1
|
Hashemi Z, Hui T, Wu A, Matouba D, Zukowski S, Nejati S, Lim C, Bruzzese J, Lin C, Seabold K, Mills C, Wrath K, Wang H, Wang H, Verzi MP, Perekatt A. Epithelial-specific loss of Smad4 alleviates the fibrotic response in an acute colitis mouse model. Life Sci Alliance 2024; 7:e202402935. [PMID: 39366762 PMCID: PMC11452480 DOI: 10.26508/lsa.202402935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Mucosal healing is associated with better clinical outcomes in patients with inflammatory bowel disease. But the epithelial-specific contribution to mucosal healing in vivo is poorly understood. We evaluated mucosal healing in an acute dextran sulfate sodium mouse model that shows an alleviated colitis response after epithelial-specific loss of Smad4. We find that enhanced epithelial wound healing alleviates the fibrotic response. Dextran sulfate sodium caused increased mesenchymal collagen deposition-indicative of fibrosis-within a week in the WT but not in the Smad4 KO colon. The fibrotic response correlated with decreased epithelial proliferation in the WT, whereas uninterrupted proliferation and an expanded zone of proliferation were observed in the Smad4 KO colon epithelium. Furthermore, the Smad4 KO colon showed epithelial extracellular matrix alterations that promote epithelial regeneration. Our data suggest that epithelium is a key determinant of the mucosal healing response in vivo, implicating mucosal healing as a strategy against fibrosis in inflammatory bowel disease patients.
Collapse
Affiliation(s)
- Zahra Hashemi
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Thompson Hui
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Alex Wu
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Dahlia Matouba
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Steven Zukowski
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Shima Nejati
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Crystal Lim
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Julianna Bruzzese
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Cindy Lin
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Kyle Seabold
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Connor Mills
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Kylee Wrath
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Haoyu Wang
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Hongjun Wang
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Ansu Perekatt
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| |
Collapse
|
2
|
Liu L, Chen Y, Han Y, Zhang X, Wu Y, Lin J, Cao L, Wu M, Zheng H, Fang Y, Wei L, Sferra TJ, Jafri A, Ke X, Peng J, Shen A. Qing Hua Chang Yin ameliorates chronic colitis in mice by inhibiting PERK-ATF4-CHOP pathway of ER stress and the NF-κB signalling pathway. PHARMACEUTICAL BIOLOGY 2024; 62:607-620. [PMID: 39034914 PMCID: PMC11265301 DOI: 10.1080/13880209.2024.2378012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
CONTEXT Ulcerative colitis has been clinically treated with Qing Hua Chang Yin (QHCY), a traditional Chinese medicine formula. However, its precise mechanisms in mitigating chronic colitis are largely uncharted. OBJECTIVE To elucidate the therapeutic efficiency of QHCY on chronic colitis and explore its underlying molecular mechanisms. MATERIALS AND METHODS A total ion chromatogram fingerprint of QHCY was analysed. Chronic colitis was induced in male C57BL/6 mice using 2% dextran sodium sulphate (DSS) over 49 days. Mice were divided into control, DSS, DSS + QHCY (0.8, 1.6 and 3.2 g/kg/d dose, respectively) and DSS + mesalazine (0.2 g/kg/d) groups (n = 6). Mice were intragastrically administered QHCY or mesalazine for 49 days. The changes of disease activity index (DAI), colon length, colon histomorphology and serum pro-inflammatory factors in mice were observed. RNA sequencing was utilized to identify the differentially expressed transcripts (DETs) in colonic tissues and the associated signalling pathways. The expression of endoplasmic reticulum (ER) stress-related protein and NF-κB signalling pathway-related proteins in colonic tissues was detected by immunohistochemistry staining. RESULTS Forty-seven compounds were identified in QHCY. Compared with the DSS group, QHCY significantly improved symptoms of chronic colitis like DAI increase, weight loss, colon shortening and histological damage. It notably reduced serum levels of IL-6, IL-1β and TNF-α. QHCY suppressed the activation of PERK-ATF4-CHOP pathway of ER stress and NF-κB signalling pathways in colonic tissues. DISCUSSION AND CONCLUSIONS The findings in this study provide novel insights into the potential of QHCY in treating chronic colitis patients.
Collapse
Affiliation(s)
- Liya Liu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Yuying Han
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Xinran Zhang
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Yulun Wu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Jing Lin
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Liujing Cao
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Meizhu Wu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Huifang Zheng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Yi Fang
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lihui Wei
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Thomas J. Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Anjum Jafri
- Department of Genetics and Genome Sciences, Histology Core, Case Western Reserve University, Cleveland, OH, USA
| | - Xiao Ke
- Department of Gastroenterology, The Second People’s Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Clinical Medical Research Centre of Chinese Medicine for Spleen and Stomach, Fuzhou, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Aling Shen
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Clinical Research Institute, The Second Affiliated Hospital & Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| |
Collapse
|
3
|
Yang W, Zhang X, Wang Z, Zheng X, Wu W, Chen Q. PLGA microspheres carrying EMSCs-CM for the effective treatment of murine ulcerative colitis. Int Immunopharmacol 2024; 141:112883. [PMID: 39153305 DOI: 10.1016/j.intimp.2024.112883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Ectodermal mesenchymal stem cells-derived conditioned medium (EMSCs-CM) has been reported to protect against ulcerative colitis (UC) in mice, but its underlying mechanism in alleviating UC need to be further elucidated. Here, it is reported that EMSCs-CM could attenuate pro-inflammatory response of LPS-induced IEC-6 cells and regulate the polarization of macrophages towards anti-inflammatory type in vitro. Furthermore, PLGA microspheres prepared by the double emulsion method were constructed for oral delivery of EMSCs-CM (EMSCs-CM-PLGA), which are beneficial for colon-targeted adhesion of EMSCs-CM to the damaged colon mucosa. The results showed that orally-administered of EMSCs-CM-PLGA microspheres reduced inflammatory cells infiltration and maintained the intestinal mucosal barrier. Further investigation found that EMSCs-CM-PLGA microspheres treatment gradually inhibited the activation of NF-κB pathway to regulate M1/M2 polarization balance in colon tissue macrophages, thereby alleviating DSS-induced UC. These results of this study will provide a theoretical basis for clinical application of EMSCs-CM in UC repair.
Collapse
Affiliation(s)
- Wenjing Yang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Xingxing Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zhe Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xiaowen Zheng
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Weijiang Wu
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Qian Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Shagaleeva OY, Kashatnikova DA, Kardonsky DA, Efimov BA, Ivanov VA, Smirnova SV, Evsiev SS, Zubkov EA, Abramova OV, Zorkina YA, Morozova AY, Vorobeva EA, Silantiev AS, Kolesnikova IV, Markelova MI, Olekhnovich EI, Morozov MD, Zoruk PY, Boldyreva DI, Kazakova VD, Vanyushkina AA, Chaplin AV, Grigoryeva TV, Zakharzhevskaya NB. Bacteroides vesicles promote functional alterations in the gut microbiota composition. Microbiol Spectr 2024; 12:e0063624. [PMID: 39345205 PMCID: PMC11537023 DOI: 10.1128/spectrum.00636-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/09/2024] [Indexed: 10/01/2024] Open
Abstract
Inflammatory bowel diseases are characterized by chronic intestinal inflammation and alterations in the gut microbiota composition. Bacteroides fragilis, which secretes outer membrane vesicles (OMVs) with polysaccharide A (PSA), can moderate the inflammatory response and possibly alter the microbiota composition. In this study, we created a murine model of chronic sodium dextran sulfate (DSS)-induced intestinal colitis and treated it with B. fragilis OMVs. We monitored the efficiency of OMV therapy by determining the disease activity index (DAI) and performing histological examination (HE) of the intestine before and after vesicle exposure. We also analyzed the microbiota composition using 16S rRNA gene sequencing. Finally, we evaluated the volatile compound composition in the animals' stools by HS-GC/MS to assess the functional activity of the microbiota. We observed more effective intestinal repair after OMV treatment according to the DAI and HE. A metabolomic study also revealed changes in the functional activity of the microbiota, with a predominance of phenol and pentanoic acid in the control group compared to the group treated with DSS and the group treated with OMVs (DSS OMVs). We also observed a positive correlation of these metabolites with Saccharibacteria and Acetivibrio in the control group, whereas in the DSS group, there was a negative correlation of phenol and pentanoic acid with Lactococcus and Romboutsia. According to the metabolome and sequencing data, the microbiota composition of the DSS-treated OMV group was intermediate between that of the control and DSS groups. OMVs not only have an anti-inflammatory effect but also contribute to the recovery of the microbiota composition.IMPORTANCEBacteroides fragilis vesicles contain superficially localized polysaccharide A (PSA), which has unique immune-modulating properties. Isolated PSA can prevent chemically induced colitis in a murine model. Outer membrane vesicles (OMVs) also contain digestive enzymes and volatile metabolites that can complement the anti-inflammatory properties of PSA. OMVs showed high therapeutic activity against sodium dextran sulfate-induced colitis, as confirmed by histological assays. 16S rRNA sequencing of fecal samples from different inflammatory stages, supplemented with comprehensive metabolome analysis of volatile compounds conducted by HS-GC/MS, revealed structural and functional alterations in the microbiota composition under the influence of OMVs. Correlation analysis of the OMV-treated and untreated experimental animal groups revealed associations of phenol and pentanoic acid with Lactococcus, Romboutsia, Saccharibacteria, and Acetivibrio.
Collapse
Affiliation(s)
- Olga Yu. Shagaleeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daria A. Kashatnikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A. Kardonsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Boris A. Efimov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Viktor A. Ivanov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Svetlana V. Smirnova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Suleiman S. Evsiev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Eugene A. Zubkov
- Department of Basic and Applied Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Olga V. Abramova
- Department of Basic and Applied Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Yana A. Zorkina
- Department of Basic and Applied Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Anna Y. Morozova
- Department of Basic and Applied Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Elizaveta A. Vorobeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Artemiy S. Silantiev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Irina V. Kolesnikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Maria I. Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Evgenii I. Olekhnovich
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Maxim D. Morozov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Polina Y. Zoruk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daria I. Boldyreva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Victoriia D. Kazakova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Anna A. Vanyushkina
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Andrei V. Chaplin
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Tatiana V. Grigoryeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Natalya B. Zakharzhevskaya
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
5
|
Zhang XP, Ma X, Liu JL, Liu AL. Exploring the potential use of Caenorhabditis elegans as an animal model for evaluating chemical-induced intestinal dysfunction. Toxicol Appl Pharmacol 2024; 493:117140. [PMID: 39500396 DOI: 10.1016/j.taap.2024.117140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Evaluating intestinal toxicity is crucial for identifying and preventing the harmful effects of environmental chemicals. Owing to the limitations of existing models in evaluating intestinal toxicity, the development of alternative models is urgently needed. This study explored the potential use of the nematode Caenorhabditis elegans as a model animal for assessing chemical-induced intestinal dysfunction. Changes in intestinal permeability and nutrient absorption in C. elegans individuals exposed to four intestine-disrupting chemicals (sodium dodecyl sulfate (SDS), dextran sulfate sodium (DSS), lipopolysaccharide (LPS) and ethanol) were examined using dye stain assays, an enzymatic photometric assay, and fluorescent probe uptake assays. Additionally, epigallocatechin-3-gallate (EGCG), an intestine-protecting phytochemical, was chosen to prevent ethanol-induced intestinal damage. The results indicated that SDS, DSS, LPS, and ethanol compromised the intestinal barrier in C. elegans. SDS had no effect on glucose absorption, but LPS, DSS, and ethanol inhibited or tended to inhibit glucose absorption. SDS, DSS, LPS, and ethanol reduced fatty acid absorption. LPS increased peptide absorption at a low dose but decreased it at a high dose; SDS, DSS, and ethanol attenuated peptide absorption. EGCG protected against the disruption of the intestinal barrier that was induced by ethanol treatment. These results suggest that C. elegans is a suitable surrogate model animal for evaluating chemical-induced intestinal dysfunction. These findings also provide new insights into the effects of SDS, DSS, LPS, and ethanol on intestinal function and highlight the potential of EGCG as a natural dietary intervention to protect individuals who use excess alcohol from intestinal injury.
Collapse
Affiliation(s)
- Xiao-Pan Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuan Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun-Ling Liu
- Wuhan Center for Disease Control and Prevention, Wuhan 430022, China
| | - Ai-Lin Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Kübler IC, Kretzschmar J, Arredondo-Lasso MN, Keeley SD, Rößler LC, Ganss K, Sandoval-Guzmán T, Brankatschk M. Systemic and local lipid adaptations underlie regeneration in Drosophila melanogaster and Ambystoma mexicanum. NPJ Regen Med 2024; 9:33. [PMID: 39472660 PMCID: PMC11522293 DOI: 10.1038/s41536-024-00375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
In regenerating tissues, synthesis and remodeling of membranes rely on lipid turnover and transport. Our study addresses lipid adaptations in intestinal regeneration of Drosophila melanogaster and limb regeneration of Ambystoma mexicanum. We found changes in lipid profiles at different locations: transport, storage organs and regenerating tissues. We demonstrate that attenuating insulin signaling, exclusively in fat storage, inhibits the regeneration-specific response in both the fat storage and the regenerating tissue in Drosophila. Furthermore, in uninjured axolotls we found sex-specific lipid profiles in both storage and circulation, while in regenerating animals these differences subside. The regenerating limb presents a unique sterol profile, albeit with no sex differences. We postulate that regeneration triggers a systemic response, where organs storing lipids play a significant role in the regulation of systemic lipid traffic. Second, that this response may be an active and well-regulated mechanism, as observed when homeostatic sex-differences disappear in regenerating salamanders.
Collapse
Affiliation(s)
- Ines C Kübler
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jenny Kretzschmar
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Trumpington, Cambridge, UK
| | - Maria Nieves Arredondo-Lasso
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
- Metabolic Programming, Technische Universität München, Freising-Weihenstephan, Germany
| | - Sean D Keeley
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Luca Claudia Rößler
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Katharina Ganss
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Dresden, Germany.
| | - Marko Brankatschk
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany.
- Faculty of Biology Technische Universität Dresden, Dresden, Germany. Zellescher Weg 23b, Dresden, Germany.
| |
Collapse
|
7
|
Qiu L, Yan C, Yang Y, Liu K, Yin Y, Zhang Y, Lei Y, Jia X, Li G. Morin alleviates DSS-induced ulcerative colitis in mice via inhibition of inflammation and modulation of intestinal microbiota. Int Immunopharmacol 2024; 140:112846. [PMID: 39121607 DOI: 10.1016/j.intimp.2024.112846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory condition with recurrent and challenging symptoms. Effective treatments are lacking, making UC management a critical research area. Morin (MO), a flavonoid from the Moraceae family, shows potential as an anti-UC agent, but its mechanisms are not fully understood. Using a dextran sulfate sodium (DSS)-induced UC mouse model, we employed network pharmacology to predict MO's therapeutic effects. Assessments included changes in body weight, disease activity index (DAI), and colon length. Immunofluorescence, hematoxylin and eosin (H&E), and PAS staining evaluated colon damage. ELISA and western blot analyzed inflammatory factors, tight junction (TJ)-associated proteins (Claudin-3, Occludin, ZO-1), and Mitogen-Activated Protein Kinase (MAPK)/ Nuclear Factor kappa B (NF-κB) pathways. 16S rRNA sequencing assessed gut microbiota diversity, confirmed by MO's modulation via Fecal Microbial Transplantation (FMT). Early MO intervention reduced UC severity by improving weight, DAI scores, and colon length, increasing goblet cells, enhancing barrier function, and inhibiting MAPK/NF-κB pathways. MO enriched gut microbiota, favoring beneficial bacteria like Muribaculaceae and Erysipelotrichaceae while reducing harmful Erysipelotrichaceae and Muribaculaceae. This study highlights MO's potential in UC management through inflammation control, mucosal integrity maintenance, and gut flora modulation.
Collapse
Affiliation(s)
- Li Qiu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chengqiu Yan
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Yue Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Kunjian Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Yin
- Anorectal Department, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Yiwen Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuting Lei
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangwen Jia
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guofeng Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Anorectal Department, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen 518100, China.
| |
Collapse
|
8
|
Kaur M, Chatterjee D, Singla S, Singh IP, Jena G. Coloprotective effects of chebulic myrobalan extract by regulation of AMPK-SIRT1 signaling: A pharmacological and histopathological evaluation. Tissue Cell 2024; 91:102592. [PMID: 39490247 DOI: 10.1016/j.tice.2024.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Ulcerative colitis is a chronic, refractory disease caused by dysregulation of mucosal immune responses to the indigenous bacterial flora as well as genetic and environmental variables. Recently, there has been increasing interest towards the use of herbal medicines for the treatment of ulcerative colitis and the potential benefits could lie in their high patient acceptability, effectiveness, safety, and relatively low cost. It has been reported that Chebulic myrobalan (Terminalia chebula) exhibits anti-oxidant, anti-inflammatory and immunomodulatory properties. The present study was designed to evaluate the protective potential of extract of dried fruit pulp of T. chebula against Dextran sulphate sodium (DSS)-induced ulcerative colitis in male BALB/c mice. Three cycles of DSS (3 % w/v in drinking water), each followed by a seven-day remission phase were used to induce ulcerative colitis in mice. Animals were treated with T. chebula (300 mg/kg and 600 mg/kg) starting from Ist remission period to the end of the study. Different biochemical assays, histological evaluation and molecular analysis were performed to evaluate the protective effects of T. chebula extract in DSS induced colitis. T. chebula modulates the expression of nuclear factor kappa B, adenosine monophosphate kinase, tumour necrosis factor-alpha, sirtuin 1 and interleukin-1β. Furthermore, it also accorded coloprotective effects against DNA damage, apoptosis, inflammation and nitrosative stress. Finally, it was found that the high dose of the T. chebula extract (600 mg/kg) was found to be more effective than a low dose (300 mg/kg) in restoring the ulcerative colitis induced colonic damage.
Collapse
Affiliation(s)
- Mandeep Kaur
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab 160062, India
| | - Debanjan Chatterjee
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab 160062, India
| | - Shivani Singla
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab 160062, India
| | - Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab 160062, India.
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab 160062, India.
| |
Collapse
|
9
|
Li X, Zhu R, Liu Q, Sun H, Sheng H, Zhu L. Effects of traditional Chinese medicine polysaccharides on chronic diseases by modulating gut microbiota: A review. Int J Biol Macromol 2024; 282:136691. [PMID: 39437951 DOI: 10.1016/j.ijbiomac.2024.136691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Intestinal tract is the largest immune system of human body. Gut microbiota (GM) can produce a large number of metabolites, such as short-chain fatty acids and bile acids, which regulate the physiological health of the host and affect the development of disease. In recent years, traditional Chinese medicine (TCM) polysaccharides have attracted extensive attention with multiple biological activities and low toxicity. TCM polysaccharides can promote the growth of intestinal beneficial bacteria and inhibit the growth of harmful bacteria by regulating the structure and function of GM, thus playing a crucial role in preventing or treating chronic diseases such as inflammatory bowel disease (IBD), obesity, type 2 diabetes mellitus (T2DM), liver diseases, cancer, etc. In this paper, the research progress of TCM polysaccharides in the treatment of chronic diseases such as inflammatory bowel disease, obesity, T2DM, liver diseases, cancer, etc. by modulating GM was reviewed. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research of TCM polysaccharides on chronic diseases by modulating GM, and new valuable prospection for the future researches of TCM polysaccharides are proposed, which will provide new ideas for the further study of TCM polysaccharides.
Collapse
Affiliation(s)
- Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Riran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
10
|
Shi S, Jiang H, Ma W, Guan Z, Han M, Man S, Wu Z, He S. Preclinical studies of natural flavonoids in inflammatory bowel disease based on macrophages: a systematic review with meta-analysis and network pharmacology. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03501-0. [PMID: 39422746 DOI: 10.1007/s00210-024-03501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Flavonoid is a category of bioactive polyphenolic compounds that are extensively distributed in plants with specific pharmacological properties, such as anti-inflammatory and anti-oxidant. Importantly, natural flavonoids have shown the protected function on the dextran sulfate sodium (DSS)-induced colitis in animals and lipopolysaccharides (LPS)-induced inflammatory response in macrophages. The purpose of this systematic review is to explore the efficacy of natural flavonoids in animal models of IBD (inflammatory bowel disease) and potential mechanisms in macrophages by meta-analysis and network pharmacology in preclinical studies. Relevant foundation studies were searched from January 2010 to November 2023 in databases like PubMed, Elsevier ScienceDirect, and Web of Science. Then, OriginPro software was used to extract values from images, and the analysis was performed using Review Manager 5.3. The retrieved data was analyzed according to the fixed-effects model and random-effects model. Subsequently, heterogeneity was evaluated using the I2 statistics. Lastly, network pharmacology was applied to confirm mechanisms of natural flavonoids on IBD. According to the results of meta-analysis, we found the natural flavonoids exhibited powerful therapeutic effects against IBD, which not only reversed colonic shortness (WMD = 1.33, 95% CI (1.07, 1.59), P < 0.00001), but also reduced histological score (SMD = - 2.66, 95% CI (- 3.77, - 1.95), P < 0.00001) between natural flavonoid treatment groups compared with the experimental IBD model. Furthermore, treatment with natural flavonoids decreased the levels of tumor necrosis factor-α (TNF-α) in macrophages. Mechanistically, our summarized data substantiate that natural flavonoids alleviate LPS-induced M1 macrophage polarization, anti-oxidant, anti-inflammatory, maintain intestinal barrier, and inhibit the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in macrophages. Moreover, the results of network pharmacology also support this. This systematic review demonstrated the efficiency of natural flavonoids in treating IBD in preclinical research by meta-analysis and network pharmacology, which offered supporting evidence for clinical trial implementation. However, some limitations remain present, such as technique quality shortage, missed reports on account of negative results, failure to count sample size, and the risk of bias.
Collapse
Affiliation(s)
- Shasha Shi
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hao Jiang
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenke Ma
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zitong Guan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengxue Han
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shuai Man
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Zhuzhu Wu
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Shan He
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
11
|
Santana PT, de Lima IS, da Silva e Souza KC, Barbosa PHS, de Souza HSP. Persistent Activation of the P2X7 Receptor Underlies Chronic Inflammation and Carcinogenic Changes in the Intestine. Int J Mol Sci 2024; 25:10874. [PMID: 39456655 PMCID: PMC11507540 DOI: 10.3390/ijms252010874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Aberrant signaling through damage-associated molecular patterns (DAMPs) has been linked to several health disorders, attracting considerable research interest over the last decade. Adenosine triphosphate (ATP), a key extracellular DAMP, activates the purinergic receptor P2X7, which acts as a danger sensor in immune cells and is implicated in distinct biological functions, including cell death, production of pro-inflammatory cytokines, and defense against microorganisms. In addition to driving inflammation mediated by immune and non-immune cells, the persistent release of endogenous DAMPs, including ATP, has been shown to result in epigenetic modifications. In intestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer (CRC), consequent amplification of the inflammatory response and the resulting epigenetic reprogramming may impact the development of pathological changes associated with specific disease phenotypes. P2X7 is overexpressed in the gut mucosa of patients with IBD, whereas the P2X7 blockade prevents the development of chemically induced experimental colitis. Recent data suggest a role for P2X7 in determining gut microbiota composition. Regulatory mechanisms downstream of the P2X7 receptor, combined with signals from dysbiotic microbiota, trigger intracellular signaling pathways and inflammasomes, intensify inflammation, and foster colitis-associated CRC development. Preliminary studies targeting the ATP-P2X7 pathway have shown favorable therapeutic effects in human IBD and experimental colitis.
Collapse
Affiliation(s)
- Patricia Teixeira Santana
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
| | - Isadora Schmukler de Lima
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Karen Cristina da Silva e Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Pedro Henrique Sales Barbosa
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Heitor Siffert Pereira de Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
| |
Collapse
|
12
|
Au KM, Wilson JE, Ting JPY, Wang AZ. An injectable subcutaneous colon-specific immune niche for the treatment of ulcerative colitis. Nat Biomed Eng 2024; 8:1243-1265. [PMID: 38049469 DOI: 10.1038/s41551-023-01136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/14/2023] [Indexed: 12/06/2023]
Abstract
As a chronic autoinflammatory condition, ulcerative colitis is often managed via systemic immunosuppressants. Here we show, in three mouse models of established ulcerative colitis, that a subcutaneously injected colon-specific immunosuppressive niche consisting of colon epithelial cells, decellularized colon extracellular matrix and nanofibres functionalized with programmed death-ligand 1, CD86, a peptide mimic of transforming growth factor-beta 1, and the immunosuppressive small-molecule leflunomide, induced intestinal immunotolerance and reduced inflammation in the animals' lower gastrointestinal tract. The bioengineered colon-specific niche triggered autoreactive T cell anergy and polarized pro-inflammatory macrophages via multiple immunosuppressive pathways, and prevented the infiltration of immune cells into the colon's lamina propria, promoting the recovery of epithelial damage. The bioengineered niche also prevented colitis-associated colorectal cancer and eliminated immune-related colitis triggered by kinase inhibitors and immune checkpoint blockade.
Collapse
Affiliation(s)
- Kin Man Au
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Justin E Wilson
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Z Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Moustafa HAM, Elsakka EGE, Abulsoud AI, Elshaer SS, Rashad AA, El-Dakroury WA, Sallam AAM, Rizk NI, Zaki MB, Gomaa RM, Elesawy AE, Mohammed OA, Abdel Mageed SS, Eleragi AMS, ElBoghdady JA, El-Fayoumi SH, Abdel-Reheim MA, Doghish AS. The miRNA Landscape in Crohn's disease: Implications for novel therapeutic approaches and interactions with Existing therapies. Exp Cell Res 2024; 442:114234. [PMID: 39233267 DOI: 10.1016/j.yexcr.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
MicroRNAs (miRNAs), which are non-coding RNAs consisting of 18-24 nucleotides, play a crucial role in the regulatory pathways of inflammatory diseases. Several recent investigations have examined the potential role of miRNAs in forming Crohn's disease (CD). It has been suggested that miRNAs serve as diagnostics for both fibrosis and inflammation in CD due to their involvement in the mechanisms of CD aggravation and fibrogenesis. More information on CD pathophysiology could be obtained by identifying the miRNAs concerned with CD and their target genes. These findings have prompted several in vitro and in vivo investigations into the putative function of miRNAs in CD treatment. Although there are still many unanswered questions, the growing body of evidence has brought miRNA-based therapy one step closer to clinical practice. This extensive narrative study offers a concise summary of the most current advancements in CD. We go over what is known about the diagnostic and therapeutic benefits of miRNA mimicry and inhibition so far, and we see what additional miRNA family targets could be useful for treating CD-related inflammation and fibrosis.
Collapse
Affiliation(s)
- Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Al-Aliaa M Sallam
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo P.O. Box 11829, Egypt
| | - Ahmed E Elesawy
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ali M S Eleragi
- Department of Microorganisms and Clinical Parasitology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jasmine A ElBoghdady
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Shaimaa H El-Fayoumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | | | - Ahmed S Doghish
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
14
|
Freitas ADS, Barroso FAL, Campos GM, Américo MF, Viegas RCDS, Gomes GC, Vital KD, Fernandes SOA, Carvalho RDDO, Jardin J, Miranda APGDS, Ferreira E, Martins FS, Laguna JG, Jan G, Azevedo V, de Jesus LCL. Exploring the anti-inflammatory effects of postbiotic proteins from Lactobacillus delbrueckii CIDCA 133 on inflammatory bowel disease model. Int J Biol Macromol 2024; 277:134216. [PMID: 39069058 DOI: 10.1016/j.ijbiomac.2024.134216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Lactobacillus delbrueckii CIDCA 133 is a promising health-promoting bacterium shown to alleviate intestinal inflammation. However, the specific bacterial components responsible for these effects remain largely unknown. Here, we demonstrated that consuming extractable proteins from the CIDCA 133 strain effectively relieved acute ulcerative colitis in mice. This postbiotic protein fraction reduced the disease activity index and prevented colon shortening in mice. Furthermore, histological analysis revealed colitis prevention with reduced inflammatory cell infiltration into the colon mucosa. Postbiotic consumption also induced an immunomodulatory profile in colitic mice, as evidenced by both mRNA transcript levels (Tlr2, Nfkb1, Nlpr3, Tnf, and Il6) and cytokines concentration (IL1β, TGFβ, and IL10). Additionally, it enhanced the levels of secretory IgA, upregulated the transcript levels of tight junction proteins (Hp and F11r), and improved paracellular intestinal permeability. More interestingly, the consumption of postbiotic proteins modulated the gut microbiota (Bacteroides, Arkkemansia, Dorea, and Oscillospira). Pearson correlation analysis indicated that IL10 and IL1β levels were positively associated with Bacteroides and Arkkemansia_Lactobacillus abundance. Our study reveals that CIDCA 133-derived proteins possess anti-inflammatory properties in colonic inflammation.
Collapse
Affiliation(s)
- Andria Dos Santos Freitas
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | | | - Gabriela Munis Campos
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Monique Ferrary Américo
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | | | - Gabriel Camargos Gomes
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Kátia Duarte Vital
- Federal University of Minas Gerais, Department of Clinical and Toxicological Analysis, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | - Enio Ferreira
- Federal University of Minas Gerais, Department of General Pathology, Belo Horizonte, Minas Gerais, Brazil
| | - Flaviano Santos Martins
- Federal University of Minas Gerais, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Guimarães Laguna
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | | | - Vasco Azevedo
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil.
| | - Luís Cláudio Lima de Jesus
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
15
|
Wu J, Zhang B, Liu X, Gu W, Xu F, Wang J, Liu Q, Wang R, Hu Y, Liu J, Ji X, Lv H, Li X, Peng L, Li X, Zhang Y, Wang S. An Intelligent Intestine-on-a-Chip for Rapid Screening of Probiotics with Relief-Enteritis Function. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408485. [PMID: 39344562 DOI: 10.1002/adma.202408485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Screening probiotics with specific functions is essential for advancing probiotic research. Current screening methods primarily use animal studies or clinical trials, which are inefficient and costly in terms of time, money, and labor. An intelligent intestine-on-a-chip integrating machine learning (ML) is developed to screen relief-enteritis functional probiotics. A high-throughput microfluidic chip combined with environment control systems provides a standardized and scalable intestinal microenvironment for multiple probiotic cocultures. An unsupervised ML-based score analyzer is constructed to accurately, comprehensively, and efficiently evaluate interactions between 12 Bifidobacterium strains and host cells of the colitis model in the intestine-on-a-chips. The most effective contender, Bifidobacterium longum 3-14, is discovered to relieve intestinal inflammation and enhance epithelial barrier function in vitro and in vivo. A distinct advantage of this strategy is that it can intelligently differentiate small therapeutic variations in probiotic strains and prioritize their efficacies, allowing for economical, efficient, accurate functional probiotics screening.
Collapse
Affiliation(s)
- Jing Wu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Bowei Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaoxia Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Wentao Gu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Fupei Xu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jin Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Qisijing Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Ruican Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yaozhong Hu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jingmin Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xuemeng Ji
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Huan Lv
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xinyang Li
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lijun Peng
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiang Li
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yan Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shuo Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| |
Collapse
|
16
|
Su S, Liu T, Zheng JY, Wu HC, Keng VW, Zhang SJ, Li XX. Huang Lian Jie Du decoction attenuated colitis via suppressing the macrophage Csf1r/Src pathway and modulating gut microbiota. Front Immunol 2024; 15:1375781. [PMID: 39391314 PMCID: PMC11464287 DOI: 10.3389/fimmu.2024.1375781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Ulcerative colitis, a subtype of chronic inflammatory bowel disease (IBD), is characterized by relapsing colonic inflammation and ulcers. The traditional Chinese herbal formulation Huang Lian Jie Du (HLJD) decoction is used clinically to treat diarrhea and colitis. However, the mechanisms associated with the effects of treatment remain unclear. This study aims to elucidate the molecular mechanistic effects of HLJD formulation on colitis. Methods Chronic colitis in mice was induced by adding 1% dextran sulfate sodium (DSS) to their drinking water continuously for 8 weeks, and HLJD decoction at the doses of 2 and 4 g/kg was administered orally to mice daily from the second week until experimental endpoint. Stool consistency scores, blood stool scores, and body weights were recorded weekly. Disease activity index (DAI) was determined before necropsy, where colon tissues were collected for biochemical analyses. In addition, the fecal microbiome of treated mice was characterized using 16S rRNA amplicon sequencing. Results HLJD decoction at doses of 2 and 4 g/kg relieved DSS-induced chronic colitis in mice by suppressing inflammation through compromised macrophage activity in colonic tissues associated with the colony-stimulating factor 1 receptor (Csf1r)/Src pathway. Furthermore, the HLJD formula could modify the gut microbiota profile by decreasing the abundance of Bacteroides, Odoribacter, Clostridium_sensu_stricto_1, and Parasutterella. In addition, close correlations between DAI, colon length, spleen weight, and gut microbiota were identified. Discussion Our findings revealed that the HLJD formula attenuated DSS-induced chronic colitis by reducing inflammation via Csf1r/Src-mediated macrophage infiltration, as well as modulating the gut microbiota profile.
Collapse
Affiliation(s)
- Shan Su
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ting Liu
- Department of Pharmacy, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jia-Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hai-Cui Wu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Vincent W. Keng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiao-Xiao Li
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
17
|
Ju T, Song Z, Qin D, Cheng J, Li T, Hu G, Fu S. Neohesperidin Attenuates DSS-Induced Ulcerative Colitis by Inhibiting Inflammation, Reducing Intestinal Barrier Damage, and Modulating Intestinal Flora Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20419-20431. [PMID: 39249130 DOI: 10.1021/acs.jafc.4c04433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Flavonoid natural products are emerging as a promising approach for treating Ulcerative Colitis (UC) due to their natural origin and minimal toxicity. This study investigates the effects of Neohesperidin (NEO), a natural flavonoid, on Dextran Sodium Sulfate (DSS)-induced UC in mice, focusing on the underlying molecular mechanisms. Early intervention with NEO (25 and 50 mg/kg) mitigated colon shortening, restored damaged barrier proteins, and significantly reduced the inflammatory cytokine levels. Moreover, NEO inhibited the MAPK/NF-κB signaling pathway and enhanced the levels of intestinal barrier proteins (Claudin-3 and ZO-1). Additionally, NEO increased beneficial intestinal probiotics (S24-7 and Lactobacillaceae) while reducing harmful bacteria (Erysipelotrichi, Enterobacteriaceae). Fecal microbial transplantation (FMT) results demonstrated that NEO (50 mg/kg) markedly improved UC symptoms. In conclusion, early NEO intervention may alleviate DSS-induced UC by inhibiting inflammatory responses, preserving intestinal barrier integrity and modulating gut microbiota.
Collapse
Affiliation(s)
- Tianyuan Ju
- State Key Laboratory for diagnosis and treatment of Sever Zoonotic Infectious Diseases, Key Laboratory for Zoonsis Research of the Ministry of Education, Institute of Zoonsis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zheyu Song
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130031, China
| | - Di Qin
- State Key Laboratory for diagnosis and treatment of Sever Zoonotic Infectious Diseases, Key Laboratory for Zoonsis Research of the Ministry of Education, Institute of Zoonsis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ji Cheng
- State Key Laboratory for diagnosis and treatment of Sever Zoonotic Infectious Diseases, Key Laboratory for Zoonsis Research of the Ministry of Education, Institute of Zoonsis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Tong Li
- State Key Laboratory for diagnosis and treatment of Sever Zoonotic Infectious Diseases, Key Laboratory for Zoonsis Research of the Ministry of Education, Institute of Zoonsis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guiqiu Hu
- State Key Laboratory for diagnosis and treatment of Sever Zoonotic Infectious Diseases, Key Laboratory for Zoonsis Research of the Ministry of Education, Institute of Zoonsis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- State Key Laboratory for diagnosis and treatment of Sever Zoonotic Infectious Diseases, Key Laboratory for Zoonsis Research of the Ministry of Education, Institute of Zoonsis and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
18
|
Salem MB, Elzallat M, Mostafa Mohammed D, Hammam OA, Tamim A Abdel-Wareth M, Hassan M. Helix pomatia mucin alleviates DSS-induced colitis in mice: Unraveling the cross talk between microbiota and intestinal chemokine. Heliyon 2024; 10:e37362. [PMID: 39296159 PMCID: PMC11407997 DOI: 10.1016/j.heliyon.2024.e37362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Gut microbiota imbalance and alterations in the chemokine-chemokine receptor interactions are pivotal in the initiation and advancement of ulcerative colitis (UC). The current UC treatments are prolonged, exhibit high recurrence rates, and may lead to colorectal cancer. So, this study explores the efficacy of Helix pomatia (H. pomatia) mucin in preventing DSS-induced UC. This research focuses on investigating the underlying mechanisms, such as oxidative stress, inflammation, and alterations in gut microbiota and chemokine-chemokine receptor interactions, to understand the anti-inflammatory and antioxidant characteristics of the mucin. Using 4 % DSS in drinking water, UC was induced in C57BL/6 mice. For seven days, mice were given oral doses of either H. pomatia mucin or sulfasalazine. The study assessed changes in oxidative stress, gut microbiota, and histopathology, along with expression of IL-6, CXCR4, CCR7, CXCL9, and CXCL10. The H. pomatia mucin exhibited unique contents, including high glycolic acid (200 ± 2.08 mg/L), collagen (88 ± 2.52 mg/L), allantoin (20 ± 2 mg/L), and concentrated vitamins and minerals. Treatment with H. pomatia mucin in high dose demonstrated reduction in DAI, an increase in fecal Firmicutes, and elevated expression of colonic CCR7, CXCL9, and CXCL10, accompanied by enhanced CXCR4 (75 %) and diminished IL-6 (1.33 %) immunostaining. It also alleviated oxidative stress, reduced fecal Bacteroidetes, and mitigated inflammation, indicating its potential efficacy against DSS-induced UC. In conclusion, H. pomatia mucin is a promising candidate that could be an effective adjuvant in the management and prophylaxis of UC.
Collapse
Affiliation(s)
- Maha B Salem
- Pharmacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed Elzallat
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Olfat A Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | | | - Marwa Hassan
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
19
|
Tang H, Li Q, Zha Z, Jiao Y, Yang B, Cheng Z, Wang T, Yin H. Xylan acetate ester ameliorates ulcerative colitis through intestinal barrier repair and inflammation inhibition via regulation of macrophage M1 polarization. Int J Biol Macromol 2024; 280:135551. [PMID: 39276904 DOI: 10.1016/j.ijbiomac.2024.135551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease resulting from abnormal immune response to gut microflora translocating through damaged intestinal barrier. Xylan acetate ester (XylA) can increase colon short-chain fatty acids (SCFAs) levels and alleviate kidney disease by inhibiting inflammation through the G protein-coupled receptor pathway. Here, we synthesized and purified XylA, and then the effects and mechanisms of XylA on dextran sodium sulfate-induced UC in mice were investigated. The results showed that in mice, similar to the positive drug 5-aminosalicylic acid, oral administration of XylA significantly alleviated all UC symptoms, including weight loss, diarrhea, and hematochezia. Further mechanism studies revealed that XylA could repair the damaged colon structure and intestinal barrier function by increasing the expression of tight junction protein zonula occludens 1 and occludin, thus reducing LPS penetration. Moreover, XylA could also restrain intestinal inflammation via inhibiting LPS-TLR4 pathway, downregulating M1 macrophage polarization, and reducing proinflammatory cytokines expression, and in vitro cell experiments showed that these effects may be mediated by XylA derived SCFAs, particularly acetates, propionates and butyrates. All these results suggested that XylA may be a potential improving agent for UC treatment, and natural polysaccharides may represent a novel avenue for drug development of UC.
Collapse
Affiliation(s)
- Huiling Tang
- Department of Scientific Research Office, Jiangsu Food & Pharmaceutical Science College, Huai'an 223003, People's Republic of China
| | - Qiuping Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zhengqi Zha
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yuzhi Jiao
- Department of Scientific Research Office, Jiangsu Food & Pharmaceutical Science College, Huai'an 223003, People's Republic of China
| | - Baowei Yang
- Department of Scientific Research Office, Jiangsu Food & Pharmaceutical Science College, Huai'an 223003, People's Republic of China
| | - Zhaoyan Cheng
- Department of Scientific Research Office, Jiangsu Food & Pharmaceutical Science College, Huai'an 223003, People's Republic of China
| | - Ting Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210014, People's Republic of China.
| | - Hongping Yin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
20
|
Das M, Dam S. Evaluation of probiotic efficacy of indigenous yeast strain, Saccharomyces cerevisiae Y-89 isolated from a traditional fermented beverage of West Bengal, India having protective effect against DSS-induced colitis in experimental mice. Arch Microbiol 2024; 206:398. [PMID: 39254791 DOI: 10.1007/s00203-024-04128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Increasing awareness regarding health promotion and disease prevention has driven inclusion of fermented foods and beverages in the daily diet. These are the enormous sources of beneficial microbes, probiotics. This study aims to isolate yeast strains having probiotic potential and effectivity against colitis. Initially, ninety-two yeast strains were isolated from Haria, an ethnic fermented beverage of West Bengal, India. Primary screening was done by their acid (pH 4) and bile salt (0.3%) tolerance ability. Four potent isolates were selected and found effective against Entamoeba histolytica, as this human pathogen is responsible to cause colitis. They were identified as Saccharomyces cerevisiae. They showed luxurious growth even at 37 oC, tolerance up to 5% of NaCl, resistance to gastric juice and high bile salt (2.0%) and oro-gastrointestinal transit tolerance. They exhibited good auto-aggregation and co-aggregation ability and strong hydrophobicity. Finally, heat map and principal component analysis revealed that strain Y-89 was the best candidate. It was further characterised and found to have significant protective effects against DSS-induced colitis in experimental mice model. It includes improvement in colon length, body weight and organ indices; reduction in disease activity index; reduction in cholesterol, LDL, SGPT, SGOT, urea and creatinine levels; improvement in HDL, ALP, total protein and albumin levels; decrease in coliform count and restoration of tissue damage. This study demonstrates that the S. cerevisiae strain Y-89 possesses remarkable probiotic traits and can be used as a potential bio-therapeutic candidate for the prevention of colitis.
Collapse
Affiliation(s)
- Moubonny Das
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
21
|
Wijatniko BD, Yamamoto Y, Hirayama M, Suzuki T. Identification and Molecular Mechanism of Anti-inflammatory Peptides Isolated from Jack Bean Protein Hydrolysates: in vitro Studies with Human Intestinal Caco-2BBe Cells. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:624-631. [PMID: 38940894 PMCID: PMC11410891 DOI: 10.1007/s11130-024-01201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Jack bean (JB), Canavalia ensiformis (L.) DC, is a commonly cultivated legume in Indonesia. It is rich in protein, which can be hydrolyzed, making it potentially a good source of bioactive peptides. Intestinal inflammation is associated with several diseases, and the production of interleukin-8 (IL-8) in intestinal epithelial cells induced by tumor necrosis factor (TNF)-α has an important role in inflammatory reaction. The present study investigated the anti-inflammatory effects of peptides generated from enzymatic hydrolysis of JB protein on human intestinal Caco-2BBe cells. Additionally, in silico approaches were used to identify potential bioactive peptides. JB protein hydrolysate (JBPH) prepared using pepsin and pancreatin reduced the IL-8 expression at protein and mRNA levels in Caco-2BBe cells stimulated with TNF-α. Immunoblot analysis showed that the JBPH reduced the TNF-α-induced phosphorylation of c-Jun-NH(2)-terminal kinase, nuclear factor kappa B (NF-κB), and p38 proteins. Anti-inflammatory activity was observed in the 30% acetonitrile fraction of JBPH separated on a Sep-Pak C18 column. An ultrafiltration method revealed that relatively small peptides (< 3 kDa) had a potent inhibitory effect on the IL-8 production. Purification of the peptides by reversed-phase and anion-exchange high performance chromatography produced three peptide fractions with anti-inflammatory activities. A combination of mass spectrometry analysis and in silico approaches identified the potential anti-inflammatory peptides. Peptides derived from JB protein reduces the TNF-α-induced inflammatory response in Caco-2BBe cells via NF-κB and mitogen-activated protein kinase signaling pathways. Our results may lead to a novel therapeutic approach to promote intestinal health.
Collapse
Affiliation(s)
- Bambang Dwi Wijatniko
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739- 8528, Japan
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Yoshinari Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739- 8528, Japan
| | - Makoto Hirayama
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739- 8528, Japan
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739- 8528, Japan.
| |
Collapse
|
22
|
Hu C, He X, Zhang H, Hu X, Liao L, Cai M, Lin Z, Xiang J, Jia X, Lu G, Xiao W, Feng Y, Gong W. Tanshinone I limits inflammasome activation of macrophage via docking into Syk to alleviate DSS-induced colitis in mice. Mol Immunol 2024; 173:88-98. [PMID: 39088935 DOI: 10.1016/j.molimm.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 08/03/2024]
Abstract
Tanshinone I (Tan I) has been proven to exert an anti-inflammatory effect, but the complete mechanism remains unclear. In this study, Tan I was described to have no effect on Syk expression in resting or LPS-stimulated macrophages ex vivo, but dramatically suppressed Syk phosphorylation and CD80, CD86, and IL-1β expression of macrophages. The inflammatory activity of macrophages in ApoC3-transgenic (ApoC3TG) mice is upregulated by Syk activation. Tan I was determined to downregulate Syk phosphorylation and inflammatory activity of macrophages in ApoC3TG mice, both ex vivo and in vivo. Intraperitoneal injection of Tan I (4 mg/kg) effectively alleviated DSS-induced colitis in mice, accompanying with suppressing the activation of intestinal macrophages. Mechanistically, Tan I-treated macrophages exhibited a decrease in cytoplasmic ROS, NLRP3, GSDMD, and IL-1β, which suggested that the alternative pathway of inflammasome activation in macrophages was suppressed. The SPR assay demonstrated that Tan I bound to Syk protein with a dissociation constant (KD) of 2.473 × 10-6 M. When Syk expression was knocked down by its shRNA, the inhibitory effects of Tan I on macrophages were blocked. Collectively, Tanshinone I effectively alleviated DSS-induced colitis in mice by inhibiting Syk-stimulated inflammasome activation, hence suppressing the inflammatory activity of macrophages.
Collapse
Affiliation(s)
- Chunmiao Hu
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, PR China
| | - Xiaoli He
- Kunshan Hospital of Traditional Chinese Medicine, Suzhou Key Laboratory of Integrated Traditional Chinese and Western Medicine of Digestive Diseases, Kunshan Affiliated Hospital of Yangzhou University, Kunshan, PR China
| | - Huimin Zhang
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China
| | - Xiangyu Hu
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, PR China
| | - Liting Liao
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, PR China; Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China
| | - Minmin Cai
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China
| | - Zhijie Lin
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China
| | - Jie Xiang
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou 225001, PR China
| | - Xiaoqin Jia
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China
| | - Guotao Lu
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, PR China
| | - Weiming Xiao
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, PR China
| | - Yisheng Feng
- Kunshan Hospital of Traditional Chinese Medicine, Suzhou Key Laboratory of Integrated Traditional Chinese and Western Medicine of Digestive Diseases, Kunshan Affiliated Hospital of Yangzhou University, Kunshan, PR China.
| | - Weijuan Gong
- Department of Gastroenterology, Yangzhou Key Laboratory for Precision Treatment of Refractory Bowel Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, PR China; Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225001, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225001, PR China.
| |
Collapse
|
23
|
Yuan M, Chang L, Gao P, Li J, Lu X, Hua M, Li X, Liu X, Lan Y. Synbiotics containing sea buckthorn polysaccharides ameliorate DSS-induced colitis in mice via regulating Th17/Treg homeostasis through intestinal microbiota and their production of BA metabolites and SCFAs. Int J Biol Macromol 2024; 276:133794. [PMID: 38992530 DOI: 10.1016/j.ijbiomac.2024.133794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Inflammatory Bowel Disease (IBD) is a chronic condition whose incidence has been rising globally. Synbiotic (SYN) is an effective means of preventing IBD. This study investigated the preventive effects and potential biological mechanisms of SYN (Bifidobacterium longum, Lactobacillus acidophilus, and sea buckthorn polysaccharides) on DSS-induced colitis in mice. The results indicated that dietary supplementation with SYN has a significant improvement effect on DSS mice. SYN ameliorated disease activity index (DAI), colon length, and intestinal barrier permeability in mice. In addition, RT-qPCR results indicated that after SYN intervention, the expression levels of pro-inflammatory factors (IL-6, IL-1β, TNF-α, and IL-17F) and transcription factor RORγt secreted by Th17 cells were significantly reduced, and the expression levels of anti-inflammatory factors (IL-10 and TGF-β) and transcription factor Foxp3 secreted by Treg cells were robustly increased. 16S rDNA sequencing analysis revealed that key intestinal microbiota related to Th17/Treg balance (Ligilactobacillus, Lactobacillus, Bacteroides, and Akkermansia) was significantly enriched. At the same time, a significant increase in microbial metabolites SCFAs and BAs was observed. We speculate that SYN may regulate the Th17/Treg balance by restructuring the structure and composition of the intestinal microbiota, thereby mitigating DSS-induced colitis.
Collapse
Affiliation(s)
- Mingyou Yuan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lili Chang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Pan Gao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jing Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xinyuan Lu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mingfang Hua
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ying Lan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| |
Collapse
|
24
|
Anderson BD, Sepulveda DE, Nachnani R, Cortez-Resendiz A, Coates MD, Beckett A, Bisanz JE, Kellogg JJ, Raup-Konsavage WM. High Cannabigerol Hemp Extract Moderates Colitis and Modulates the Microbiome in an Inflammatory Bowel Disease Model. J Pharmacol Exp Ther 2024; 390:331-341. [PMID: 39009468 PMCID: PMC11338277 DOI: 10.1124/jpet.124.002204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Cannabis sativa L. has a long history of medicinal use, particularly for gastrointestinal diseases. Patients with inflammatory bowel disease (IBD) report using cannabis to manage their symptoms, despite little data to support the use of cannabis or cannabis products to treat the disease. In this study, we use the well-described dextran sodium sulfate (DSS) model of colitis in mice to assess the impact of commercially available, noneuphorigenic, high cannabigerol (CBG) hemp extract (20 mg/mL cannabigerol, 20.7 mg/mL cannabidiol, 1 mg/mL cannabichromene) on IBD activity and the colonic microbiome. Mice were given 2% DSS in drinking water for 5 days, followed by 2 days of regular drinking water. Over the 7 days, mice were dosed daily with either high CBG hemp extract or matched vehicle control. Daily treatment with high CBG hemp extract dramatically reduces the severity of disease at the histological and organismal levels as measured by decreased disease activity index, increased colon length, and decreases in percent colon tissue damage. 16S rRNA gene sequencing of the fecal microbiota reveals high CBG hemp extract treatment results in alterations in the microbiota that may be beneficial for colitis. Finally, using metabolomic analysis of fecal pellets, we find that mice treated with high CBG hemp extract have a normalization of several metabolic pathways, including those involved in inflammation. Taken together, these data suggest that high CBG hemp extracts may offer a novel treatment option for patients. SIGNIFICANCE STATEMENT: Using the dextran sodium sulfate model of colitis, the authors show that treatment with high cannabigerol hemp extract reduces the severity of symptoms associated with colitis. Additionally, they show that treatment modulates both the fecal microbiota and metabolome with potential functional significance.
Collapse
Affiliation(s)
- Benjamin D Anderson
- Departments of Biochemistry and Molecular Biology (B.D.A., A.B.) and Veterinary and Biomedical Sciences (J.J.K.), and One Health Microbiome Center, Huck Life Sciences Institute (J.E.B.), Pennsylvania State University, University Park, Pennsylvania; and Departments of Pharmacology (D.E.S., R.N., A.C.-R., M.D.C., W.M.R.-K.) and Anesthesiology & Perioperative Medicine (D.E.S.), Center for Cannabis & Natural Product Pharmaceutics (D.E.S., R.N., A.C.-R., M.D.C., J.E.B., J.J.K., W.M.R.-K.), and Divison of Gastroenterology & Hepatology, Department of Medicine (M.D.C., J.J.K.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Diana E Sepulveda
- Departments of Biochemistry and Molecular Biology (B.D.A., A.B.) and Veterinary and Biomedical Sciences (J.J.K.), and One Health Microbiome Center, Huck Life Sciences Institute (J.E.B.), Pennsylvania State University, University Park, Pennsylvania; and Departments of Pharmacology (D.E.S., R.N., A.C.-R., M.D.C., W.M.R.-K.) and Anesthesiology & Perioperative Medicine (D.E.S.), Center for Cannabis & Natural Product Pharmaceutics (D.E.S., R.N., A.C.-R., M.D.C., J.E.B., J.J.K., W.M.R.-K.), and Divison of Gastroenterology & Hepatology, Department of Medicine (M.D.C., J.J.K.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Rahul Nachnani
- Departments of Biochemistry and Molecular Biology (B.D.A., A.B.) and Veterinary and Biomedical Sciences (J.J.K.), and One Health Microbiome Center, Huck Life Sciences Institute (J.E.B.), Pennsylvania State University, University Park, Pennsylvania; and Departments of Pharmacology (D.E.S., R.N., A.C.-R., M.D.C., W.M.R.-K.) and Anesthesiology & Perioperative Medicine (D.E.S.), Center for Cannabis & Natural Product Pharmaceutics (D.E.S., R.N., A.C.-R., M.D.C., J.E.B., J.J.K., W.M.R.-K.), and Divison of Gastroenterology & Hepatology, Department of Medicine (M.D.C., J.J.K.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Alonso Cortez-Resendiz
- Departments of Biochemistry and Molecular Biology (B.D.A., A.B.) and Veterinary and Biomedical Sciences (J.J.K.), and One Health Microbiome Center, Huck Life Sciences Institute (J.E.B.), Pennsylvania State University, University Park, Pennsylvania; and Departments of Pharmacology (D.E.S., R.N., A.C.-R., M.D.C., W.M.R.-K.) and Anesthesiology & Perioperative Medicine (D.E.S.), Center for Cannabis & Natural Product Pharmaceutics (D.E.S., R.N., A.C.-R., M.D.C., J.E.B., J.J.K., W.M.R.-K.), and Divison of Gastroenterology & Hepatology, Department of Medicine (M.D.C., J.J.K.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Matthew D Coates
- Departments of Biochemistry and Molecular Biology (B.D.A., A.B.) and Veterinary and Biomedical Sciences (J.J.K.), and One Health Microbiome Center, Huck Life Sciences Institute (J.E.B.), Pennsylvania State University, University Park, Pennsylvania; and Departments of Pharmacology (D.E.S., R.N., A.C.-R., M.D.C., W.M.R.-K.) and Anesthesiology & Perioperative Medicine (D.E.S.), Center for Cannabis & Natural Product Pharmaceutics (D.E.S., R.N., A.C.-R., M.D.C., J.E.B., J.J.K., W.M.R.-K.), and Divison of Gastroenterology & Hepatology, Department of Medicine (M.D.C., J.J.K.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Aviauna Beckett
- Departments of Biochemistry and Molecular Biology (B.D.A., A.B.) and Veterinary and Biomedical Sciences (J.J.K.), and One Health Microbiome Center, Huck Life Sciences Institute (J.E.B.), Pennsylvania State University, University Park, Pennsylvania; and Departments of Pharmacology (D.E.S., R.N., A.C.-R., M.D.C., W.M.R.-K.) and Anesthesiology & Perioperative Medicine (D.E.S.), Center for Cannabis & Natural Product Pharmaceutics (D.E.S., R.N., A.C.-R., M.D.C., J.E.B., J.J.K., W.M.R.-K.), and Divison of Gastroenterology & Hepatology, Department of Medicine (M.D.C., J.J.K.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jordan E Bisanz
- Departments of Biochemistry and Molecular Biology (B.D.A., A.B.) and Veterinary and Biomedical Sciences (J.J.K.), and One Health Microbiome Center, Huck Life Sciences Institute (J.E.B.), Pennsylvania State University, University Park, Pennsylvania; and Departments of Pharmacology (D.E.S., R.N., A.C.-R., M.D.C., W.M.R.-K.) and Anesthesiology & Perioperative Medicine (D.E.S.), Center for Cannabis & Natural Product Pharmaceutics (D.E.S., R.N., A.C.-R., M.D.C., J.E.B., J.J.K., W.M.R.-K.), and Divison of Gastroenterology & Hepatology, Department of Medicine (M.D.C., J.J.K.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Joshua J Kellogg
- Departments of Biochemistry and Molecular Biology (B.D.A., A.B.) and Veterinary and Biomedical Sciences (J.J.K.), and One Health Microbiome Center, Huck Life Sciences Institute (J.E.B.), Pennsylvania State University, University Park, Pennsylvania; and Departments of Pharmacology (D.E.S., R.N., A.C.-R., M.D.C., W.M.R.-K.) and Anesthesiology & Perioperative Medicine (D.E.S.), Center for Cannabis & Natural Product Pharmaceutics (D.E.S., R.N., A.C.-R., M.D.C., J.E.B., J.J.K., W.M.R.-K.), and Divison of Gastroenterology & Hepatology, Department of Medicine (M.D.C., J.J.K.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Wesley M Raup-Konsavage
- Departments of Biochemistry and Molecular Biology (B.D.A., A.B.) and Veterinary and Biomedical Sciences (J.J.K.), and One Health Microbiome Center, Huck Life Sciences Institute (J.E.B.), Pennsylvania State University, University Park, Pennsylvania; and Departments of Pharmacology (D.E.S., R.N., A.C.-R., M.D.C., W.M.R.-K.) and Anesthesiology & Perioperative Medicine (D.E.S.), Center for Cannabis & Natural Product Pharmaceutics (D.E.S., R.N., A.C.-R., M.D.C., J.E.B., J.J.K., W.M.R.-K.), and Divison of Gastroenterology & Hepatology, Department of Medicine (M.D.C., J.J.K.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
25
|
Kaur G, Kushwah AS. Sodium orthovanadate protects against ulcerative colitis and associated liver damage in mice: insights into modulations of Nrf2/Keap1 and NF-κB pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03335-w. [PMID: 39120720 DOI: 10.1007/s00210-024-03335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Ulcerative colitis (UC) is a prominent category of disease that is associated with bowel inflammation, it can occur at any period of life and is prevalently rising on a global scale. Dextran sulfate sodium (DSS) has been extensively used to develop colitis due to its ability to mimic human UC, providing consistent and reproducible inflammation, ulceration, and disruption of the epithelial barrier in the colon. Chronic inflammation in the gut can lead to alterations in the gut-liver axis, potentially impacting liver function over time, while direct evidence linking diversion colitis to liver damage is limited. Thus, the present study aims to assess the gut and liver damage against DSS and the possible molecular mechanisms. Forty-seven animals were randomly assigned to six groups. Ulcerative colitis was induced using 2.5% w/v DSS in three alternate cycles, each lasting 7 days, with 1-week remission periods in between. SOV (5 and 10 mg/kg, orally) and the standard drug 5-aminosalicylic acid (100 mg/kg, orally) were administered from the start of the 2nd DSS cycle until the end of the experiment. Biochemical parameters, ELISA, histopathological, and immunohistochemical analyses have been conducted to assess damage in the colon and liver. SOV significantly reduced colitis severity by lowering the DAI score, oxidative stress markers (LPS, IL-1β, MPO, nitrite), and restoring liver biomarkers (SGPT, SGOT). Histopathological findings supported these protective benefits in the liver and gut. Moreover, immunohistochemical analysis showed SOV enhanced the expression of the cytoprotective mediator Nrf2/Keap-1 and reduced the expression of inflammatory mediators NF-κB and IL-6. Present findings concluded that SOV demonstrated a dose-dependent effect against UC through anti-inflammatory and antioxidant pathways, with the highest dose of SOV 10 mg/kg having more significant (p < 0.001) results than the low dose of 5 mg/kg.
Collapse
Affiliation(s)
- Gurpreet Kaur
- IK Gujral Punjab Technical University, Kapurthala, 144601, Jalandhar, Punjab, India
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy (An Autonomous College), Bela, 140111, Ropar, Punjab, India
| | - Ajay Singh Kushwah
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy (An Autonomous College), Bela, 140111, Ropar, Punjab, India.
| |
Collapse
|
26
|
Esai Selvan M, Nathan DI, Guisado D, Collatuzzo G, Iruvanti S, Boffetta P, Mascarenhas J, Hoffman R, Cohen LJ, Marcellino BK, Gümüş ZH. Clonal Hematopoiesis of Indeterminate Potential in Crohn's Disease and Ulcerative Colitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.06.24311497. [PMID: 39148820 PMCID: PMC11326358 DOI: 10.1101/2024.08.06.24311497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is the presence of somatic mutations in myeloid and lymphoid malignancy genes in the blood cells of individuals without a hematologic malignancy. Inflammation is hypothesized to be a key mediator in the progression of CHIP to hematologic malignancy and patients with CHIP have a high prevalence of inflammatory diseases. This study aimed to identify the prevalence and characteristics of CHIP in patients with inflammatory bowel disease (IBD). We analyzed whole exome sequencing data from 587 Crohn's disease (CD), 441 ulcerative colitis (UC), and 293 non-IBD controls to assess CHIP prevalence and used logistic regression to study associations with clinical outcomes. Older UC patients (age>45) harbored increased myeloid-CHIP mutations compared to younger patients (age≤45) (p=0.01). Lymphoid-CHIP was more prevalent in older IBD patients (p=0.007). Young CD patients were found to have myeloid-CHIP with high-risk features. IBD patients with CHIP exhibited unique mutational profiles compared to controls. Steroid use was associated with increased CHIP (p=0.05), while anti-TNF therapy was associated with decreased myeloid-CHIP (p=0.03). Pathway enrichment analyses indicated overlap between CHIP genes, IBD phenotypes, and inflammatory pathways. Our findings underscore a connection between IBD and CHIP pathophysiology. Patients with IBD and CHIP had unique risk profiles especially among older UC patients and younger CD patients. These findings suggest distinct evolutionary pathways for CHIP in IBD and necessitate awareness among IBD providers and hematologists to identify patients potentially at risk for CHIP-related complications including malignancy, cardiovascular disease and acceleration of their inflammatory disease.
Collapse
Affiliation(s)
- Myvizhi Esai Selvan
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel I Nathan
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniela Guisado
- Division of Pediatric Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giulia Collatuzzo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Stony Brook Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook, NY, USA
| | - John Mascarenhas
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald Hoffman
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louis J Cohen
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bridget K Marcellino
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
27
|
Ryu HM, Islam SMS, Riaz B, Sayeed HM, Choi B, Sohn S. Immunomodulatory Effects of a Probiotic Mixture: Alleviating Colitis in a Mouse Model through Modulation of Cell Activation Markers and the Gut Microbiota. Int J Mol Sci 2024; 25:8571. [PMID: 39201260 PMCID: PMC11354276 DOI: 10.3390/ijms25168571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Ulcerative colitis (UC) is a persistent inflammatory intestinal disease that consistently affects the colon and rectum. Its exact cause remains unknown. UC causes a considerable challenge in healthcare, prompting research for novel therapeutic strategies. Although probiotics have gained popularity as possible candidates for managing UC, studies are still ongoing to identify the best probiotics or probiotic mixtures for clinical applications. This study aimed to determine the efficacy of a multi-strain probiotic mixture in mitigating intestinal inflammation in a colitis mouse model induced by dextran sulfate sodium. Specifically, a multi-strain probiotic mixture consisting of Tetragenococcus halophilus and Eubacterium rectale was used to study its impact on colitis symptoms. Anti-inflammatory effects were evaluated using ELISA and flow cytometry. The configuration of gut microbial communities was determined using 16S rRNA metagenomic analysis. According to this study, colitis mice treated with the probiotic mixture experienced reduced weight loss and significantly less colonic shortening compared to untreated mice. Additionally, the treated mice exhibited increased levels of forkhead box P3 (Foxp3) and interleukin 10, along with decreased expression of dendritic cell activation markers, such as CD40+, CD80+, and CD83+, in peripheral blood leukocytes and intraepithelial lymphocytes. Furthermore, there was a significant decrease in the frequencies of CD8+N.K1.1+ cells and CD11b+Ly6G+ cells. In terms of the gut microbiota, probiotic-mixture treatment of colitis mice significantly increased the abundance of the phyla Actinobacteria and Verrucomicrobia (p < 0.05). These results provide valuable insights into the therapeutic promise of multi-strain probiotics, shedding light on their potential to alleviate colitis symptoms. This research contributes to the ongoing exploration of effective probiotic interventions for managing inflammatory bowel disease.
Collapse
Affiliation(s)
- Hye-Myung Ryu
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - S. M. Shamsul Islam
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (S.M.S.I.); (B.R.); (H.M.S.)
| | - Bushra Riaz
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (S.M.S.I.); (B.R.); (H.M.S.)
| | - Hasan M. Sayeed
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (S.M.S.I.); (B.R.); (H.M.S.)
| | - Bunsoon Choi
- Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Seonghyang Sohn
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (S.M.S.I.); (B.R.); (H.M.S.)
| |
Collapse
|
28
|
Ju M, Zhang J, Deng Z, Wei M, Ma L, Chen T, Zhao L. Prophylactic IL-23 blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. J Immunother Cancer 2024; 12:e009345. [PMID: 39089739 PMCID: PMC11293404 DOI: 10.1136/jitc-2024-009345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Immune-related adverse events (irAEs), characterized by targeted inflammation, occur in up to 60% of patients with melanoma treated with immune checkpoint inhibitors (ICIs). Evidence proved that the baseline peripheral blood profiles of patients at risk for severe irAEs development paralleled clinical autoimmunity. Interleukin (IL)-23 blockade with risankizumab is recommended for cases that are suffering from autoimmune disease, such as autoimmune colitis. However, currently, the role of IL-23 in irAEs onset and severity remains poorly understood. METHODS The pro-inflammatory cytokines most associated with severe irAEs onset were identified by retrospective analysis based on GSE186143 data set. To investigate the efficacy of prophylactic IL-23 blockade administration to prevent irAEs, refer to a previous study, we constructed two irAEs murine models, including dextran sulfate sodium salt (DSS)-induced colitis murine model and a combined-ICIs-induced irAEs murine model. To further explore the applicability of our findings, murine models with graft-versus-host disease were established, in which Rag2-/-Il2rg-/- mice were transferred with human peripheral blood mononuclear cells and received combined cytotoxic T-lymphocyte associated antigen 4 (CTLA-4) and programmed cell death protein-1 (PD-1) treatment. Human melanoma cells were xenografted into these mice concomitantly. RESULTS Here we show that IL-23 was upregulated in the serum of patients suffering from irAEs after dual anti-CTLA-4 and anti-PD-1 treatment, and increased as a function of irAEs severity. Additionally, Augmented CD4+ Tems may preferentially underlie irAEs onset. Treating mice with anti-mouse IL-23 antibody concomitantly with combined CTLA-4 and PD-1 immunotherapy ameliorates colitis and, in addition, preserves antitumor efficacy. Moreover, in xenografted murine models with irAEs, prophylactic blockade of human IL-23 using clinically available IL-23 inhibitor (risankizumab) ameliorated colitis, hepatitis and lung inflammation, and moreover, immunotherapeutic control of tumors was retained. Finally, we also provided a novel machine learning-based computational framework based on two blood-based features-IL-23 and CD4+ Tems-that may have predictive potential for severe irAEs and ICIs response. CONCLUSIONS Our study not only provides clinically feasible strategies to dissociate efficacy and toxicity in the use of combined ICIs for cancer immunotherapy, but also develops a blood-based biomarker that makes it possible to achieve a straightforward and non-invasive, detection assay for early prediction of irAEs onset.
Collapse
Affiliation(s)
- Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Jiaojiao Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Zhuoyuan Deng
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
- Liaoning Medical Diagnosis and Treatment Center, Shenyang, China
| | - Lianghua Ma
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
29
|
Xu Y, Bai L, Yang X, Huang J, Wang J, Wu X, Shi J. Recent advances in anti-inflammation via AMPK activation. Heliyon 2024; 10:e33670. [PMID: 39040381 PMCID: PMC11261115 DOI: 10.1016/j.heliyon.2024.e33670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Inflammation is a complex physiological phenomenon, which is the body's defensive response, but abnormal inflammation can have adverse effects, and many diseases are related to the inflammatory response. AMPK, as a key sensor of cellular energy status, plays a crucial role in regulating cellular energy homeostasis and glycolipid metabolism. In recent years, the anti-inflammation effect of AMPK and related signalling cascade has begun to enter everyone's field of vision - not least the impact on metabolic diseases. A great number of studies have shown that anti-inflammatory drugs work through AMPK and related pathways. Herein, this article summarises recent advances in compounds that show anti-inflammatory effects by activating AMPK and attempts to comment on them.
Collapse
Affiliation(s)
- Yihua Xu
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Awasthi BP, Chaudhary P, Lim D, Yadav K, Lee IH, Banskota S, Chaudhary CL, Karmacharya U, Lee J, Im SM, Nam Y, Eun JW, Lee S, Lee JM, Kim ES, Ryou C, Kim TH, Park HD, Kim JA, Nam TG, Jeong BS. G Protein-Coupled Estrogen Receptor-Mediated Anti-Inflammatory and Mucosal Healing Activity of a Trimethylpyridinol Analogue in Inflammatory Bowel Disease. J Med Chem 2024; 67:10601-10621. [PMID: 38896548 DOI: 10.1021/acs.jmedchem.3c02458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by abnormal immune responses, including elevated proinflammatory cytokines, such as tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6) in the gastrointestinal (GI) tract. This study presents the synthesis and anti-inflammatory evaluation of 2,4,5-trimethylpyridin-3-ol analogues, which exhibit dual inhibition of TNFα- and IL-6-induced inflammation. Analysis using in silico methods, including 3D shape-based target identification, modeling, and docking, identified G protein-coupled estrogen receptor 1 (GPER) as the molecular target for the most effective analogue, 6-26, which exhibits remarkable efficacy in ameliorating inflammation and restoring colonic mucosal integrity. This was further validated by surface plasmon resonance (SPR) assay results, which showed direct binding to GPER, and by the results showing that GPER knockdown abolished the inhibitory effects of 6-26 on TNFα and IL-6 actions. Notably, 6-26 displayed no cytotoxicity, unlike G1 and G15, a well-known GPER agonist and an antagonist, respectively, which induced necroptosis independently of GPER. These findings suggest that the GPER-selective compound 6-26 holds promise as a therapeutic candidate for IBD.
Collapse
Affiliation(s)
- Bhuwan Prasad Awasthi
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Prakash Chaudhary
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Dongchul Lim
- Innovo Therapeutics Inc., Daeduck Biz Center C-313, 17 Techno 4-ro, Yuseong-gu, Daejeon 34013, Republic of Korea
| | - Kiran Yadav
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Iyn-Hyang Lee
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Suhrid Banskota
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Chhabi Lal Chaudhary
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ujjwala Karmacharya
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jiwoo Lee
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - So Myoung Im
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - YeonJu Nam
- Bio Industry Department, Gyeonggido Business & Science Accelerator, Suwon 16229, Republic of Korea
| | - Ji Won Eun
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sungeun Lee
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Ji-Min Lee
- Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Eun Soo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Chongsuk Ryou
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Tae Hun Kim
- Innovo Therapeutics Inc., Daeduck Biz Center C-313, 17 Techno 4-ro, Yuseong-gu, Daejeon 34013, Republic of Korea
| | - Hee Dong Park
- Innovo Therapeutics Inc., Daeduck Biz Center C-313, 17 Techno 4-ro, Yuseong-gu, Daejeon 34013, Republic of Korea
| | - Jung-Ae Kim
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tae-Gyu Nam
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Byeong-Seon Jeong
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
31
|
Lao J, Yan S, Yong Y, Li Y, Wen Z, Zhang X, Ju X, Li Y. Lacticaseibacillus casei IB1 Alleviates DSS-Induced Inflammatory Bowel Disease by Regulating the Microbiota and Restoring the Intestinal Epithelial Barrier. Microorganisms 2024; 12:1379. [PMID: 39065147 PMCID: PMC11278699 DOI: 10.3390/microorganisms12071379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) is becoming an increasingly serious health problem in humans and animals. Probiotics can inhibit the development of IBD. Due to the specificity of the strains, the function and mechanism of action of different strains are still unclear. Here, a DSS-induced colitis mouse model was utilized to investigate the ability and mechanism by which Lacticaseibacillus casei IB1 alleviates colitis. Treatment with L. casei IB1 improved DSS-induced colitis in mice, as indicated by increased body weight, colon length, and goblet cell numbers and decreased disease activity index (DAI), proinflammatory factor (TNF-α, IL-1β, and IL-6) levels, and histopathological scores after intake of IB1. IB1 supplementation also improved the expression of tight junction proteins and inhibited the activation of the MAPK and NF-κB signaling pathways to alleviate intestinal inflammation. In addition, IB1 rebalanced the intestinal microbial composition of colitis mice by increasing the abundance of Faecalibaculum and Alistipes and decreasing the abundance of Bacteroides and Escherichia_Shigella. In summary, L. casei IB1 showed great potential for relieving colitis by regulating the microbiota and restoring the epithelial barrier. It can be used as a potential probiotic for the prevention and treatment of UC in the future.
Collapse
Affiliation(s)
- Jianlong Lao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Shuping Yan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Yanhong Yong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Yin Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Zhaohai Wen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Xiaoyong Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Youquan Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| |
Collapse
|
32
|
Hasibuan PAZ, Simanjuntak Y, Hey-Hawkins E, Lubis MF, Rohani AS, Park MN, Kim B, Syahputra RA. Unlocking the potential of flavonoids: Natural solutions in the fight against colon cancer. Biomed Pharmacother 2024; 176:116827. [PMID: 38850646 DOI: 10.1016/j.biopha.2024.116827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related deaths worldwide, underscoring the importance of understanding the diverse molecular and genetic underpinnings of CRC to improve its diagnosis, prognosis, and treatment. This review delves into the adenoma-carcinoma-metastasis model, emphasizing the "APC-KRAS-TP53" signature events in CRC development. CRC is categorized into four consensus molecular subtypes, each characterized by unique genetic alterations and responses to therapy, illustrating its complexity and heterogeneity. Furthermore, we explore the role of chronic inflammation and the gut microbiome in CRC progression, emphasizing the potential of targeting these factors for prevention and treatment. This review discusses the impact of dietary carcinogens and lifestyle factors and the critical role of early detection in improving outcomes, and also examines conventional chemotherapy options for CRC and associated challenges. There is significant focus on the therapeutic potential of flavonoids for CRC management, discussing various types of flavonoids, their sources, and mechanisms of action, including their antioxidant properties, modulation of cell signaling pathways, and effects on cell cycle and apoptosis. This article presents evidence of the synergistic effects of flavonoids with conventional cancer therapies and their role in modulating the gut microbiome and immune response, thereby offering new avenues for CRC treatment. We conclude by emphasizing the importance of a multidisciplinary approach to CRC research and treatment, incorporating insights from genetic, molecular, and lifestyle factors. Further research is needed on the preventive and therapeutic potential of natural compounds, such as flavonoids, in CRC, underscoring the need for personalized and targeted treatment strategies.
Collapse
Affiliation(s)
| | - Yogi Simanjuntak
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Centre for Biotechnology and Biomedicine (BBZ), Institute of Bioanalytical Chemistry, Deutscher Platz 5, Leipzig 04103, Germany
| | - Muhammad Fauzan Lubis
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Ade Sri Rohani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| |
Collapse
|
33
|
Zhang G, Song D, Ma R, Li M, Liu B, He Z, Fu Q. Self-crosslinking hyaluronic acid hydrogel as an enteroprotective agent for the treatment of inflammatory bowel disease. Int J Biol Macromol 2024; 273:132909. [PMID: 38848832 DOI: 10.1016/j.ijbiomac.2024.132909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
The pathological changes in inflammatory bowel disease (IBD) include the disruption of intestinal barrier function and the infiltration of pathogenic microbes. The application of an artificial protective barrier at the site of inflammation can prevent bacterial infiltration, promote epithelial cell migration, and accelerate wound healing. In this study, dopamine-modified hyaluronic acid (HA-DA) was developed as a bioadhesive self-cross-linkable hydrogel, which acted as an enteroprotective agent to promote the healing of inflamed intestinal tissue. The adhesion strength HA-DA to mouse colon was 3.81-fold higher than HA. Moreover, HA-DA promoted Caco-2 cell proliferation and migration as well as had a strong physical barrier effect after gelation. After oral administration, the HA-DA reduced weight loss and attenuated impaired goblet cell function in mice with dextran sodium sulfate-induced IBD. In addition, HA-DA promoted restoration of the epithelial barrier by the upregulation of tight junction proteins. The results reported herein substantiated that self-cross-linkable hydrogel-based enteroprotective agents are a promising approach for the treatment of IBD.
Collapse
Affiliation(s)
- Guangshuai Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Dandan Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ruilong Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Bingyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
34
|
Yang Y, Zhao C, Yang Z, Du C, Chang Z, Wen X, Zhang X, Liu Y, Hu L, Gao Z. Myeloid-derived growth factor ameliorates dextran sodium sulfate-induced colitis by regulating macrophage polarization. J Mol Med (Berl) 2024; 102:875-886. [PMID: 38695882 PMCID: PMC11213757 DOI: 10.1007/s00109-024-02447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/19/2024] [Accepted: 04/15/2024] [Indexed: 06/29/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by inflammatory conditions in the gastrointestinal tract. According to reports, IBD prevalence is increasing globally, with heavy economic and physical burdens. Current IBD clinical treatment is limited to pharmacological methods; therefore, new strategies are needed. Myeloid-derived growth factor (MYDGF) secreted by bone marrow-derived mononuclear macrophages has beneficial effects in multiple inflammatory diseases. To this end, the present study aimed to establish an experimental IBD mouse model using dextran sulfate sodium in drinking water. MYDGF significantly alleviated DSS-induced colitis, suppressed lymphocyte infiltration, restored epithelial integrity in mice, and decreased apoptosis in the colon tissue. Moreover, the number of M1 macrophages was decreased and that of M2 macrophages was increased by the action of MYDGF. In MYDGF-treated mice, the NF-κB and MAPK pathways were partially inhibited. Our findings indicate that MYDGF could mitigate DSS-induced mice IBD by reducing inflammation and restoring epithelial integrity through regulation of intestinal macrophage polarization via NF-κB and MAPK pathway inhibition. KEY MESSAGES: MYDGF alleviated DSS-induced acute colitis. MYDGF maintains colon epithelial barrier integrity and relieves inflammation. MYDGF regulates colon macrophage polarization. MYDGF partially inhibited the activation of NF-κB and MAPK pathway.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Conghui Zhao
- Department of Pathology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Zi Yang
- Department of Endodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Conglin Du
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology and Beijing Laboratory of Oral Health, Beijing, 100050, China
| | - Zhichao Chang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology and Beijing Laboratory of Oral Health, Beijing, 100050, China
| | - Xin Wen
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology and Beijing Laboratory of Oral Health, Beijing, 100050, China
| | - Xiujuan Zhang
- Nephrology Department, Zhucheng People's Hospital, Shandong, 262200, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| | - Liang Hu
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China.
| | - Zhenhua Gao
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
35
|
Zhou M, Liu ZL, Liu JY, Wang XB. Tedizolid phosphate alleviates DSS-induced ulcerative colitis by inhibiting senescence of cell and colon tissue through activating AMPK signaling pathway. Int Immunopharmacol 2024; 135:112286. [PMID: 38776849 DOI: 10.1016/j.intimp.2024.112286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Ulcerative colitis (UC) is a subtype of inflammatory bowel disease. Previous studies have suggested a link between senescence process and the body's inflammatory reaction, indicating that senescence may exacerbate UC, yet the relation between UC and senescence remains unclear. Tedizolid Phosphate (TED), a novel oxazolidinone antimicrobial, is indicated in acute bacterial skin infections, its impact on senescence is not known. Our research revealed that the UC inducer dextran sulfate sodium (DSS) triggers senescence in both colon epithelial NCM460 cells and colon tissues, and TED that screened from a compound library demonstrated a strong anti-senescence effect on DSS treated NCM460 cells. As an anti-senescence medication identified in this research, TED efficiently alleviated UC and colonic senescence in mice caused by DSS. By proteomic analysis and experimental validation, we found that DSS significantly inhibits the AMPK signaling pathway, while TED counteracts senescence by restoring AMPK activity. This research verified that the development of UC is accompanied with colon tissue senescence, and TED, an anti-senescence medication, can effectively treat UC caused by DSS and alleviate colon senescence. Our work suggests anti-senescence strategy is an effective approach for UC treatment.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; School of Basic Medicine, Dali University, Dali 671000, Yunnan, China
| | - Zhen-Lin Liu
- School of Basic Medicine, Dali University, Dali 671000, Yunnan, China
| | - Jia-Yu Liu
- School of Basic Medicine, Dali University, Dali 671000, Yunnan, China
| | - Xiao-Bo Wang
- School of Basic Medicine, Dali University, Dali 671000, Yunnan, China.
| |
Collapse
|
36
|
Xiao Y, Jia YQ, Liu WJ, Niu C, Mai ZH, Dong JQ, Zhang XS, Yuan ZW, Ji P, Wei YM, Hua YL. Pulsatilla decoction alleviates DSS-induced UC by activating FXR-ASBT pathways to ameliorate disordered bile acids homeostasis. Front Pharmacol 2024; 15:1399829. [PMID: 38974033 PMCID: PMC11224520 DOI: 10.3389/fphar.2024.1399829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Ethnopharmacological relevance: Pulsatilla decoction (PD) is a classical prescription for the treatment of ulcerative colitis. Previous studies have demonstrated that the therapeutic efficacy of PD is closely associated with the activation of Farnesoid X receptor (FXR). The activity of FXR is regulated by apical sodium-dependent bile acid transporter (ASBT), and the FXR-ASBT cascade reaction, centered around bile acid receptor FXR, plays a pivotal role in maintaining bile acid metabolic homeostasis to prevent the occurrence and progression of ulcerative colitis (UC). Aim of the study: To elucidate the underlying mechanism by which PD exerts its proteactive effects against Dextran Sulfate Sodium Salt (DSS)-induced ulcerative colitis, focusing on the modulation of FXR and ASBT. Materials and methods: To establish a model of acute ulcerative colitis, BALB/C mice were administered 3.5% DSS in their drinking water for consecutive 7 days. The disease activity index (DAI) was employed to evaluate the clinical symptoms exhibited by each group of mice. Goblet cell expression in colon tissue was assessed using glycogen schiff periodic acid-Schiff (PAS) and alcian blue staining techniques. Inflammatory cytokine expression in serum and colonic tissues was examined through enzyme-linked immunosorbent assay (ELISA). A PCR Array chip was utilized to screen 88 differential genes associated with the FXR-ASBT pathway in UC treatment with PD. Western blotting (WB) analysis was performed to detect protein expression levels of differentially expressed genes in mouse colon tissue. Results: The PD treatment effectively reduced the Disease Activity Index (DAI) score and mitigated colon histopathological damage, while also restoring weight and colon length. Furthermore, it significantly alleviated the severity of ulcerative colitis (UC), regulated inflammation, modulated goblet cell numbers, and restored bile acid balance. Additionally, a PCR Array analysis identified 21 differentially expressed genes involved in the FXR-ASBT pathway. Western blot results demonstrated significant restoration of FXR, GPBAR1, CYP7A1, and FGF15 protein expression levels following PD treatment; moreover, there was an observed tendency towards increased expression levels of ABCB11 and RXRα. Conclusion: The therapeutic efficacy of PD in UC mice is notable, potentially attributed to its modulation of bile acid homeostasis, enhancement of gut barrier function, and attenuation of intestinal inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yong-li Hua
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
37
|
Qiu X, Luo W, Li H, Li T, Huang Y, Huang Q, Zhou R. A Traditional Chinese Medicine, Zhenqi Granule, Potentially Alleviates Dextran Sulfate Sodium-Induced Mouse Colitis Symptoms. BIOLOGY 2024; 13:427. [PMID: 38927307 PMCID: PMC11200386 DOI: 10.3390/biology13060427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that causes chronic inflammation in the large intestine. The etiology of UC is complex and incompletely understood, with potential contributing factors including genetic susceptibility, environmental influences, immune dysregulation, and gut barrier dysfunction. Despite available therapeutic drugs, the suboptimal cure rate for UC emphasizes the necessity of developing novel therapeutics. Traditional Chinese Medicine (TCM) has attracted great interest in the treatment of such chronic inflammatory diseases due to its advantages, such as multi-targets and low side effects. In this study, a mouse model of Dextran Sulfate Sodium (DSS)-induced acute colitis was established and the efficacy of Zhenqi Granule, a TCM preparation composed of the extractives from Astragali Radix and Fructus Ligustri Lucidi, was evaluated. The results showed that treatment with Zhenqi Granule prior to or post-DSS induction could alleviate the symptoms of colitis, including weight loss, diarrhea, hematochezia, colon length shortening, and pathological damage of colon tissues of the DSS-treated mice. Further, network pharmacology analysis showed that there were 98 common targets between the active components of Zhenqi Granule and the targets of UC, and the common targets were involved in the regulation of inflammatory signaling pathways. Our results showed that Zhenqi Granule had preventive and therapeutic effects on acute colitis in mice, and the mechanism may be that the active components of Zhenqi Granule participated in the regulation of inflammatory response. This study provided data reference for further exploring the mechanism of Zhenqi Granule and also provided potential treatment strategies for UC.
Collapse
Affiliation(s)
- Xiuxiu Qiu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Wentao Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Tingting Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Yaxue Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
- International Research Center for Animal Disease, Ministry of Science & Technology of China, Wuhan 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
- International Research Center for Animal Disease, Ministry of Science & Technology of China, Wuhan 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
38
|
Ando T, Takazawa I, Spencer ZT, Ito R, Tomimori Y, Mikulski Z, Matsumoto K, Ishitani T, Denson LA, Kawakami Y, Kawakami Y, Kitaura J, Ahmed Y, Kawakami T. Ileal Crohn's Disease Exhibits Reduced Activity of Phospholipase C-β3-Dependent Wnt/β-Catenin Signaling Pathway. Cells 2024; 13:986. [PMID: 38891118 PMCID: PMC11171731 DOI: 10.3390/cells13110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Crohn's disease is a chronic, debilitating, inflammatory bowel disease. Here, we report a critical role of phospholipase C-β3 (PLC-β3) in intestinal homeostasis. In PLC-β3-deficient mice, exposure to oral dextran sodium sulfate induced lethality and severe inflammation in the small intestine. The lethality was due to PLC-β3 deficiency in multiple non-hematopoietic cell types. PLC-β3 deficiency resulted in reduced Wnt/β-catenin signaling, which is essential for homeostasis and the regeneration of the intestinal epithelium. PLC-β3 regulated the Wnt/β-catenin pathway in small intestinal epithelial cells (IECs) at transcriptional, epigenetic, and, potentially, protein-protein interaction levels. PLC-β3-deficient IECs were unable to respond to stimulation by R-spondin 1, an enhancer of Wnt/β-catenin signaling. Reduced expression of PLC-β3 and its signature genes was found in biopsies of patients with ileal Crohn's disease. PLC-β regulation of Wnt signaling was evolutionally conserved in Drosophila. Our data indicate that a reduction in PLC-β3-mediated Wnt/β-catenin signaling contributes to the pathogenesis of ileal Crohn's disease.
Collapse
Affiliation(s)
- Tomoaki Ando
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
- Atopy Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ikuo Takazawa
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
| | - Zachary T. Spencer
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA; (Z.T.S.)
| | - Ryoji Ito
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
- Central Institute for Experimental Animals, Kawasaki 210-0821, Kanagawa, Japan
| | - Yoshiaki Tomimori
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
| | - Zbigniew Mikulski
- Imaging Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Tohru Ishitani
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-0044, Gunma, Japan
| | - Lee A. Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yu Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
| | - Yuko Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
| | - Jiro Kitaura
- Atopy Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA; (Z.T.S.)
| | - Toshiaki Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; (T.A.)
| |
Collapse
|
39
|
Chen M, Wei S, Wu X, Xiang Z, Li X, He H, Liao F, Wang X, Zhang J, Yu B, Dong W. 2'-Hydroxycinnamaldehyde Alleviates Intestinal Inflammation by Attenuating Intestinal Mucosal Barrier Damage Via Directly Inhibiting STAT3. Inflamm Bowel Dis 2024; 30:992-1008. [PMID: 38422244 PMCID: PMC11144992 DOI: 10.1093/ibd/izad283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND The currently available clinical therapeutic drugs for ulcerative colitis (UC) are considered inadequate owing to certain limitations. There have been reports on the anti-inflammatory effects of 2'-hydroxycinnamaldehyde (HCA). However, whether HCA can improve UC is still unclear. Here, we aimed to investigate the pharmacological effects of HCA on UC and its underlying molecular mechanisms. METHODS The pharmacological effects of HCA were comprehensively investigated in 2 experimental setups: mice with dextran sulfate sodium (DSS)-induced colitis and lipopolysaccharide (LPS)-treated fetal human colon (FHC) cells. Furthermore, the interaction between HCA and signal transducer and activator of transcription 3 (STAT3) was investigated using molecular docking. The FHC cells with STAT3 knockdown or overexpression and mice with intestinal epithelium-specific STAT3 deletion (STAT3ΔIEC) were used to evaluate whether STAT3 mediated the pharmacological effects of HCA. RESULTS 2'-Hydroxycinnamaldehyde attenuated dysregulated expression of inflammatory cytokines in a dose-dependent manner while increasing the expression of tight junction proteins, reducing the apoptosis of intestinal epithelial cells, and effectively alleviating inflammation both in vivo and in vitro. 2'-Hydroxycinnamaldehyde bound directly to STAT3 and inhibited its activation. The modulation of STAT3 activation levels due to STAT3 knockdown or overexpression influenced the mitigating effects of HCA on colitis. Further analysis indicated that the remission effect of HCA was not observed in STAT3ΔIEC mice, indicating that STAT3 mediated the anti-inflammatory effects of HCA. CONCLUSIONS We present a novel finding that HCA reduces colitis severity by attenuating intestinal mucosal barrier damage via STAT3. This discovery holds promise as a potential new strategy to alleviate UC.
Collapse
Affiliation(s)
- Meilin Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuchun Wei
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohan Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zixuan Xiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangyun Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haodong He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Wang
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Wang R, Yan B, Yin Y, Wang X, Wu M, Wen T, Qian Y, Wang Y, Huang C, Zhu Y. Polysaccharides extracted from larvae of Lucilia sericata ameliorated ulcerative colitis by regulating the intestinal barrier and gut microbiota. Int J Biol Macromol 2024; 270:132441. [PMID: 38761897 DOI: 10.1016/j.ijbiomac.2024.132441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Pest management technology has been a promising bioconversion method for waste resource utilization. Unlike many pests that consume waste, the larvae of Lucilia sericata, also known as maggots, have many outstanding advantages as following: with their strong adaption to environment and not easily infected and exhibiting a medicinal nutritional value. Herein, the potential efficacies of maggot polysaccharides (MP), as well as their underlying mechanisms, were explored in Dextran sulfate sodium (DSS)-induced colitis mice and TNF-α-elicited Caco-2 cells. We extracted two bioactive polysaccharides from maggots, MP-80 and MP-L, whose molecular weights were 4.25 × 103 and 2.28 × 103 g/mol, respectively. MP-80 and MP-L contained nine sugar residues: 1,4-α-Arap, 1,3-β-Galp, 1,4,6-β-Galp, 1,6-α-Glcp, 1-α-Glcp, 1,4-β-Glcp, 1-β-Xylp, 1,2-α-Manp, and 1-β-Manp. We demonstrated that MP-80 and MP-L significantly ameliorated DSS-induced symptoms and histopathological damage. Immuno-analysis revealed that compared with MP-L, MP-80 could better restore intestinal barrier and reduced inflammation by suppressing NLRP3/NF-κB pathways, which might be attributed to its enriched galactose fraction. Moreover, 16S rRNA sequencing revealed that MP-80 and MP-L both improved the dysbiosis and diversity of gut microbiota and acted on multiple microbial functions. Our study sheds new light on the possibility of using maggot polysaccharides as an alternative therapy for colitis.
Collapse
Affiliation(s)
- Rong Wang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210000, Jiangsu, PR China
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210000, PR China
| | - Yourui Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210000, Jiangsu, PR China
| | - Xueyuan Wang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210000, Jiangsu, PR China
| | - Mei Wu
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225500, Jiangsu, PR China
| | - Tiantian Wen
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210000, Jiangsu, PR China
| | - Yin Qian
- Taizhou Second People's Hospital, Taizhou 225500, Jiangsu, PR China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical school, Nanjing University, Nanjing 210000, PR China.
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210000, PR China.
| | - Yongqiang Zhu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210000, Jiangsu, PR China.
| |
Collapse
|
41
|
Zhu HTL, Luo J, Peng Y, Cheng XF, Wu SZ, Zhao YD, Chang L, Sun ZJ, Dong DL. Nitazoxanide protects against experimental ulcerative colitis through improving intestinal barrier and inhibiting inflammation. Chem Biol Interact 2024; 395:111013. [PMID: 38663798 DOI: 10.1016/j.cbi.2024.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Ulcerative colitis is a chronic disease with colonic mucosa injury. Nitazoxanide is an antiprotozoal drug in clinic. Nitazoxanide and its metabolite tizoxanide have been demonstrated to activate AMPK and inhibit inflammation, therefore, the aim of the present study is to investigate the effect of nitazoxanide on dextran sulfate sodium (DSS)-induced colitis and the underlying mechanism. Oral administration of nitazoxanide ameliorated the symptoms of mice with DSS-induced colitis, as evidenced by improving the increased disease activity index (DAI), the decreased body weight, and the shortened colon length. Oral administration of nitazoxanide ameliorated DSS-induced intestinal barrier dysfunction and reduced IL-6 and IL-17 expression in colon tissues. Mechanistically, nitazoxanide and its metabolite tizoxanide treatment activated AMPK and inhibited JAK2/STAT3 signals. Nitazoxanide and tizoxanide treatment increased caudal type homeobox 2 (CDX2) expression, increased alkaline phosphatase (ALP) activity and promoted tight junctions in Caco-2 cells. Nitazoxanide and tizoxanide treatment restored the decreased zonula occludens-1(ZO-1) and occludin protein levels induced by LPS or IL-6 in Caco-2 cells. On the other hand, nitazoxanide and tizoxanide regulated macrophage bias toward M2 polarization, as evidenced by the increased arginase-1expression in bone marrow-derived macrophages (BMDM). Nitazoxanide and tizoxanide reduced the increased IL-6, iNOS and CCL2 pro-inflammatory gene expressions and inhibited JAK2/STAT3 activation in BMDM induced by LPS. In conclusion, nitazoxanide protects against DSS-induced ulcerative colitis in mice through improving intestinal barrier and inhibiting inflammation and the underlying mechanism involves AMPK activation and JAK2/STAT3 inhibition.
Collapse
Affiliation(s)
- Hu-Tai-Long Zhu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jing Luo
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yi Peng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiao-Fan Cheng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Shang-Ze Wu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yin-Di Zhao
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Le Chang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - De-Li Dong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
42
|
Weng L, Zhao M, Zhang Y, Xu R, Zhang J, Wang Y, Xu Y, Zhao C, Wang M. Characteristics of lipid metabolism after treatment of colon cancer mice with American ginseng vesicles. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 38768606 DOI: 10.1002/pca.3367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Lipid molecules are present in tumours and play an important role in the anti-inflammatory response as well as in antiviral protection. Changes in the type and location of lipids in the intestine following exposure to environmental stressors play an important role in several disorders, including ulcerative colitis (UC), inflammatory bowel disease (IBD), and colorectal cancer. OBJECTIVES The aim of this work is to provide a new theoretical basis for tumour initiation and development by accurately measuring the spatial distribution of lipids and metabolites in intestinal tissue. Spatial metabolomics allows the detection of samples with minimal sample volume by label-free imaging of complex samples in their original state. The distribution of lipid molecules in tumours has not been reported, although the distribution of lipid molecules in intestinal tissue has been reported in the literature. METHODS The range of lipid profiles in colon cancer mouse tumour tissue was compiled using a spatial metabolomics: lipid extraction method. The changes in lipid distribution in two regions after oral administration of American Ginseng (Panax quinquefolius L.) vesicles were also compared. Tumour tissue samples were extracted with 80% methanol-20% formic acid in water. RESULTS The resulting spatial metabolic profile allowed the identification of seven lipid classes in mouse tumours. The distribution of fibre tissue cells was 23.2% higher than tumour tissue cells, with the exception of the fatty acid (FA) species.
Collapse
Affiliation(s)
- Ling Weng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Ruixiang Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Jiayi Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Yingjie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Yanxue Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Miao Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| |
Collapse
|
43
|
Berce C. Artificial intelligence generated clinical score sheets: looking at the two faces of Janus. Lab Anim Res 2024; 40:21. [PMID: 38750604 PMCID: PMC11097593 DOI: 10.1186/s42826-024-00206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
In vivo experiments are increasingly using clinical score sheets to ensure minimal distress to the animals. A score sheet is a document that includes a list of specific symptoms, behaviours and intervention guidelines, all balanced to for an objective clinical assessment of experimental animals. Artificial Intelligence (AI) technologies are increasingly being applied in the field of preclinical research, not only in analysis but also in documentation processes, reflecting a significant shift towards more technologically advanced research methodologies. The present study explores the application of Large Language Models (LLM) in generating score sheets for an animal welfare assessment in a preclinical research setting. Focusing on a mouse model of inflammatory bowel disease, the study evaluates the performance of three LLM - ChatGPT-4, ChatGPT-3.5, and Google Bard - in creating clinical score sheets based on specified criteria such as weight loss, stool consistency, and visible fecal blood. Key parameters evaluated include the consistency of structure, accuracy in representing severity levels, and appropriateness of intervention thresholds. The findings reveal a duality in LLM-generated score sheets: while some LLM consistently structure their outputs effectively, all models exhibit notable variations in assigning numerical values to symptoms and defining intervention thresholds accurately. This emphasizes the dual nature of AI performance in this field-its potential to create useful foundational drafts and the critical need for professional review to ensure precision and reliability. The results highlight the significance of balancing AI-generated tools with expert oversight in preclinical research.
Collapse
Affiliation(s)
- Cristian Berce
- Animal Health and Welfare Division, Federal Food Safety and Veterinary Office, Bern, Switzerland.
| |
Collapse
|
44
|
Lin Z, Luo W, Zhang K, Dai S. Environmental and Microbial Factors in Inflammatory Bowel Disease Model Establishment: A Review Partly through Mendelian Randomization. Gut Liver 2024; 18:370-390. [PMID: 37814898 PMCID: PMC11096900 DOI: 10.5009/gnl230179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 10/11/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex condition resulting from environmental, microbial, immunologic, and genetic factors. With the advancement of Mendelian randomization research in IBD, we have gained new insights into the relationship between these factors and IBD. Many animal models of IBD have been developed using different methods, but few studies have attempted to model IBD by combining environmental factors and microbial factors. In this review, we examine how environmental factors and microbial factors affect the development and progression of IBD, and how they interact with each other and with the intestinal microbiota. We also summarize the current methods for creating animal models of IBD and compare their advantages and disadvantages. Based on the latest findings from Mendelian randomization studies on the role of environmental factors in IBD, we discuss which environmental and microbial factors could be used to construct a more realistic and reliable IBD experimental model. We propose that animal models of IBD should consider both environmental and microbial factors to better mimic human IBD pathogenesis and to reveal the underlying mechanisms of IBD at the immune and genetic levels. We highlight the importance of environmental and microbial factors in IBD pathogenesis and offer new perspectives and suggestions for improving experimental animal modeling. Our goal is to create a model that closely resembles the clinical picture of IBD.
Collapse
Affiliation(s)
- Zesheng Lin
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Wenjing Luo
- The Second Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Kaijun Zhang
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangzhou, ChinaNational Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shixue Dai
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangzhou, ChinaNational Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Geriatric Center, National Regional Medical Center, Ganzhou Hospital Affiliated to Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Ganzhou, China
| |
Collapse
|
45
|
Xue G, Li X, Kalim M, Fang J, Jiang Z, Zheng N, Wang Z, Li X, Abdelrahim M, He Z, Nikiforov M, Jin G, Lu Y. Clinical drug screening reveals clofazimine potentiates the efficacy while reducing the toxicity of anti-PD-1 and CTLA-4 immunotherapy. Cancer Cell 2024; 42:780-796.e6. [PMID: 38518774 DOI: 10.1016/j.ccell.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Emerging as the most potent and durable combinational immunotherapy, dual anti-PD-1 and CTLA-4 immune checkpoint blockade (ICB) therapy notoriously increases grade 3-5 immune-related adverse events (irAEs) in patients. Accordingly, attempts to improve the antitumor potency of anti-PD-1+CTLA-4 ICB by including additional therapeutics have been largely discouraged due to concerns of further increasing fatal toxicity. Here, we screened ∼3,000 Food and Drug Administration (FDA)-approved drugs and identified clofazimine as a potential third agent to optimize anti-PD-1+CTLA-4 ICB. Remarkably, clofazimine outperforms ICB dose reduction or steroid treatment in reversing lethality of irAEs, but unlike the detrimental effect of steroids on antitumor efficacy, clofazimine potentiates curative responses in anti-PD-1+CTLA-4 ICB. Mechanistically, clofazimine promotes E2F1 activation in CD8+ T cells to overcome resistance and counteracts pathogenic Th17 cells to abolish irAEs. Collectively, clofazimine potentiates the antitumor efficacy of anti-PD-1+CTLA-4 ICB, curbs intractable irAEs, and may fill a desperate clinical need to improve patient survival.
Collapse
Affiliation(s)
- Gang Xue
- Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA.
| | - Xin Li
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Muhammad Kalim
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Jing Fang
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Zhiwu Jiang
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Ningbo Zheng
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Ziyu Wang
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Xiaoyin Li
- Department of Mathematics and Statistics, St. Cloud State University, St Cloud, MN 56301, USA
| | - Maen Abdelrahim
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Zhiheng He
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA.
| | | | - Guangxu Jin
- Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA.
| | - Yong Lu
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Niu L, Wang S, Xu Y, Zu X, You X, Zhang Q, Zhuang P, Jiang M, Gao J, Hou X, Zhang Y, Bai G, Deng J. Honokiol targeting ankyrin repeat domain of TRPV4 ameliorates endothelial permeability in mice inflammatory bowel disease induced by DSS. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117825. [PMID: 38296175 DOI: 10.1016/j.jep.2024.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classic traditional Chinese medicine, Magnolia officinalis (M. officinalis) is widely used in digestive diseases. It has rich gastrointestinal activity including inflammatory bowel disease (IBD) treatment, but the mechanism is not clear. AIM OF THE STUDY In recent years, there has been a growing interest in investigating the regulatory effects of herbal compounds on transient receptor potential (TRP) channel proteins. Transient receptor potential vanilloid 4 (TRPV4), a subtype involved in endothelial permeability regulation, was discussed as the target of M. officinalis in the treatment of IBD in the study. Based on the targeting effect of TRPV4, this study investigated the active ingredients and mechanism of M. officinalis extract in treating IBD. MATERIALS AND METHODS To reveal the connection between the active ingredients in M. officinalis and TRPV4, a bioactivity-guided high performance liquid chromatography system coupled with mass spectrometry identification was utilized to screen for TRPV4 antagonists. TRPV4 siRNA knockdown experiment was employed to validate the significance of TRPV4 as a crucial target in regulating endothelial permeability by honokiol (HON). The interaction of the active ingredient representing HON with TRPV4 was confirmed by molecular docking, fluorescence-based thermal shift and live cell calcium imaging experiments. The potential binding sites and inhibitory mechanisms of HON in TRPV4 were analyzed by molecular dynamics simulation and microscale thermophoresis. The therapeutic effect of HON based on TRPV4 was discussed in DSS-IBD mice. RESULTS Our finding elucidated that the inhibitory activity of M. officinalis against TRPV4 is primarily attributed to HON analogues. The knockdown of TRPV4 expression significantly impaired the calcium regulation and permeability protection in endothelial cells. The mechanism study revealed that HON specifically targets the Q239 residue located in the ankyrin repeat domain of TRPV4, and competitively inhibits channel opening with adenosine triphosphate (ATP) binding. The immunofluorescence assay demonstrated that the administration of HON enhances the expression and location of VE-Cadherin to protect the endothelial barrier and attenuates immune cell infiltration. CONCLUSIONS The finding suggested that HON alleviates IBD by improving endothelial permeability through TRPV4. The discovery provides valuable insights into the potential therapeutic strategy of active natural products for alleviating IBD.
Collapse
Affiliation(s)
- Lin Niu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shilong Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yanyan Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xingwang Zu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xinyu You
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiuyang Zhang
- Thompson Rivers University, Manna, British Columbia, Canada
| | - Pengwei Zhuang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xiaotao Hou
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica and China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Guangxi University of Chinese Medicine, Nanning, China
| | - Yanjun Zhang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China; Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica and China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Guangxi University of Chinese Medicine, Nanning, China.
| | - Jiagang Deng
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica and China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
47
|
Zang Z, Li L, Yang M, Zhang H, Naeem A, Wu Z, Zheng Q, Song Y, Tao L, Wan Z, Zhang Y, Leng J, Liao Z, Guan Y. Study on the ameliorative effect of honeysuckle on DSS-induced ulcerative colitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117776. [PMID: 38307354 DOI: 10.1016/j.jep.2024.117776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Honeysuckle, first documented in the Miscellaneous Records of Famous Physicians, is known for its ability to expel toxin and cool blood to stop diarrhea. Modern pharmacological research has shown that honeysuckle has anti-inflammatory, antibacterial, antioxidant, and immune-regulating effects and is widely used in clinical practice. However, the effect of honeysuckle on ulcerative colitis (UC) is still not fully understood, which presents challenges for quality control, research and development. AIM OF THE STUDY This study aimed to determine the anti-inflammatory properties and mechanism of action of aqueous extracts of honeysuckle in the treatment of ulcerative colitis. MATERIALS AND METHODS The dextran sodium sulfate (DSS) induced-ulcerative colitis mouse model was established, and the mice were divided into five groups: the control group, the model group, and the low, medium, and high dose honeysuckle treatment groups. RESULTS All dose groups of honeysuckle were found to significantly reduce IL-6 and TNF-α levels and regulate DSS-induced mRNA levels of CLDN4, COX-2, IL-6, INOS, MUC-2, occludin and NLRP3. The high-dose group displayed the most effective inhibition, and a differentially expressed mRNA detection indicated abnormal mRNA expression. The 16sRNA sequencing revealed that the honeysuckle was able to significantly upregulate the abundance of beneficial bacteria and downregulate the abundance of harmful bacteria. The study of short-chain fatty acids revealed that the levels of acetic, propionic, isobutyric, valeric and isovaleric acids were significantly increased after administering honeysuckle at medium and high doses. CONCLUSION Honeysuckle reduces the production of pro-inflammatory cytokines, increases the content of short-chain fatty acids and restores the intestinal ecological balance, resulting in better therapeutic effects.
Collapse
Affiliation(s)
- Zhengzhong Zang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Liqin Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Hua Zhang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Yonggui Song
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Ling Tao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Zhiyan Wan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Yuwei Zhang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Jinglv Leng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Zhenggen Liao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China.
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China.
| |
Collapse
|
48
|
Yang C, Merlin D. Unveiling Colitis: A Journey through the Dextran Sodium Sulfate-induced Model. Inflamm Bowel Dis 2024; 30:844-853. [PMID: 38280217 PMCID: PMC11063560 DOI: 10.1093/ibd/izad312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 01/29/2024]
Abstract
Animal models of inflammatory bowel disease (IBD) are valuable tools for investigating the factors involved in IBD pathogenesis and evaluating new therapeutic options. The dextran sodium sulfate (DSS)-induced model of colitis is arguably the most widely used animal model for studying the pathogenesis of and potential treatments for ulcerative colitis (UC), which is a primary form of IBD. This model offers several advantages as a research tool: it is highly reproducible, relatively easy to generate and maintain, and mimics many critical features of human IBD. Recently, it has also been used to study the role of gut microbiota in the development and progression of IBD and to investigate the effects of other factors, such as diet and genetics, on colitis severity. However, although DSS-induced colitis is the most popular and flexible model for preclinical IBD research, it is not an exact replica of human colitis, and some results obtained from this model cannot be directly applied to humans. This review aims to comprehensively discuss different factors that may be involved in the pathogenesis of DSS-induced colitis and the issues that should be considered when using this model for translational purposes.
Collapse
Affiliation(s)
- Chunhua Yang
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA, 30303, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA, 30303, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| |
Collapse
|
49
|
Chen X, Ding Y, Yi Y, Chen Z, Fu J, Chang Y. Review of Animal Models of Colorectal Cancer in Different Carcinogenesis Pathways. Dig Dis Sci 2024; 69:1583-1592. [PMID: 38526618 DOI: 10.1007/s10620-024-08384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract with increasing morbidity and mortality. Exploring the factors affecting colorectal carcinogenesis and controlling its occurrence at its root is as important as studying post-cancer treatment and management. Establishing ideal animal models of CRC is crucial, which can occur through various pathways, such as adenoma-carcinoma sequence, inflammation-induced carcinogenesis, serrated polyp pathway and de-novo pathway. This article aims to categorize the existing well-established CRC animal models based on different carcinogenesis pathways, and to describe their mechanisms, methods, advantages and limitations using domestic and international literature sources. This will provide suggestions for the selection of animal models in early-stage CRC research.
Collapse
Affiliation(s)
- Xue Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Yirong Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Yun Yi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Zhishan Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Jiaping Fu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China.
| |
Collapse
|
50
|
Aktar R, Rondinelli S, Peiris M. GPR84 in physiology-Many functions in many tissues. Br J Pharmacol 2024; 181:1524-1535. [PMID: 37533166 DOI: 10.1111/bph.16206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
Members of the GPCR superfamily have a wide variety of physiological roles and are therefore valuable targets for developing effective medicines. However, within this superfamily are receptors that are less well characterized and remain orphans, including GPR84. This receptor is stimulated by ligands derived from dietary nutrients, specifically medium chain fatty acids (C9-14), and novel synthetic agonists. There are data demonstrating the role of GPR84 in inflammatory pathways, in addition to emerging data suggesting a key role for GPR84 as a nutrient-sensing GPCR involved in metabolism by sensing energy load via nutrient exposure and subsequent signalling leading to modulation of food intake. Exploring GPR84 pharmacology, its localization and what drives its expression has revealed multiple roles for this receptor. Here, we will reflect on these various roles of GRP84 demonstrated thus far, primarily by exploring data from pre-clinical and clinical studies in various physiological systems, with a specific focus on the gastrointestinal tract. LINKED ARTICLES: This article is part of a themed issue GPR84 Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.10/issuetoc.
Collapse
Affiliation(s)
- Rubina Aktar
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Silvia Rondinelli
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|