1
|
Li Y, Chen Y, Wang D, Wu L, Li T, An N, Yang H. Elucidating the multifaceted role of MGAT1 in hepatocellular carcinoma: integrative single-cell and spatial transcriptomics reveal novel therapeutic insights. Front Immunol 2024; 15:1442722. [PMID: 39081317 PMCID: PMC11286416 DOI: 10.3389/fimmu.2024.1442722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Background Glycosyltransferase-associated genes play a crucial role in hepatocellular carcinoma (HCC) pathogenesis. This study investigates their impact on the tumor microenvironment and molecular mechanisms, offering insights into innovative immunotherapeutic strategies for HCC. Methods We utilized cutting-edge single-cell and spatial transcriptomics to examine HCC heterogeneity. Four single-cell scoring techniques were employed to evaluate glycosyltransferase genes. Spatial transcriptomic findings were validated, and bulk RNA-seq analysis was conducted to identify prognostic glycosyltransferase-related genes and potential immunotherapeutic targets. MGAT1's role was further explored through various functional assays. Results Our analysis revealed diverse cell subpopulations in HCC with distinct glycosyltransferase gene activities, particularly in macrophages. Key glycosyltransferase genes specific to macrophages were identified. Temporal analysis illustrated macrophage evolution during tumor progression, while spatial transcriptomics highlighted reduced expression of these genes in core tumor macrophages. Integrating scRNA-seq, bulk RNA-seq, and spatial transcriptomics, MGAT1 emerged as a promising therapeutic target, showing significant potential in HCC immunotherapy. Conclusion This comprehensive study delves into glycosyltransferase-associated genes in HCC, elucidating their critical roles in cellular dynamics and immune cell interactions. Our findings open new avenues for immunotherapeutic interventions and personalized HCC management, pushing the boundaries of HCC immunotherapy.
Collapse
Affiliation(s)
- Yang Li
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Yuan Chen
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqiong Wang
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Ling Wu
- Tumor Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Tao Li
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Na An
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Haikun Yang
- The Gastroenterology Department, Shanxi Provincial People Hospital, Taiyuan, China
| |
Collapse
|
2
|
Zhou Z, Gao Y, Deng L, Lu X, Lai Y, Wu J, Chen S, Li C, Liang H. Integrating single-cell and bulk sequencing data to identify glycosylation-based genes in non-alcoholic fatty liver disease-associated hepatocellular carcinoma. PeerJ 2024; 12:e17002. [PMID: 38515461 PMCID: PMC10956522 DOI: 10.7717/peerj.17002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/05/2024] [Indexed: 03/23/2024] Open
Abstract
Background The incidence of non-alcoholic fatty liver disease (NAFLD) associated hepatocellular carcinoma (HCC) has been increasing. However, the role of glycosylation, an important modification that alters cellular differentiation and immune regulation, in the progression of NAFLD to HCC is rare. Methods We used the NAFLD-HCC single-cell dataset to identify variation in the expression of glycosylation patterns between different cells and used the HCC bulk dataset to establish a link between these variations and the prognosis of HCC patients. Then, machine learning algorithms were used to identify those glycosylation-related signatures with prognostic significance and to construct a model for predicting the prognosis of HCC patients. Moreover, it was validated in high-fat diet-induced mice and clinical cohorts. Results The NAFLD-HCC Glycogene Risk Model (NHGRM) signature included the following genes: SPP1, SOCS2, SAPCD2, S100A9, RAMP3, and CSAD. The higher NHGRM scores were associated with a poorer prognosis, stronger immune-related features, immune cell infiltration and immunity scores. Animal experiments, external and clinical cohorts confirmed the expression of these genes. Conclusion The genetic signature we identified may serve as a potential indicator of survival in patients with NAFLD-HCC and provide new perspectives for elucidating the role of glycosylation-related signatures in this pathologic process.
Collapse
Affiliation(s)
- Zhijia Zhou
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanan Gao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Longxin Deng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaole Lu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yancheng Lai
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jieke Wu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | | | - Chengzhong Li
- Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Huiqing Liang
- Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Morshed MN, Akter R, Karim MR, Iqbal S, Kang SC, Yang DC. Bioconversion, Pharmacokinetics, and Therapeutic Mechanisms of Ginsenoside Compound K and Its Analogues for Treating Metabolic Diseases. Curr Issues Mol Biol 2024; 46:2320-2342. [PMID: 38534764 DOI: 10.3390/cimb46030148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Rare ginsenoside compound K (CK) is an intestinal microbial metabolite with a low natural abundance that is primarily produced by physicochemical processing, side chain modification, or metabolic transformation in the gut. Moreover, CK exhibits potent biological activity compared to primary ginsenosides, which has raised concerns in the field of ginseng research and development, as well as ginsenoside-related dietary supplements and natural products. Ginsenosides Rb1, Rb2, and Rc are generally used as a substrate to generate CK via several bioconversion processes. Current research shows that CK has a wide range of pharmacological actions, including boosting osteogenesis, lipid and glucose metabolism, lipid oxidation, insulin resistance, and anti-inflammatory and anti-apoptosis properties. Further research on the bioavailability and toxicology of CK can advance its medicinal application. The purpose of this review is to lay the groundwork for future clinical studies and the development of CK as a therapy for metabolic disorders. Furthermore, the toxicology and pharmacology of CK are investigated as well in this review. The findings indicate that CK primarily modulates signaling pathways associated with AMPK, SIRT1, PPARs, WNTs, and NF-kB. It also demonstrates a positive therapeutic effect of CK on non-alcoholic fatty liver disease (NAFLD), obesity, hyperlipidemia, diabetes, and its complications, as well as osteoporosis. Additionally, the analogues of CK showed more bioavailability, less toxicity, and more efficacy against disease states. Enhancing bioavailability and regulating hazardous variables are crucial for its use in clinical trials.
Collapse
Affiliation(s)
- Md Niaj Morshed
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Reshmi Akter
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Md Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Se Chan Kang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
4
|
Kim DY, Han GP, Lim C, Kim JM, Kil DY. Effect of dietary betaine supplementation on the liver transcriptome profile in broiler chickens under heat stress conditions. Anim Biosci 2023; 36:1632-1646. [PMID: 37654169 PMCID: PMC10623048 DOI: 10.5713/ab.23.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVE The objective of the present study was to investigate the effect of dietary betaine (BT) supplementation on the hepatic transcriptome profiles in broiler chickens raised under heat stress (HS) conditions. METHODS A total of 180 (21-d-old) Ross 308 male broiler chicks were allotted to 1 of 3 treatment groups with 6 replicated cages in a completely randomized design. One group was kept under thermoneutral conditions at all times and was fed a basal diet (PC). Other 2 groups were exposed to a cyclic heat stress condition. One of the 2 groups under heat stress conditions was fed the basal diet as a negative control (NC), whereas the other group was fed the basal diet supplemented with 0.2% BT. All chickens were provided with diets and water ad libitum for 21 d. Following the experiment, the liver samples were collected for RNA sequencing analysis. RESULTS Broiler chickens in NC and BT group had decreased (p<0.05) growth performance. In the transcriptome analysis, the number of differentially expressed genes were identified in the liver by HS conditions and dietary BT supplementation. In the comparison between NC and PC treatments, genes related to energy and nucleic acid metabolism, amino acid metabolism, and immune system were altered by HS, which support the reason why heat-stressed poultry had decreased growth performance. In the comparison between NC and BT treatments, genes related to lipid metabolism, carbohydrate metabolism, and immune system were differently expressed under HS conditions. CONCLUSION HS negatively impacts various physiological processes, including DNA replication, metabolism of amino acids, lipids, and carbohydrates, and cell cycle progression in broiler chickens. Dietary BT supplementation, however, offers potential counteractive effects by modulating liver function, facilitating gluconeogenesis, and enhancing immune systems. These findings provide a basis for understanding molecular responses by HS and the possible benefits of dietary BT supplementation in broiler chickens exposed to HS.
Collapse
Affiliation(s)
- Deok Yun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Gi Ppeum Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Chiwoong Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| |
Collapse
|
5
|
Chokeshaiusaha K, Sananmuang T, Puthier D, Nguyen C. Cross-species analysis of differential transcript usage in humans and chickens with fatty liver disease. Vet World 2023; 16:1964-1973. [PMID: 37859957 PMCID: PMC10583885 DOI: 10.14202/vetworld.2023.1964-1973] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/30/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Fatty liver disease is a common condition, characterized by excess fat accumulation in the liver. It can contribute to more severe liver-related health issues, making it a critical concern in avian and human medicine. Apart from modifying the gene expression of liver cells, the disease also alters the expression of specific transcript isoforms, which might serve as new biological markers for both species. This study aimed to identify cross-species genes displaying differential expressions in their transcript isoforms in humans and chickens with fatty liver disease. Materials and Methods We performed differential gene expression and differential transcript usage (DTU) analyses on messenger RNA datasets from the livers of both chickens and humans with fatty liver disease. Using appropriate cross-species gene identification methods, we reviewed the acquired candidate genes and their transcript isoforms to determine their potential role in fatty liver disease's pathogenesis. Results We identified seven genes - ALG5, BRD7, DIABLO, RSU1, SFXN5, STIMATE, TJP3, and VDAC2 - and their corresponding transcript isoforms as potential candidates (false discovery rate ≤0.05). Our findings showed that these genes most likely contribute to fatty disease development and progression. Conclusion This study successfully identified novel human-chicken DTU genes in fatty liver disease. Further research is encouraged to verify the functions and regulations of these transcript isoforms as potential diagnostic markers for fatty liver disease in humans and chickens.
Collapse
Affiliation(s)
- Kaj Chokeshaiusaha
- Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand
| | - Thanida Sananmuang
- Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand
| | - Denis Puthier
- Aix-Marseille Université, INSERM, UMR 1090, TAGC, Marseille, France
| | - Catherine Nguyen
- Aix-Marseille Université, INSERM, UMR 1090, TAGC, Marseille, France
| |
Collapse
|
6
|
Role of Neurite Outgrowth Inhibitor B Receptor in hepatic steatosis. Acta Histochem 2022; 124:151977. [DOI: 10.1016/j.acthis.2022.151977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
|
7
|
Overexpression of glycosyltransferase 8 domain containing 2 confers ovarian cancer to CDDP resistance by activating FGFR/PI3K signalling axis. Oncogenesis 2021; 10:55. [PMID: 34294681 PMCID: PMC8298492 DOI: 10.1038/s41389-021-00343-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
It has been reported that chemotherapy resistance mainly contributed to treatment failure and poor survival in patients with ovarian cancer. Therefore, clarifying the molecular mechanism and identifying effective strategies to overcome drug resistance may play an important clinical impact on this malignant tumor. In our study, we found that the expression of Glycosyltransferase 8 domain containing 2 (GLT8D2) was significantly upregulated in ovarian cancer samples with CDDP (Cis-dichlorodiammine-platinum) resistance. Biological experiment demonstrate that GLT8D2 overexpression confers CDDP resistance on ovarian cancer cells; however, inhibition of GLT8D2 sensitized ovarian cancer cell lines to CDDP cytotoxicity both in vitro and in vivo. By using affinity purification/mass spectrometry (IP/MS) and reciprocal co-immunoprecipitation (co-IP) analyses, we found that GLT8D2 interacts with fibroblast growth factor receptor 1(FGFR1) in ovarian cancer cells. Furthermore, overexpression of GLT8D2 activated FGFR/PI3K signaling axis and upregulated the phosphorylation levels of FRS2a and AKT (AKT serine/threonine kinase). Importantly, pharmacological inhibition of FGFR and PI3K (phosphatidylinositol 3-kinase) signaling pathway significantly counteracted GLT8D2-induced chemoresistance and enhanced platinum's therapeutic efficacy in ovarian cancer. Therefore, our findings suggest that GLT8D2 is a potential therapeutic target for the treatment of ovarian cancer; targeting GLT8D2/FGFR/PI3K/AKT signaling axis may represent a promising strategy to enhance platinum response in patients with chemoresistant ovarian cancer.
Collapse
|
8
|
New insight and potential therapy for NAFLD: CYP2E1 and flavonoids. Biomed Pharmacother 2021; 137:111326. [PMID: 33556870 DOI: 10.1016/j.biopha.2021.111326] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Over the years, the prevalence of nonalcoholic fatty liver disease (NAFLD) has increased year by year; however, due to its complicated pathogenesis, there is no effective treatment so far. It is reported that Cytochrome P450 2E1 (CYP2E1) plays an indispensable role in the development of NAFLD, and numerous studies have shown that flavonoids have a hepatoprotective effect and can exert a beneficial effect on NAFLD by regulating the activity of CYP2E1. Therefore, flavonoids may become effective drugs for the treatment of NAFLD in the future. This prompted us to review the research progress of the pathological mechanism of NAFLD and the impact of CYP2E1 activity changes during the pathological process, and to summarize the protective effect of flavonoids against CYP2E1 activity.
Collapse
|
9
|
Gloux A, Duclos MJ, Brionne A, Bourin M, Nys Y, Réhault-Godbert S. Integrative analysis of transcriptomic data related to the liver of laying hens: from physiological basics to newly identified functions. BMC Genomics 2019; 20:821. [PMID: 31699050 PMCID: PMC6839265 DOI: 10.1186/s12864-019-6185-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND At sexual maturity, the liver of laying hens undergoes many metabolic changes to support vitellogenesis. In published transcriptomic approaches, hundreds of genes were reported to be overexpressed in laying hens and functional gene annotation using gene ontology tools have essentially revealed an enrichment in lipid and protein metabolisms. We reanalyzed some data from a previously published article comparing 38-week old versus 10-week old hens to give a more integrative view of the functions stimulated in the liver at sexual maturity and to move beyond current physiological knowledge. Functions were defined based on information available in Uniprot database and published literature. RESULTS Of the 516 genes previously shown to be overexpressed in the liver of laying hens, 475 were intracellular (1.23-50.72 fold changes), while only 36 were predicted to be secreted (1.35-66.93 fold changes) and 5 had no related information on their cellular location. Besides lipogenesis and protein metabolism, we demonstrated that the liver of laying hens overexpresses several clock genes (which supports the circadian control of liver metabolic functions) and was likely to be involved in a liver/brain/liver circuit (neurotransmitter transport), in thyroid and steroid hormones metabolisms. Many genes were associated with anatomical structure development, organ homeostasis but also regulation of blood pressure. As expected, several secreted proteins are incorporated in yolky follicles but we also evidenced that some proteins are likely participating in fertilization (ZP1, MFGE8, LINC00954, OVOCH1) and in thyroid hormone maturation (CPQ). We also proposed that secreted proteins (PHOSPHO1, FGF23, BMP7 but also vitamin-binding proteins) may contribute to the development of peripheral organs including the formation of medullar bones to provide labile calcium for eggshell formation. Thirteen genes are uniquely found in chicken/bird but not in human species, which strengthens that some of these genes may be specifically related to avian reproduction. CONCLUSIONS This study gives additional hypotheses on some molecular actors and mechanisms that are involved in basic physiological function of the liver at sexual maturity of hen. It also revealed some additional functions that accompany reproductive capacities of laying hens, and that are usually underestimated when using classical gene ontology approaches.
Collapse
Affiliation(s)
- Audrey Gloux
- BOA, INRA, Université de Tours, 37380, Nouzilly, France.
| | | | | | - Marie Bourin
- Institut Technique de l'Aviculture (ITAVI), Centre INRA Val de Loire, F-37380, Nouzilly, France
| | - Yves Nys
- BOA, INRA, Université de Tours, 37380, Nouzilly, France
| | | |
Collapse
|
10
|
Im AR, Yang WK, Park YC, Kim SH, Chae S. Hepatoprotective Effects of Insect Extracts in an Animal Model of Nonalcoholic Fatty Liver Disease. Nutrients 2018; 10:E735. [PMID: 29880728 PMCID: PMC6024666 DOI: 10.3390/nu10060735] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 12/17/2022] Open
Abstract
Insects represent the largest and most diverse group of organisms on earth and are potential food and drug resources. Recently, we have demonstrated that a Forsythia viridissima extract prevented free fatty acid-induced lipid accumulation in an in vitro cellular nonalcoholic fatty liver disease (NAFLD) model. In this study, we aimed to evaluate the hepatoprotective effects of extracts of the insects Protaetia brevitarsis seulensis Kolbe, 1886 (PB), Oxya chinensis sinuosa Mishchenko, 1951 (OC), and Gryllus bimaculatus De Geer, 1773 (GB) in a high-fat diet (HFD)-induced NAFLD animal model, as well as to elucidate the underlying mechanisms. The effects of the supplementation with PB, OC, and GB extracts were evaluated histopathologically and histochemically. PB, OC, and GB extract supplementation inhibited the HFD-induced increase in body weight and body fat mass and ameliorated other adverse changes, resulting in decreased liver function parameters, lower serum triglyceride and cholesterol levels, and increased serum adiponectin levels. The expression of hepatic genes involved in lipid droplet accumulation and in fatty acid uptake also decreased upon treatment of HFD-fed mice with the extracts. These results provide evidence of the protective effects of the PB, OC, and GB extracts against HFD-induced fatty liver disease in an animal model.
Collapse
Affiliation(s)
- A-Rang Im
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34053, Korea.
| | - Won-Kyung Yang
- Institute of Traditional Medicine and Bioscience, 62 Daehak-ro, Dong-gu, Daejeon University, Daejeon 34520, Korea.
| | - Yang-Chun Park
- Division of Respiratory Systems, Department of Internal Medicine, College of Korean Medicine, Daejeon University, 176 Daeduk-ro, Seo-gu, Daejeon 35235, Korea.
| | - Seung Hyung Kim
- Institute of Traditional Medicine and Bioscience, 62 Daehak-ro, Dong-gu, Daejeon University, Daejeon 34520, Korea.
| | - Sungwook Chae
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34053, Korea.
- Korean Medicine Life Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea.
| |
Collapse
|
11
|
Hong T, Ge Z, Meng R, Wang H, Zhang P, Tang S, Lu J, Gu T, Zhu D, Bi Y. Erythropoietin alleviates hepatic steatosis by activating SIRT1-mediated autophagy. Biochim Biophys Acta Mol Cell Biol Lipids 2018. [PMID: 29522896 DOI: 10.1016/j.bbalip.2018.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Erythropoietin (EPO), besides its stimulatory effect on erythropoiesis, is beneficial to insulin resistance and obesity. However, its role in hepatic steatosis remains unexplored. Activating autophagy seems a promising mechanism for improving fatty liver disease. The present study investigated the role of EPO in alleviating hepatic steatosis and sought to determine whether its function is mediated by the activation of autophagy. Here, we show that EPO decreased hepatic lipid content significantly in vivo and in vitro. Furthermore, EPO/EPO receptor (EPOR) signalling induced autophagy activation in hepatocytes as indicated by western blot assay, transmission electron microscopy, and confocal microscopy. In addition, EPO increased the co-localization of autophagosomes and cellular lipids as shown by double labelling of the autophagy marker light chain microtubule-associated protein 3 (LC3) and lipids. Importantly, suppression of autophagy by an inhibitor or small interfering RNA (siRNA) abolished the EPO-mediated alleviation hepatic steatosis in vitro. Furthermore, EPO up-regulated sirtuin 1 (SIRT1) expression, and siRNA-mediated SIRT1 silencing abrogated the EPO-induced increases in LC3 protein and deacetylation levels, thereby preventing the alleviation of hepatic steatosis. Taken together, this study revealed a new mechanism wherein EPO alleviates hepatic steatosis by activating autophagy via SIRT1-dependent deacetylation of LC3. This finding might have therapeutic value in the treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Ting Hong
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Zhijuan Ge
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Ran Meng
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Hongdong Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Pengzi Zhang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Sunyinyan Tang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Jing Lu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Tianwei Gu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China.
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing, China.
| |
Collapse
|
12
|
Clarke JD, Novak P, Lake AD, Hardwick RN, Cherrington NJ. Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease. Liver Int 2017; 37:1074-1081. [PMID: 28097795 PMCID: PMC5479731 DOI: 10.1111/liv.13362] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/30/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS N-linked glycosylation of proteins is critical for proper protein folding and trafficking to the plasma membrane. Drug transporters are one class of proteins that have reduced function when glycosylation is impaired. N-linked glycosylation of plasma proteins has also been investigated as a biomarker for several liver diseases, including non-alcoholic fatty liver disease (NAFLD). The purpose of this study was to assess the transcriptomic expression of genes involved in protein processing and glycosylation, and to determine the glycosylation status of key drug transporters during human NAFLD progression. METHODS Human liver samples diagnosed as healthy, steatosis, and non-alcoholic steatohepatitis (NASH) were analysed for gene expression of glycosylation-related genes and for protein glycosylation using immunoblot. RESULTS Genes involved in protein processing in the ER and biosynthesis of N-glycans were significantly enriched for down-regulation in NAFLD progression. Included in the down regulated N-glycan biosynthesis category were genes involved in the oligosaccharyltransferase complex, N-glycan quality control, N-glycan precursor biosynthesis, N-glycan trimming to the core, and N-glycan extension from the core. N-glycan degradation genes were unaltered in the progression to NASH. Immunoblot analysis of the uptake transporters organic anion transporting polypeptide-1B1 (OATP1B1), OATP1B3, OATP2B1, and Sodium/Taurocholate Co-transporting Polypeptide (NTCP) and the efflux transporter multidrug resistance-associated protein 2 (MRP2) demonstrated a significant loss of glycosylation following the progression to NASH. CONCLUSIONS These data suggest that the loss of glycosylation of key uptake and efflux transporters in humans NASH may influence transporter function and contribute to altered drug disposition observed in NASH.
Collapse
Affiliation(s)
- John D Clarke
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Petr Novak
- Biology Centre ASCR, Institute of Plant Molecular Biology, Ceske Budejovice, Czech Republic
| | - April D Lake
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Rhiannon N Hardwick
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Ameliorative effects of Compound K and ginsenoside Rh1 on non-alcoholic fatty liver disease in rats. Sci Rep 2017; 7:41144. [PMID: 28106137 PMCID: PMC5247696 DOI: 10.1038/srep41144] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/15/2016] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease, which has no standard treatment available. Panax notoginseng saponines (PNS) have recently been reported to protect liver against hepatocyte injury induced by ethanol or high fat diet (HFD) in rats. Compound K and ginsenoside Rh1 are the main metabolites of PNS. In this study, we evaluated the effects of CK and Rh1 on NAFLD. Rats fed HFD showed significant elevations in liver function markers, lipids, glucose tolerance, and insulin resistance. Treatment with CK or Rh1 either alone or in combination dramatically ameliorated the liver function impairment induced by HFD. Histologically, CK and Rh1 significantly reversed HFD-induced hepatocyte injury and liver fibrosis. In vitro experiments demonstrated that treatment with CK or Rh1 alone or in combination markedly induced cell apoptosis, and inhibited cell proliferation and activation in HSC-T6 cells. Additionally, CK and Rh1, either alone or in combination, also repressed the expression of fibrotic factors TIMP-1, PC-I, and PC-III. Taken together, our results demonstrate that CK and Rh1 have positive effects on NAFLD via the anti-fibrotic and hepatoprotective activity.
Collapse
|