, Zhang Y, Chen T, Lin C, Fu Y, Wu S, Yang B, Ou Q, Liu C. Detection of serum large and middle hepatitis B virus surface proteins: A novel potential diagnostic and prognostic biomarker for chronic hepatitis B. Clin Chim Acta 2024; 553:117739. [PMID: 38145642 DOI: 10.1016/j.cca.2023.117739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND The significance of large (LHB) and middle (MHB) HBV surface proteins in chronic hepatitis B (CHB) remains uncertain. This study investigates the role of LHB and MHB in different infection phases and liver diseases. METHODS Serum samples from 217 patients with HBV chronic infection, CHB, liver cirrhosis (LC), and hepatocellular carcinoma (HCC) were subjected to quantification of LHB and MHB using ELISA. RESULTS Positive correlations were observed among LHB, MHB, and LHB/HBsAg, with HBV serum markers including HBsAg, HBeAg, and HBV DNA. (P < 0.0001). In HBeAg-positive chronic infection, LHB and MHB were higher than in HBeAg-positive CHB (P < 0.01). In HBeAg-negative chronic infection, LHB and MHB were lower than in HBeAg-negative CHB (P < 0.01). ROC analysis identified LHB and MHB as potential discriminators of CHB and chronic infection. LC and HCC exhibited lower LHB, MHB, and MHB/HBsAg than CHB (P < 0.05). Multivariate analysis found that age and the MHB/HBsAg serve as independent factors for the progression of CHB to end stage of liver disease. CONCLUSIONS LHB and MHB emerge as novel biomarkers distinguishing chronic infection and CHB. MHB/HBsAg shows promise as a predictor for CHB progression.
Collapse
Affiliation(s)
- Yongbin Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Gene Diagnostic Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chenggong Zhu
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Gene Diagnostic Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Er Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Gene Diagnostic Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhen Xun
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Gene Diagnostic Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanfang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Gene Diagnostic Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Tianbin Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Gene Diagnostic Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Caorui Lin
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Gene Diagnostic Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ya Fu
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Gene Diagnostic Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Songhang Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Gene Diagnostic Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Bin Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Gene Diagnostic Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qishui Ou
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Gene Diagnostic Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Can Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Gene Diagnostic Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Adugna A. Histomolecular characterisation of hepatitis B virus induced liver cancer. Rev Med Virol 2023; 33:e2485. [PMID: 37902197 DOI: 10.1002/rmv.2485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/06/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
Hepatitis B virus (HBV)-associated liver cancer is the third most prevalent cancer-related cause of death worldwide. Different studies have been done on the histomolecular analysis of HBV induced-liver cancer including epigenetics which are dynamic molecular mechanisms to control gene expression without altering the host deoxyribonucleic acid, genomics characterise the integration of the viral genome with host genome, proteomics characterise how gene modifies and results overexpression of proteins, glycoproteomics discover different glyco-biomarker candidates and show glycosylation in malignant hepatocytes, metabolomics characterise how HBV impairs a variety of metabolic functions during hepatocyte immortalisation, exosomes characterise immortalised liver cells in terms of their differentiation and proliferation, and autophagy plays a role in the development of hepatocarcinogenesis linked to HBV infection.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Microbiology, Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
4
|
Wang Y, Li J, Wang S, Pang Y, Liu P, Xie B, Dou S, Yang T, Liu X, Shi Y, Chen D. The hepatitis B virus promotes the progression of non-alcoholic fatty liver disease through incomplete autophagy. Free Radic Biol Med 2023:S0891-5849(23)00436-7. [PMID: 37244371 DOI: 10.1016/j.freeradbiomed.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Hepatitis B virus (HBV) infection is still a serious public health problem. In recent years, with the increasing incidence of chronic hepatitis B (CHB) combined with nonalcoholic fatty liver disease (NAFLD), a more in-depth exploration of the pathogenesis of CHB combined with NAFLD is required. HBV can induce autophagy and use to increase replication. The removal of fat by autophagy, also known as lipophagy, is also currently considered an alternative pathway for lipid metabolism in liver cells. This degradation of autophagy prevents hepatotoxicity and steatosis. However, it is not known whether there is a correlation between HBV-related autophagy and the progression of NAFLD. We explored how HBV affects disease progression in NAFLD should be " and determined whether it is associated with HBV-associated autophagy. In this study, we constructed HBV-TG mouse high-fat diet (HFD) models and controls, and the results showed that the presence of HBV promoted the occurrence of NAFLD. We also demonstrated that HBV promotes lipid droplet accumulation in hepatocytes using HBV-stable expression cell lines HepG2.2.15 and AML12-HBV. In addition, this study also found that exogenous OA supplementation reduced HBV replication. We further studied the mechanism and found that HBV-related autophagy can promote the absorption of liver cells to lipid droplets. It can reduce the decomposition of lipid droplets by inhibiting the function of autophagolysosome, and eventually lead to the accumulation of lipid droplets in hepatocytes. In a word, HBV promotes the progression of NAFLD by increasing lipid accumulation in hepatocytes through incomplete autophagy.
Collapse
Affiliation(s)
- Yang Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Jiaxi Li
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Shanshan Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yuheng Pang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China; Harbin Medical University Cancer Hospital, Harbin, China
| | - Pengxiang Liu
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Bangxiang Xie
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Shuangshuang Dou
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Tongwang Yang
- Academician Workstation, Changsha Medical University, Changsha, China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Xiaoni Liu
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Ying Shi
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China.
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Sharma A, Duseja A, Parkash J, Changotra H. Association of IRGM gene promoter polymorphisms with Hepatitis B Virus infection. J Gene Med 2022; 24:e3433. [PMID: 35661332 DOI: 10.1002/jgm.3433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In response to intracellular pathogens the autophagy gene IRGM plays an essential role in the innate immune response. Various identified IRGM gene risk loci are associated with several diseases, but so far no study is available which shows the association of IRGM with HBV infection. METHODS We genotyped promoter variants (rs4958842, rs4958843, and rs4958846) of IRGM in HBV infected patients (551) and healthy controls (247) for their role in HBV infection. The genotyping was done applying methods developed in our laboratory and various biochemical parameters were assessed applying commercially available kits. RESULTS Data analysis has shown that the mutant allele A of rs4958842 plays a role in the protection from HBV infection in various genetic models that includes allelic, co-dominant and dominant models with the respective statistical data (OR=0.61; 95%CI=0.48-0.78; p=0.0003), (OR=0.52; 95%CI=0.38-0.71; p=0.0008) and (OR=0.51; 95%CI=0.38-0.70, p=0.0004). In CHB, protective association was observed in allelic (OR=0.48; 95%CI=0.35-0.65, p=0.0004), co-dominant (OR=0.38; 95%CI=0.26-0.54, p=0.0004) and dominant models (OR=0.38; 95%CI=0.26-0.54, p=0.0002). Mutant allele C of rs49598843 was associated with the risk of CHB in co-dominant (OR=1.52; 95%CI=1.07-2.16, p=0.04) and dominant models (OR=1.41; 95%CI=1.00-2.00, p=0.04). The mutant allele C of rs4958846 decreased the risk of HBV infection in allelic (OR=0.74; 95%CI=0.59-0.92, p=0.01), dominant (OR=0.72; 95%CI=0.53-0.98, p=0.05), homozygous (OR=0.42; 95%CI=0.24-0.74, p=0.01) and recessive (OR=0.42; 95%CI=0.24-0.74, p=0.0004) models. However, in asymptomatic group it was associated with the increased chance of HBV infection. Haplotypes, ATT (OR=0.47; 95%CI=0.33-0.68, p=0.001), GTC (OR=0.68; 95%CI=0.51-0.92, p=0.01) protect while GTT (OR=2.01; 95%CI=(1.55-2.60), p<0.0001) predisposes the individuals to HBV infection. All of these p-values mentioned here were obtained after performing Bonferroni correction. CONCLUSION In conclusion, our findings revealed that mutant allele A of rs4958842, mutant allele C of rs4958843 and rs4958846 were associated with hepatitis B virus infection in the North Indian population.
Collapse
Affiliation(s)
- Ambika Sharma
- Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, INDIA
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, INDIA
| | - Jyoti Parkash
- Centre for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, INDIA
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, INDIA
| |
Collapse
|
6
|
Bębnowska D, Niedźwiedzka-Rystwej P. The Interplay between Autophagy and Virus Pathogenesis-The Significance of Autophagy in Viral Hepatitis and Viral Hemorrhagic Fevers. Cells 2022; 11:871. [PMID: 35269494 PMCID: PMC8909602 DOI: 10.3390/cells11050871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a process focused on maintaining the homeostasis of organisms; nevertheless, the role of this process has also been widely documented in viral infections. Thus, xenophagy is a selective form of autophagy targeting viruses. However, the relation between autophagy and viruses is ambiguous-this process may be used as a strategy to fight with a virus, but is also in favor of the virus's replication. In this paper, we have gathered data on autophagy in viral hepatitis and viral hemorrhagic fevers and the relations impacting its viral pathogenesis. Thus, autophagy is a potential therapeutic target, but research is needed to fully understand the mechanisms by which the virus interacts with the autophagic machinery. These studies must be performed in specific research models other than the natural host for many reasons. In this paper, we also indicate Lagovirus europaeus virus as a potentially good research model for acute liver failure and viral hemorrhagic disease.
Collapse
Affiliation(s)
- Dominika Bębnowska
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | | |
Collapse
|
7
|
Sadri Nahand J, Salmaninejad A, Mollazadeh S, Tamehri Zadeh SS, Rezaee M, Sheida AH, Sadoughi F, Dana PM, Rafiyan M, Zamani M, Taghavi SP, Dashti F, Mirazimi SMA, Bannazadeh Baghi H, Moghoofei M, Karimzadeh M, Vosough M, Mirzaei H. Virus, Exosome, and MicroRNA: New Insights into Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:97-162. [DOI: 10.1007/5584_2022_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021; 11:603224. [PMID: 33763351 PMCID: PMC7982729 DOI: 10.3389/fonc.2021.603224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
Affiliation(s)
- Alejandra Suares
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Medina
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Coso
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021. [DOI: 10.3389/fonc.2021.603224
expr 816899697 + 824303767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
|
10
|
Yu M, Xu W, Jie Y, Pang J, Huang S, Cao J, Gong J, Li X, Chong Y. Identification and validation of three core genes in p53 signaling pathway in hepatitis B virus-related hepatocellular carcinoma. World J Surg Oncol 2021; 19:66. [PMID: 33685467 PMCID: PMC7938465 DOI: 10.1186/s12957-021-02174-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common cancer and the leading cause is persistent hepatitis B virus (HBV) infection. We aimed to identify some core genes and pathways for HBV-related HCC. METHODS Gene expression profiles of GSE62232, GSE121248, and GSE94660 were available from Gene Expression Omnibus (GEO). The GSE62232 and GSE121248 profiles were the analysis datasets and GSE94660 was the validation dataset. The GEO2R online tool and Venn diagram software were applied to analyze commonly differentially expressed genes between HBV-related HCC tissues and normal tissues. Then, functional enrichment analysis using Gene Ontology (GO) and the Kyoto Encyclopedia of Gene and Genome (KEGG) as well as the protein-protein interaction (PPI) network was conducted. The overall survival rates and the expression levels were detected by Kaplan-Meier plotter and Gene Expression Profiling Interactive Analysis (GEPIA). Next, gene set enrichment analysis (GSEA) was performed to verify the KEGG pathway analysis. Furthermore, quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was performed to validate the levels of these three core genes in tumor tissues and adjacent non-tumor liver tissues from 12 HBV related HCC patients, HBV-associated liver cancer cell lines and normal liver cell lines, and HepG2 with p53 knockdown or deletion, respectively. RESULTS Fifteen highly expressed genes associated with significantly worse prognoses were selected and CCNB1, CDK1, and RRM2 in the p53 signaling pathway were identified as core genes. GSEA results showed that samples highly expressing three core genes were all enriched in the p53 signaling pathway in a validation dataset (P < 0.0001). The expression of these three core genes in tumor tissue samples was higher than that in relevant adjacent non-tumor liver tissues (P < 0.0001). Furthermore, we also found that the above genes were highly expressed in liver cancer cell lines compared with normal liver cells. In addition, we found that the expression of these three core genes in p53 knockdown or knockout HCC cell lines was lower than that in negative control HCC cell lines (P < 0.05). CONCLUSIONS CCNB1, CDK1, and RRM2 were enriched in the p53 signaling pathway and could be potential biomarkers and therapeutic targets for HBV-related HCC.
Collapse
Affiliation(s)
- Mingxue Yu
- Department of Infectious Diseases and Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
| | - Wenli Xu
- Department of Infectious Diseases and Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
| | - Yusheng Jie
- Department of Infectious Diseases and Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
| | - Jiahui Pang
- Department of Infectious Diseases and Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
| | - Siqi Huang
- Department of Infectious Diseases and Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
| | - Jing Cao
- Department of Infectious Diseases and Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
| | - Jiao Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
| | - Xinhua Li
- Department of Infectious Diseases and Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China.
| | - Yutian Chong
- Department of Infectious Diseases and Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China.
| |
Collapse
|
11
|
Deng F, Xu G, Cheng Z, Huang Y, Ma C, Luo C, Yu C, Wang J, Xu X, Liu S, Zhu Y. Hepatitis B Surface Antigen Suppresses the Activation of Nuclear Factor Kappa B Pathway via Interaction With the TAK1-TAB2 Complex. Front Immunol 2021; 12:618196. [PMID: 33717111 PMCID: PMC7947203 DOI: 10.3389/fimmu.2021.618196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis B is a major health problem worldwide, with more than 250 million chronic carriers. Hepatitis B virus interferes with the host innate immune system so as to evade elimination via almost all of its constituent proteins; nevertheless, the function of HBsAg with respect to immune escape remains unclear. This study aimed to determine the role HBsAg plays in assisting HBV to escape from immune responses. We found that HBsAg suppressed the activation of the nuclear factor kappa B (NF-кB) pathway, leading to downregulation of innate immune responses. HBsAg interacted with TAK1 and TAB2 specifically, inhibiting the phosphorylation and polyubiquitination of TAK1 and the K63-linked polyubiquitination of TAB2. Autophagy is a major catabolic process participating in many cellular processes, including the life cycle of HBV. We found that HBsAg promoted the autophagic degradation of TAK1 and TAB2 via the formation of complexes with TAK1 and TAB2, resulting in suppression of the NF-κB pathway. The expression of TAK1, TAB2, and the translocation of NF-κB inversely correlated with HBsAg levels in clinical liver tissues. Taken together, our findings suggest a novel mechanism by which HBsAg interacts with TAK1-TAB2 complex and suppresses the activation of NF-κB signaling pathway via reduction of the post-translational modifications and autophagic degradation.
Collapse
Affiliation(s)
- Feiyan Deng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhikui Cheng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Caijiao Ma
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chuanjin Luo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiupeng Xu
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic, Huangshi, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Nahand JS, Jamshidi S, Hamblin MR, Mahjoubin-Tehran M, Vosough M, Jamali M, Khatami A, Moghoofei M, Baghi HB, Mirzaei H. Circular RNAs: New Epigenetic Signatures in Viral Infections. Front Microbiol 2020; 11:1853. [PMID: 32849445 PMCID: PMC7412987 DOI: 10.3389/fmicb.2020.01853] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Covalent closed circular RNAs (circRNAs) can act as a bridge between non-coding RNAs and coding messenger RNAs. CircRNAs are generated by a back-splicing mechanism during post-transcriptional processing and are abundantly expressed in eukaryotic cells. CircRNAs can act via the modulation of RNA transcription and protein production, and by the sponging of microRNAs (miRNAs). CircRNAs are now thought to be involved in many different biological and pathological processes. Some studies have suggested that the expression of host circRNAs is dysregulated in several types of virus-infected cells, compared to control cells. It is highly likely that viruses can use these molecules for their own purposes. In addition, some viral genes are able to produce viral circRNAs (VcircRNA) by a back-splicing mechanism. However, the viral genes that encode VcircRNAs, and their functions, are poorly studied. In this review, we highlight some new findings about the interaction of host circRNAs and viral infection. Moreover, the potential of VcircRNAs derived from the virus itself, to act as biomarkers and therapeutic targets is summarized.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Sogol Jamshidi
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Dermatology, Harvard Medical School, Boston, MA, United States.,Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Jamali
- Department of Gynecology and Obstetrics, Mahdieh Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Khatami
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Wang H, Liu Y, Wang D, Xu Y, Dong R, Yang Y, Lv Q, Chen X, Zhang Z. The Upstream Pathway of mTOR-Mediated Autophagy in Liver Diseases. Cells 2019; 8:E1597. [PMID: 31835352 PMCID: PMC6953127 DOI: 10.3390/cells8121597] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy, originally found in liver experiments, is a cellular process that degrades damaged organelle or protein aggregation. This process frees cells from various stress states is a cell survival mechanism under stress stimulation. It is now known that dysregulation of autophagy can cause many liver diseases. Therefore, how to properly regulate autophagy is the key to the treatment of liver injury. mechanistic target of rapamycin (mTOR)is the core hub regulating autophagy, which is subject to different upstream signaling pathways to regulate autophagy. This review summarizes three upstream pathways of mTOR: the phosphoinositide 3-kinase (PI3K)/protein kinase (AKT) signaling pathway, the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, and the rat sarcoma (Ras)/rapidly accelerated fibrosarcoma (Raf)/mitogen-extracellular activated protein kinase kinase (MEK)/ extracellular-signal-regulated kinase (ERK) signaling pathway, specifically explored their role in liver fibrosis, hepatitis B, non-alcoholic fatty liver, liver cancer, hepatic ischemia reperfusion and other liver diseases through the regulation of mTOR-mediated autophagy. Moreover, we also analyzed the crosstalk between these three pathways, aiming to find new targets for the treatment of human liver disease based on autophagy.
Collapse
Affiliation(s)
- Haojie Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Dongmei Wang
- College of Medical, Henan University of Science and Technology, Luoyang 471000, China;
| | - Yaolu Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Ruiqi Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Yuxiang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Qiongxia Lv
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Xiaoguang Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| |
Collapse
|
14
|
Abdoli A, Nakhaie M, Feizi N, Salimi Jeda A, Ramezani A. Harmonized Autophagy Versus Full-Fledged Hepatitis B Virus: Victorious or Defeated. Viral Immunol 2019; 32:322-334. [PMID: 31483214 DOI: 10.1089/vim.2019.0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a finely tuned process in the regulation of innate immunity to avoid excessive inflammatory responses and inflammasome signaling. In contrast, the results of recent studies have shown that autophagy may disease-dependently contribute to the pathogenesis of liver diseases, such as fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) during hepatitis B virus (HBV) infection. HBV has learned to subvert the cell's autophagic machinery to promote its replication. Given the great impact of the autophagy mechanism on the HBV infection and HCC, recognizing these factors may be offered new hope for human intervention and treatment of chronic HBV. This review focuses on recent findings viewing the dual role of autophagy plays in the pathogenesis of HBV infected hepatocytes.
Collapse
Affiliation(s)
- Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Nakhaie
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Feizi
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amitis Ramezani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
15
|
Mukhopadhyay U, Chanda S, Patra U, Mukherjee A, Rana S, Mukherjee A, Chawla-Sarkar M. Synchronized Orchestration of miR-99b and let-7g Positively Regulates Rotavirus Infection by Modulating Autophagy. Sci Rep 2019; 9:1318. [PMID: 30718795 PMCID: PMC6362297 DOI: 10.1038/s41598-018-38473-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022] Open
Abstract
Rotavirus (RV), the major etiological agent of viral gastroenteritis in young children, kills over 200 thousand infants each year. In spite of available vaccines, rotaviral diarrhoea is still a major problem in developing countries of Asia and Africa. Therefore, the studies on RV infection and host antiviral responses are warranted. The active correlation between virus infection and activation of autophagy machinery and positive influence of autophagy on RV replication have been documented recently. Previous study from our group showed dysregulation of several cellular miRNAs during RV infection, though their significance remained largely unknown. Since cellular microRNAs (miRNAs) have been implicated in the control of several fundamental biological processes including stress response and autophagy, we focused on two miRNAs, miR-99b and let-7g, and analyzed their function to gain insight into the miRNA-autophagy crosstalk during RV infection. This study shows that RV suppresses let-7g expression but enhances miR-99b that in turn augment major autophagy regulators. Ectopic expression of let-7g and knockdown of miR-99b resulted in inhibition of autophagy, hence, reduction of RV replication. Overall, our study highlights new mechanistic insights for understanding the role of miRNAs in modulating RV infection and possibility of using RNA interference as an antiviral therapeutic target.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, WB, India
| | - Shampa Chanda
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, WB, India
| | - Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, WB, India
| | - Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, WB, India
| | - Santanu Rana
- Department of Zoology, University of Calcutta, Kolkata, WB, India
| | - Anupam Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, WB, India.
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, WB, India.
| |
Collapse
|
16
|
Chen X, Hu Y, Zhang W, Chen K, Hu J, Li X, Liang L, Cai X, Hu J, Wang K, Huang A, Tang N. Cisplatin induces autophagy to enhance hepatitis B virus replication via activation of ROS/JNK and inhibition of the Akt/mTOR pathway. Free Radic Biol Med 2019; 131:225-236. [PMID: 30550853 DOI: 10.1016/j.freeradbiomed.2018.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B virus (HBV) infection remains a serious global health concern. Cisplatin is a chemotherapeutic agent commonly used to treat various cancers. However, HBV-infected patients receiving chemotherapy are at risk of HBV reactivation via unknown mechanisms, which we aimed to elucidate in this study. We found that autophagy plays a central role in cisplatin-induced HBV replication. Cisplatin treatment induced autophagy in both HBV-replicating cells and an HBV-transgenic mouse model as evident from marked upregulation of microtubule-associated protein 1 light chain 3 (LC3)-II and the accumulation of red fluorescent protein (RFP)-LC3 puncta. Cisplatin induced complete autophagic flux, which was detected via monitoring of p62 degradation and RFP-GFP-LC3 expression. Inhibition of autophagy by chloroquine, 3-methyladenine, or Atg5 knockdown significantly attenuated cisplatin-induced HBV replication. Additionally, cisplatin-induced autophagy could be significantly attenuated by using the ROS scavenger N-acetyl-l-cysteine. Mechanically, cisplatin promoted HBV replication and autophagy through ROS/JNK and AKT/mTOR signaling. Inhibition of JNK or activation of Akt/mTOR signaling reversed cisplatin-mediated autophagy and HBV replication promotion. In contrast, suppression of Akt/mTOR signaling further promoted cisplatin-induced HBV replication. Finally, pharmacotherapeutic inhibition of autophagy or ROS production impaired HBV production induced by cisplatin in vivo. Together, our results indicate that ROS/JNK and mTOR/AKT-mediated autophagy plays an important role in cisplatin-induced HBV reactivation.
Collapse
Affiliation(s)
- Xuemei Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuan Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wenlu Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ke Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Liang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xuefei Cai
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jieli Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
The Interaction of lncRNA-HEIH and lncRNA-HULC with HBXIP in Hepatitis B Patients. Gastroenterol Res Pract 2018; 2018:9187316. [PMID: 30622563 PMCID: PMC6304880 DOI: 10.1155/2018/9187316] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/06/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major risk factor for the development of hepatic cirrhosis (HC) and hepatocellular carcinoma (HCC), which are associated with very high morbidity and mortality rates worldwide. Many studies have shown that long noncoding RNAs (lncRNAs) that are highly expressed in HCC (lncRNA-HEIH) and highly upregulated in liver cancer (lncRNA-HULC) have been implicated in the development and progression of hepatitis B-related HC and HCC. In this study, reverse transcription and quantitative PCR were used to detect the expression of lncRNA-HEIH and lncRNA-HULC and western blot analysis to detect the expression of hepatitis B X-interacting protein (HBXIP). RNA immunoprecipitation was used to detect the interaction of HBXIP with lncRNA-HULC and lncRNA-HEIH. The results showed that lncRNA-HEIH, lncRNA-HULC, and HBXIP were upregulated in hepatitis B patients, particularly those with hepatitis B-related HCC. Both lncRNA-HEIH and lncRNA-HULC interacted with HBXIP. These results suggest that lncRNA-HEIH and lncRNA-HULC interact with HBXIP in hepatitis B-related diseases.
Collapse
|
18
|
The role of HBV-induced autophagy in HBV replication and HBV related-HCC. Life Sci 2018; 205:107-112. [DOI: 10.1016/j.lfs.2018.04.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
|
19
|
Abdoli A, Alirezaei M, Mehrbod P, Forouzanfar F. Autophagy: The multi-purpose bridge in viral infections and host cells. Rev Med Virol 2018; 28:e1973. [PMID: 29709097 PMCID: PMC7169200 DOI: 10.1002/rmv.1973] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/03/2018] [Accepted: 02/09/2018] [Indexed: 02/06/2023]
Abstract
Autophagy signaling pathway is involved in cellular homeostasis, developmental processes, cellular stress responses, and immune pathways. The aim of this review is to summarize the relationship between autophagy and viruses. It is not possible to be fully comprehensive, or to provide a complete "overview of all viruses". In this review, we will focus on the interaction of autophagy and viruses and survey how human viruses exploit multiple steps in the autophagy pathway to help viral propagation and escape immune response. We discuss the role that macroautophagy plays in cells infected with hepatitis C virus, hepatitis B virus, rotavirus gastroenteritis, immune cells infected with human immunodeficiency virus, and viral respiratory tract infections both influenza virus and coronavirus.
Collapse
Affiliation(s)
- Asghar Abdoli
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | - Mehrdad Alirezaei
- Department of Immunology and Microbial ScienceThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Parvaneh Mehrbod
- Influenza and Other Respiratory Viruses Dept.Pasteur Institute of IranTehranIran
| | - Faezeh Forouzanfar
- University of Strasbourg, EA7292, DHPIInstitute of Parasitology and Tropical Pathology StrasbourgFrance
| |
Collapse
|
20
|
Xiao Z, Shen J, Zhang L, Li M, Hu W, Cho C. Therapeutic targeting of noncoding RNAs in hepatocellular carcinoma: Recent progress and future prospects. Oncol Lett 2018; 15:3395-3402. [PMID: 29467864 PMCID: PMC5796293 DOI: 10.3892/ol.2018.7758] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Due to the high mortality rate and unsatisfactory treatment options available, hepatocellular carcinoma (HCC) remains one of the most common malignancies and a leading cause of cancer-associated mortality. Novel therapeutic targets for HCC are urgently required. Advanced RNA sequencing technology enables the identification of considerable amounts of noncoding RNAs (ncRNAs), including small noncoding RNAs and long noncoding RNAs, which exhibit no protein-coding activities. In this respect, ncRNAs and their regulatory processes are important factors in liver tumorigenesis. The present review focuses on the characteristics and biological roles of ncRNAs in HCC. Potential therapeutic applications of ncRNAs in HCC are also evaluated.
Collapse
Affiliation(s)
- Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lin Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei Hu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Chihin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| |
Collapse
|
21
|
Mui UN, Haley CT, Tyring SK. Viral Oncology: Molecular Biology and Pathogenesis. J Clin Med 2017; 6:E111. [PMID: 29186062 PMCID: PMC5742800 DOI: 10.3390/jcm6120111] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Oncoviruses are implicated in approximately 12% of all human cancers. A large number of the world's population harbors at least one of these oncoviruses, but only a small proportion of these individuals go on to develop cancer. The interplay between host and viral factors is a complex process that works together to create a microenvironment conducive to oncogenesis. In this review, the molecular biology and oncogenic pathways of established human oncoviruses will be discussed. Currently, there are seven recognized human oncoviruses, which include Epstein-Barr Virus (EBV), Human Papillomavirus (HPV), Hepatitis B and C viruses (HBV and HCV), Human T-cell lymphotropic virus-1 (HTLV-1), Human Herpesvirus-8 (HHV-8), and Merkel Cell Polyomavirus (MCPyV). Available and emerging therapies for these oncoviruses will be mentioned.
Collapse
Affiliation(s)
- Uyen Ngoc Mui
- Center for Clinical Studies, Houston, TX 77004, USA.
| | | | - Stephen K Tyring
- Center for Clinical Studies, Houston, TX 77004, USA.
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX 77004, USA.
| |
Collapse
|
22
|
Wang Z, Song D, Huang P. MicroRNA‑340 inhibits tumor cell proliferation, migration and invasion, and induces apoptosis in hepatocellular carcinoma. Mol Med Rep 2017; 16:7649-7656. [PMID: 28944918 DOI: 10.3892/mmr.2017.7583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 07/28/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs) are short RNAs that serve a role in the origination and progression of hepatocellular carcinoma (HCC). miR‑340 has been identified to be a novel tumor suppressor. The present study investigated the antitumor function of miR‑340 in HCC. In the present study, it was detected that miR‑340 was significantly decreased in HCC cancer tissues and human HCC cell lines using reverse transcription‑quantitative polymerase chain reaction analysis. Cell Counting kit‑8 and apoptosis assays demonstrated that miR‑340 reduced cell proliferation and induced cellular apoptosis in HCC cell lines. A Transwell invasion assay demonstrated that miR‑340 suppressed the migration and invasion of HCC cell lines. In addition, S‑phase kinase‑associated protein 2 (SKP2), which may be repressed by miR‑340 in HCC cell lines, was identified to be a potential target of miR‑340. The results of the present study revealed that miR‑340 serves a tumor suppressor role by influencing the proliferation, apoptosis, migration and invasion of HCC cell lines, which may be explained by the downregulation of SKP2 by miR‑340.
Collapse
Affiliation(s)
- Ziyao Wang
- National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, P.R. China
| | - Dan Song
- National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, P.R. China
| | - Ping Huang
- National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, P.R. China
| |
Collapse
|
23
|
Wang Z, Wu Z, Huang P. The function of miRNAs in hepatocarcinogenesis induced by hepatitis B virus X protein. Oncol Rep 2017. [DOI: 10.3892/or.2017.5716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Huang WT, Chen ZX, He RQ, Wu YZ, Yin SY, Liang XN, Chen G, Yang H, Peng ZG, Yang LH. Clinicopathological role of miR-30a-5p in hepatocellular carcinoma tissues and prediction of its function with bioinformatics analysis. Onco Targets Ther 2016; 9:5061-71. [PMID: 27574447 PMCID: PMC4990378 DOI: 10.2147/ott.s111431] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND It has been reported that deregulation or dysfunction of microRNAs (miRNAs) plays an essential part in the hepatocarcinogenesis. However, the contribution and mechanism of microRNA-30a-5p (miR-30a-5p) in hepatocellular carcinoma (HCC) remains largely unknown. Therefore, our aim was to investigate the clinicopathological role of miR-30a-5p in HCC tissues and explore its potential pathways in this study. METHODS The expression of miR-30a-5p was measured in 95 HCC and adjacent noncancer tissues by real-time reverse transcription quantitative polymerase chain reaction. The relationship between miR-30a-5p expression levels and clinicopathological parameters was also analyzed. Furthermore, the potential target genes of miR-30a-5p were collected via online prediction and literature searching. Gene ontology and pathway enrichment analyses were used to identify the possible function of miR-30a-5p in HCC. RESULTS Compared with adjacent noncancer tissues (2.23±0.77), expression level of miR-30a-5p was significantly lower in HCC tissues (1.26±0.66, P<0.001). MiR-30a-5p expression was evidently correlated with tumor nodes, metastasis, tumor-node-metastasis stage, portal vein tumor embolus, vascular invasion, and status of tumor capsule (all P<0.05). A total of 878 genes were finally used for the biological informatics analyses. These prospective target genes were highly enriched in various key pathways, for instance, Ubiquitin-mediated proteolysis, Axon guidance, Neurotrophin signaling pathway, Amyotrophic lateral sclerosis, and ErbB signaling pathway. CONCLUSION In conclusion, this study clarifies that the downregulation of miRNA-30a-5p might play a vital part in the incidence and progression of HCC via targeting various prospective genes and pathways. Future validation is required to further explore the prospective molecular mechanism of miR-30a-5p in HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | | | | |
Collapse
|
25
|
Granato M, Zompetta C, Vescarelli E, Rizzello C, Cardi A, Valia S, Antonelli G, Marchese C, Torrisi MR, Faggioni A, Cirone M. HCV derived from sera of HCV-infected patients induces pro-fibrotic effects in human primary fibroblasts by activating GLI2. Sci Rep 2016; 6:30649. [PMID: 27476557 PMCID: PMC4967919 DOI: 10.1038/srep30649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a leading cause of liver fibrosis, especially in developing countries. The process is characterized by the excess accumulation of ECM that may lead, over time, to hepatic cirrhosis, liver failure and also to hepatocarcinoma. The direct role of HCV in promoting fibroblasts trans-differentiation into myofibroblasts, the major fibrogenic cells, has not been fully clarified. In this study, we found that HCV derived from HCV-infected patients infected and directly induced the trans-differentiation of human primary fibroblasts into myofibroblasts, promoting fibrogenesis. This effect correlated with the activation of GLI2, one of the targets of Hedgehog signaling pathway previously reported to be involved in myofibroblast generation. Moreover, GLI2 activation by HCV correlated with a reduction of autophagy in fibroblasts, that may further promoted fibrosis. GLI2 inhibition by Gant 61 counteracted the pro-fibrotic effects and autophagy inhibition mediated by HCV, suggesting that targeting HH/GLI2 pathway might represent a promising strategy to reduce the HCV-induced fibrosis.
Collapse
Affiliation(s)
- M Granato
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| | - C Zompetta
- Dept. of Molecular medicine, Sapienza University of Rome, Italy
| | - E Vescarelli
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| | - C Rizzello
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| | - A Cardi
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| | - S Valia
- Dept. of Molecular medicine, Sapienza University of Rome, Italy
| | - G Antonelli
- Dept. of Molecular medicine, Sapienza University of Rome, Italy
| | - C Marchese
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| | - M R Torrisi
- Istituto Pasteur-Fondazione Cenci Bolognetti; Dept. Clinical and Molecular Medicine, Sapienza University of Rome, Italy.,Azienda Ospedaliera Sant' Andrea, Rome, Italy
| | - A Faggioni
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| | - M Cirone
- Dept. of Experimental medicine, Sapienza University of Rome, Italy
| |
Collapse
|