1
|
Singh A, Sohal A, Batta A. GLP-1, GIP/GLP-1, and GCGR/GLP-1 receptor agonists: Novel therapeutic agents for metabolic dysfunction-associated steatohepatitis. World J Gastroenterol 2024; 30:5205-5211. [PMID: 39735270 PMCID: PMC11612699 DOI: 10.3748/wjg.v30.i48.5205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
The global prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is estimated at 32.4%, reflecting its growing clinical significance. MASLD, which includes MASLD and metabolic dysfunction-associated steatohepatitis (MASH) has been linked to increased metabolic, cardiovascular, and malignant morbidity. Progression into fibrotic stages of MASLD is also strongly associated with liver-related mortality. The past few years have seen a heightened focus on creating innovative therapeutic strategies for MASH management. GLP-1 receptor agonists (RA) have also emerged as a potential treatment option. Studies on GLP-1 agonists, such as liraglutide and semaglutide, have demonstrated efficacy in MASH management, albeit with limited histological improvement of fibrosis. However, recent investigations into GLP-1/GIP RA (tirzepatide) and Glucagon/GLP-1 RA (survodutide) have shown even more encouraging results, with higher rates of MASH resolution and fibrosis improvement. The tolerability of these medications due to their gastrointestinal side effects remains a major concern. Future research should focus on optimizing drug regimens, identifying patients most likely to benefit, and balancing efficacy with tolerability. The evolving landscape of MASH therapeutics suggests a bright future, with the potential for combination therapies to further enhance patient outcomes.
Collapse
Affiliation(s)
- Anmol Singh
- Department of Medicine, Tristar Centennial Medical Center, Nashville, TN 37203, United States
| | - Aalam Sohal
- Division of Gastroenterology, Creighton University School of Medicine, Phoenix, AZ 85012, United States
| | - Akash Batta
- Department of Cardiology, Dayanand Medical College and Hospital, Ludhiana 141001, Punjab, India
| |
Collapse
|
2
|
Fan X, Lin J, Liu H, Deng Q, Zheng Y, Wang X, Yang L. The role of macrophage-derived exosomes in noncancer liver diseases: From intercellular crosstalk to clinical potential. Int Immunopharmacol 2024; 143:113437. [PMID: 39454408 DOI: 10.1016/j.intimp.2024.113437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Chronic liver disease has a substantial global prevalence and mortality rate. Macrophages, pivotal cells in innate immunity, exhibit remarkable heterogeneity and plasticity and play a considerable role in maintaining organ homeostasis, modulating inflammatory responses, and influencing disease progression in the liver. Exosomes, which can serve as conduits for intercellular communication, biomarkers, and therapeutic targets for a spectrum of diseases, have recently garnered increasing attention recently. Given that the liver is the organ with the highest macrophage content, a thorough understanding of the influence of macrophage-derived exosomes (MDEs) on noncancer liver disease pathogenesis and their potential therapeutic applications is paramount. Interactions among MDEs, hepatocytes, hepatic stellate cells (HSCs), and other nonparenchymal cells constitute a complex network regulates liver immune homeostasis. In this review, we summarize the latest progress in the current understanding of MDE heterogeneity and cellular crosstalk in noncancer liver diseases, as well as their potential clinical applications. Additionally, challenges and future directions are underscored.
Collapse
Affiliation(s)
- Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Lin
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Honglan Liu
- Dazhou Central Hospital, Dazhou 635000, Sichuan Province, China
| | - Qiaoyu Deng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Wan W, Wei R, Xu B, Cao H, Zhi Y, Guo F, Liu H, Li B, Wu J, Gao Y, Zhang K. Qiwei Jinggan Ling regulates oxidative stress and lipid metabolism in alcoholic liver disease by activating AMPK. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156125. [PMID: 39388920 DOI: 10.1016/j.phymed.2024.156125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is a severe public health concern worldwide and there is still a lack of effective treatments. Qiwei Jinggan Ling (QJL) has protective effects against various liver injuries, but its pharmacological action on ALD has received little attention. PURPOSE To investigate the effect and mechanism of QJL on ALD in vivo and in vitro. METHODS In vivo, an ALD mouse model was established by alcohol combined with a high-fat diet (HFD) and treated with QJL. Biochemical indicators, HE staining, and Oil Red O staining were employed to assess hepatic oxidative stress, steatosis, and alcohol metabolism. RNA sequencing analysis was performed, and the results were verified by qRT-PCR and Western blot to elucidate the hepatoprotective mechanism of QJL. In vitro, HepG2 cells were co-stimulated with NaOA (sodium oleate) and EtOH (ethanol), followed by intervention with Compound C (CC, AMPK inhibitor) and QJL-containing serum. Oil Red O, BODIPY (boron-dipyrromethene), and ROS (reactive oxygen species) staining were applied to validate the efficacy and mechanism of QJL-containing serum. The expression of AMP-activated protein kinase (AMPK) pathway-related factors was analyzed through qRT-PCR and Western blot for additional corroboration. Moreover, the key pharmacodynamic components of QJL were identified by UPLC-MS/MS and molecular docking. RESULTS In vivo, QJL ameliorated liver structural disorders, steatosis, oxidative stress, and impaired alcohol metabolism, as indicated by biochemical indicators and histopathological assays. RNA sequencing analysis revealed that QJL reversed the expression of genes related to alcohol metabolism, fatty acid metabolism, and cholesterol metabolism. The results of qRT-PCR and Western blot were in line with those of RNA sequencing. Furthermore, it was discovered that QJL significantly upregulated the expression of p-AMPK and downregulated the expression of sterol regulatory element binding transcription factor 1 (SREBP-1c). In vitro, biochemical indicators and staining assays demonstrated that QJL-containing serum inhibited lipid accumulation and oxidative stress. The qRT-PCR and Western blot analysis revealed that QJL-containing serum markedly enhanced the expression of p-AMPK and carnitine palmitoyltransferase 1a (Cpt1a), while suppressing the expression of SREBP-1c, fatty acid synthase (Fasn), and acetyl-coenzyme A carboxylase 1 (ACC-1). However, CC inhibited the above pharmacological activities of QJL-containing serum. Additionally, (2S)-Liquiritigenin, Glycyrrhetinate, Isovitexin, Taxifolin, and Yohimbine were proved to be the key active components of QJL. CONCLUSION QJL had the potential to be a therapeutic drug for ALD by activating the AMPK pathway, thereby regulating lipid metabolism and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Weimin Wan
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Riming Wei
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Baoling Xu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China; Department of Emergency, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, Guangxi, China
| | - Houkang Cao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Yueping Zhi
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Fengyue Guo
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Haiping Liu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Bo Li
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jianzhao Wu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Ya Gao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Kefeng Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China.
| |
Collapse
|
4
|
Liu M, Ye Z, Zhang Y, He P, Zhou C, Yang S, Zhang Y, Gan X, Qin X. Accelerometer-derived moderate-to-vigorous physical activity and incident nonalcoholic fatty liver disease. BMC Med 2024; 22:398. [PMID: 39289727 PMCID: PMC11409607 DOI: 10.1186/s12916-024-03618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND The liver effects of concentrated vs. more evenly distributed moderate-to-vigorous physical activity (MVPA) patterns remain unclear. We aimed to examine the association of accelerometer-measured MVPA and different MVPA patterns with liver outcomes. METHODS Eighty-eight thousand six hundred fifty-six participants without prior liver diseases from UK Biobank were included. MVPA was measured by a wrist-worn accelerometer. Based on the guideline-based threshold (≥ 150 min/week), MVPA patterns were defined as inactive (< 150 min/week), active weekend warrior (WW; ≥ 150 min/week with ≥ 50% of total MVPA achieved within 1-2 days), and regularly active (≥ 150 min/week but not active WW) patterns. The primary outcome was incident nonalcoholic fatty liver disease (NAFLD). RESULTS During a median follow-up of 6.8 years, 562 participants developed NAFLD. Overall, there was a nonlinear inverse association of total MVPA with incident NAFLD (P for nonlinearity = 0.009): the risk of NAFLD rapidly decreased with the increment of MVPA (per 100 min/week increment: HR = 0.68; 95%CI, 0.57-0.81) when MVPA < 208 min/week, while moderately declined (HR = 0.91; 95%CI, 0.84-0.99) when MVPA ≥ 208 min/week. For MVPA patterns, compared with inactive group, both active WW (HR = 0.55, 95%CI, 0.44-0.67) and active regular (HR = 0.49, 95%CI, 0.38-0.63) group were associated with a similar lower risk of NAFLD. Similar results were observed for each secondary outcome, including incident severe liver diseases, incident liver cirrhosis, and liver magnetic resonance imaging-based liver steatosis and fibrosis. CONCLUSIONS Regardless of whether MVPA was concentrated within 1 to 2 days or spread over most days of the week, more MVPA was associated with a lower risk of incident liver outcomes, including NAFLD, liver cirrhosis, liver steatosis, and fibrosis, to MVPA more evenly distributed.
Collapse
Affiliation(s)
- Mengyi Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Ziliang Ye
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Yuanyuan Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Panpan He
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Chun Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Sisi Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Yanjun Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Xiaoqin Gan
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Wang H, Zhao J, Ji S, Liu T, Cheng Z, Huang Z, Zang Y, Chen J, Zhang J, Ding Z. Metallofullerenol alleviates alcoholic liver damage via ROS clearance under static magnetic and electric fields. Free Radic Biol Med 2024; 220:236-248. [PMID: 38704052 DOI: 10.1016/j.freeradbiomed.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Alcoholic liver disease (ALD) is a common chronic redox disease caused by increased alcohol consumption. Abstinence is a major challenge for people with alcohol dependence, and approved drugs have limited efficacy. Therefore, this study aimed to explore a new treatment strategy for ALD using ferroferric oxide endohedral fullerenol (Fe3O4@C60(OH)n) in combination with static magnetic and electric fields (sBE). The primary hepatocytes of 8-9-week-old female BALB/c mice were used to evaluate the efficacy of the proposed combination treatment. A mouse chronic binge ethanol feeding model was established to determine the alleviatory effect of Fe3O4@C60(OH)n on liver injury under sBE exposure. Furthermore, the ability of Fe3O4@C60(OH)n to eliminate •OH was evaluated. Alcohol-induced hepatocyte and mitochondrial damage were reversed in vitro. Additionally, the combination therapy reduced liver damage, alleviated oxidative stress by improving antioxidant levels, and effectively inhibited liver lipid accumulation in animal experiments. Here, we used a combination of magnetic derivatives of fullerenol and sBE to further improve the ROS clearance rate, thereby alleviating ALD. The developed combination treatment may effectively improve alcohol-induced liver damage and maintain redox balance without apparent toxicity, thereby enhancing therapy aimed at ALD and other redox diseases.
Collapse
Affiliation(s)
- Haoyu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Junqi Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shiliang Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Department of Pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, 215153, China
| | - Tingjun Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhisheng Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, 210023, China; Changzhou High-Tech Research Institute of Nanjing University, Changzhou, 213164, China.
| |
Collapse
|
6
|
Feng X, Huang N, Wu Y, Gao F, Chen X, Zhang C, Zhang B, Sun T. Alcoholic Liver Disease in China: A Disease Influenced by Complex Social Factors That Should Not Be Neglected. J Clin Transl Hepatol 2024; 12:677-684. [PMID: 38993514 PMCID: PMC11233974 DOI: 10.14218/jcth.2024.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 07/13/2024] Open
Abstract
Alcoholic liver disease (ALD) encompasses liver damage caused by chronic, excessive alcohol consumption. It manifests initially as marked hepatocellular steatosis and can progress to steatohepatitis, liver fibrosis, and cirrhosis. With China's rapid economic growth, coupled with a complex social background and the influence of a deleterious wine culture, the number of patients with ALD in China has increased significantly; the disease has become a social and health problem that cannot be ignored. In this review, we briefly described the social factors affecting ALD in China and elaborated on differences between alcoholic and other liver diseases in terms of complications (e.g., cirrhosis, upper gastrointestinal bleeding, hepatic encephalopathy, hepatocellular carcinoma, addiction, and other extrahepatic diseases). We also emphasized that ALD was more dangerous and difficult to treat than other liver diseases due to its complications, and that precise and effective treatment measures were lacking. In addition, we considered new ideas and treatment methods that may be generated in the future.
Collapse
Affiliation(s)
- Xiaofeng Feng
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Nafei Huang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuqin Wu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fei Gao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaomei Chen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chenyi Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bing Zhang
- Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Tao Sun
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Lin JH, Lin CH, Kuo YW, Liao CA, Chen JF, Tsai SY, Li CM, Hsu YC, Huang YY, Hsia KC, Yeh YT, Ho HH. Probiotic Lactobacillus fermentum TSF331, Lactobacillus reuteri TSR332, and Lactobacillus plantarum TSP05 improved liver function and uric acid management-A pilot study. PLoS One 2024; 19:e0307181. [PMID: 39046973 PMCID: PMC11268587 DOI: 10.1371/journal.pone.0307181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is predominantly associated with metabolic disturbances representing aberrant liver function and increased uric acid (UA) levels. Growing evidences have suggested a close relationship between metabolic disturbances and the gut microbiota. A placebo-controlled, double-blinded, randomized clinical trial was therefore conducted to explore the impacts of daily supplements with various combinations of the probiotics, Lactobacillus fermentum TSF331, Lactobacillus reuteri TSR332, and Lactobacillus plantarum TSP05 with a focus on liver function and serum UA levels. Test subjects with abnormal levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and UA were recruited and randomly allocated into six groups. Eighty-two participants successfully completed the 60-day intervention without any dropouts or occurrence of adverse events. The serum AST, ALT, and UA levels were significantly reduced in all treatment groups (P < 0.05). The fecal microbiota analysis revealed the intervention led to an increase in the population of commensal bacteria and a decrease in pathobiont bacteria, especially Bilophila wadsworthia. The in vitro study indicated the probiotic treatments reduced lipid accumulation and inflammatory factor expressions in HepG2 cells, and also promoted UA excretion in Caco-2 cells. The supplementation of multi-strain probiotics (TSF331, TSR332, and TSP05) together can improve liver function and UA management and may have good potential in treating asymptomatic MAFLD. Trial registration. The trial was registered in the US Library of Medicine (clinicaltrials.gov) with the number NCT06183801 on December 28, 2023.
Collapse
Affiliation(s)
- Jia-Hung Lin
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Chi-Huei Lin
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yi-Wei Kuo
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Chorng-An Liao
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung City, Taiwan
| | - Jui-Fen Chen
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Shin-Yu Tsai
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Ching-Min Li
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yu-Chieh Hsu
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yen-Yu Huang
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Ko-Chiang Hsia
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung City, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung City, Taiwan
| | - Hsieh-Hsun Ho
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| |
Collapse
|
8
|
Zhang Q, Wu S, Chen Q, Zhang Y, Zhang C, Yin R, Ouyang Z, Wei Y. Reducing Oxidative Stress-Mediated Alcoholic Liver Injury by Multiplexed RNAi of Cyp2e1, Cyp4a10, and Cyp4a14. Biomedicines 2024; 12:1505. [PMID: 39062078 PMCID: PMC11274525 DOI: 10.3390/biomedicines12071505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The prevalence of excessive drinking-related alcoholic liver disease (ALD) is rising, yet therapeutic options remain limited. High alcohol consumption and consequent oxidative metabolism by cytochrome P450 (CYP) can lead to extremely high levels of reactive oxygen species, which overwhelm cellular defenses and harm hepatocytes. Our previous investigations showed that inhibiting Cyp2e1 using RNA interference reduced the incidence of ALD. However, compensatory mechanisms other than CYP2E1 contribute to oxidative stress in the liver. Therefore, we coupled triple siRNA lipid nanoparticles (LNPs) targeting Cyp2e1 with two isoenzymes Cyp4a10 and Cyp4a14 to treat ALD mouse models fed with Lieber-Decarli ethanol liquid diet for 12 weeks at the early (1st week), middle (5th week), and late (9th week) stages. The administration of triple siRNA LNPs significantly ameliorated chronic alcoholic liver injury in mice, and early treatment achieved the most profound effects. These effects can be attributed to a reduction in oxidative stress and increased expression of antioxidant genes, including Gsh-Px, Gsh-Rd, and Sod1. Moreover, we observed the alleviation of inflammation, evidenced by the downregulation of Il-1β, Il-6, Tnf-α, and Tgf-β, and the prevention of excessive lipid synthesis, evidenced by the restoration of the expression of Srebp1c, Acc, and Fas. Finally, triple siRNA treatment maintained normal metabolism in lipid oxidation. In brief, our research examined the possible targets for clinical intervention in ALD by examining the therapeutic effects of triple siRNA LNPs targeting Cyp2e1, Cyp4a10, and Cyp4a14. The in vivo knockdown of the three genes in this study is suggested as a promising siRNA therapeutic approach for ALD.
Collapse
Affiliation(s)
- Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (S.W.)
| | - Shuang Wu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (S.W.)
| | - Qiubing Chen
- Department of Urology, Frontier Science Centre for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yahong Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (S.W.)
| | - Cai Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (S.W.)
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (S.W.)
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (S.W.)
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (Q.Z.); (S.W.)
| |
Collapse
|
9
|
Park SY, Kim JE, Kang HM, Park KH, Je BI, Lee KW, Hwang DY, Choi YW. Citrullus mucosospermus Extract Exerts Protective Effects against Methionine- and Choline-Deficient Diet-Induced Nonalcoholic Steatohepatitis in Mice. Foods 2024; 13:2101. [PMID: 38998607 PMCID: PMC11240977 DOI: 10.3390/foods13132101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
In recent years, there has been increasing interest in exploring the potential therapeutic advantages of Citrullus mucosospermus extracts (CME) for nonalcoholic steatohepatitis (NASH). In this study, we investigated the therapeutic effects of CME on NASH using a mice model. High-performance liquid chromatography (HPLC) was employed to identify cucurbitacin E and cucurbitacin E-2-O-glucoside from the CME. Although CME did not significantly alter the serum lipid levels in methionine- and choline-deficient (MCD) mice, it demonstrated a protective effect against MCD diet-induced liver damage. CME reduced histological markers, reduced alanine transaminase (ALT) and aspartame transaminase (AST) levels, and modulated key NASH-related genes, including C/EBPα, PPARγ, Fas, and aP2. In addition, CME was found to restore hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) activity, both crucial for fat catabolism, and reduced the levels of pro-inflammatory cytokines. Furthermore, CME demonstrated the potential to mitigate oxidative stress by maintaining or enhancing the activation and expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and superoxide dismutase (SOD), both pivotal players in antioxidant defense mechanisms. These findings underscore the promising therapeutic potential of CME in ameliorating liver damage, inflammation, and oxidative stress associated with NASH.
Collapse
Affiliation(s)
- Sun Young Park
- Institute of Nano-Bio Convergence, Pusan National University, Busan 46241, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang 50463, Republic of Korea
| | - He Mi Kang
- Department of Horticultural Bioscience/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ki Ho Park
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang 50463, Republic of Korea
| | - Byoung Il Je
- Department of Horticultural Bioscience/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ki Won Lee
- Natural Products Convergence R&D Division, Kwangdong Pharm. Co., Ltd., Seoul 08381, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang 50463, Republic of Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
10
|
Kumar H, Dhanjal DS, Guleria S, Nepovimova E, Sethi N, Dhalaria R, Kuca K. Hepatoprotective effects of fruits pulp, seed, and peel against chemical-induced toxicity: Insights from in vivo studies. Food Chem Toxicol 2024; 189:114742. [PMID: 38754807 DOI: 10.1016/j.fct.2024.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The liver is a vital organ in human physiology positioned in the upper right quadrant of the peritoneal cavity, which plats a critical role in metabolic processes, detoxification of various substances and overall homeostasis. Along with these critical functions, hepatic diseases impose as significant global health threat. Liver illness is the cause of two million fatalities every year, or 4% of all deaths. Traditionally, healthcare providers have prescribed antibacterial and antiviral medications to address liver illness. Nephrotoxicity is a frequently observed negative reaction to drugs, with the majority of such events happening in individuals who have advanced cirrhosis. Thus, recognizing this gap, there is a dire need of exploration of pharmaceutical alterative for hepatic diseases, with special focus on their efficacy and reduced toxicity. Fruits have long been known to therapeutic impact on human health, thus exploration of fruits components namely pulp, seeds and peels containing phytochemicals have emerged as a promising avenue for hepatoprotective interventions. Thus, review comprehends the information about worldwide burden of chemical induced toxicity and injuries as well as highlight the on-going challenges in hepatic disease management. It also shed light on the valuable contributions fruit parts and their phytocompounds obtained from different components of fruits. Fruit pulp, especially when rich in flavonoids, has demonstrated significant potential in animal model studies. It has been observed to enhance the activity of antioxidant enzymes and reduce the expression of pro-inflammatory markers. The methanolic and ethanolic extracts have demonstrated the most favorable outcomes. Further, this review also discusses about the safety assessments of fruits extracts for their utilization as hepatoprotective agents.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001, India.
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| |
Collapse
|
11
|
Stefan N, Hartleb M, Popovic B, Varona R. Effect of essential phospholipids on hepatic steatosis in metabolic dysfunction-associated steatotic liver disease associated with type 2 diabetes mellitus and/or hyperlipidemia and/or obesity: study protocol of a randomized, double-blind, phase IV clinical trial. Trials 2024; 25:374. [PMID: 38858768 PMCID: PMC11165850 DOI: 10.1186/s13063-024-08208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a predominant chronic liver condition globally and is strongly associated with obesity, diabetes mellitus, and dyslipidemia. Essential phospholipids (EPL) are recommended as supportive treatment for managing liver conditions, including MASLD or metabolic dysfunction-associated steatohepatitis, cirrhosis, and viral hepatitis. While efficacy of EPL as an adjunctive therapy in MASLD treatment has been established earlier, certain aspects of its usage such as the impact of standard-of-care parameters, effect of EPL on quality of life (QoL) and change in symptoms evaluation in patients with MASLD remain unexplored. The proposed trial aims to assess the efficacy and safety of EPL and the subsequent QoL of patients with MASLD associated with type 2 diabetes mellitus (T2DM) and/or hyperlipidemia and/or obesity. METHODS This is a multicenter, multinational, double-blind, randomized, two-arm, placebo-controlled, parallel-group, phase IV clinical trial. The trial is being conducted in approximately 190 patients who are randomized on a 1:1 basis either to the EPL arm (Essentiale® 1800 mg/day orally + standard of care) or placebo arm (placebo + standard of care). The primary outcome is to assess the efficacy of EPL on hepatic steatosis, as measured by transient elastography, from baseline to 6 months. The secondary outcomes include change in QoL parameters, as measured by the Chronic Liver Disease Questionnaire-metabolic dysfunction-associated steatotic liver disease/ metabolic dysfunction-associated steatohepatitis and change in symptom evaluation (using the Global Overall Symptom scale) from baseline to 6 months for symptoms, including asthenia, feeling depressed, abdominal pain/discomfort, or fatigue. DISCUSSION The current protocol design will allow to comprehensively explore the efficacy of EPL added to the standard of care on hepatic steatosis and QoL and its safety in patients with MASLD associated with T2DM and/or hyperlipidemia and/or obesity by assessing various outcome measures. TRIAL REGISTRATION European Union Clinical Trials Register, EudraCT, 2021-006069-39. Registered on March 13, 2022.
Collapse
Affiliation(s)
- Norbert Stefan
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany.
| | - Marek Hartleb
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Medical University of Silesia, Katowice, Poland
| | | | | |
Collapse
|
12
|
Yao YX, Yu YJ, Dai S, Zhang CY, Xue XY, Zhou ML, Yao CH, Li YX. Kaempferol efficacy in metabolic diseases: Molecular mechanisms of action in diabetes mellitus, obesity, non-alcoholic fatty liver disease, steatohepatitis, and atherosclerosis. Biomed Pharmacother 2024; 175:116694. [PMID: 38713943 DOI: 10.1016/j.biopha.2024.116694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024] Open
Abstract
The incidence of metabolic diseases has progressively increased, which has a negative impact on human health and life safety globally. Due to the good efficacy and limited side effects, there is growing interest in developing effective drugs to treat metabolic diseases from natural compounds. Kaempferol (KMP), an important flavonoid, exists in many vegetables, fruits, and traditional medicinal plants. Recently, KMP has received widespread attention worldwide due to its good potential in the treatment of metabolic diseases. To promote the basic research and clinical application of KMP, this review provides a timely and comprehensive summary of the pharmacological advances of KMP in the treatment of four metabolic diseases and its potential molecular mechanisms of action, including diabetes mellitus, obesity, non-alcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH), and atherosclerosis. According to the research, KMP shows remarkable therapeutic effects on metabolic diseases by regulating multiple signaling transduction pathways such as NF-κB, Nrf2, AMPK, PI3K/AKT, TLR4, and ER stress. In addition, the most recent literature on KMP's natural source, pharmacokinetics studies, as well as toxicity and safety are also discussed in this review, thus providing a foundation and evidence for further studies to develop novel and effective drugs from natural compounds. Collectively, our manuscript strongly suggested that KMP could be a promising candidate for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yu-Xin Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Yu-Jie Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Chao-Yang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Xin-Yan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Meng-Ling Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Chen-Hao Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Yun-Xia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China.
| |
Collapse
|
13
|
Han L, Wu L, Yin Q, Li L, Zheng X, Du S, Huang X, Bai L, Wang Y, Bian Y. A promising therapy for fatty liver disease: PCSK9 inhibitors. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155505. [PMID: 38547616 DOI: 10.1016/j.phymed.2024.155505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Fatty liver disease (FLD) poses a significant global health concern worldwide, with its classification into nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) contingent upon the presence or absence of chronic and excessive alcohol consumption. The absence of specific therapeutic interventions tailored to FLD at various stages of the disease renders its treatment exceptionally arduous. Despite the fact that FLD and hyperlipidemia are intimately associated, there is still debate over how lipid-lowering medications affect FLD. Proprotein Convertase Subtilisin/ Kexin type 9 (PCSK9) is a serine protease predominantly synthesized in the liver, which has a crucial impact on cholesterol homeostasis. Research has confirmed that PCSK9 inhibitors have prominent lipid-lowering properties and substantial clinical effectiveness, thereby justifying the need for additional exploration of their potential role in FLD. PURPOSE Through a comprehensive literature search, this review is to identify the relationship and related mechanisms between PCSK9, lipid metabolism and FLD. Additionally, it will assess the pharmacological mechanism and applicability of PCSK9 inhibitors (including naturally occurring PCSK9 inhibitors, such as conventional herbal medicines) for the treatment of FLD and serve as a guide for updating the treatment protocol for such conditions. METHODS A comprehensive literature search was conducted using several electronic databases, including Pubmed, Medline, Embase, CNKI, Wanfang database and ClinicalTrials.gov, from the inception of the database to 30 Jan 2024. Key words used in the literature search were "fatty liver", "hepatic steatosis", "PCSK9", "traditional Chinese medicine", "herb medicine", "botanical medicine", "clinical trial", "vivo", "vitro", linked with AND/OR. Most of the included studies were within five years. RESULTS PCSK9 participates in the regulation of circulating lipids via both LDLR dependent and independent pathways, and there is a potential association with de novo lipogenesis. Major clinical studies have demonstrated a positive correlation between circulating PCSK9 levels and the severity of NAFLD, with elevated levels of circulating PCSK9 observed in individuals exposed to chronic alcohol. Numerous studies have demonstrated the potential of PCSK9 inhibitors to ameliorate non-alcoholic steatohepatitis (NASH), potentially completely alleviate liver steatosis, and diminish liver impairment. In animal experiments, PCSK9 inhibitors have exhibited efficacy in alleviating alcoholic induced liver lipid accumulation and hepatitis. Traditional Chinese medicine such as berberine, curcumin, resveratrol, piceatannol, sauchinone, lupin, quercetin, salidroside, ginkgolide, tanshinone, lunasin, Capsella bursa-pastoris, gypenosides, and Morus alba leaves are the main natural PCS9 inhibitors. Excitingly, by inhibiting transcription, reducing secretion, direct targeting and other pathways, traditional Chinese medicine exert inhibitory effects on PCSK9, thereby exerting potential FLD therapeutic effects. CONCLUSION PCSK9 plays an important role in the development of FLD, and PCSK9 inhibitors have demonstrated beneficial effects on lipid regulation and FLD in both preclinical and clinical studies. In addition, some traditional Chinese medicines have improved the disease progression of FLD by inhibiting PCSK9 and anti-inflammatory and antioxidant effects. Consequently, the inhibition of PCSK9 appears to be a promising therapeutic strategy for FLD.
Collapse
Affiliation(s)
- Lizhu Han
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Liuyun Wu
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qinan Yin
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lian Li
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xingyue Zheng
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shan Du
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xuefei Huang
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lan Bai
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu 610072, China.
| | - Yuan Bian
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
14
|
Ezhilarasan D, Shree Harini K, Karthick M, Lavanya P. Boldine protects against carbon tetrachloride-induced chronic liver injury by regulating NF-κB signaling pathway. J Biochem Mol Toxicol 2024; 38:e23691. [PMID: 38500399 DOI: 10.1002/jbt.23691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/05/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Sustained liver injuries predominantly promote oxidative stress and inflammation that lead to the progression of chronic liver disease (CLD), including fibrosis, cirrhosis, and hepatocellular carcinoma. Boldine, an alkaloid isolated from Peumus boldus, has been shown to have antioxidant and anti-inflammatory effects. Currently, there is no definitive treatment option available for CLD. Therefore, we investigated the hepatoprotective effect of boldine against carbon tetrachloride (CCl4 )-induced chronic liver injury in rats. CCl4 (2 mL/kg., b.w., i.p.) was administered twice weekly for 5 weeks to induce chronic liver injury in rats. Separate groups of rats were given boldine (20 mg/kg b.w., and 40 mg/kg b.w.) and silymarin (100 mg/kg b.w.) orally, daily. Serum transaminases, lipid peroxidation, and antioxidant levels were measured, and nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (cox-2), interleukin-1 β (IL-1β), and α-smooth muscle actin (α-SMA) gene and protein expressions were evaluated. CCl4 administration increased liver marker enzymes of hepatotoxicity in serum and oxidative stress markers, inflammatory genes and α-smooth muscle actin expression in liver tissue. Boldine concurrent treatment suppressed CCl4 -induced elevation of transaminase levels in serum, restored enzymic and non-enzymic antioxidants, and downregulated NF-κB, TNF-α, Cox-2 and IL-1β expressions, thereby suppressing hepatic inflammation. Boldine administration also repressed α-SMA expression. The results of this study demonstrate the antioxidant, anti-inflammatory, and antifibrotic properties of boldine, and it can be a potential therapeutic candidate in the treatment of CLD.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Karthik Shree Harini
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Munusamy Karthick
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Prathap Lavanya
- Department of Anatomy, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
15
|
Wang J, Li J, Fu Y, Zhu Y, Lin L, Li Y. Research progress, challenges and perspectives of phospholipids metabolism in the LXR‑LPCAT3 signaling pathway and its relation to NAFLD (Review). Int J Mol Med 2024; 53:32. [PMID: 38362962 PMCID: PMC10903931 DOI: 10.3892/ijmm.2024.5356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Phospholipids (PLs) are principle constituents of biofilms, with their fatty acyl chain composition significantly impacting the biophysical properties of membranes, thereby influencing biological processes. Recent studies have elucidated that fatty acyl chains, under the enzymatic action of lyso‑phosphatidyl‑choline acyltransferases (LPCATs), expedite incorporation into the sn‑2 site of phosphatidyl‑choline (PC), profoundly affecting pathophysiology. Accumulating evidence suggests that alterations in LPCAT activity are implicated in various diseases, including non‑alcoholic fatty liver disease (NAFLD), hepatitis C, atherosclerosis and cancer. Specifically, LPCAT3 is instrumental in maintaining systemic lipid homeostasis through its roles in hepatic lipogenesis, intestinal lipid absorption and lipoprotein secretion. The liver X receptor (LXR), pivotal in lipid homeostasis, modulates cholesterol, fatty acid (FA) and PL metabolism. LXR's capacity to modify PL composition in response to cellular sterol fluctuations is a vital mechanism for protecting biofilms against lipid stress. Concurrently, LXR activation enhances LPCAT3 expression on cell membranes and elevates polyunsaturated PL levels. This activation can ameliorate saturated free FA effects in vitro or endoplasmic reticulum stress in vivo due to lipid accumulation in hepatic cells. Pharmacological interventions targeting LXR, LPCAT and membrane PL components could offer novel therapeutic directions for NAFLD management. The present review primarily focused on recent advancements in understanding the LPCAT3 signaling pathway's role in lipid metabolism related to NAFLD, aiming to identify new treatment targets for the disease.
Collapse
Affiliation(s)
- Junmin Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jiacheng Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yugang Fu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yingying Zhu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Liubing Lin
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
16
|
HAN M, YI X, YOU S, WU X, WANG S, HE D. Gehua Jiejiu Dizhi decoction ameliorates alcoholic fatty liver in mice by regulating lipid and bile acid metabolism and with exertion of antioxidant stress based on 4DLabel-free quantitative proteomic study. J TRADIT CHIN MED 2024; 44:277-288. [PMID: 38504534 PMCID: PMC10927405 DOI: 10.19852/j.cnki.jtcm.20231018.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/27/2023] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To analyze the effect and molecular mechanism of Gehua Jiejiu Dizhi decoction (, GJDD) on alcoholic fatty live disease (AFLD) by using proteomic methods. METHODS The male C57BL/6J mouse were randomly divided into four groups: control group, model group, GJDD group and resveratrol group. After the AFLD model was successfully prepared by intragastric administration of alcohol once on the basis of the Lieber-DeCarli classical method, the GJDD group and resveratrol group were intragastrically administered with GJDD (4900 mg/kg) and resveratrol (400 mg/kg) respectively, once a day for 9 d. The fat deposition of liver tissue was observed and evaluated by oil red O (ORO) staining. 4DLabel-free quantitative proteome method was used to determine and quantify the protein expression in liver tissue of each experimental group. The differentially expressed proteins were screened according to protein expression differential multiples, and then analyzed by Gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Finally, expression validation of the differentially co-expressed proteins from control group, model group and GJDD group were verified by targeted proteomics quantification techniques. RESULTS In semiquantitative analyses of ORO, all kinds of steatosis (ToS, MaS, and MiS) were evaluated higher in AFLD mice compared to those in GJDD or resveratrol-treated mice. 4DLabel-free proteomics analysis results showed that a total of 4513 proteins were identified, of which 3763 proteins were quantified and 946 differentially expressed proteins were screened. Compared with the control group, 145 proteins were up-regulated and 148 proteins were down-regulated in the liver tissue of model group. In addition, compared with the model group, 92 proteins were up-regulated and 135 proteins were down-regulated in the liver tissue of the GJDD group. 15 differentially co-expressed proteins were found between every two groups (model group vs control group, GJDD group vs model group and GJDD group vs control group), which were involved in many biological processes. Among them, 11 differentially co-expressed key proteins (Aox3, H1-5, Fabp5, Ces3a, Nudt7, Serpinb1a, Fkbp11, Rpl22l1, Keg1, Acss2 and Slco1a1) were further identified by targeted proteomic quantitative technology and their expression patterns were consistent with the results of 4D label-free proteomic analysis. CONCLUSIONS Our study provided proteomics-based evidence that GJDD alleviated AFLD by modulating liver protein expression, likely through the modulation of lipid metabolism, bile acid metabolism and with exertion of antioxidant stress.
Collapse
Affiliation(s)
- Min HAN
- 1 Guizhou University of Traditional Chinese Medicine, Graduate School, Guiyang 550025, China
| | - Xu YI
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Shaowei YOU
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Xueli WU
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Shuoshi WANG
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Diancheng HE
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| |
Collapse
|
17
|
Xie L, Wang H, Hu J, Liu Z, Hu F. The role of novel adipokines and adipose-derived extracellular vesicles (ADEVs): Connections and interactions in liver diseases. Biochem Pharmacol 2024; 222:116104. [PMID: 38428826 DOI: 10.1016/j.bcp.2024.116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Adipose tissues (AT) are an important endocrine organ that secretes various functional adipokines, peptides, non-coding RNAs, and acts on AT themselves or other distant tissues or organs through autocrine, paracrine, or endocrine manners. An accumulating body of evidence has suggested that many adipokines play an important role in liver metabolism. Besides the traditional adipokines such as adiponectin and leptin, many novel adipokines have recently been identified to have regulatory effects on the liver. Additionally, AT can produce extracellular vesicles (EVs) that act on peripheral tissues. However, under pathological conditions, such as obesity and diabetes, dysregulation of adipokines is associated with functional changes in AT, which may cause liver diseases. In this review, we focus on the newly discovered adipokines and EVs secreted by AT and highlight their actions on the liver under the context of obesity, nonalcoholic fatty liver diseases (NAFLD), and some other liver diseases. Clarifying the action of adipokines and adipose tissue-derived EVs on the liver would help to identify novel therapeutic targets or biomarkers for metabolic diseases.
Collapse
Affiliation(s)
- Lijun Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huiying Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jinying Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhuoying Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Health Law Research Center, School of Law, Central South University, Changsha, China.
| | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
18
|
Zhu S, Wu Z, Wang W, Wei L, Zhou H. A revisit of drugs and potential therapeutic targets against non-alcoholic fatty liver disease: learning from clinical trials. J Endocrinol Invest 2024; 47:761-776. [PMID: 37839037 DOI: 10.1007/s40618-023-02216-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, with a worldwide prevalence of 25%. Although numerous clinical trials have been conducted over the last few decades, an effective treatment has not been approved yet. Extensive research has accumulated a large amount of data and experience; however, the vast number of clinical trials and new therapeutic targets for NAFLD make it impossible to keep abreast of the relevant information. Therefore, a systematic analysis of the existing trials is necessary. METHODS Here, we reviewed clinical trials on NAFLD registered in the mandated federal database, ClinicalTrials.gov, to generate a detailed overview of the trials related to drugs and therapeutic targets for NAFLD treatment. Following screening for pertinence to therapy, a total of 440 entries were identified that included active trials as well as those that have already been completed, suspended, terminated, or withdrawn. RESULTS We summarize and systematically analyze the state, drug development pipeline, and discovery of treatment targets for NAFLD. We consider possible factors that may affect clinical outcomes. Furthermore, we discussed these results to explore the mechanisms responsible for clinical outcomes. CONCLUSION We summarised the landscape of current clinical trials and suggested the directions for future NAFLD therapy to assist internal medicine specialists in treating the whole clinical spectrum of this highly prevalent liver disease.
Collapse
Affiliation(s)
- S Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Z Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - W Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - L Wei
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| | - H Zhou
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
19
|
Chrysavgis LG, Kazanas S, Bafa K, Rozani S, Koloutsou ME, Cholongitas E. Glucagon-like Peptide 1, Glucose-Dependent Insulinotropic Polypeptide, and Glucagon Receptor Agonists in Metabolic Dysfunction-Associated Steatotic Liver Disease: Novel Medication in New Liver Disease Nomenclature. Int J Mol Sci 2024; 25:3832. [PMID: 38612640 PMCID: PMC11012092 DOI: 10.3390/ijms25073832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins that regulate postprandial glucose regulation, stimulating insulin secretion from pancreatic β-cells in response to food ingestion. Modified GLP-1 receptor agonists (GLP-1RAs) are being administered for the treatment of obesity and type 2 diabetes mellitus (T2DM). Strongly related to those disorders, metabolic dysfunction-associated steatotic liver disease (MASLD), especially its aggressive form, defined as metabolic dysfunction-associated steatohepatitis (MASH), is a major healthcare burden associated with high morbidity and extrahepatic complications. GLP-1RAs have been explored in MASH patients with evident improvement in liver dysfunction enzymes, glycemic control, and weight loss. Importantly, the combination of GLP-1RAs with GIP and/or glucagon RAs may be even more effective via synergistic mechanisms in amelioration of metabolic, biochemical, and histological parameters of MASLD but also has a beneficial impact on MASLD-related complications. In this current review, we aim to provide an overview of incretins' physiology, action, and signaling. Furthermore, we provide insight into the key pathophysiological mechanisms through which they impact MASLD aspects, as well as we analyze clinical data from human interventional studies. Finally, we discuss the current challenges and future perspectives pertinent to this growing area of research and clinical medicine.
Collapse
Affiliation(s)
- Lampros G. Chrysavgis
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| | - Spyridon Kazanas
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| | - Konstantina Bafa
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| | - Sophia Rozani
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| | - Maria-Evangelia Koloutsou
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece;
| | - Evangelos Cholongitas
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| |
Collapse
|
20
|
Du H, Yu H, Zhou M, Hui Q, Hou Y, Jiang Y. The effect of STAT1, miR-99b, and MAP2K1 in alcoholic liver disease (ALD) mouse model and hepatocyte. Aging (Albany NY) 2024; 16:4224-4235. [PMID: 38431286 PMCID: PMC10968706 DOI: 10.18632/aging.205579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
Alcoholic liver disease (ALD) serves as the leading cause of chronic liver diseases-related morbidity and mortality, which threatens the life of millions of patients in the world. However, the molecular mechanisms underlying ALD progression remain unclear. Here, we applied microarray analysis and experimental approaches to identify miRNAs and related regulatory signaling that associated with ALD. Microarray analysis identified that the expression of miR-99b was elevated in the ALD mouse model. The AML-12 cells were treated with EtOH and the expression of miR-99b was enhanced in the cells. The expression of miR-99b was positively correlated with ALT levels in the ALD mice. The microarray analysis identified the abnormally expressed mRNAs in ALD mice and the overlap analysis was performed with based on the differently expressed mRNAs and the transcriptional factors of miR-99b, in which STAT1 was identified. The elevated expression of STAT1 was validated in ALD mice. Meanwhile, the treatment of EtOH induced the expression of STAT1 in the AML-12 cells. The expression of STAT1 was positively correlated with ALT levels in the ALD mice. The positive correlation of STAT1 and miR-99b expression was identified in bioinformatics analysis and ALD mice. The expression of miR-99b and pri-miR-99b was promoted by the overexpression of STAT1 in AML-12 cells. ChIP analysis confirmed the enrichment of STAT1 on miR-99b promoter in AML-12 cells. Next, we found that the expression of mitogen-activated protein kinase kinase 1 (MAP2K1) was negatively associated with miR-99b. The expression of MAP2K1 was downregulated in ALD mice. Consistently, the expression of MAP2K1 was reduced by the treatment of EtOH in AML-12 cells. The expression of MAP2K1 was negative correlated with ALT levels in the ALD mice. We identified the binding site of MAP2K1 and miR-99b. Meanwhile, the treatment of miR-99b mimic repressed the luciferase activity of MAP2K1 in AML-12 cells. The expression of MAP2K1 was suppressed by miR-99b in the cells. We observed that the expression of MAP2K1 was inhibited by the overexpression of STAT1 in AML-12 cells. Meanwhile, the apoptosis of AML-12 cells was induced by the treatment of EtOH, while miR-99b mimic promoted but the overexpression of MAP2K1 attenuated the effect of EtOH in the cells. In conclusion, we identified the correlation and effect of STAT1, miR-99b, and MAP2K1 in ALD mouse model and hepatocyte. STAT1, miR-99b, and MAP2K1 may serve as potential therapeutic target of ALD.
Collapse
Affiliation(s)
- Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100015, China
| | - Hao Yu
- Beijing Ditan Hospital Capital Medical University, Beijing 100015, China
| | - Meiyue Zhou
- Beijing Ditan Hospital Capital Medical University, Beijing 100015, China
| | - Quan Hui
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100015, China
| | - Yixin Hou
- Beijing Ditan Hospital Capital Medical University, Beijing 100015, China
| | - Yuyong Jiang
- Beijing Ditan Hospital Capital Medical University, Beijing 100015, China
| |
Collapse
|
21
|
Xia T, Yu J, Chen Y, Chang X, Meng M. Phosphoglycerate mutase 5 aggravates alcoholic liver disease through disrupting VDAC-1-dependent mitochondrial integrity. Int J Med Sci 2024; 21:755-764. [PMID: 38464835 PMCID: PMC10920835 DOI: 10.7150/ijms.93171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Alcoholic liver disease (ALD) poses a substantial global health challenge, with its pathogenesis deeply rooted in mitochondrial dysfunction. Our study explores the pivotal roles of Phosphoglycerate mutase family member 5 (Pgam5) and Voltage-Dependent Anion Channel 1 (VDAC1) in the progression of ALD, providing novel insights into their interplay and impact on mitochondrial integrity. We demonstrate that Pgam5 silencing preserves hepatocyte viability and attenuates ethanol-induced apoptosis, underscoring its detrimental role in exacerbating hepatocyte dysfunction. Pgam5's influence extends to the regulation of VDAC1 oligomerization, a key process in mitochondrial permeability transition pore (mPTP) opening, mitochondrial swelling, and apoptosis initiation. Notably, the inhibition of VDAC1 oligomerization through Pgam5 silencing or pharmacological intervention (VBIT-12) significantly preserves mitochondrial function, evident in the maintenance of mitochondrial membrane potential and reduced reactive oxygen species (ROS) production. In vivo experiments using hepatocyte-specific Pgam5 knockout (Pgam5hKO) and control mice reveal that Pgam5 deficiency mitigates ethanol-induced liver histopathology, inflammation, lipid peroxidation, and metabolic disorder, further supporting its role in ALD progression. Our findings highlight the critical involvement of Pgam5 and VDAC1 in mitochondrial dysfunction in ALD, suggesting potential therapeutic targets. While promising, these findings necessitate further research, including human studies, to validate their clinical applicability and explore broader implications in liver diseases. Overall, our study provides a significant advancement in understanding ALD pathophysiology, paving the way for novel therapeutic strategies targeting mitochondrial pathways in ALD.
Collapse
Affiliation(s)
- Tian Xia
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
- Department of Clinical Laboratory Medicine, The First Medical Centre, Medical School of Chinese PLA, Beijing, China
| | - Jiachi Yu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
- Department of Clinical Laboratory Medicine, The First Medical Centre, Medical School of Chinese PLA, Beijing, China
| | - Ye Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Miao Meng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
22
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
23
|
Zhang Y, Wang L, He J, Wang H, Xin W, Wang H, Zhang J. Antioxidation and Hepatoprotection of Selenium Mycelium Polysaccharides Against Alcoholic Liver Diseases from the Cultivated Morel Mushroom Morchella esculenta (Ascomycota). Int J Med Mushrooms 2024; 26:55-66. [PMID: 38305262 DOI: 10.1615/intjmedmushrooms.2023051288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The liver was regarded as the most important metabolic and detoxification organ in vivo, and Morchella esculenta had been reported as the admittedly rare edible fungus belonging to Ascomycetes contributing to the abundant bioactivities. The objective of this study aimed to confirm the potential antioxidant activities of selenium mycelium polysaccharides (Se-MIP) from M. esculenta against alcoholic liver diseases (ALD) in mice. The results indicated that a selenium concentration of 25 μg/mL exhibited potential in vitro antioxidant capacities of Se-MIP. The in vivo mice results demonstrated that Se-MIP showed potential anti-ALD effects by improving the antioxidant activities and alleviating the hepatic dysfunctions. The present conclusions suggested that Se-MIP could be used as a candidate on improving ALD and its complications for further clinical investigations.
Collapse
Affiliation(s)
- Yiwen Zhang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R. China; Shandong Ocean Agricultural Development Co. Ltd., Jining 272600, P.R. China
| | - Li Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R. China; Shandong Ocean Agricultural Development Co. Ltd., Jining 272600, P.R. China
| | - Jiaqi He
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R. China
| | - Haoze Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R. China
| | - Wenqi Xin
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R. China
| | - Houpeng Wang
- Shandong Ocean Agricultural Development Co. Ltd., Jining 272600, P.R. China
| | - Jianjun Zhang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R. China; Shandong Ocean Agricultural Development Co. Ltd., Jining 272600, P.R. China
| |
Collapse
|
24
|
Benedé-Ubieto R, Cubero FJ, Nevzorova YA. Breaking the barriers: the role of gut homeostasis in Metabolic-Associated Steatotic Liver Disease (MASLD). Gut Microbes 2024; 16:2331460. [PMID: 38512763 PMCID: PMC10962615 DOI: 10.1080/19490976.2024.2331460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Obesity, insulin resistance (IR), and the gut microbiome intricately interplay in Metabolic-associated Steatotic Liver Disease (MASLD), previously known as Non-Alcoholic Fatty Liver Disease (NAFLD), a growing health concern. The complex progression of MASLD extends beyond the liver, driven by "gut-liver axis," where diet, genetics, and gut-liver interactions influence disease development. The pathophysiology of MASLD involves excessive liver fat accumulation, hepatocyte dysfunction, inflammation, and fibrosis, with subsequent risk of hepatocellular carcinoma (HCC). The gut, a tripartite barrier, with mechanical, immune, and microbial components, engages in a constant communication with the liver. Recent evidence links dysbiosis and disrupted barriers to systemic inflammation and disease progression. Toll-like receptors (TLRs) mediate immunological crosstalk between the gut and liver, recognizing microbial structures and triggering immune responses. The "multiple hit model" of MASLD development involves factors like fat accumulation, insulin resistance, gut dysbiosis, and genetics/environmental elements disrupting the gut-liver axis, leading to impaired intestinal barrier function and increased gut permeability. Clinical management strategies encompass dietary interventions, physical exercise, pharmacotherapy targeting bile acid (BA) metabolism, and microbiome modulation approaches through prebiotics, probiotics, symbiotics, and fecal microbiota transplantation (FMT). This review underscores the complex interactions between diet, metabolism, microbiome, and their impact on MASLD pathophysiology and therapeutic prospects.
Collapse
Affiliation(s)
- Raquel Benedé-Ubieto
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Yulia A. Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
25
|
Xu F, Chen Z, Xie L, Yang S, Li Y, Wu J, Wu Y, Li S, Zhang X, Ma Y, Liu Y, Zeng A, Xu Z. Lactobacillus plantarum ST-III culture supernatant protects against acute alcohol-induced liver and intestinal injury. Aging (Albany NY) 2023; 16:2077-2089. [PMID: 38126998 PMCID: PMC10911357 DOI: 10.18632/aging.205331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
The beneficial effects of probiotics have been studied in inflammatory bowel disease, nonalcoholic steatohepatitis, and alcoholic liver disease (ALD). Probiotic supplements are safer and more effective; however, their potential mechanisms are unclear. An objective of the current study was to examine the effects of extracellular products of Lactobacillus plantarum on acute alcoholic liver injury. Mice on a standard chow diet were supplemented with Lactobacillus plantarum ST-III culture supernatant (LP-cs) for two weeks and administered alcohol at 6 g/kg body weight by gavage. Alcohol-induced liver injury was assessed by measuring plasma alanine aminotransferase activity levels and triglyceride content determined liver steatosis. Intestinal damage and tight junctions were assessed using histochemical staining. LP-cs significantly inhibited alcohol-induced fat accumulation, inflammation, and apoptosis by inhibiting oxidative stress and endoplasmic reticulum stress. LP-cs significantly inhibited alcohol-induced intestinal injury and endotoxemia. These findings suggest that LP-cs alleviates acute alcohol-induced liver damage by inhibiting oxidative stress and endoplasmic reticulum stress via one mechanism and suppressing alcohol-induced increased intestinal permeability and endotoxemia via another mechanism. LP-cs supplements are a novel strategy for ALD prevention and treatment.
Collapse
Affiliation(s)
- Feng Xu
- Department of Gastroenterology, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Zengqiang Chen
- Healthcare Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Longteng Xie
- Department of Infection Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo 315700, China
| | - Shizhuo Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuying Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Ruian People's Hospital, Wenzhou Medical College Affiliated Third Hospital, Wenzhou 325200, China
| | - Junnan Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuyu Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Siyuan Li
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Xie Zhang
- Department of Pharmacy, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Yanyan Ma
- Department of Gastroenterology, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Aibing Zeng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zeping Xu
- Department of Pharmacy, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315000, China
| |
Collapse
|
26
|
Sun S, Shi D, Wang W. Risk of chronic liver disease and cirrhosis mortality among patients with digestive system cancers: a registry-based analysis. Clin Exp Med 2023; 23:5355-5365. [PMID: 37787867 DOI: 10.1007/s10238-023-01199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Non-cancer deaths are now becoming a great threat to the health of cancer survivors. There are no comprehensive and systematic reports on chronic liver disease and cirrhosis mortality (CLDCM) among patients with digestive system cancers (DSCs). This research aimed to quantitatively assess the risks and patterns of CLDCM among patients with DSCs. From the surveillance, epidemiology and end results (SEER) program, we extracted the data of patients diagnosed with DSCs between 2000 and 2017. Trends in incidence-based mortality rate (IBMR) were calculated using Joinpoint software. The standardized mortality ratio (SMR) was obtained based on the reference of the general United States population. The cumulative incidence function curves were constructed by all causes of death. Independent indicators were identified using the multivariate Fine and Gray competing risk model. We included 906,292 eligible patients from the SEER program, of which 3068 (0.34%) died from chronic liver disease and cirrhosis (CLDC). The IBMR of CLDC continued to increase during the study period [average annual percent change (APC): 6.7%; 95% confidence interval (CI) 5.1-8.2] and the SMR was significantly increased (SMR: 3.19; 95% CI 3.08-3.30). The cumulative mortality of CLDC was the lowest in all causes of death. Furthermore, the age at diagnosis, race, gender, marital status, year of diagnosis, SEER stage, surgery, chemotherapy and radiotherapy were identified as independent indicators. Better screening, diagnostic and management approaches need to be implemented as a preferred method to protect the liver among patients with DSCs.
Collapse
Affiliation(s)
- Shenghong Sun
- Department of Gastroenterology, Ningbo No.2 Hospital, Ningbo, 315010, Zhejiang Province, China
| | - Ding Shi
- Department of Gastroenterology, Ningbo No.2 Hospital, Ningbo, 315010, Zhejiang Province, China
| | - Wei Wang
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, 241000, Anhui Province, China.
| |
Collapse
|
27
|
Renu K, Myakala H, Chakraborty R, Bhattacharya S, Abuwani A, Lokhandwala M, Vellingiri B, Gopalakrishnan AV. Molecular mechanisms of alcohol's effects on the human body: A review and update. J Biochem Mol Toxicol 2023; 37:e23502. [PMID: 37578200 DOI: 10.1002/jbt.23502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Alcohol consumption has been linked to numerous negative health outcomes although it has some beneficial effects on moderate dosages, the most severe of which being alcohol-induced hepatitis. The number of people dying from this liver illness has been shown to climb steadily over time, and its prevalence has been increasing. Researchers have found that alcohol consumption primarily affects the brain, leading to a wide range of neurological and psychological diseases. High-alcohol-consumption addicts not only experienced seizures, but also ataxia, aggression, social anxiety, and variceal hemorrhage that ultimately resulted in death, ascites, and schizophrenia. Drugs treating this liver condition are limited and can cause serious side effects like depression. Serine-threonine kinases, cAMP protein kinases, protein kinase C, ERK, RACK 1, Homer 2, and more have all been observed to have their signaling pathways disrupted by alcohol, and alcohol has also been linked to epigenetic changes. In addition, alcohol consumption induces dysbiosis by changing the composition of the microbiome found in the gastrointestinal tract. Although more studies are needed, those that have been done suggest that probiotics aid in keeping the various microbiota concentrations stable. It has been argued that reducing one's alcohol intake may seem less harmful because excessive drinking is a lifestyle disorder.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Haritha Myakala
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Rituraj Chakraborty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sharmishtha Bhattacharya
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Asmita Abuwani
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Mariyam Lokhandwala
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Balachandar Vellingiri
- Department of Zoology, Stem Cell and Regenerative Medicine/Translational Research, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
28
|
Yan J, Zhang R, Kang J, Zhong Y, Abudurexiti A, Tan H, Lei Y, Ma X. Effect of Cichorium glandulosum on intestinal microbiota and bile acid metabolism in db/db mice. Food Sci Nutr 2023; 11:7765-7778. [PMID: 38107125 PMCID: PMC10724598 DOI: 10.1002/fsn3.3694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 12/19/2023] Open
Abstract
This study aims to investigate the effects of Chorum glandulosum Boiss. et Huet (CG) on the intestinal microbiota and serum bile acid (BA) in db/db mice. A total of 12 db/db mice were randomly divided into model (MOD), high-dose CG (CGH), and control (CON) groups. The CON and MOD groups received distilled water by gavage for 8 weeks. Whereas, the CGH group received an alcohol extract of CG at a dose of 200 mg/kg/day. Results showed that CG can reduce blood lipid levels. It change the composition of the intestinal microbiota, and increase the relative abundances of Muribaculaceae, Prevotellaceae, Bifidobacterium_pseudolongum, Bacteroidaceae in db/db mice as well. LC-MS metabolomics results showed that CG adjusted the serum BA levels. The results reduced the levels of primary BAs, such as cholic acid (CA) and chenodeoxycholic acid (CDCA). The results decreased the primary BA/secondary BA (PSA/SBA) ratio in db/db mice. Correlation analysis showed that the abundances of Bifidobacterium_pseudolongum and Bacteroidaceae were positively correlated with acetic acid level and negatively correlated with ursocholic acid (UCA), α-muricholic acid (αMCA), triglyceride (TG), and total cholesterol levels (TC), indicating an interaction between the intestinal microbiota and serum BAs. CG may play a positive role in the interaction between the intestinal microbiota and BAs in lipid metabolism.
Collapse
Affiliation(s)
- Junlin Yan
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| | - Rui Zhang
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| | - Jinsen Kang
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| | - Yewei Zhong
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| | | | - Huiwen Tan
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| | - Yi Lei
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| | - Xiaoli Ma
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| |
Collapse
|
29
|
Chang BY, Bae JH, Lim CY, Kim YH, Kim TY, Kim SY. Tricin-enriched Zizania latifolia ameliorates non-alcoholic fatty liver disease through AMPK-dependent pathways. Food Sci Biotechnol 2023; 32:2117-2129. [PMID: 37860736 PMCID: PMC10581963 DOI: 10.1007/s10068-023-01311-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/18/2023] [Accepted: 04/12/2023] [Indexed: 10/21/2023] Open
Abstract
This study aimed to identify and elucidate the mechanism underlying the protective effect of tricin-enriched Zizania latifolia (Z. latifolia) extract (ETZL) against free fatty acid (FFA)-induced lipid accumulation in vitro and non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet and fructose diet (HFD/F) in vivo. ETZL treatment significantly lowered body weight gain and decreased adipose tissue, lipid, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels in HFD/F-fed mice. ETZL acted on phosphorylated acetyl-CoA carboxylase (ACC) and anti-peroxisome proliferator-activated receptor α (PPARα) by activating the adenosine monophosphate-activated protein kinase (AMPK) pathway and inhibiting sterol regulatory element-binding proteins-1 (SREBP)/fatty acid synthase (FAS) signaling to inhibit de novo adipogenesis and increase fatty acid oxidation. In addition, treatment with ETZL increased nuclear factor erythroid-2-related factor 2 (Nrf2) levels to activate the antioxidant pathway. FFA-induced oxidative stress and fatty acid accumulation in HepG2 cells confirmed the improvement in fat accumulation through the AMPK and Nrf2 pathway activities of ETZL. These results suggest that ETZL ameliorates NAFLD by regulating lipid metabolism and defending against oxidative stress via AMPK-dependent pathways.
Collapse
Affiliation(s)
- Bo Yoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538 Jeonbuk Korea
| | - Jin Hye Bae
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538 Jeonbuk Korea
| | - Cho Young Lim
- Technology Development Center, BTC Corporation, Ansan, 15588 Korea
| | - Yoon Hee Kim
- Technology Development Center, BTC Corporation, Ansan, 15588 Korea
| | - Tae Young Kim
- Technology Development Center, BTC Corporation, Ansan, 15588 Korea
| | - Sung Yeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538 Jeonbuk Korea
| |
Collapse
|
30
|
Subramaniyan V, Lubau NSA, Mukerjee N, Kumarasamy V. Alcohol-induced liver injury in signalling pathways and curcumin's therapeutic potential. Toxicol Rep 2023; 11:355-367. [PMID: 37868808 PMCID: PMC10585641 DOI: 10.1016/j.toxrep.2023.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Confronting the profound public health concern of alcohol-induced liver damage calls for inventive therapeutic measures. The social, economic, and clinical ramifications are extensive and demand a comprehensive understanding. This thorough examination uncovers the complex relationship between alcohol intake and liver damage, with a special emphasis on the pivotal roles of the Toll-like receptor 4 (TLR4)/NF-κB p65 and CYP2E1/ROS/Nrf2 signalling networks. Different alcohol consumption patterns, determined by a myriad of factors, have significant implications for liver health, leading to a spectrum of adverse effects. The TLR4/NF-κB p65 pathway, a principal regulator of inflammation and immune responses, significantly contributes to various disease states when its balance is disrupted. Notably, the TLR4/MD-2-TNF-α pathway has been linked to non-alcohol related liver disease, while NF-κB activation is associated with alcohol-induced liver disease (ALD). The p65 subunit of NF-κB, primarily responsible for the release of inflammatory cytokines, hastens the progression of ALD. Breakthrough insights suggest that curcumin, a robust antioxidant and anti-inflammatory compound sourced from turmeric, effectively disrupts the TLR4/NF-κB p65 pathway. This heralds a new approach to managing alcohol-induced liver damage. Initial clinical trials support curcumin's therapeutic potential, highlighting its ability to substantially reduce liver enzyme levels. The narrative surrounding alcohol-related liver injury is gradually becoming more intricate, intertwining complex signalling networks such as TLR4/NF-κB p65 and CYP2E1/ROS/Nrf2. The protective role of curcumin against alcohol-related liver damage marks the dawn of new treatment possibilities. However, the full realisation of this promising therapeutic potential necessitates rigorous future research to definitively understand these complex mechanisms and establish curcumin's effectiveness and safety in managing alcohol-related liver disorders.
Collapse
Affiliation(s)
- Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Natasha Sura Anak Lubau
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary Collage, Kolkata, West Bengal 700118, India
- Department of Health Sciences, Novel Global Community and Educational Foundation, Australia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Na M, Yang X, Deng Y, Yin Z, Li M. Endoplasmic reticulum stress in the pathogenesis of alcoholic liver disease. PeerJ 2023; 11:e16398. [PMID: 38025713 PMCID: PMC10655704 DOI: 10.7717/peerj.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
The endoplasmic reticulum (ER) plays a pivotal role in protein synthesis, folding, and modification. Under stress conditions such as oxidative stress and inflammation, the ER can become overwhelmed, leading to an accumulation of misfolded proteins and ensuing ER stress. This triggers the unfolded protein response (UPR) designed to restore ER homeostasis. Alcoholic liver disease (ALD), a spectrum disorder resulting from chronic alcohol consumption, encompasses conditions from fatty liver and alcoholic hepatitis to cirrhosis. Metabolites of alcohol can incite oxidative stress and inflammation in hepatic cells, instigating ER stress. Prolonged alcohol exposure further disrupts protein homeostasis, exacerbating ER stress which can lead to irreversible hepatocellular damage and ALD progression. Elucidating the contribution of ER stress to ALD pathogenesis may pave the way for innovative therapeutic interventions. This review delves into ER stress, its basic signaling pathways, and its role in the alcoholic liver injury.
Collapse
Affiliation(s)
- Man Na
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Xingbiao Yang
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Yongkun Deng
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Zhaoheng Yin
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| | - Mingwei Li
- Department of Pharmacy, The 926th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Kaiyuan, Yunan, China
| |
Collapse
|
32
|
Ramezani M, Zobeiry M, Abdolahi S, Hatami B, Zali MR, Baghaei K. A crosstalk between epigenetic modulations and non-alcoholic fatty liver disease progression. Pathol Res Pract 2023; 251:154809. [PMID: 37797383 DOI: 10.1016/j.prp.2023.154809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently emerged as a major public health concern worldwide due to its rapidly rising prevalence and its potential to progress into end-stage liver disease. While the precise pathophysiology underlying NAFLD remains incompletely understood, it is strongly associated with various environmental triggers and other metabolic disorders. Epigenetics examines changes in gene expression that are not caused by alterations in the DNA sequence itself. There is accumulating evidence that epigenetics plays a key role in linking environmental cues to the onset and progression of NAFLD. Our understanding of how epigenetic mechanisms contribute to NAFLD pathophysiology has expanded considerably in recent years as research on the epigenetics of NAFLD has developed. This review summarizes recent insights into major epigenetic processes that have been implicated in NAFLD pathogenesis including DNA methylation, histone acetylation, and microRNAs that have emerged as promising targets for further investigation. Elucidating epigenetic mechanisms in NAFLD may uncover novel diagnostic biomarkers and therapeutic targets for this disease. However, many questions have remained unanswered regarding how epigenetics promotes NAFLD onset and progression. Additional studies are needed to further characterize the epigenetic landscape of NAFLD and validate the potential of epigenetic markers as clinical tools. Nevertheless, an enhanced understanding of the epigenetic underpinnings of NAFLD promises to provide key insights into disease mechanisms and pave the way for novel prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Meysam Ramezani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behzad Hatami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Liu M, Yang S, Ye Z, Zhang Y, He P, Zhou C, Zhang Y, Qin X. Residential green and blue spaces with nonalcoholic fatty liver disease incidence: Mediating effect of air pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115436. [PMID: 37672940 DOI: 10.1016/j.ecoenv.2023.115436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/20/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND This study aimed to investigate the relationship of residential green and blue spaces with incident nonalcoholic fatty liver disease (NAFLD), and explore the potential mediation effects of air pollutants and modification effect of genetic susceptibility. METHODS 411,200 UK Biobank participants without prior liver diseases were included. Land use data were used to estimate residential green and blue spaces (land coverage percentage) at 300 m and 1000 m buffer. The study outcome was incident NAFLD, ascertained through linkage to hospital admissions and death registry records. RESULTS 5198 NAFLD cases were documented after a median follow-up of 12.5 years. Green and blue spaces were inversely associated with the hazard of NAFLD: per standard deviation (SD) increment of green space coverage at 300 m (SD: 14.5 %; HR, 0.88, 95 %CI, 0.86-0.91) and 1000 m (SD: 14.1 %; HR, 0.88, 95 %CI, 0.86-0.91) buffer, and blue space coverage at 300 m (SD: 1.0 %; HR,0.95, 95 %CI, 0.93-0.98) and 1000 m (SD: 1.2 %; HR,0.96, 95 %CI, 0.93-0.99) buffer were related with a 4-12 % reduction of NAFLD incidence. The beneficial effects of approximately 25-52 % of green space exposure and about 5-35 % of blue space exposure on NAFLD incidence were mediated by the reduction of PM2.5, NO2 and NOx (All Pindirect effect <0.05). Moreover, genetic susceptibility of NAFLD did not modify the relationship of green and blue spaces with NAFLD incidence. CONCLUSION Residential green and blue spaces were inversely related to NAFLD incidence. These results suggest that green and blue spaces are modifiable factors that may help prevent NAFLD, and therefore, can be considered as a novel environmental strategy to promote liver health at the community level, rather than only at the individual level.
Collapse
Affiliation(s)
- Mengyi Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Sisi Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Ziliang Ye
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Yuanyuan Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Panpan He
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Chun Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Yanjun Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China.
| |
Collapse
|
34
|
Ait Ahmed Y, Lafdil F, Tacke F. Ambiguous Pathogenic Roles of Macrophages in Alcohol-Associated Liver Diseases. Hepat Med 2023; 15:113-127. [PMID: 37753346 PMCID: PMC10519224 DOI: 10.2147/hmer.s326468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Alcohol-associated liver disease (ALD) represents a major public health issue worldwide and is a leading etiology of liver cirrhosis. Alcohol-related liver injuries include a range of manifestations including alcoholic hepatitis (AH), simple steatosis, steatohepatitis, hepatic fibrosis, cirrhosis and liver cancer. Liver disease occurs from several pathological disturbances such as the metabolism of ethanol, which generates reactive oxygen species (ROS) in hepatocytes, alterations in the gut microbiota, and the immune response to these changes. A common hallmark of these liver affections is the establishment of an inflammatory environment, and some (broad) anti-inflammatory approaches are used to treat AH (eg, corticosteroids). Macrophages, which represent the main innate immune cells in the liver, respond to a wide variety of (pathogenic) stimuli and adopt a large spectrum of phenotypes. This translates to a diversity of functions including pathogen and debris clearance, recruitment of other immune cells, activation of fibroblasts, or tissue repair. Thus, macrophage populations play a crucial role in the course of ALD, but the underlying mechanisms driving macrophage polarization and their functionality in ALD are complex. In this review, we explore the various populations of hepatic macrophages in alcohol-associated liver disease and the underlying mechanisms driving their polarization. Additionally, we summarize the crosstalk between hepatic macrophages and other hepatic cell types in ALD, in order to support the exploration of targeted therapeutics by modulating macrophage polarization.
Collapse
Affiliation(s)
- Yeni Ait Ahmed
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, Créteil, France
- Institut National de la Sante et de la Recherche Medicale (INSERM), U955, Créteil, France
- Institut Universitaire de France (IUF), Paris, France
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
35
|
Li N, Yin L, Shang J, Liang M, Liu Z, Yang H, Qiang G, Du G, Yang X. Kaempferol attenuates nonalcoholic fatty liver disease in type 2 diabetic mice via the Sirt1/AMPK signaling pathway. Biomed Pharmacother 2023; 165:115113. [PMID: 37418974 DOI: 10.1016/j.biopha.2023.115113] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases with limited treatment options. Moreover, its prevalence is doubled in type 2 diabetes mellitus (T2DM). Kaempferol (KAP) is a flavonoid compound that has been suggested to have beneficial effects on NAFLD, but studies on the mechanism are lacking, especially in the diabetic state. Herein, we investigated the effect of KAP on NAFLD associated with T2DM and its underlying mechanism in vitro and in vivo. The results of in vitro studies indicated that KAP treatment (10-8-10-6 M) significantly reduced lipid accumulation in oleic acid-induced HepG2 cells. Moreover, in the T2DM animal model of db/db mice, we confirmed that KAP (50 mg/kg) significantly reduced lipid accumulation and improved liver injury. Mechanistic studies in vitro and in vivo showed that Sirtuin 1 (Sirt1)/AMP-activated protein kinase (AMPK) signal was involved in KAP regulation of hepatic lipid accumulation. KAP treatment activated Sirt1 and AMPK, upregulated the levels of fatty acid oxidation-related protein proliferator activated receptor gamma coactivator 1α (PGC1α); and downregulated lipid synthesis-related proteins, including acetyl-coA carboxylase (ACC), fatty acid synthase (FASN), and sterol regulatory element-binding protein 1 (SREBP1). Furthermore, the curative effect of KAP on lipid accumulation was abolished by siRNA-mediated knockdown of either Sirt1 or AMPK. Collectively, these findings suggest that KAP may be a potential therapeutic agent for NAFLD associated with T2DM by regulating hepatic lipid accumulation through activation of Sirt1/AMPK signaling.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Lin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China; Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Jiamin Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Meidai Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Zhaoyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Haiguang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China.
| |
Collapse
|
36
|
Janilkarn-Urena I, Idrissova A, Zhang M, VanDreal M, Sanghavi N, Skinner SG, Cheng S, Zhang Z, Watanabe J, Asatryan L, Cadenas E, Davies DL. Dihydromyricetin supplementation improves ethanol-induced lipid accumulation and inflammation. Front Nutr 2023; 10:1201007. [PMID: 37680900 PMCID: PMC10481966 DOI: 10.3389/fnut.2023.1201007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/01/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction Excessive alcohol consumption leads to a myriad of detrimental health effects, including alcohol-associated liver disease (ALD). Unfortunately, no available treatments exist to combat the progression of ALD beyond corticosteroid administration and/or liver transplants. Dihydromyricetin (DHM) is a bioactive polyphenol and flavonoid that has traditionally been used in Chinese herbal medicine for its robust antioxidant and anti-inflammatory properties. It is derived from many plants, including Hovenia dulcis and is found as the active ingredient in a variety of popular hangover remedies. Investigations utilizing DHM have demonstrated its ability to alleviate ethanol-induced disruptions in mitochondrial and lipid metabolism, while demonstrating hepatoprotective activity. Methods Female c57BL/6J mice (n = 12/group) were treated using the Lieber DeCarli forced-drinking and ethanol (EtOH) containing liquid diet, for 5 weeks. Mice were randomly divided into three groups: (1) No-EtOH, (2) EtOH [5% (v/v)], and (3) EtOH [5% (v/v)] + DHM (6 mg/mL). Mice were exposed to ethanol for 2 weeks to ensure the development of ALD pathology prior to receiving dihydromyricetin supplementation. Statistical analysis included one-way ANOVA along with Bonferroni multiple comparison tests, where p ≤ 0.05 was considered statistically significant. Results Dihydromyricetin administration significantly improved aminotransferase levels (AST/ALT) and reduced levels of circulating lipids including LDL/VLDL, total cholesterol (free cholesterol), and triglycerides. DHM demonstrated enhanced lipid clearance by way of increased lipophagy activity, shown as the increased interaction and colocalization of p62/SQSTM-1, LC3B, and PLIN-1 proteins. DHM-fed mice had increased hepatocyte-to-hepatocyte lipid droplet (LD) heterogeneity, suggesting increased neutralization and sequestration of free lipids into LDs. DHM administration significantly reduced prominent pro-inflammatory cytokines commonly associated with ALD pathology such as TNF-α, IL-6, and IL-17. Discussion Dihydromyricetin is commercially available as a dietary supplement. The results of this proof-of-concept study demonstrate its potential utility and functionality as a cost-effective and safe candidate to combat inflammation and the progression of ALD pathology.
Collapse
Affiliation(s)
- Isis Janilkarn-Urena
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Alina Idrissova
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Mindy Zhang
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Masha VanDreal
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Neysa Sanghavi
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Samantha G. Skinner
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Sydney Cheng
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Zeyu Zhang
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
- Translational Research Lab, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Junji Watanabe
- Translational Research Lab, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Enrique Cadenas
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Daryl L. Davies
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| |
Collapse
|
37
|
Li W, Liu Z, Tang F, Jiang H, Zhou Z, Hao X, Zhang JM. Application of 3D Bioprinting in Liver Diseases. MICROMACHINES 2023; 14:1648. [PMID: 37630184 PMCID: PMC10457767 DOI: 10.3390/mi14081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Liver diseases are the primary reason for morbidity and mortality in the world. Owing to a shortage of organ donors and postoperative immune rejection, patients routinely suffer from liver failure. Unlike 2D cell models, animal models, and organoids, 3D bioprinting can be successfully employed to print living tissues and organs that contain blood vessels, bone, and kidney, heart, and liver tissues and so on. 3D bioprinting is mainly classified into four types: inkjet 3D bioprinting, extrusion-based 3D bioprinting, laser-assisted bioprinting (LAB), and vat photopolymerization. Bioinks for 3D bioprinting are composed of hydrogels and cells. For liver 3D bioprinting, hepatic parenchymal cells (hepatocytes) and liver nonparenchymal cells (hepatic stellate cells, hepatic sinusoidal endothelial cells, and Kupffer cells) are commonly used. Compared to conventional scaffold-based approaches, marked by limited functionality and complexity, 3D bioprinting can achieve accurate cell settlement, a high resolution, and more efficient usage of biomaterials, better mimicking the complex microstructures of native tissues. This method will make contributions to disease modeling, drug discovery, and even regenerative medicine. However, the limitations and challenges of this method cannot be ignored. Limitation include the requirement of diverse fabrication technologies, observation of drug dynamic response under perfusion culture, the resolution to reproduce complex hepatic microenvironment, and so on. Despite this, 3D bioprinting is still a promising and innovative biofabrication strategy for the creation of artificial multi-cellular tissues/organs.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Radiology, Yancheng Third People’s Hospital, Affiliated Hospital 6 of Nantong University, Yancheng 224000, China
| | - Zhaoyue Liu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
| | - Fengwei Tang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
| | - Hao Jiang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
| | - Zhengyuan Zhou
- Nanjing Hangdian Intelligent Manufacturing Technology Co., Ltd., Nanjing 210014, China
| | - Xiuqing Hao
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
| | - Jia Ming Zhang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
- Nanjing Hangdian Intelligent Manufacturing Technology Co., Ltd., Nanjing 210014, China
- Yangtze River Delta Intelligent Manufacturing Innovation Center, Nanjing 210014, China
| |
Collapse
|
38
|
Butt N, Masood M, Ali A. Efficacy and Safety of Prunus mume and Choline in Patients with Nonalcoholic Fatty Liver Disease. Euroasian J Hepatogastroenterol 2023; 13:124-127. [PMID: 38222945 PMCID: PMC10785137 DOI: 10.5005/jp-journals-10018-1397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/20/2023] [Indexed: 01/16/2024] Open
Abstract
Aim The primary objectives of this study include evaluating changes in lipid profile and liver enzyme levels in nonalcoholic fatty liver disease (NAFLD) patients receiving Prunus mume and choline supplementation (Revolic). Materials and methods Two-hundred patients were recruited from the hepatology outpatient department of a public hospital between January and June 2023. Patients who had confirmed diagnosis of NAFLD, proven with ultrasound (US) followed by biopsy or US alone with age >18 years were included in this study. The study variables were fasting blood sugar, cholesterol levels, low-density lipoprotein (LDL), triglyceride, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase levels (GGT). All investigations were conducted and compared between baseline, 12 and 24 weeks following treatment. Results The mean age of all participants was 40.49 ± 10.59 years with 34 males and 166 females. The mean cholesterol levels were reduced to 179.86 ± 35.63 mg/dL from the mean baseline of 197.57 ± 42.52 mg/dL (p = 0.001). There was also a statistically significant difference found between baseline and posttreatment levels of LDL and triglyceride (p < 0.001). The ATL levels were also reduced from baseline 44.91 ± 32.40 U/L to 44.25 ± 30.66 and 41.06 ± 22.15 U/L between 12 and 24 weeks after treatment respectively. There was a statistically significant reduction in ATL, AST, and GGT levels from baseline with p-value < 0.001. Conclusion The combination of P. mume and choline (Revolic) gives promising results with a significant reduction in lipid profile and liver enzymes. Clinical significance The combination of P. mume and choline can be considered a reliable option for the management of NAFLD due to its efficacy and safety at 24 weeks after treatment as evident in the present study. How to cite this article Butt N, Masood M, Ali A. Efficacy and Safety of Prunus mume and Choline in Patients with Nonalcoholic Fatty Liver Disease. Euroasian J Hepato-Gastroenterol 2023;13(2):124-127.
Collapse
Affiliation(s)
- Nazish Butt
- Department of Gastroenterology, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Muhammad Masood
- Department of Gastroenterology, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Aamir Ali
- Department of Gastroenterology, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| |
Collapse
|
39
|
Wu S, Chen Q, Wang Y, Yin H, Wei Y. Lipid nanoparticle delivery of siRNA targeting Cyp2e1 gene attenuates subacute alcoholic liver injury in mice. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:306-317. [PMID: 37476942 PMCID: PMC10409911 DOI: 10.3724/zdxbyxb-2022-0729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVES To investigate the effect and mechanism of lipid nanoparticle (LNP) delivery of small interfering RNA (siRNA) targeting Cyp2e1 gene on subacute alcoholic liver injury in mice. METHODS siRNA targeting Cyp2e1 gene was encapsulated in LNP (si-Cyp2e1 LNP) by microfluidic technique and the resulting LNPs were characterized. The optimal dose of si-Cyp2e1 LNP administration was screened. Forty female C57BL/6N mice were randomly divided into blank control group, model control group, si-Cyp2e1 LNP group, LNP control group and metadoxine group. The subacute alcoholic liver injury mouse model was induced by ethanol feeding for 10 d plus ethanol gavage for the last 3 d. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and the superoxide dismutase (SOD) activity as well as malondialdehyde, reactive oxygen species, glutathione, triacylglycerol, total cholesterol contents in liver tissue were measured in each group, and liver index was calculated. The expression of genes related to oxidative stress, lipid synthesis and inflammation in each group of mice were measured by realtime RT-PCR. RESULTS Compared with the model control group, the levels of liver index, serum ALT, AST activities, malondialdehyde, reactive oxygen species, triacylglycerol, total cholesterol contents in liver tissue decreased, but the SOD activity as well as glutathione increased in the si-Cyp2e1 LNP group (all P<0.01). Hematoxylin-eosin staining result showed disorganized hepatocytes with sparse cytoplasm and a large number of fat vacuoles and necrosis in the model control group, while the si-Cyp2e1 LNP group had uniformly sized and arranged hepatocytes with normal liver tissue morphology and structure. Oil red O staining result showed si-Cyp2e1 LNP group had lower fat content of the liver compared to the model control group (P<0.01), and no fat droplets accumulated. Anti-F4/80 monoclonal antibody fluorescence immunohistochemistry showed that the si-Cyp2e1 LNP group had lower cumulative optical density values compared to the model control group (P<0.01) and no significant inflammatory reaction. Compared with the model control group, the expression of catalytic genes P47phox, P67phox and Gp91phox were reduced (all P<0.01), while the expression of the antioxidant enzyme genes Sod1, Gsh-rd and Gsh-px were increased (all P<0.01). The mRNA expression of the lipid metabolism genes Pgc-1α and Cpt1 were increased (all P<0.01) and the lipid synthesis-related genes Srebp1c, Acc and Fasn were decreased (all P<0.01); the expression of liver inflammation-related genes Tgf-β, Tnf-α and Il-6 were decreased (all P<0.01). CONCLUSIONS The si-Cyp2e1 LNP may attenuate subacute alcoholic liver injury in mice mainly by reducing reactive oxygen levels, increasing antioxidant activity, blocking oxidative stress pathways and reducing ethanol-induced steatosis and inflammation.
Collapse
Affiliation(s)
- Shuang Wu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Qiubing Chen
- Department of Urology, Frontier Science Centre for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yalan Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Hao Yin
- Department of Urology, Frontier Science Centre for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- RNA Institute, Wuhan University, Wuhan 430072, China
- Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430010, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
40
|
Alenezi YM, Harris R, Morling J, Card T. Prevalence of Non-alcoholic Fatty Liver Disease (NAFLD) in Saudi Arabia: Systematic Review and Meta-analysis. Cureus 2023; 15:e40308. [PMID: 37448425 PMCID: PMC10337700 DOI: 10.7759/cureus.40308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Liver disease is fast emerging as a global health priority. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in Western countries, with an increasing prevalence associated with the rising prevalence of diabetes mellitus and obesity. The worldwide prevalence of NAFLD may be in the order of 25%, but in the Middle East, it may be even higher. This study aimed to estimate the prevalence of NAFLD in the Kingdom of Saudi Arabia (KSA). A systematic review and meta-analysis were undertaken. Electronic searches were carried out through Medline, EMBASE, CINAHL, Web of Science, and Google Scholar, for articles from inception to April 2020. Studies conducted on adult populations in any setting reporting NAFLD prevalence were included. Pooled proportions and associated 95% confidence intervals (CIs) were presented in forest plots using a random effect model. Eight studies, including 4045 participants, were included. The pooled prevalence of NAFLD among all adult populations in KSA was 16.8% (11.1%-22.5%). Amongst those with type 2 diabetes, the prevalence was 58.0% (45.0%-70.9%). There were no true general population studies of the prevalence of NAFLD in KSA available. This review suggests that NAFLD is common in the KSA, and that type 2 diabetes is a risk factor in KSA as identified elsewhere in the world.
Collapse
Affiliation(s)
- Yusef M Alenezi
- Lifespan and Population Health, University of Nottingham, Nottingham, GBR
- Family and Community Medicine, College of Medicine, Northern Borders University, Arar, SAU
| | - Rebecca Harris
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, GBR
| | - Joanne Morling
- Lifespan and Population Health, University of Nottingham, Nottingham, GBR
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, GBR
| | - Tim Card
- Lifespan and Population Health, University of Nottingham, Nottingham, GBR
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, GBR
| |
Collapse
|
41
|
Yan C, Hu W, Tu J, Li J, Liang Q, Han S. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. J Transl Med 2023; 21:300. [PMID: 37143126 PMCID: PMC10158301 DOI: 10.1186/s12967-023-04166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
Alcoholism is a widespread and damaging behaviour of people throughout the world. Long-term alcohol consumption has resulted in alcoholic liver disease (ALD) being the leading cause of chronic liver disease. Many metabolic enzymes, including alcohol dehydrogenases such as ADH, CYP2E1, and CATacetaldehyde dehydrogenases ALDHsand nonoxidative metabolizing enzymes such as SULT, UGT, and FAEES, are involved in the metabolism of ethanol, the main component in alcoholic beverages. Ethanol consumption changes the functional or expression profiles of various regulatory factors, such as kinases, transcription factors, and microRNAs. Therefore, the underlying mechanisms of ALD are complex, involving inflammation, mitochondrial damage, endoplasmic reticulum stress, nitrification, and oxidative stress. Moreover, recent evidence has demonstrated that the gut-liver axis plays a critical role in ALD pathogenesis. For example, ethanol damages the intestinal barrier, resulting in the release of endotoxins and alterations in intestinal flora content and bile acid metabolism. However, ALD therapies show low effectiveness. Therefore, this review summarizes ethanol metabolism pathways and highly influential pathogenic mechanisms and regulatory factors involved in ALD pathology with the aim of new therapeutic insights.
Collapse
Affiliation(s)
- Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Jinqi Tu
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College of Wuhu, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
42
|
Liu A, Cai Y, Yuan Y, Liu M, Zhang Z, Xu Y, Jiao P. Efficacy and safety of carnitine supplementation on NAFLD: a systematic review and meta-analysis. Syst Rev 2023; 12:74. [PMID: 37120548 PMCID: PMC10148537 DOI: 10.1186/s13643-023-02238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The efficacy and safety of L-carnitine supplementation on non-alcoholic fatty liver disease (NAFLD) are unclear. This systematic review and meta-analysis aimed to assess the efficacy and safety of L-carnitine supplementation on NAFLD. METHODS We searched in four databases (PubMed, Embase, Cochrane Library, and Web of Science) from inception to 1 November 2022 (updated on March 20, 2023) for potentially relevant records without language restrictions. We collected information on the first author, publication year, country, setting, study design, population characteristics, duration of follow-up, outcome variables of interest, and sources of funding. We used a modified Cochrane risk of bias tool to assess the risk of bias, used GRADE to assess the certainty of evidence, and used the Credibility of Effect Modification Analyses (ICEMAN) tool to assess the credibility of any apparent subgroup effect. RESULTS This systematic review and meta-analysis included eight eligible randomized controlled trials (RCTs). Compared to placebo, low certainty evidence show that L-carnitine supplementation significantly changes (reduced) more in AST levels and ALT levels (MD: - 26.38, 95%CI: - 45.46 to - 7.30), and moderate certainty evidence show that L-carnitine supplementation significantly changes (reduced) more in HDL cholesterol levels (MD: 1.14, 95%CI: 0.21 to 2.07) and triglyceride levels (MD: - 6.92, 95%CI: - 13.82 to - 0.03). Moderate credibility of ICEMAN results shows that L-carnitine supplementation has no difference in changes of AST and ALT levels in younger ones (MD: 0.5, 95%CI: - 0.70 to 1.70) but has significant changes (reduced) in adults (MD: - 20.3, 95%CI: - 28.62 to - 12.28) compared to placebo. CONCLUSION L-carnitine supplementation may improve liver function and regulate triglyceride metabolism in patients with NAFLD, and with no significant adverse effects.
Collapse
Affiliation(s)
- Aiping Liu
- School of Traditional Chinese Medicine, Gansu Health Vocational College, No. 1666 Jiulongjiang Street, Vocational Education Park, Lanzhou New District, Lanzhou City, 730314, China.
| | - Yitong Cai
- Xiangya School of Nursing, Central South University, Changsha City, China
| | - Yuan Yuan
- Gansu Provincial Central Hospital, Lanzhou City, China
- Gansu Provincial Maternal and Child Health Hospital, Lanzhou City, China
| | - Ming Liu
- Evidence-Based Medicine Centre, Lanzhou University, Lanzhou City, China
| | - Zhengjing Zhang
- School of Traditional Chinese Medicine, Gansu Health Vocational College, No. 1666 Jiulongjiang Street, Vocational Education Park, Lanzhou New District, Lanzhou City, 730314, China
| | - Yongquan Xu
- School of Traditional Chinese Medicine, Gansu Health Vocational College, No. 1666 Jiulongjiang Street, Vocational Education Park, Lanzhou New District, Lanzhou City, 730314, China
| | - Pingzu Jiao
- School of Traditional Chinese Medicine, Gansu Health Vocational College, No. 1666 Jiulongjiang Street, Vocational Education Park, Lanzhou New District, Lanzhou City, 730314, China
| |
Collapse
|
43
|
Munteanu C, Schwartz B. The Effect of Bioactive Aliment Compounds and Micronutrients on Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12040903. [PMID: 37107278 PMCID: PMC10136128 DOI: 10.3390/antiox12040903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/28/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
In the current review, we focused on identifying aliment compounds and micronutrients, as well as addressed promising bioactive nutrients that may interfere with NAFLD advance and ultimately affect this disease progress. In this regard, we targeted: 1. Potential bioactive nutrients that may interfere with NAFLD, specifically dark chocolate, cocoa butter, and peanut butter which may be involved in decreasing cholesterol concentrations. 2. The role of sweeteners used in coffee and other frequent beverages; in this sense, stevia has proven to be adequate for improving carbohydrate metabolism, liver steatosis, and liver fibrosis. 3. Additional compounds were shown to exert a beneficial action on NAFLD, namely glutathione, soy lecithin, silymarin, Aquamin, and cannabinoids which were shown to lower the serum concentration of triglycerides. 4. The effects of micronutrients, especially vitamins, on NAFLD. Even if most studies demonstrate the beneficial role of vitamins in this pathology, there are exceptions. 5. We provide information regarding the modulation of the activity of some enzymes related to NAFLD and their effect on this disease. We conclude that NAFLD can be prevented or improved by different factors through their involvement in the signaling, genetic, and biochemical pathways that underlie NAFLD. Therefore, exposing this vast knowledge to the public is particularly important.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
44
|
Zhou Q, Peng Y, Chen F, Dai J. Ginger supplementation for the treatment of non-alcoholic fatty liver disease: a meta-analysis of randomized controlled trials. Afr Health Sci 2023; 23:614-621. [PMID: 37545930 PMCID: PMC10398503 DOI: 10.4314/ahs.v23i1.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
Introduction The efficacy of ginger supplementation remains controversial for non-alcoholic fatty liver disease. We conduct this meta-analysis to explore the influence of ginger supplementation versus placebo on the treatment of non-alcoholic fatty liver disease. Methods We have searched PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases through November 2021 and included randomized controlled trials (RCTs) assessing the efficacy of ginger supplementation versus placebo for non-alcoholic fatty liver disease. This meta-analysis was performed using the random-effect model. Results Four RCTs involving 177 patients were included in the meta-analysis. Overall, compared with non-alcoholic fatty liver disease, ginger supplementation was associated with significantly reduced alanine aminotransferase (ALT, standard mean difference (SMD)=-0.43; 95% confidence interval [CI]=-0.85 to -0.02; P=0.04), homeostatic Model Assessment of Insulin Resistance (HOMA-IR, SMD=-1.14; 95% CI=-2.05 to -0.22; P=0.02), but revealed no obvious impact on aspartate-aminotransferase (AST, SMD=-0.66; 95% CI=-0.81 to 2.12; P=0.38), total cholesterol (SMD=-0.33; 95% CI=-0.67 to 0.02; P=0.06), low density lipoprotein (LDL, SMD=-0.30; 95% CI=-0.64 to 0.04; P=0.08) or body mass index (BMI, SMD=0; 95% CI=-0.41 to 0.40; P=0.99). Conclusions Ginger supplementation benefits to treat non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Qun Zhou
- Health management center, Chongqing General Hospital, China
| | - Ying Peng
- Internal medicine, Chongqing Nan'an District People's Hospital
| | - Fangyuan Chen
- Internal medicine, Chongqing Nan'an District People's Hospital
| | - Jianbo Dai
- Department of general surgery, Chongqing Nan'an District People's Hospital
| |
Collapse
|
45
|
Yin X, Guo X, Liu Z, Wang J. Advances in the Diagnosis and Treatment of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24032844. [PMID: 36769165 PMCID: PMC9917647 DOI: 10.3390/ijms24032844] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease that affects approximately one-quarter of the global adult population, posing a significant threat to human health with wide-ranging social and economic implications. The main characteristic of NAFLD is considered that the excessive fat is accumulated and deposited in hepatocytes without excess alcohol intake or some other pathological causes. NAFLD is a progressive disease, ranging from steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma, liver transplantation, and death. Therefore, NAFLD will probably emerge as the leading cause of end-stage liver disease in the coming decades. Unlike other highly prevalent diseases, NAFLD has received little attention from the global public health community. Liver biopsy is currently considered the gold standard for the diagnosis and staging of NAFLD because of the absence of noninvasive and specific biomarkers. Due to the complex pathophysiological mechanisms of NAFLD and the heterogeneity of the disease phenotype, no specific pharmacological therapies have been approved for NAFLD at present, although several drugs are in advanced stages of development. This review summarizes the current evidence on the pathogenesis, diagnosis and treatment of NAFLD.
Collapse
Affiliation(s)
- Xunzhe Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiangyu Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Correspondence: (Z.L.); (J.W.)
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, New York, NY 11794-3400, USA
- Correspondence: (Z.L.); (J.W.)
| |
Collapse
|
46
|
Anouti A, Mellinger JL. The Changing Epidemiology of Alcohol-Associated Liver Disease: Gender, Race, and Risk Factors. Semin Liver Dis 2023; 43:50-59. [PMID: 36529138 DOI: 10.1055/a-2000-6680] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cases of alcohol-associated liver disease (ALD) are increasing at a steady rate in the United States with more patients presenting with alcohol-associated hepatitis and alcohol-associated cirrhosis. While alcohol use has increased across many demographic groups, women are suffering from a greater increase in alcohol use disorder (AUD), and are at a greater risk of ALD due to pathophysiological differences which include absorption of alcohol, first pass metabolism, and hormonal differences. Differences across race have also been found with Native Americans and Hispanics suffering from some of the largest increases in ALD rates. Younger adults are heavily impacted by rising rates of both AUD and ALD. Comorbidities such as obesity and NASH have been shown to augment the deleterious effects of AUD and ALD, resulting in more advanced liver disease. Finally, COVID-19 and policies related to the pandemic have resulted in increased AUD across many cohorts, which have resulted in marked increases in ALD. In conclusion, ALD rates are rising, with young people and women particularly impacted.
Collapse
Affiliation(s)
- Ahmad Anouti
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jessica L Mellinger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
- Department of Psychiatry, University of Michigan Health System, Ann Arbor, Michigan
| |
Collapse
|
47
|
Li FR, Liao J, Zhu B, Li X, Cheng Z, Jin C, Mo C, Wu X, Li Q, Liang F. Long-term exposure to air pollution and incident non-alcoholic fatty liver disease and cirrhosis: A cohort study. Liver Int 2023; 43:299-307. [PMID: 36069651 DOI: 10.1111/liv.15416] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND AIMS Epidemiological evidence regarding the association of air pollution with the risk of non-alcoholic fatty liver disease (NAFLD) is limited. This study was to examine the associations of long-term exposure to various air pollutants and overall air pollution with risk of incident NAFLD as well as cirrhosis, a major liver-related morbidity for NAFLD. METHODS Included were 456 687 UK residents. Air pollution data included PM2.5 , PM2.5-10 , PM10 , NO2 and NOx . A weighted air pollution score was also generated from PM10 and NOx . Cox proportional hazard models were employed to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS We identified 4978 cases of NAFLD and 1575 cases of incident cirrhosis, over a median follow-up of 11.9 years. PM2.5 , PM10 , NO2 and NOx exposures contributed to the excess risk of NAFLD associated with air pollution score; and the corresponding adjusted HRs (95% CI) were 1.10 (1.05, 1.14), 1.14 (1.09, 1.20), 1.19 (1.13, 1.24) and 1.11 (1.07, 1.15), respectively, for each interquartile range increase in the above specific air pollutants. Similar patterns were also indicated for cirrhosis risk. Alcohol consumption was an effect modifier for the association between air pollution score and NAFLD risk, whereas body mass index modified the association for cirrhosis risk. CONCLUSION Long-term exposure to air pollution was associated with risks of NAFLD and cirrhosis among the UK population.
Collapse
Affiliation(s)
- Fu-Rong Li
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jian Liao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Bin Zhu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Xia Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Zhiyuan Cheng
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Cheng Jin
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Chunbao Mo
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Xianbo Wu
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Qian Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Fengchao Liang
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
48
|
Trampuž SR, van Riet S, Nordling Å, Ingelman-Sundberg M. The Role of CTGF in Liver Fibrosis Induced in 3D Human Liver Spheroids. Cells 2023; 12:cells12020302. [PMID: 36672237 PMCID: PMC9857203 DOI: 10.3390/cells12020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Connective tissue growth factor (CTGF) is involved in the regulation of extracellular matrix (ECM) production. Elevated levels of CTGF can be found in plasma from patients with liver fibrosis and in experimental animal models of liver fibrosis, but the exact role of CTGF in, e.g., diet-induced human liver fibrosis is not entirely known. To address this question, we utilized a 3D human liver co-culture spheroid model composed of hepatocytes and non-parenchymal cells, in which fibrosis is induced by TGF-β1, CTGF or free fatty acids (FFA). Treatment of the spheroids with TGF-β1 or FFA increased COL1A1 deposition as well as the expression of TGF-β1 and CTGF. Recombinant CTGF, as well as angiotensin II, caused increased expression and/or production of CTGF, TGF-β1, COL1A1, LOX, and IL-6. In addition, silencing of CTGF reduced both TGF-β1- and FFA-induced COL1A1 deposition. Furthermore, we found that IL-6 induced CTGF, COL1A1 and TGF-β1 production, suggesting that IL-6 is a mediator in the pathway of CTGF-induced fibrosis. Taken together, our data indicate a specific role for CTGF and CTGF downstream signaling pathways for the development of liver inflammation and fibrosis in the human 3D liver spheroid model.
Collapse
Affiliation(s)
- Sara Redenšek Trampuž
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Sander van Riet
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Åsa Nordling
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
49
|
Zhu L, Xu JJ, Li HD, Li JJ, Cheng M, Niu XN, Jia PC, Liu JY, Huang C, Lv XW, Li J. Berberine Ameliorates Abnormal Lipid Metabolism via the Adenosine Monophosphate-Activated Protein Kinase/Sirtuin 1 Pathway in Alcohol-Related Liver Disease. J Transl Med 2023; 103:100041. [PMID: 36870291 DOI: 10.1016/j.labinv.2022.100041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
Alcoholic fatty liver disease (AFLD) is an early stage of alcohol-related liver disease characterized by abnormal lipid metabolism in hepatocytes. To date, to our knowledge, there have been no effective strategies for preventing or treating alcohol-related liver disease besides alcohol abstinence. Berberine (BBR) is the main bioactive ingredient extracted from traditional Chinese medicines, such as Coptis and Scutellaria, which protect liver function and relieve liver steatosis. However, the potential role of BBR in AFLD remains unclear. Therefore, this study investigated the protective effects of BBR against Gao-binge model-induced AFLD in 6- to 8-week-old C57BL/6J male mice in vivo and ethyl alcohol (EtOH)-induced alpha mouse liver 12 (AML-12) cells in vitro. The results showed that BBR (200 mg/kg) attenuated alcoholic liver injury and suppressed lipid accumulation and metabolism disorders in vivo. Consistently, BBR effectively inhibited the expression of sterol regulatory element-binding transcription factor 1C, sterol regulatory element-binding transcription factor 2, fatty acid synthase, and 3-hydroxy-3-methylglutaryl-CoenzymeA reductase in EtOH-stimulated AML-12 cells in vitro and promoted the expression of sirtuin 1 (SIRT1) in EtOH-fed mice and EtOH-treated AML-12 cells. Furthermore, SIRT1 silencing attenuated the hepatic steatosis alleviation potential of BBR treatment. Mechanistically, molecular docking revealed the binding effect of BBR and adenosine monophosphate-activated protein kinase (AMPK). The results of further studies showed that a decrease in AMPK activity was accompanied by a significant inhibition of SIRT1 expression. SIRT1 silencing attenuated the protective effect of BBR, whereas the inhibition of its expression had no apparent effect on AMPK phosphorylation, suggesting that SIRT1 acts downstream of AMPK in AFLD. Collectively, BBR ameliorated abnormal lipid metabolism and alleviated EtOH-induced liver injury via the AMPK/SIRT1 pathway in AFLD mice.
Collapse
Affiliation(s)
- Lin Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jie-Jie Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan-Juan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Miao Cheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xue-Ni Niu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Peng-Cheng Jia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jing-Yu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Xiong-Wen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| |
Collapse
|
50
|
Suh JY, Lee HJ, Sim DY, Park JE, Ahn CH, Park SY, Shin N, Kim B, Shim BS, Kim SH. Hypolipogenic effects of Icariside E4 via phosphorylation of AMPK and inhibition of MID1IP1 in HepG2 cells. Phytother Res 2023; 37:7-14. [PMID: 35916211 DOI: 10.1002/ptr.7584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/12/2022] [Accepted: 07/07/2022] [Indexed: 01/19/2023]
Abstract
Though icariside E4 (IE4) is known to have anti-noceptive, anti-oxidant, anti-Alzheimer and anti-inflammatory effects, there was no evidence on the effect of IE4 on lipid metabolism so far. Hence, the hypolipogenic mechanism of IE4 was investigated in HepG2 hepatocellular carcinoma cells (HCCs) in association with MID1 Interacting Protein 1(MID1IP1) and AMPK signaling. Here, IE4 did not show any toxicity in HepG2 cells, but reduced lipid accumulation in HepG2 cells by Oil Red O staining. MID1IP1 depletion decreased the expression of SREBP-1c and fatty acid synthase (FASN) and induced phosphorylation of ACC in HepG2 cells. Indeed, IE4 activated phosphorylation of AMPK and ACC and inhibited the expression of MID1IP1 in HepG2 cells. Furthermore, IE4 suppressed the expression of SREBP-1c, liver X receptor-α (LXR), and FASN for de novo lipogenesis in HepG2 cells. Interestingly, AMPK inhibitor compound C reversed the ability of IE4 to reduce MID1IP1, SREBP-1c, and FASN and activate phosphorylation of AMPK/ACC in HepG2 cells, indicating the important role of AMPK/ACC signaling in IE4-induced hypolipogenic effect. Taken together, these findings suggest that IE4 has hypolipogenic potential in HepG2 cells via activation of AMPK and inhibition of MID1IP1 as a potent candidate for treatment of fatty liver disease.
Collapse
Affiliation(s)
- Jin Young Suh
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Su-Yeon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Nari Shin
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|