1
|
Wei N, Chen X, Liu D, Bu X, Wang G, Sun X, Zhang J. A multi-modality imaging strategy to determine the multiple in vivo fates of human umbilical cord mesenchymal stem cells at different periods of acute liver injury treatment. J Mater Chem B 2024; 12:9213-9228. [PMID: 39041357 DOI: 10.1039/d4tb00914b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Human umbilical cord mesenchymal stem cells (HUCMSCs) are applied for disease therapy as a new type of drug in many countries. Their effects are not only presented by live cells, but also apoptotic bodies or cell fragments of dead cells. Therefore, it is meaningful to determine the multiple fates of HUCMSCs in vivo. Although various probes combining different imaging modalities have been developed to label and trace transplanted HUCMSCs in vivo, the status of the cells (live, dead, or apoptotic) was not distinguished, and a thorough understanding of the multiple fates of HUCMSCs after transplantation in vivo is lacking. Therefore, a magnetic resonance (MR)/near infrared fluorescent (NIRF)/bioluminescence (BI) multi-modality imaging strategy was developed. Iron oxide nanoparticles (IONPs) were assembled into 100 nm nanoparticles using epigallocatechin gallate as a chemical linker to increase the MR signal and reduce the exocytosis of IONPs for direct cell labeling and longitudinal MR imaging tracking. Fluorescent probes for apoptosis (DEVD-Cy-OH) were also loaded in the above assemblies to monitor the cell status. Meanwhile, the cell surface was labeled with the fluorescent dye Cy7 via bioorthogonal reactions to visualize the NIRF signal. Luciferase was lentivirally transfected into live cells to generate bioluminescence. Such labeling did not affect either the viability, proliferation, migration, differentiation characteristics of HUCMSCs or their therapeutic effects on acute liver injury mice in vivo. The in vivo fates of HUCMSCs were monitored via MR/NIRF/BI multi-modality imaging in acute liver injury mice. Although MR and Cy7 signals aggregated in injured liver for 7 days, the BI signals persisted for less than 24 hours. There was an increase in DEVD-Cy-OH signals in the injured liver, but they were almost at the basal level. That means that HUCMSCs survive in mice for a short time, and the dead form of HUCMSCs accumulated in a large quantity and sustained for a long time, which might contribute to their therapeutic effect.
Collapse
Affiliation(s)
- Naijie Wei
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoyang Chen
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, 210009, China.
| | - Danchen Liu
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiangchao Bu
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China.
| | - Jingwei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Wang X, Wang Y, Lu W, Qu J, Zhang Y, Ye J. Effectiveness and mechanisms of mesenchymal stem cell therapy in preclinical animal models of hepatic fibrosis: a systematic review and meta-analysis. Front Bioeng Biotechnol 2024; 12:1424253. [PMID: 39104627 PMCID: PMC11299041 DOI: 10.3389/fbioe.2024.1424253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
Background Liver damage due to long-term viral infection, alcohol consumption, autoimmune decline, and other factors could lead to the gradual development of liver fibrosis. Unfortunately, until now, there has been no effective treatment for liver fibrosis. Mesenchymal stem cells, as a promising new therapy for liver fibrosis, can slow the progression of fibrosis by migrating to the site of liver injury and by altering the microenvironment of the fibrotic area. Aim By including all relevant studies to date to comprehensively assess the efficacy of mesenchymal stem cells for the treatment of hepatic fibrosis and to explore considerations for clinical translation and therapeutic mechanisms. Methods Data sources included PubMed, Web of Science, Embase, and Cochrane Library, and were constructed until October 2023. Data for each study outcome indicator were extracted for comprehensive analysis. Results The overall meta-analysis showed that mesenchymal stem cells significantly improved liver function. Moreover, it inhibited the expression level of transforming growth factor-β [SMD = 4.21, 95% CI (3.02,5.40)], which in turn silenced hepatic stellate cells and significantly reduced the area of liver fibrosis [SMD = 3.61, 95% CI (1.41,5.81)]. Conclusion Several outcome indicators suggest that mesenchymal stem cells therapy is relatively reliable in the treatment of liver fibrosis. The therapeutic effect is cell dose-dependent over a range of doses, but not more effective at higher doses. Bone-marrow derived mesenchymal stem cells were more effective in treating liver fibrosis than mesenchymal stem cells from other sources. Systematic Review Registration Identifier CRD42022354768.
Collapse
Affiliation(s)
- Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Rehabilitation Medicine Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, China
| | - Yue Wang
- College of Nursing, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wenming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- School of Rehabilitation Medicine Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, China
| | - Jiayang Qu
- Rehabilitation Assessment and Treatment Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yang Zhang
- School of Rehabilitation Medicine Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Barcena AJR, Owens TC, Melancon S, Workeneh I, Tran Cao HS, Vauthey JN, Huang SY. Current Perspectives and Progress in Preoperative Portal Vein Embolization with Stem Cell Augmentation (PVESA). Stem Cell Rev Rep 2024; 20:1236-1251. [PMID: 38613627 PMCID: PMC11222268 DOI: 10.1007/s12015-024-10719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
Portal vein embolization with stem cell augmentation (PVESA) is an emerging approach for enhancing the growth of the liver segment that will remain after surgery (i.e., future liver remnant, FLR) in patients with liver cancer. Conventional portal vein embolization (PVE) aims to induce preoperative FLR growth, but it has a risk of failure in patients with underlying liver dysfunction and comorbid illnesses. PVESA combines PVE with stem cell therapy to potentially improve FLR size and function more effectively and efficiently. Various types of stem cells can help improve liver growth by secreting paracrine signals for hepatocyte growth or by transforming into hepatocytes. Mesenchymal stem cells (MSCs), unrestricted somatic stem cells, and small hepatocyte-like progenitor cells have been used to augment liver growth in preclinical animal models, while clinical studies have demonstrated the benefit of CD133 + bone marrow-derived MSCs and hematopoietic stem cells. These investigations have shown that PVESA is generally safe and enhances liver growth after PVE. However, optimizing the selection, collection, and application of stem cells remains crucial to maximize benefits and minimize risks. Additionally, advanced stem cell technologies, such as priming, genetic modification, and extracellular vesicle-based therapy, that could further enhance efficacy outcomes should be evaluated. Despite its potential, PVESA requires more investigations, particularly mechanistic studies that involve orthotopic animal models of liver cancer with concomitant liver injury as well as larger human trials.
Collapse
Affiliation(s)
- Allan John R Barcena
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit, Houston, TX, 1471, 77030, United States
- College of Medicine, University of the Philippines Manila, Manila, NCR, 1000, Philippines
| | - Tyler C Owens
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit, Houston, TX, 1471, 77030, United States
| | - Sophie Melancon
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit, Houston, TX, 1471, 77030, United States
| | - Isias Workeneh
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit, Houston, TX, 1471, 77030, United States
| | - Hop S Tran Cao
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Steven Y Huang
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit, Houston, TX, 1471, 77030, United States.
| |
Collapse
|
4
|
Ghufran H, Azam M, Mehmood A, Umair M, Baig MT, Tasneem S, Butt H, Riazuddin S. Adipose Tissue and Umbilical Cord Tissue: Potential Sources of Mesenchymal Stem Cells for Liver Fibrosis Treatment. J Clin Exp Hepatol 2024; 14:101364. [PMID: 38449506 PMCID: PMC10912848 DOI: 10.1016/j.jceh.2024.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/11/2024] [Indexed: 03/08/2024] Open
Abstract
Background/Aims Mesenchymal stem cells (MSCs) are potential alternatives for liver fibrosis treatment; however, their optimal sources remain uncertain. This study compares the ex-vivo expansion characteristics of MSCs obtained from adipose tissue (AT) and umbilical cord (UC) and assesses their therapeutic potential for liver fibrosis treatment. Methods Since MSCs from early to mid-passage numbers (P2-P6) are preferable for cellular therapy, we investigated the growth kinetics of AT-MSCs and UC-MSCs up to P6 and evaluated their therapeutic effects in a rat model of liver fibrosis induced by diethylnitrosamine. Results Results from the expansion studies demonstrated that both cell types exhibited bona fide characteristics of MSCs, including surface antigens, pluripotent gene expression, and differentiation potential. However, AT-MSCs demonstrated a shorter doubling time (58.2 ± 7.3 vs. 82.3 ± 4.3 h; P < 0.01) and a higher population doubling level (10.1 ± 0.7 vs. 8.2 ± 0.3; P < 0.01) compared to UC-MSCs, resulting in more cellular yield (230 ± 9.0 vs. 175 ± 13.2 million) in less time. Animal studies demonstrated that both MSC types significantly reduced liver fibrosis (P < 0.05 vs. the control group) while also improving liver function and downregulating fibrosis-associated gene expression. Conclusion AT-MSCs and UC-MSCs effectively reduce liver fibrosis. However, adipose cultures display an advantage by yielding a higher number of MSCs in a shorter duration, rendering them a viable choice for scenarios requiring immediate single-dose administration, often encountered in clinical settings.
Collapse
Affiliation(s)
- Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Maryam Azam
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Muhammad Umair
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Maria T. Baig
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Saba Tasneem
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Hira Butt
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Sheikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Centre, Allama Iqbal Medical College, Lahore, Pakistan
| |
Collapse
|
5
|
Chan AML, Ng AMH, Yunus MHM, Idrus RH, Law JX, Yazid MD, Chin KY, Yusof MRM, Ng SN, Koh B, Lokanathan Y. Single high-dose intravenous injection of Wharton's jelly-derived mesenchymal stem cell exerts protective effects in a rat model of metabolic syndrome. Stem Cell Res Ther 2024; 15:160. [PMID: 38835014 DOI: 10.1186/s13287-024-03769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/26/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a significant epidemiological problem worldwide. It is a pre-morbid, chronic and low-grade inflammatory disorder that precedes many chronic diseases. Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) could be used to treat MetS because they express high regenerative capacity, strong immunomodulatory properties and allogeneic biocompatibility. This study aims to investigate WJ-MSCs as a therapy against MetS in a rat model. METHODS Twenty-four animals were fed with high-fat high-fructose (HFHF) diet ad libitum. After 16 weeks, the animals were randomised into treatment groups (n = 8/group) and received a single intravenous administration of vehicle, that is, 3 × 106 cells/kg or 10 × 106 cells/kg of WJ-MSCs. A healthy animal group (n = 6) fed with a normal diet received the same vehicle as the control (CTRL). All animals were periodically assessed (every 4 weeks) for physical measurements, serum biochemistry, glucose tolerance test, cardiovascular function test and whole-body composition. Post-euthanasia, organs were weighed and processed for histopathology. Serum was collected for C-reactive protein and inflammatory cytokine assay. RESULTS The results between HFHF-treated groups and healthy or HFHF-CTRL did not achieve statistical significance (α = 0.05). The effects of WJ-MSCs were masked by the manifestation of different disease subclusters and continuous supplementation of HFHF diet. Based on secondary analysis, WJ-MSCs had major implications in improving cardiopulmonary morbidities. The lungs, liver and heart show significantly better histopathology in the WJ-MSC-treated groups than in the untreated CTRL group. The cells produced a dose-dependent effect (high dose lasted until week 8) in preventing further metabolic decay in MetS animals. CONCLUSIONS The establishment of safety and therapeutic proof-of-concept encourages further studies by improving the current therapeutic model.
Collapse
Affiliation(s)
- Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/46, 47301, Petaling Jaya, Selangor, Malaysia
| | - Angela Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Ruszymah Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Mohd Rafizul Mohd Yusof
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - See Nguan Ng
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/46, 47301, Petaling Jaya, Selangor, Malaysia
| | - Benson Koh
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Ding F, Liu Y, Li J, Wei X, Zhao J, Liu X, Zhang L. TC14012 enhances the anti-fibrosis effects of UC-MSCs on the liver by reducing collagen accumulation and ameliorating inflammation. Stem Cell Res Ther 2024; 15:44. [PMID: 38360740 PMCID: PMC10870604 DOI: 10.1186/s13287-024-03648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are attracting attention as a promising cell-based therapy for the treatment of liver fibrosis or cirrhosis. However, the strategies and potential mechanisms of MSCs therapy need further investigation. The CXCL12/CXCR4/CXCR7 chemokine axis is well known to regulate cell migration and is involved in the regulation of liver fibrosis. This study aims to treat MSCs with a CXCR7-specific agonist to evaluate its therapeutic effects on hepatic fibrosis and potential mechanisms. METHODS TC14012, a potent agonist of CXCR7, has been used to pretreat human umbilical cord-derived MSCs (UC-MSCs) and assess its effect on proliferation, apoptosis, migration, immunoregulation, and gene regulatory network. Then, CCl4-induced liver fibrosis mice models were used to evaluate the therapeutic effect and mechanism of TC14012-treated UC-MSCs for treating hepatic fibrosis. RESULTS TC14012 increased CXCR7 expression in UC-MSCs. Notably, co-culture of liver sinusoidal endothelial cells (LSEC) with TC14012-pretreated UC-MSCs increased CXCR7 expression in LSEC. Additionally, TC14012 promoted cell migration and mediated the immunoregulation of UC-MSCs. Compared to UC-MSCs without TC14012 pretreatment, UC-MSCs treated with TC14012 ameliorated live fibrosis by restoring CXCR7 expression, reducing collagen fibril accumulation, inhibiting hepatic stellate cells activation, and attenuating the inflammatory response. CONCLUSION This study suggests that TC14012 pretreatment can enhance the therapeutic effects of UC-MSCs on liver fibrosis, mainly by promoting the migration and immunoregulation of MSCs.
Collapse
Affiliation(s)
- Fan Ding
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yuting Liu
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jia Li
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiao Wei
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jiangdong Zhao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Xiaojing Liu
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Liqiang Zhang
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
7
|
Chen L, Guo W, Mao C, Shen J, Wan M. Liver fibrosis: pathological features, clinical treatment and application of therapeutic nanoagents. J Mater Chem B 2024; 12:1446-1466. [PMID: 38265305 DOI: 10.1039/d3tb02790b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Liver fibrosis is a reversible damage-repair response, the pathological features of which mainly include damage to hepatocytes, sinusoid capillarization, hepatic stellate cells activation, excessive accumulation of extracellular matrix and inflammatory response. Although some treatments (including drugs and stem cell therapy) for these pathological features have been shown to be effective, more clinical trials are needed to confirm their effectiveness. In recent years, nanomaterials-based therapies have emerged as an innovative and promising alternative to traditional drugs, being explored for the treatment of liver fibrosis diseases. Natural nanomaterials (including extracellular vesicles) and synthetic nanomaterials (including inorganic nanomaterials and organic nanomaterials) are developed to facilitate drug targeting delivery and combination therapy. In this review, the pathological features of liver fibrosis and the current anti-fibrosis drugs in clinical trials are briefly introduced, followed by a detailed introduction of the therapeutic nanoagents for the precise delivery of anti-fibrosis drugs. Finally, the future development trend in this field is discussed.
Collapse
Affiliation(s)
- Lin Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Wenyan Guo
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
8
|
Sitbon A, Delmotte PR, Goumard C, Turco C, Gautheron J, Conti F, Aoudjehane L, Scatton O, Monsel A. Therapeutic potentials of mesenchymal stromal cells-derived extracellular vesicles in liver failure and marginal liver graft rehabilitation: a scoping review. Minerva Anestesiol 2023; 89:690-706. [PMID: 37079286 DOI: 10.23736/s0375-9393.23.17265-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Liver failure includes distinct subgroups of diseases: Acute liver failure (ALF) without preexisting cirrhosis, acute-on-chronic liver failure (ACLF) (severe form of cirrhosis associated with organ failures and excess mortality), and liver fibrosis (LF). Inflammation plays a key role in ALF, LF, and more specifically in ACLF for which we have currently no treatment other than liver transplantation (LT). The increasing incidence of marginal liver grafts and the shortage of liver grafts require us to consider strategies to increase the quantity and quality of available liver grafts. Mesenchymal stromal cells (MSCs) have shown beneficial pleiotropic properties with limited translational potential due to the pitfalls associated with their cellular nature. MSC-derived extracellular vesicles (MSC-EVs) are innovative cell-free therapeutics for immunomodulation and regenerative purposes. MSC-EVs encompass further advantages: pleiotropic effects, low immunogenicity, storage stability, good safety profile, and possibility of bioengineering. Currently, no human studies explored the impact of MSC-EVs on liver disease, but several preclinical studies highlighted their beneficial effects. In ALF and ACLF, data showed that MSC-EVs attenuate hepatic stellate cells activation, exert antioxidant, anti-inflammatory, anti-apoptosis, anti-ferroptosis properties, and promote regeneration of the liver, autophagy, and improve metabolism through mitochondrial function recovery. In LF, MSC-EVs demonstrated anti-fibrotic properties associated with liver tissue regeneration. Normothermic-machine perfusion (NMP) combined with MSC-EVs represents an attractive therapy to improve liver regeneration before LT. Our review suggests a growing interest in MSC-EVs in liver failure and gives an appealing insight into their development to rehabilitate marginal liver grafts through NMP.
Collapse
Affiliation(s)
- Alexandre Sitbon
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France -
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France -
| | - Pierre-Romain Delmotte
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Claire Goumard
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Célia Turco
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Liver Transplantation Unit, Department of Digestive and Oncologic Surgery, University Hospital of Besançon, Besançon, France
| | - Jérémie Gautheron
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
| | - Filomena Conti
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
- IHU-Innovation of Cardiometabolism and Nutrition (ICAN), INSERM, Sorbonne University, Paris, France
| | - Lynda Aoudjehane
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- IHU-Innovation of Cardiometabolism and Nutrition (ICAN), INSERM, Sorbonne University, Paris, France
| | - Olivier Scatton
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Antoine Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
- INSERM UMRS-959 Immunology-Immunopathology-Immunotherapy (I3), Sorbonne University, Paris, France
| |
Collapse
|
9
|
Wang X, Li T, Bai X, Zhu Y, Zhang M, Wang L. Therapeutic prospect on umbilical cord mesenchymal stem cells in animal model with primary ovarian insufficiency: a meta-analysis. Front Med (Lausanne) 2023; 10:1211070. [PMID: 37324123 PMCID: PMC10264577 DOI: 10.3389/fmed.2023.1211070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Background Primary ovarian insufficiency (POI) leads to not only infertile but several adverse health events to women. Traditional treatment methods have their own set of limitations and drawbacks that vary in degree. Application of human umbilical cord mesenchymal stem cell (hUCMSC) is a promising strategy for POI. However, there is a lack of literatures on application of hUCMSC in human. Animal experimental model, however, can reflect the potential effectiveness of this employment. This study aimed to evaluate the curative effect of hUCMSC on animals with POI on a larger scale. Methods To gather data, Pubmed, Embase, and Cochrane Library were searched for studies published up to April 2022. Various indices, including the animals' estrous cycle, serum sex hormone levels, and follicle number in the ovary, were compared between the experimental group and those with Premature Ovarian Insufficiency (POI). Results The administration of human umbilical cord-derived mesenchymal stem cells (hUCMSC) has been shown to significantly improve the estrous cycle (RR: 3.32, 95% CI: [1.80, 6.12], I2 = 0%, P = 0.0001), but robustly decrease its length (SMD: -1.97, 95% CI: [-2.58, -1.36], I2 = 0%, P < 0.00001). It can also strikingly increase levels of serum estradiol (SMD: 5.34, 95% CI: [3.11, 7.57], I2 = 93%, P < 0.00001) and anti-müllerian hormone (SMD: 1.92, 95% CI: [0.60, 3.25], I2 = 68%, P = 0.004). Besides, it lowers levels of serum follicle-stimulating hormone (SMD: -3.02, 95% CI: [-4.88, -1.16], I2 = 93%, P = 0.001) and luteinising hormone (SMD: -2.22, 95% CI: [-3.67, -0.76], I2 = 78%, P = 0.003), and thus collectively promotes folliculogenesis (SMD: 4.90, 95% CI: [3.92, 5.88], I2 = 0%, P < 0.00001). Conclusions Based on the presented findings, it is concluded that the administration of hUCMSC in animal models with POI can result in significant improvements in several key indicators, including estrous cycle recovery, hormone level modulation, and promotion of folliculogenesis. These positive outcomes suggest that hUCMSC may have potential as a treatment for POI in humans. However, further research is needed to establish the safety and efficacy of hUCMSC in humans before their clinical application. Systematic review registration https://inplasy.com/inplasy-2023-5-0075/, identifier: INPLASY202350075.
Collapse
Affiliation(s)
- Xinrun Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuechai Bai
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yun Zhu
- Center for Clinical Big Data and Analytics, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meiliang Zhang
- Department of Obstetrics and Gynecology, Yiwu Maternity and Children Hosptial, Yiwu Branch of Children's Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Liang Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Zhang M, He Y, Zhang X, Gan S, Xie X, Zheng Z, Liao J, Chen W. Engineered cell-overexpression of circular RNA hybrid hydrogels promotes healing of calvarial defects. Biomater Sci 2023; 11:1665-1676. [PMID: 36472132 DOI: 10.1039/d2bm01472f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Craniomaxillofacial bone defects seriously affect the physical and mental health of patients. Bone marrow mesenchymal stem cells (BMSCs) are "gold standard" cells used for bone repair. However, the collection of BMSCs is invasive, and the osteogenic capacity is limited with age. Human umbilical cord mesenchymal stem cells (hUCMSCs) are promising alternative seed cells for bone tissue engineering. Our group previously used high-throughput sequencing technology and bioinformatics methods to detect circ-CTTN (hsa-circ_0003376) molecules, which may play an essential role in the osteogenic differentiation of hUCMSCs. In this study, osteogenic induction in vitro showed that the overexpressing circ-CTTN (OE group) exhibits a more pronounced osteogenic phenotype. The levels of osteogenesis-related genes in the OE group were highly expressed. The gelatin-methacrylate (GelMA) hydrogel possessed excellent biocompatibility and was used to load hUCMSCs. In the rat calvarial defect, the OE group presented a larger bone healing volume and denser bone trabecular distribution than other groups. So far, the overexpression of circ-CTTN could enhance the osteogenic differentiation of hUCMSCs and accelerate bone reconstruction. Our research could provide a new strategy and a strong theoretical basis for promoting hUCMSC clinical application in bone tissue engineering.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Yanjing He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China.
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Xi Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China.
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China.
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| |
Collapse
|
11
|
Therapeutic Efficiency of Nasal Mucosa-Derived Ectodermal Mesenchymal Stem Cells in Rats with Acute Hepatic Failure. Stem Cells Int 2023; 2023:6890299. [PMID: 36655034 PMCID: PMC9842420 DOI: 10.1155/2023/6890299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/06/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Background Liver transplantation is limited by the insufficiency of liver organ donors when treating end-stage liver disease or acute liver failure (ALF). Ectodermal mesenchymal stem cells (EMSCs) derived from nasal mucosa have emerged as an alternative cell-based therapy. However, the role of EMSCs in acute liver failure remains unclear. Methods EMSCs were obtained from the nasal mucosa tissue of rats. First, EMSCs were seeded on the gelatin-chitosan scaffolds, and the biocompatibility was evaluated. Next, the protective effects of EMSCs were investigated in carbon tetrachloride- (CCl4-) induced ALF rats. Finally, we applied an indirect coculture system to analyze the paracrine effects of EMSCs on damaged hepatocytes. A three-step nontransgenic technique was performed to transform EMSCs into hepatocyte-like cells (HLCs) in vitro. Results EMSCs exhibited a similar phenotype to other mesenchymal stem cells along with self-renewal and multilineage differentiation capabilities. EMSC-seeded gelatin-chitosan scaffolds can increase survival rates and ameliorate liver function and pathology of ALF rat models. Moreover, transplanted EMSCs can secrete paracrine factors to promote hepatocyte regeneration, targeted migration, and transdifferentiate into HLCs in response to the liver's microenvironment, which will then repair or replace the damaged hepatocytes. Similar to mature hepatocytes, HLCs generated from EMSCs possess functions of expressing specific hepatic markers, storing glycogen, and producing urea. Conclusions These results confirmed the feasibility of EMSCs in acute hepatic failure treatment. To our knowledge, this is the first time that EMSCs are used in the therapy of liver diseases. EMSCs are expected to be a novel and promising cell source in liver tissue engineering.
Collapse
|
12
|
Mechanisms of Action of Mesenchymal Stem Cells in Metabolic-Associated Fatty Liver Disease. Stem Cells Int 2023; 2023:3919002. [PMID: 36644008 PMCID: PMC9839417 DOI: 10.1155/2023/3919002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is currently the most common chronic liver disease worldwide. However, its pathophysiological mechanism is complicated, and currently, it has no FDA-approved pharmacological therapies. In recent years, mesenchymal stem cell (MSC) therapy has attracted increasing attention in the treatment of hepatic diseases. MSCs are multipotent stromal cells that originated from mesoderm mesenchyme, which have self-renewal and multipotent differentiation capability. Recent experiments and studies have found that MSCs have the latent capacity to be used for MAFLD treatment. MSCs have the potential to differentiate into hepatocytes, which could be induced into hepatocyte-like cells (HLCs) with liver-specific morphology and function under appropriate conditions to promote liver tissue regeneration. They can also reduce liver tissue injury and reverse the development of MAFLD by regulating immune response, antifibrotic activities, and lipid metabolism. Moreover, several advantages are attributed to MSC-derived exosomes (MSC-exosomes), such as targeted delivery, reliable reparability, and poor immunogenicity. After entering the target cells, MSC-exosomes help regulate cell function and signal transduction; thus, it is expected to become an emerging treatment for MAFLD. In this review, we comprehensively discussed the roles of MSCs in MAFLD, main signaling pathways of MSCs that affect MAFLD, and mechanisms of MSC-exosomes on MAFLD.
Collapse
|
13
|
Tarique S, Naeem N, Salim A, Ainuddin JA, Haneef K. The role of epigenetic modifiers in the hepatic differentiation of human umbilical cord derived mesenchymal stem cells. Biol Futur 2022; 73:495-502. [PMID: 36512201 DOI: 10.1007/s42977-022-00145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
Human umbilical cord (hUC) derived mesenchymal stem cells (MSCs) can be progressively differentiated into multiple lineages including hepatic lineages, and thus provide an excellent in vitro model system for the study of hepatic differentiation. At present, hepatic differentiation protocols are based on the use of soluble chemicals in the culture medium and provide immature hepatic like cells. Histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi) are two important epigenetic modifiers that regulate stem cell differentiation. Therefore, this study aimed to investigate the role of HDACi, valproic acid (VPA) and DNMTi,5-azacytidine (5-aza) along with a hepatic inducer in the hepatic differentiation of hUC-MSCs. hUC-MSCs were characterized via immunocytochemistry and flow cytometry. The final concentrations of VPA and 5-aza were optimized via MTT cytotoxicity assay. All treated groups were assessed for the presence of hepatic genes and proteins through qPCR and immunocytochemistry, respectively. The results showed that the pretreatment of epigenetic modifiers not only increased the hepatic genes but also increased the expression of the hepatic proteins. VPA induces hepatic differentiation in hUC-MSCs with significant gene expression of hepatic markers i.e., FOXA2 and CK8. Moreover, VPA pretreatment enhanced the expression of hepatic proteins AFP and TAT. The pretreatment of 5-aza shows significant gene expression of hepatic marker LDL-R. However, 5-aza treatment failed to induce hepatic protein expression. The results of the current study highlighted the effectiveness of epigenetic modifiers in the hepatic differentiation of hUC-MSCs. These differentiated cells can be employed in cell-based therapeutics for hepatic diseases in future.
Collapse
Affiliation(s)
- Sarah Tarique
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Nadia Naeem
- Dow Research Institute of Biotechnology and Biomedical Sciences (DRIBBS), Dow University of Health Sciences (DUHS), Ojha Campus Karachi, Karachi, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi, 75270, Pakistan
| | - Jahan Ara Ainuddin
- Department of Gynecology and Obstetrics, Dow University Hospital, Karachi, Pakistan
| | - Kanwal Haneef
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
14
|
Mesenchymal stem cells-derived exosomal miR-24-3p ameliorates non-alcohol fatty liver disease by targeting Keap-1. Biochem Biophys Res Commun 2022; 637:331-340. [DOI: 10.1016/j.bbrc.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
15
|
Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther 2022; 7:287. [PMID: 35963848 PMCID: PMC9376100 DOI: 10.1038/s41392-022-01119-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH) has become the leading cause of liver disease worldwide. NASH, an advanced form of NAFL, can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma. Currently, lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis. While there are still limited appropriate drugs specifically to treat NAFL/NASH, growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets. In this review, we discussed recent developments in etiology and prospective therapeutic targets, as well as pharmacological candidates in pre/clinical trials and patents, with a focus on diabetes, hepatic lipid metabolism, inflammation, and fibrosis. Importantly, growing evidence elucidates that the disruption of the gut-liver axis and microbe-derived metabolites drive the pathogenesis of NAFL/NASH. Extracellular vesicles (EVs) act as a signaling mediator, resulting in lipid accumulation, macrophage and hepatic stellate cell activation, further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH. Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH. Finally, other mechanisms, such as cell therapy and genetic approaches, also have enormous therapeutic potential. Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kyle L Poulsen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Liu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Qiaoling Song
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingda Wei
- School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
16
|
Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. MOLECULAR BIOMEDICINE 2022; 3:23. [PMID: 35895169 PMCID: PMC9326420 DOI: 10.1186/s43556-022-00088-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple immune cells and their products in the liver together form a complex and unique immune microenvironment, and preclinical models have demonstrated the importance of imbalances in the hepatic immune microenvironment in liver inflammatory diseases and immunocompromised liver diseases. Various immunotherapies have been attempted to modulate the hepatic immune microenvironment for the purpose of treating liver diseases. Mesenchymal stem cells (MSCs) have a comprehensive and plastic immunomodulatory capacity. On the one hand, they have been tried for the treatment of inflammatory liver diseases because of their excellent immunosuppressive capacity; On the other hand, MSCs have immune-enhancing properties in immunocompromised settings and can be modified into cellular carriers for targeted transport of immune enhancers by genetic modification, physical and chemical loading, and thus they are also used in the treatment of immunocompromised liver diseases such as chronic viral infections and hepatocellular carcinoma. In this review, we discuss the immunological basis and recent strategies of MSCs for the treatment of the aforementioned liver diseases. Specifically, we update the immune microenvironment of the liver and summarize the distinct mechanisms of immune microenvironment imbalance in inflammatory diseases and immunocompromised liver diseases, and how MSCs can fully exploit their immunotherapeutic role in liver diseases with both immune imbalance patterns.
Collapse
Affiliation(s)
- Heng-Tong Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
| | - Wei-Lin Jin
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China.
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
17
|
Shokravi S, Borisov V, Zaman BA, Niazvand F, Hazrati R, Khah MM, Thangavelu L, Marzban S, Sohrabi A, Zamani A. Mesenchymal stromal cells (MSCs) and their exosome in acute liver failure (ALF): a comprehensive review. Stem Cell Res Ther 2022; 13:192. [PMID: 35527304 PMCID: PMC9080215 DOI: 10.1186/s13287-022-02825-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
Recently, mesenchymal stromal cells (MSCs) and their derivative exosome have become a promising approach in the context of liver diseases therapy, in particular, acute liver failure (ALF). In addition to their differentiation into hepatocytes in vivo, which is partially involved in liver regeneration, MSCs support liver regeneration as a result of their appreciated competencies, such as antiapoptotic, immunomodulatory, antifibrotic, and also antioxidant attributes. Further, MSCs-secreted molecules inspire hepatocyte proliferation in vivo, facilitating damaged tissue recovery in ALF. Given these properties, various MSCs-based approaches have evolved and resulted in encouraging outcomes in ALF animal models and also displayed safety and also modest efficacy in human studies, providing a new avenue for ALF therapy. Irrespective of MSCs-derived exosome, MSCs-based strategies in ALF include administration of native MSCs, genetically modified MSCs, pretreated MSCs, MSCs delivery using biomaterials, and also MSCs in combination with and other therapeutic molecules or modalities. Herein, we will deliver an overview regarding the therapeutic effects of the MSCs and their exosomes in ALF. As well, we will discuss recent progress in preclinical and clinical studies and current challenges in MSCs-based therapies in ALF, with a special focus on in vivo reports.
Collapse
Affiliation(s)
- Samin Shokravi
- Department of Research and Academic Affairs, Larkin Community Hospital, Miami, FL USA
| | - Vitaliy Borisov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Duhok, Kurdistan Region Iraq
| | - Firoozeh Niazvand
- School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Raheleh Hazrati
- Department of Medicinal Chemistry, Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Mohammadi Khah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Sima Marzban
- Department of Research and Academic Affairs, Larkin Community Hospital, Miami, FL USA
| | - Armin Sohrabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zamani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Yuan M, Hu X, Yao L, Jiang Y, Li L. Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease. Stem Cell Res Ther 2022; 13:179. [PMID: 35505419 PMCID: PMC9066724 DOI: 10.1186/s13287-022-02858-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation, as an alternative strategy to orthotopic liver transplantation, has been evaluated for treating end-stage liver disease. Although the therapeutic mechanism of MSC transplantation remains unclear, accumulating evidence has demonstrated that MSCs can regenerate tissues and self-renew to repair the liver through differentiation into hepatocyte-like cells, immune regulation, and anti-fibrotic mechanisms. Multiple clinical trials have confirmed that MSC transplantation restores liver function and alleviates liver damage. A sufficient number of MSCs must be home to the target tissues after administration for successful application. However, inefficient homing of MSCs after systemic administration is a major limitation in MSC therapy. Here, we review the mechanisms and clinical application status of MSCs in the treatment of liver disease and comprehensively summarize the molecular mechanisms of MSC homing, and various strategies for promoting MSC homing to improve the treatment of liver disease.
Collapse
Affiliation(s)
- Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China. .,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
19
|
Wang Y, Yu C, Li Y, Bao H, Li X, Fan H, Huang J, Zhang Z. In vivo MRI tracking and therapeutic efficacy of transplanted mesenchymal stem cells labeled with ferrimagnetic vortex iron oxide nanorings for liver fibrosis repair. NANOSCALE 2022; 14:5227-5238. [PMID: 35315848 DOI: 10.1039/d1nr08544a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mesenchymal stem cells (MSCs) have showed promising effects in the treatment of liver fibrosis. Long-term and noninvasive in vivo tracking of transplanted MSCs is essential for understanding the therapeutic mechanism of MSCs during the therapy of liver fibrosis. In this study, we report the development of a ferrimagnetic vortex iron oxide nanoring (FVIO)-based nanotracer for the long-term visualization of transplanted human MSCs (hMSCs) by magnetic resonance imaging (MRI). The FVIOs were prepared by a hydrothermal reaction followed by hydrogen reduction. To endow the FVIOs with biocompatibility, polyethylene glycol amine (mPEG-NH2) was covalently coupled on the surface of FVIOs, forming FVIO@PEG nanotracers with high contrast enhancement and intracellular uptake. The hMSCs labeled with FVIO@PEG nanotracers exhibited enhanced MRI contrast than those labeled with a commercial contrast agent, and could be continuously monitored by MRI in liver fibrosis mice for 28 days after transplantation, clearly clarifying the migration behavior of hMSCs in vivo. Moreover, we explored the therapeutic mechanism of the FVIO@PEG labeled hMSCs in the amelioration of liver fibrosis, including the reduction in inflammation and oxidative stress, the inhibition of hepatic fibrosis-caused histopathological damage, as well as the down-regulation of the expression of relevant cytokines. The results obtained in this work may deepen our understanding of the behavior and role of hMSCs in the treatment of liver fibrosis, which is key to the clinical application of stem cells in the therapy of liver diseases.
Collapse
Affiliation(s)
- Yujie Wang
- College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yuxuan Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Hongying Bao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xiaodi Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Haiming Fan
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an, 710127, China.
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
20
|
Goncharov AG, Yurova KA, Shupletsova VV, Gazatova ND, Melashchenko OB, Litvinova LS. Characteristics of Umbilical-Cord Blood and Its Use in Clinical Practice. CELL AND TISSUE BIOLOGY 2022; 16:15-31. [DOI: 10.1134/s1990519x22010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 01/04/2025]
|
21
|
Salah RA, Nasr MA, El-Derby AM, Abd Elkodous M, Mohamed RH, El-Ekiaby N, Osama A, Elshenawy SE, Hamad MHM, Magdeldin S, Gabr MM, Abdelaziz AI, El-Badri NS. Hepatocellular carcinoma cell line-microenvironment induced cancer-associated phenotype, genotype and functionality in mesenchymal stem cells. Life Sci 2022; 288:120168. [PMID: 34826437 DOI: 10.1016/j.lfs.2021.120168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
Mesenchymal stromal cells (MSCs) have shown promise in liver cancer treatment. However, when MSCs are recruited to hepatic site of injury, they acquire cancerous promoting phenotype. AIMS To assess the influence of Hepatocellular carcinoma (HCC) microenvironment on human adipose MSCs (hA-MSCs) and predict hA-MSCs intracellular miRNAs role. MATERIALS AND METHODS After indirect co-culturing with Huh-7 cells, hA-MSCs were characterized via cell cycle profile, proliferation and migration potentials by MTT and scratch assays respectively. Functional enrichment analysis of deregulated proteins and miRNA targets was also analyzed. KEY FINDINGS Co-cultured hA-MSCs could acquire a cancer-associated phenotype as shown by upregulation of CAF, cancer markers, and downregulation of differentiation markers. Migration of these cancer-associated cells was increased concomitantly with upregulation of adhesion molecules, but not epithelial to mesenchymal transition markers. Co-cultured cells showed increased proliferation confirmed by downregulation in cell percentage in G0/G1, G2/M and upregulation in S phases of cell cycle. Upregulation of miR-17-5p and 615-5p in co-cultured hA-MSCs was also observed. Functional enrichment analysis of dysregulated proteins in co-cultured hA-MSCs, including our selected miRNAs targets, showed their involvement in development of cancer-associated characteristics. SIGNIFICANCE This study suggests an interaction between tumor cells and surrounding stromal components to generate cancer associated phenotype of some CAF-like characteristics, known to favor cancer progression. This sheds the light on the use of hA-MSCs in HCC therapy. hA-MSCs modulation may be partially achieved via dysregulation of intracellular miR17-5P and 615-5p expression, suggesting an important role for miRNAs in HCC pathogenesis, and as a possible therapeutic candidate.
Collapse
Affiliation(s)
- Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Mohamed A Nasr
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - M Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Rania Hassan Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nada El-Ekiaby
- School of Medicine NewGiza University (NGU), Cairo, Egypt
| | - Aya Osama
- Proteomics and metabolomics Research Program, Basic Research Department, Children Cancer Hospital Egypt, 57357 Cairo, Egypt
| | - Shimaa E Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | | | - Sameh Magdeldin
- Proteomics and metabolomics Research Program, Basic Research Department, Children Cancer Hospital Egypt, 57357 Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mahmoud M Gabr
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | | | - Nagwa S El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt.
| |
Collapse
|
22
|
Extracellular vesicles from human hepatic progenitor cells accelerate deep frostbite wound healing by promoting fibroblasts proliferation and inhibiting apoptosis. J Tissue Viability 2021; 31:286-293. [PMID: 34906420 DOI: 10.1016/j.jtv.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022]
Abstract
Frostbites are cold tissue damages frequently observed at high altitudes and under extremely cold conditions. Though their incidence rate is low, the resulting impact in affected patients can be very serious, often leading to amputations. Clinical management and the prediction of outcome can be of utmost importance to frostbite patients. A possible use of stem cell-derived extracellular vesicles (EVs) has been suggested for cutaneous wound healing and we, therefore, tested their use for the treatment of deep frostbite wound. To this end, the impacts of hHPC-derived EVs were evaluated in an in vivo animal model comprising of Kunming female mice as well as studied in vitro for the mechanism. We first characterized the EVs and these hHPC-derived EVs, when applied to treat frostbite wounds, accelerated wound healing in the in vivo animal model, as assessed by wound closure, re-epithelization thickness, collagen density and the expression of Collagen I and α-SMA. The proliferation and migration of human skin fibroblasts was also found to be increased by EVs in the in vitro experiments. The H2O2-induced apoptosis cell model, established to simulate the post-frostbite injury, was inhibited by EVs, with concomitant increase in the expression of Bcl-2 and decreased expression of Bax, further confirming the findings. Our novel results indicate that the application of EVs might be a promising strategy for deep frostbite wound healing.
Collapse
|
23
|
Choi J, Kang S, Kim B, So S, Han J, Kim GN, Lee MY, Roh S, Lee JY, Oh SJ, Sung YH, Lee Y, Kim SH, Kang E. Efficient hepatic differentiation and regeneration potential under xeno-free conditions using mass-producible amnion-derived mesenchymal stem cells. Stem Cell Res Ther 2021; 12:569. [PMID: 34772451 PMCID: PMC8588618 DOI: 10.1186/s13287-021-02470-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Amnion-derived mesenchymal stem cells (AM-MSCs) are an attractive source of stem cell therapy for patients with irreversible liver disease. However, there are obstacles to their use due to low efficiency and xeno-contamination for hepatic differentiation. METHODS We established an efficient protocol for differentiating AM-MSCs into hepatic progenitor cells (HPCs) by analyzing transcriptome-sequencing data. Furthermore, to generate the xeno-free conditioned differentiation protocol, we replaced fetal bovine serum (FBS) with polyvinyl alcohol (PVA). We investigated the hepatocyte functions with the expression of mRNA and protein, secretion of albumin, and activity of CYP3A4. Finally, to test the transplantable potential of HPCs, we transferred AM-MSCs along with hepatic progenitors after differentiated days 11, 12, and 13 based on the expression of hepatocyte-related genes and mitochondrial function. Further, we established a mouse model of acute liver failure using a thioacetamide (TAA) and cyclophosphamide monohydrate (CTX) and transplanted AM-HPCs in the mouse model through splenic injection. RESULTS We analyzed gene expression from RNA sequencing data in AM-MSCs and detected downregulation of hepatic development-associated genes including GATA6, KIT, AFP, c-MET, FGF2, EGF, and c-JUN, and upregulation of GSK3. Based on this result, we established an efficient hepatic differentiation protocol using the GSK3 inhibitor, CHIR99021. Replacing FBS with PVA resulted in improved differentiation ability, such as upregulation of hepatic maturation markers. The differentiated hepatocyte-like cells (HLCs) not only synthesized and secreted albumin, but also metabolized drugs by the CYP3A4 enzyme. The best time for translation of AM-HPCs was 12 days from the start of differentiation. When the AM-HPCs were transplanted into the liver failure mouse model, they settled in the damaged livers and differentiated into hepatocytes. CONCLUSION This study offers an efficient and xeno-free conditioned hepatic differentiation protocol and shows that AM-HPCs could be used as transplantable therapeutic materials. Thus, we suggest that AM-MSC-derived HPCs are promising cells for treating liver disease.
Collapse
Affiliation(s)
- Jiwan Choi
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
- Present Address: Center for Embryo & Stem Cell Research, CHA Advanced Research Institute and Department of Biomedical Science, CHA University, Pocheon-si, Gyeonggi, 13488, South Korea
| | - Seoon Kang
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
- Present Address: Center for Embryo & Stem Cell Research, CHA Advanced Research Institute and Department of Biomedical Science, CHA University, Pocheon-si, Gyeonggi, 13488, South Korea
| | - Bitnara Kim
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
- Present Address: Center for Embryo & Stem Cell Research, CHA Advanced Research Institute and Department of Biomedical Science, CHA University, Pocheon-si, Gyeonggi, 13488, South Korea
| | - Seongjun So
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Jongsuk Han
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
- Present Address: Center for Embryo & Stem Cell Research, CHA Advanced Research Institute and Department of Biomedical Science, CHA University, Pocheon-si, Gyeonggi, 13488, South Korea
| | - Gyeong-Nam Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Mi-Young Lee
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Seonae Roh
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Ji-Yoon Lee
- Asan Institute for Life Sciences, Asan Medical Center and Department of Convergence Medicine, College of Medicine, University of Ulsan, Seoul, 05505, South Korea
| | - Soo Jin Oh
- Asan Institute for Life Sciences, Asan Medical Center and Department of Convergence Medicine, College of Medicine, University of Ulsan, Seoul, 05505, South Korea
| | - Young Hoon Sung
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Yeonmi Lee
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
- Present Address: Center for Embryo & Stem Cell Research, CHA Advanced Research Institute and Department of Biomedical Science, CHA University, Pocheon-si, Gyeonggi, 13488, South Korea
| | - Sung Hoon Kim
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea.
| | - Eunju Kang
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea.
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea.
- Present Address: Center for Embryo & Stem Cell Research, CHA Advanced Research Institute and Department of Biomedical Science, CHA University, Pocheon-si, Gyeonggi, 13488, South Korea.
| |
Collapse
|
24
|
Yin F, Mao LC, Cai QQ, Jiang WH. Effect of Hepatocyte Growth Factor-Transfected Human Umbilical Cord Mesenchymal Stem Cells on Hepatic Stellate Cells by Regulating Transforming Growth Factor-β1/Smads Signaling Pathway. Stem Cells Dev 2021; 30:1070-1081. [PMID: 34514810 DOI: 10.1089/scd.2021.0136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Studies have shown that human umbilical cord mesenchymal stem cells (hUCMSCs) could ameliorate liver fibrosis (LF) through inhibiting the activation of hepatic stellate cells (HSCs). However, the specific mechanisms have not been studied clearly. The purpose of this study was to explore the possible mechanism of hepatocyte growth factor (HGF)-transfected hUCMSCs in inhibiting the proliferation and activation of HSCs-T6. The upper and lower double-cell coculture system was established among HGF-hUCMSCs, LV5-NC-hUCMSCs, hUCMSCs, and HSCs-T6 in experimental groups; HSCs-T6 were cultured alone as control group. After coculturing for 1, 2, and 3 days, results showed that HGF-transfected hUCMSCs could decrease cell viability of HSCs-T6 and promote apoptosis; inhibit their activation and reduce the expression of Collagen I, Collagen III, TGF-β1, Smad2 and Smad3, which may be related to inhibiting the activation of TGF-β1/Smads signaling pathway. These findings suggested that HGF-transfected hUCMSCs may be used as an alternative and novel therapeutic approach for the treatment of LF.
Collapse
Affiliation(s)
- Fei Yin
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, Jilin Province, China
| | - Li-Cui Mao
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, Jilin Province, China
| | - Qi-Qi Cai
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, Jilin Province, China
| | - Wen-Hua Jiang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
25
|
Caligiuri A, Gentilini A, Pastore M, Gitto S, Marra F. Cellular and Molecular Mechanisms Underlying Liver Fibrosis Regression. Cells 2021; 10:cells10102759. [PMID: 34685739 PMCID: PMC8534788 DOI: 10.3390/cells10102759] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver injury of different etiologies may result in hepatic fibrosis, a scar formation process consisting in altered deposition of extracellular matrix. Progression of fibrosis can lead to impaired liver architecture and function, resulting in cirrhosis and organ failure. Although fibrosis was previous thought to be an irreversible process, recent evidence convincingly demonstrated resolution of fibrosis in different organs when the cause of injury is removed. In the liver, due to its high regenerative ability, the extent of fibrosis regression and reversion to normal architecture is higher than in other tissues, even in advanced disease. The mechanisms of liver fibrosis resolution can be recapitulated in the following main points: removal of injurious factors causing chronic hepatic damage, elimination, or inactivation of myofibroblasts (through various cell fates, including apoptosis, senescence, and reprogramming), inactivation of inflammatory response and induction of anti-inflammatory/restorative pathways, and degradation of extracellular matrix. In this review, we will discuss the major cellular and molecular mechanisms underlying the regression of fibrosis/cirrhosis and the potential therapeutic approaches aimed at reversing the fibrogenic process.
Collapse
|
26
|
Wu MC, Meng QH. Current understanding of mesenchymal stem cells in liver diseases. World J Stem Cells 2021; 13:1349-1359. [PMID: 34630867 PMCID: PMC8474713 DOI: 10.4252/wjsc.v13.i9.1349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/01/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Liver diseases caused by various factors have become a significant threat to public health worldwide. Liver transplantation has been considered as the only effective treatment for end-stage liver diseases; however, it is limited by the shortage of donor organs, postoperative complications, long-term immunosuppression, and high cost of treatment. Thus, it is not available for all patients. Recently, mesenchymal stem cells (MSCs) transplantation has been extensively explored for repairing hepatic injury in various liver diseases. MSCs are multipotent adult progenitor cells originated from the embryonic mesoderm, and can be found in mesenchymal tissues including the bone marrow, umbilical cord blood, adipose tissue, liver, lung, and others. Although the precise mechanisms of MSC transplantation remain mysterious, MSCs have been demonstrated to be able to prevent the progression of liver injury and improve liver function. MSCs can self-renew by dividing, migrating to injury sites and differentiating into multiple cell types including hepatocytes. Additionally, MSCs have immune-modulatory properties and release paracrine soluble factors. Indeed, the safety and effectiveness of MSC therapy for liver diseases have been demonstrated in animals. However, pre-clinical and clinical trials are largely required to confirm its safety and efficacy before large scale clinical application. In this review, we will explore the molecular mechanisms underlying therapeutic effects of MSCs on liver diseases. We also summarize clinical advances in MSC-based therapies.
Collapse
Affiliation(s)
- Mu-Chen Wu
- Department of Medical Oncology,You An Hospital, Capital Medical University, Beijing 100069, China
| | - Qing-Hua Meng
- Department of Medical Oncology,You An Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
27
|
Zhang N, Zhao L, Liu D, Hu C, Wang Y, He T, Bi Y, He Y. Characterization of Urine-Derived Stem Cells from Patients with End-Stage Liver Diseases and Application to Induced Acute and Chronic Liver Injury of Nude Mice Model. Stem Cells Dev 2021; 30:1126-1138. [PMID: 34549601 DOI: 10.1089/scd.2021.0137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Urine-derived stem cells (USCs) are adult stem cells isolated from urine with strong proliferative ability and differentiation potentials. Cell transplantation of USCs could partly repair liver injury. It has been reported that the proliferative ability of bone mesenchymal stem cells in patients with chronic liver failure is significantly lower than in patients without liver disease. The aim of this study was therefore to evaluate the biological characteristics of USCs from end-stage liver disease patients (LD-USCs, USCs from patients with liver disease) compared with those from normal healthy individuals (N-USCs, USCs from normal individuals), with a view to determining whether autologous USCs can be applied to the treatment of liver disease. In this study USCs were isolated from urine samples of male patients with end-stage liver disease. Adherent USCs exhibit a spindle- or rice grain-like morphology, and express CD24, CD29, CD73, CD90, and CD146 surface markers, but not CD31, CD34, CD45, and CD105. We observed no differences in cell morphology or cell surface marker profile between LD-USCs and N-USCs. LD-USCs exhibited similar proliferative, colony-forming, apoptotic, and migratory abilities to N-USCs. Both USCs demonstrated similar capacities for osteogenic, adipogenic, and chondrogenic differentiation. When USCs were transplanted into CCl4 treatment-induced acute and chronic liver fibrosis mouse models, we observed a decrease in liver index, recovery of alanine aminotransferase and aspartate aminotransferase levels, alleviation of liver tissue injury, and dramatic improvement of liver tissue structure. USC transplantation can effectively recover liver function and improve liver tissue damage in acute or chronic liver injury mouse models. According to the results, we concluded that the biological characteristics of LD-USCs are not affected by basic liver disease. This study provides further evidence of the stem cell characteristics and liver repair function of LD-USCs, which may serve as a theoretical and experimental foundation for autologous USC transplantation technology in the treatment of liver failure and end-stage liver diseases.
Collapse
Affiliation(s)
- Nannan Zhang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhao
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Daijiang Liu
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing, China
| | - Chaoqun Hu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Wang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yun He
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Sharma A, Chakraborty A, Jaganathan BG. Review of the potential of mesenchymal stem cells for the treatment of infectious diseases. World J Stem Cells 2021; 13:568-593. [PMID: 34249228 PMCID: PMC8246252 DOI: 10.4252/wjsc.v13.i6.568] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
The therapeutic value of mesenchymal stem cells (MSCs) for the treatment of infectious diseases and the repair of disease-induced tissue damage has been explored extensively. MSCs inhibit inflammation, reduce pathogen load and tissue damage encountered during infectious diseases through the secretion of antimicrobial factors for pathogen clearance and they phagocytose certain bacteria themselves. MSCs dampen tissue damage during infection by downregulating the levels of pro-inflammatory cytokines, and inhibiting the excessive recruitment of neutrophils and proliferation of T cells at the site of injury. MSCs aid in the regeneration of damaged tissue by differentiating into the damaged cell types or by releasing paracrine factors that direct tissue regeneration, differentiation, and wound healing. In this review, we discuss in detail the various mechanisms by which MSCs help combat pathogens, tissue damage associated with infectious diseases, and challenges in utilizing MSCs for therapy.
Collapse
Affiliation(s)
- Amit Sharma
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anuja Chakraborty
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bithiah Grace Jaganathan
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
29
|
Pampalone M, Corrao S, Amico G, Vitale G, Alduino R, Conaldi PG, Pietrosi G. Human Amnion-Derived Mesenchymal Stromal Cells in Cirrhotic Patients with Refractory Ascites: A Possible Anti-Inflammatory Therapy for Preventing Spontaneous Bacterial Peritonitis. Stem Cell Rev Rep 2021; 17:981-998. [PMID: 33389680 PMCID: PMC8166706 DOI: 10.1007/s12015-020-10104-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/24/2022]
Abstract
Cirrhosis is associated with dysregulated immune cell activation and immune dysfunction. These conditions modify gut flora, facilitate bacterial translocation, and increase susceptibility to bacterial peritonitis and consequent systemic infections by dramatically affecting long-term patient survival. Human amnion-derived mesenchymal stromal cells (hA-MSCs) exert immunomodulatory potential benefit, and have the ability to modulate their actions, especially in situations requiring immune activation through mechanisms not fully understood. In this study, we aimed to investigate, in vitro, the immunostimulant or immunosuppressive effects of hA-MSCs on cellular components of ascitic fluid obtained from cirrhotic patients with refractory ascites. We found that hA-MSCs viability is not affected by ascitic fluid and, interestingly, hA-MSCs diminished the pro-inflammatory cytokine production, and promoted anti-inflammatory M2 macrophage polarization. Moreover, we found that there was no simultaneous significant decrease in the M1-like component, allowing a continual phagocytosis activity of macrophages and NK cells to restore a physiological condition. These data highlight the plasticity of hA-MSCs' immunomodulatory capacity, and pave the way to further understanding their role in conditions such as spontaneous bacterial peritonitis.
Collapse
Affiliation(s)
- Mariangela Pampalone
- Ri.MED Foundation, Palermo, Italy
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Simona Corrao
- Ri.MED Foundation, Palermo, Italy
- Section of Histology and Embryology, Department of Biomedicine Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Giandomenico Amico
- Ri.MED Foundation, Palermo, Italy
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Giampiero Vitale
- Ri.MED Foundation, Palermo, Italy
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Rossella Alduino
- Ri.MED Foundation, Palermo, Italy
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Pier Giulio Conaldi
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Giada Pietrosi
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
- Hepatology Unit, Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS-ISMETT, Palermo, Italy
| |
Collapse
|
30
|
Zhang P, Gan Z, Tang L, Zhou L, Huang X, Wang J. WITHDRAWN: Exosomes from microRNA-145-5p-modified HUCB-MSCs attenuate CCl4-induced hepatic fibrosis via down-regulating FSCN1 expression. Life Sci 2021:119404. [PMID: 33794251 DOI: 10.1016/j.lfs.2021.119404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Infection, No.3 Hospital of Xiangya, Central South University, Changsha 410013, Hunan, China
| | - Zeying Gan
- Department of Infection, No.3 Hospital of Xiangya, Central South University, Changsha 410013, Hunan, China
| | - Lanyan Tang
- Department of Infection, No.3 Hospital of Xiangya, Central South University, Changsha 410013, Hunan, China
| | - Lizhi Zhou
- Department of Infection, No.3 Hospital of Xiangya, Central South University, Changsha 410013, Hunan, China
| | - Xin Huang
- Department of Infection, No.3 Hospital of Xiangya, Central South University, Changsha 410013, Hunan, China
| | - Jianlong Wang
- Department of Orthopedics, No.3 Hospital of Xiangya, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
31
|
Baig MT, Ghufran H, Mehmood A, Azam M, Humayun S, Riazuddin S. Vitamin E pretreated Wharton's jelly-derived mesenchymal stem cells attenuate CCl 4-induced hepatocyte injury in vitro and liver fibrosis in vivo. Biochem Pharmacol 2021; 186:114480. [PMID: 33617844 DOI: 10.1016/j.bcp.2021.114480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
Oxidative microenvironment in fibrotic liver alleviates the efficacious outcome of mesenchymal stem cells (MSCs)-based cell therapy. Recent evidence suggests that pharmacological pretreatment is a rational approach to harness the MSCs with higher therapeutic potential. Here, we investigated whether Vitamin E pretreatment can boost the antifibrotic effects of Wharton's jelly-derived MSCs (WJMSCs). We used rat liver-derived hepatocytes injured by CCl4 treatment in co-culture system with Vitamin E pretreated-WJMSCs (Vit E-WJMSCs) to evaluate the hepatoprotective effect of Vit E-WJMSCs. After 24 h of co-culturing, we found that Vit E-WJMSCs rescued injured hepatocytes as hepatocyte injury-associated medium (AST, ALT, and ALP) and mRNA (Cyp2e1, Hif1-α, and Il-1β) markers reduced to normal levels. Subsequently, CCl4-induced liver fibrosis rat models were employed to examine the antifibrotic potential of Vit E-WJMSCs. After 1 month of cell transplantation, it was revealed that Vit E-WJMSCs transplantation ceased fibrotic progression, as evident by improved hepatic architecture and functions, more significantly in comparison to naïve WJMSCs. In addition, Vit E-WJMSCs transplantation decreased the expressions of fibrosis-associated gene (Tgf-β1, α-Sma, and Col1α1) markers in the liver parenchyma. Intriguingly, the results of tracing experiments discovered that more WJMSCs engrafted in the Vit E-WJMSCs treated rat livers compared to naïve WJMSCs treated livers. These findings implicate that pretreatment of WJMSCs with Vitamin E improves their tolerance to hostile niche of fibrotic liver; thereby further enhancing their efficacy for hepatic fibrosis.
Collapse
Affiliation(s)
- Maria Tayyab Baig
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Maryam Azam
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Shamsa Humayun
- Fatima Jinnah Medical University, Sir Ganga Ram Hospital, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan; Allama Iqbal Medical Research Centre, Jinnah Burn and Reconstructive Surgery Centre, Lahore, Pakistan.
| |
Collapse
|
32
|
He C, Yang Y, Zheng K, Chen Y, Liu S, Li Y, Han Q, Zhao RC, Wang L, Zhang F. Mesenchymal stem cell-based treatment in autoimmune liver diseases: underlying roles, advantages and challenges. Ther Adv Chronic Dis 2021; 12:2040622321993442. [PMID: 33633826 PMCID: PMC7887681 DOI: 10.1177/2040622321993442] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Autoimmune liver disease (AILD) is a series of chronic liver diseases with abnormal immune responses, including autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC). The treatment options for AILD remain limited, and the adverse side effects of the drugs that are typically used for treatment frequently lead to a low quality of life for AILD patients. Moreover, AILD patients may have a poor prognosis, especially those with an incomplete response to first-line treatment. Mesenchymal stem cells (MSCs) are pluripotent stem cells with low immunogenicity and can be conveniently harvested. MSC-based therapy is emerging as a promising approach for treating liver diseases based on their advantageous characteristics of immunomodulation, anti-fibrosis effects, and differentiation to hepatocytes, and accumulating evidence has revealed the positive effects of MSC therapy in AILD. In this review, we first summarize the mechanisms, safety, and efficacy of MSC treatment for AILD based on work in animal and clinical studies. We also discuss the challenges of MSC therapy in clinical applications. In summary, although promising data from preclinical studies are now available, MSC therapy is currently far for being applied in clinical practice, thus developing MSC therapy in AILD is still challenging and warrants further research.
Collapse
Affiliation(s)
- Chengmei He
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanlei Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kunyu Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yiran Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Suying Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qin Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| |
Collapse
|
33
|
Son YB, Bharti D, Kim SB, Bok EY, Lee SY, Ho HJ, Lee SL, Rho GJ. Hematological patterns and histopathological assessment of Miniature Pigs in the experiments on human mesenchymal stem cell transplantation. Int J Med Sci 2021; 18:1259-1268. [PMID: 33526987 PMCID: PMC7847617 DOI: 10.7150/ijms.53036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Multipotent and immune privileged properties of mesenchymal stem cells (MSCs) were investigated for the treatment of various clinical diseases. For the years, many researches into the animal studies evaluated human stem cell therapeutic capacity related to the regenerative medicine. However, there were limited reports on immune privileged properties of human MSCs in animal studies. The present study investigated hematological and biochemical parameter and lymphocyte subset in mini-pigs following human MSCs transplantation as a means of validation of reliability that influence the animal test results. Methods: The miniature pigs were transplanted with human MSCs seeded with scaffold. After transplantation, all animals were evaluated by CBC, biochemistry and lymphocyte subset test. After 9 weeks, all pigs were sacrificed and organs were histologically analyzed. Results: CBC test showed that levels of RBC were decreased and reticulocyte, WBC and neutrophil were increased in transient state initially after transplantation, but returned to normal value. The proportion of B lymphocyte and cytotoxic T cell were also initially enhanced within the normal range temporarily. The female and male miniature pigs showed normal ranges for blood chemistry assessments. During the 9 weeks post-operative period, the animals showed a continuous increase in body weight and length. Furthermore, no abnormal findings were observed from the histological analysis of sacrificed pigs. Conclusions: Overall, miniature pigs transplanted with human MSCs seeded with scaffold were found to have physiologically similar results to normal animals. This result might be a reliable indicator of the animal experiments using miniature pigs with human MSCs.
Collapse
Affiliation(s)
- Young-Bum Son
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Saet-Byul Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun-Yeong Bok
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang-Yeob Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Han-Jang Ho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
34
|
Xie Q, Liu R, Jiang J, Peng J, Yang C, Zhang W, Wang S, Song J. What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment? Stem Cell Res Ther 2020; 11:519. [PMID: 33261658 PMCID: PMC7705855 DOI: 10.1186/s13287-020-02011-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background Human umbilical cord mesenchymal stem cells (HUC-MSCs) present in the umbilical cord tissue are self-renewing and multipotent. They can renew themselves continuously and, under certain conditions, differentiate into one or more cell types constituting human tissues and organs. HUC-MSCs differentiate, among others, into osteoblasts, chondrocytes, and adipocytes and have the ability to secrete cytokines. The possibility of noninvasive harvesting and low immunogenicity of HUC-MSCs give them a unique advantage in clinical applications. In recent years, HUC-MSCs have been widely used in clinical practice, and some progress has been made in their use for therapeutic purposes. Main body This article describes two aspects of the clinical therapeutic effects of HUC-MSCs. On the one hand, it explains the benefits and mechanisms of HUC-MSC treatment in various diseases. On the other hand, it summarizes the results of basic research on HUC-MSCs related to clinical applications. The first part of this review highlights several functions of HUC-MSCs that are critical for their therapeutic properties: differentiation into terminal cells, immune regulation, paracrine effects, anti-inflammatory effects, anti-fibrotic effects, and regulating non-coding RNA. These characteristics of HUC-MSCs are discussed in the context of diabetes and its complications, liver disease, systemic lupus erythematosus, arthritis, brain injury and cerebrovascular diseases, heart diseases, spinal cord injury, respiratory diseases, viral infections, and other diseases. The second part emphasizes the need to establish an HUC-MSC cell bank, discusses tumorigenicity of HUC-MSCs and the characteristics of different in vitro generations of these cells in the treatment of diseases, and provides technical and theoretical support for the clinical applications of HUC-MSCs. Conclusion HUC-MSCs can treat a variety of diseases clinically and have achieved good therapeutic effects, and the development of HUC-MSC assistive technology has laid the foundation for its clinical application.
Collapse
Affiliation(s)
- Qixin Xie
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Rui Liu
- Department of Medical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jia Jiang
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Jing Peng
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Chunyan Yang
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Wen Zhang
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Sheng Wang
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China
| | - Jing Song
- Anhui Key Laboratory, Department of Pharmacy, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu, China.
| |
Collapse
|
35
|
Yin F, Wang WY, Mao LC, Cai QQ, Jiang WH. Effect of Human Umbilical Cord Mesenchymal Stem Cells Transfected with HGF on TGF-β1/Smad Signaling Pathway in Carbon Tetrachloride-Induced Liver Fibrosis Rats. Stem Cells Dev 2020; 29:1395-1406. [DOI: 10.1089/scd.2020.0060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Fei Yin
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Wen-Ying Wang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Li-Cui Mao
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Qi-Qi Cai
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Wen-Hua Jiang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| |
Collapse
|
36
|
Yang X, Meng Y, Han Z, Ye F, Wei L, Zong C. Mesenchymal stem cell therapy for liver disease: full of chances and challenges. Cell Biosci 2020; 10:123. [PMID: 33117520 PMCID: PMC7590738 DOI: 10.1186/s13578-020-00480-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Liver disease is a major health problem that endangers human health worldwide. Currently, whole organ allograft transplantation is the gold standard for the treatment of end-stage liver disease. A shortage of suitable organs, high costs and surgical complications limit the application of liver transplantation. Mesenchymal stem cell therapy has been considered as a promising alternative approach for end-stage liver disease. Some clinical trials have confirmed the effectiveness of MSC therapy for liver disease, but its application has not been promoted and approved. There are still many issues that should be solved prior to using MSC therapy in clinical applications. The types of liver disease that are most suitable for MSC application should be determined, and the preparation and engraftment of MSCs should be standardized. These may be bottlenecks that limit the use of MSCs. We investigated 22 completed and several ongoing clinical trials to discuss these questions from a clinical perspective. We also discussed the important mechanisms by which MSCs play a therapeutic role in liver disease. Finally, we also proposed novel prospective approaches that can improve the therapeutic effect of MSCs.
Collapse
Affiliation(s)
- Xue Yang
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai, 200438 China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai, 200438 China
| | - Zhipeng Han
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai, 200438 China
| | - Fei Ye
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai, 200438 China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai, 200438 China
| | - Chen Zong
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai, 200438 China
| |
Collapse
|
37
|
Michalik M, Gładyś A, Czekaj P. Differentiation of Cells Isolated from Afterbirth Tissues into Hepatocyte-Like Cells and Their Potential Clinical Application in Liver Regeneration. Stem Cell Rev Rep 2020; 17:581-603. [PMID: 32974851 PMCID: PMC8036182 DOI: 10.1007/s12015-020-10045-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Toxic, viral and surgical injuries can pose medical indications for liver transplantation. The number of patients waiting for a liver transplant still increases, but the number of organ donors is insufficient. Hepatocyte transplantation was suggested as a promising alternative to liver transplantation, however, this method has some significant limitations. Currently, afterbirth tissues seem to be an interesting source of cells for the regenerative medicine, because of their unique biological and immunological properties. It has been proven in experimental animal models, that the native stem cells, and to a greater extent, hepatocyte-like cells derived from them and transplanted, can accelerate regenerative processes and restore organ functioning. The effective protocol for obtaining functional mature hepatocytes in vitro is still not defined, but some studies resulted in obtaining functionally active hepatocyte-like cells. In this review, we focused on human stem cells isolated from placenta and umbilical cord, as potent precursors of hepatocyte-like cells for regenerative medicine. We summarized the results of preclinical and clinical studies dealing with the introduction of epithelial and mesenchymal stem cells of the afterbirth origin to the liver failure therapy. It was concluded that the use of native afterbirth epithelial and mesenchymal cells in the treatment of liver failure could support liver function and regeneration. This effect would be enhanced by the use of hepatocyte-like cells obtained from placental and/or umbilical stem cells. Graphical abstract ![]()
Collapse
Affiliation(s)
- Marcin Michalik
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Aleksandra Gładyś
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland.
| |
Collapse
|
38
|
Jia Y, Shu X, Yang X, Sun H, Cao H, Cao H, Zhang K, Xu Q, Li G, Yang Y. Enhanced therapeutic effects of umbilical cord mesenchymal stem cells after prolonged treatment for HBV-related liver failure and liver cirrhosis. Stem Cell Res Ther 2020; 11:277. [PMID: 32650827 PMCID: PMC7350639 DOI: 10.1186/s13287-020-01787-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background Umbilical cord mesenchymal stem cells (UCMSCs) have been demonstrated to have good therapeutic effects in the treatment of HBV-related liver diseases. However, the therapeutic effect of UCMSCs on HBV-related liver failure and liver cirrhosis and the variations in the efficacy of UCMSCs after different treatment courses remain poorly understood. Therefore, this study was designed to answer these two questions. Methods This was an observational study that retrospectively considered a 3-year period during which 513 patients who received stem cell infusion and met the criteria of hepatic failure and liver cirrhosis were identified from the databases of the Third Affiliated Hospital of Sun Yat-sen University. The eligible patients were categorized into the liver failure group and liver cirrhosis group. The two groups were divided into different subgroups according to the duration of stem cell therapy. In the liver failure group, group A received more than 4 weeks and group B received less than 4 weeks of stem cell therapy. In the liver cirrhosis group, patients who received more than 4 weeks of stem cell therapy belonged to group C, and the patients in group D received less than 4 weeks of stem cell therapy. The patients were followed up for 24 weeks. The demographics, clinical characteristics, biochemical factors, and model for end-stage liver disease (MELD) scores were recorded and compared among different groups. Results A total of 64 patients met the criteria for liver failure, and 59 patients met the criteria for liver cirrhosis. After UCMSC treatment, the levels of alanine aminotransferase (ALT), glutamic-oxaloacetic transaminase (AST), and total bilirubin (TBIL) at all postbaseline time points were significantly lower than those at baseline in the liver failure group and liver cirrhosis group; the prothrombin activity (PTA) and MELD scores gradually improved in only the liver failure group. Four weeks after UCMSC treatment, patients who received prolonged treatment with UCMSCs had a larger decrease in TBIL levels than patients who terminated treatment with UCMSCs. After more than 4 weeks of UCMSC treatment, there were no statistically significant differences in the changes in ALT, AST, TBIL, and PTA values and MELD scores between patients with liver failure who received prolonged treatment with UCMSCs and patients with liver cirrhosis who received prolonged treatment with UCMSCs at any time point. However, the median decrease and cumulative decrease in the TBIL level of patients with liver failure with a standard 4-week treatment course were larger than those of patients with liver cirrhosis with a standard 4-week treatment course. Conclusion Peripheral infusion of UCMSCs showed good therapeutic effects for HBV-related liver failure and liver cirrhosis. Prolonging the treatment course can increase the curative effect of UCMSCs for end-stage liver disease, especially for patients with cirrhosis.
Collapse
Affiliation(s)
- Yifan Jia
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xin Shu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiaoan Yang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Haixia Sun
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Huijuan Cao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hong Cao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Ka Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Qihuan Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Gang Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yang Yang
- Department of Liver Surgery and Liver Transplantation, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
39
|
Saleh M, Taher M, Sohrabpour AA, Vaezi AA, Nasiri Toosi M, Kavianpour M, Ghazvinian Z, Abdolahi S, Verdi J. Perspective of placenta derived mesenchymal stem cells in acute liver failure. Cell Biosci 2020; 10:71. [PMID: 32483484 PMCID: PMC7245988 DOI: 10.1186/s13578-020-00433-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023] Open
Abstract
Acute Liver failure (ALF) is a life-threatening disease and is determined by coagulopathy (with INR ≥ 1.5) and hepatic encephalopathy as a result of severe liver injury in patients without preexisting liver disease. Since there are problems with liver transplantation including lack of donors, use of immunosuppressive drugs, and high costs of this process, new therapeutic approaches alongside current treatments are needed. The placenta is a tissue that is normally discarded after childbirth. On the other hand, human placenta is a rich source of mesenchymal stem cells (MSCs), which is easily available, without moral problems, and its derived cells are less affected by age and environmental factors. Therefore, placenta-derived mesenchymal stem cells (PD-MSCs) can be considered as an allogeneic source for liver disease. Considering the studies on MSCs and their effects on various diseases, it can be stated that MSCs are among the most important agents to be used for novel future therapies of liver diseases. In this paper, we will investigate the effects of mesenchymal stem cells through migration and immigration to the site of injury, cell-to-cell contact, immunomodulatory effects, and secretory factors in ALF.
Collapse
Affiliation(s)
- Mahshid Saleh
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taher
- 2Gastroenterology and Hepatology, Tehran University of Medical Sciences, Imam Hospital Complex, Tehran, Iran
| | - Amir Ali Sohrabpour
- 3Gastroenterology and Hepatology, School of Medicine Shariati Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Amir Abbas Vaezi
- 4Department of Internal Medicine, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohsen Nasiri Toosi
- 5Internal Medicine, School of Medicine Liver Transplantation Research Center Imam, Khomeini Hospital Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Kavianpour
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghazvinian
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Abdolahi
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Cao Y, Ji C, Lu L. Mesenchymal stem cell therapy for liver fibrosis/cirrhosis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:562. [PMID: 32775363 PMCID: PMC7347778 DOI: 10.21037/atm.2020.02.119] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liver fibrosis represents a common outcome of most chronic liver diseases. Advanced fibrosis leads to cirrhosis for which no effective treatment is available except liver transplantation. Because of the limitations of liver transplantation, alternative therapeutic strategies are an urgent need to find. Recently, mesenchymal stem cells (MSCs) based therapy has been suggested as an attractive therapeutic option for liver fibrosis and cirrhosis, based on the promising results from preclinical and clinical studies. Although the precise mechanisms of MSC transplantation are still not fully understood, accumulating evidence has indicated that MSCs eliminate the progression of fibrosis due to their immune-modulatory properties. In this review, we summarise the properties of MSCs and their clinical application in the treatment of liver fibrosis and cirrhosis. We also discuss the mechanisms involved in MSC-dependent regulation of immune microenvironment in the context of liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Ling Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing 210029, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
41
|
Cernigliaro V, Peluso R, Zedda B, Silengo L, Tolosano E, Pellicano R, Altruda F, Fagoonee S. Evolving Cell-Based and Cell-Free Clinical Strategies for Treating Severe Human Liver Diseases. Cells 2020; 9:386. [PMID: 32046114 PMCID: PMC7072646 DOI: 10.3390/cells9020386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Liver diseases represent a major global health issue, and currently, liver transplantation is the only viable alternative to reduce mortality rates in patients with end-stage liver diseases. However, scarcity of donor organs and risk of recidivism requiring a re-transplantation remain major obstacles. Hence, much hope has turned towards cell-based therapy. Hepatocyte-like cells obtained from embryonic stem cells or adult stem cells bearing multipotent or pluripotent characteristics, as well as cell-based systems, such as organoids, bio-artificial liver devices, bioscaffolds and organ printing are indeed promising. New approaches based on extracellular vesicles are also being investigated as cell substitutes. Extracellular vesicles, through the transfer of bioactive molecules, can modulate liver regeneration and restore hepatic function. This review provides an update on the current state-of-art cell-based and cell-free strategies as alternatives to liver transplantation for patients with end-stage liver diseases.
Collapse
Affiliation(s)
- Viviana Cernigliaro
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (V.C.); (R.P.); (B.Z.)
- Maria Pia Hospital, 10126 Turin, Italy
| | - Rossella Peluso
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (V.C.); (R.P.); (B.Z.)
- Maria Pia Hospital, 10126 Turin, Italy
| | - Beatrice Zedda
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (V.C.); (R.P.); (B.Z.)
- Maria Pia Hospital, 10126 Turin, Italy
| | - Lorenzo Silengo
- Molecular Biotechnology Center, Departmet of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (L.S.); (E.T.)
| | - Emanuela Tolosano
- Molecular Biotechnology Center, Departmet of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (L.S.); (E.T.)
| | | | - Fiorella Altruda
- Molecular Biotechnology Center, Departmet of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (L.S.); (E.T.)
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
42
|
You Y, Wen DG, Gong JP, Liu ZJ. Research Status of Mesenchymal Stem Cells in Liver Transplantation. Cell Transplant 2019; 28:1490-1506. [PMID: 31512503 PMCID: PMC6923564 DOI: 10.1177/0963689719874786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liver transplantation has been deemed the best choice for end-stage liver disease
patients but immune rejection after surgery is still a serious problem. Patients have to
take immunosuppressive drugs for a long time after liver transplantation, and this often
leads to many side effects. Mesenchymal stem cells (MSCs) gradually became of interest to
researchers because of their powerful immunomodulatory effects. In the past, a large
number of in vitro and in vivo studies have demonstrated the great potential of MSCs for
participation in posttransplant immunomodulation. In addition, MSCs also have properties
that may potentially benefit patients undergoing liver transplantation. This article aims
to provide an overview of the current understanding of the immunomodulation achieved by
the application of MSCs in liver transplantation, to discuss the problems that may be
encountered when using MSCs in clinical practice, and to describe some of the underlying
capabilities of MSCs in liver transplantation. Cell–cell contact, soluble molecules, and
exosomes have been suggested to be critical approaches to MSCs’ immunoregulation in vitro;
however, the exact mechanism, especially in vivo, is still unclear. In recent years, the
clinical safety of MSCs has been proven by a series of clinical trials. The obstacles to
the clinical application of MSCs are decreasing, but large sample clinical trials
involving MSCs are still needed to further study their clinical effects.
Collapse
Affiliation(s)
- Yu You
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China.,Yu You and Di-guang Wen are equal contributors and co-first authors of this article
| | - Di-Guang Wen
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China.,Yu You and Di-guang Wen are equal contributors and co-first authors of this article
| | - Jian-Ping Gong
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China
| | - Zuo-Jin Liu
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
43
|
Yin F, Wang WY, Jiang WH. Human umbilical cord mesenchymal stem cells ameliorate liver fibrosis in vitro and in vivo: From biological characteristics to therapeutic mechanisms. World J Stem Cells 2019; 11:548-564. [PMID: 31523373 PMCID: PMC6716089 DOI: 10.4252/wjsc.v11.i8.548] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a wound-healing response to chronic injuries, characterized by the excessive accumulation of extracellular matrix or scar tissue within the liver; in addition, its formation is associated with multiple cytokines as well as several cell types and a variety of signaling pathways. When liver fibrosis is not well controlled, it can progress to liver cirrhosis, but it is reversible in principle. Thus far, no efficient therapy is available for treatment of liver fibrosis. Although liver transplantation is the preferred strategy, there are many challenges remaining in this approach, such as shortage of donor organs, immunological rejection, and surgical complications. Hence, there is a great need for an alternative therapeutic strategy. Currently, mesenchymal stem cell (MSC) therapy is considered a promising therapeutic strategy for the treatment of liver fibrosis; advantageously, the characteristics of MSCs are continuous self-renewal, proliferation, multipotent differentiation, and immunomodulatory activities. The human umbilical cord-derived (hUC)-MSCs possess not only the common attributes of MSCs but also more stable biological characteristics, relatively easy accessibility, abundant source, and no ethical issues (e.g., bone marrow being the adult source), making hUC-MSCs a good choice for treatment of liver fibrosis. In this review, we summarize the biological characteristics of hUC-MSCs and their paracrine effects, exerted by secretion of various cytokines, which ultimately promote liver repair through several signaling pathways. Additionally, we discuss the capacity of hUC-MSCs to differentiate into hepatocyte-like cells for compensating the function of existing hepatocytes, which may aid in amelioration of liver fibrosis. Finally, we discuss the current status of the research field and its future prospects.
Collapse
Affiliation(s)
- Fei Yin
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| | - Wen-Ying Wang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| | - Wen-Hua Jiang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
44
|
Hu C, Zhao L, Duan J, Li L. Strategies to improve the efficiency of mesenchymal stem cell transplantation for reversal of liver fibrosis. J Cell Mol Med 2019; 23:1657-1670. [PMID: 30635966 PMCID: PMC6378173 DOI: 10.1111/jcmm.14115] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
End‐stage liver fibrosis frequently progresses to portal vein thrombosis, formation of oesophageal varices, hepatic encephalopathy, ascites, hepatocellular carcinoma and liver failure. Mesenchymal stem cells (MSCs), when transplanted in vivo, migrate into fibrogenic livers and then differentiate into hepatocyte‐like cells or fuse with hepatocytes to protect liver function. Moreover, they can produce various growth factors and cytokines with anti‐inflammatory effects to reverse the fibrotic state of the liver. In addition, only a small number of MSCs migrate to the injured tissue after cell transplantation; consequently, multiple studies have investigated effective strategies to improve the survival rate and activity of MSCs for the treatment of liver fibrosis. In this review, we intend to arrange and analyse the current evidence related to MSC transplantation in liver fibrosis, to summarize the detailed mechanisms of MSC transplantation for the reversal of liver fibrosis and to discuss new strategies for this treatment. Finally, and most importantly, we will identify the current problems with MSC‐based therapies to repair liver fibrosis that must be addressed in order to develop safer and more effective routes for MSC transplantation. In this way, it will soon be possible to significantly improve the therapeutic effects of MSC transplantation for liver regeneration, as well as enhance the quality of life and prolong the survival time of patients with liver fibrosis.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Lingfei Zhao
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, PR China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Jinfeng Duan
- The Key Laboratory of Mental Disorder Management of Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
45
|
Yin Z, Jiang K, Li R, Dong C, Wang L. Multipotent mesenchymal stromal cells play critical roles in hepatocellular carcinoma initiation, progression and therapy. Mol Cancer 2018; 17:178. [PMID: 30593276 PMCID: PMC6309092 DOI: 10.1186/s12943-018-0926-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, with high morbidity, relapse and mortality rates. Multipotent mesenchymal stromal cells (MSCs) can be recruited to and become integral components of the HCC microenvironment and can influence tumor progression. This review discusses MSC migration to liver fibrosis and the HCC microenvironment, MSC involvement in HCC initiation and progression and the widespread application of MSCs in HCC-targeted therapy, thus clarifying the critical roles of MSCs in HCC.
Collapse
Affiliation(s)
- Zeli Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.,Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China.,Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Keqiu Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.,Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China.,Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Rui Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.,Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China.,Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Chengyong Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China. .,Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China. .,Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China.
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China. .,Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China. .,Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China.
| |
Collapse
|
46
|
Farouk S, Sabet S, Abu Zahra FA, El-Ghor AA. Bone marrow derived-mesenchymal stem cells downregulate IL17A dependent IL6/STAT3 signaling pathway in CCl4-induced rat liver fibrosis. PLoS One 2018; 13:e0206130. [PMID: 30346985 PMCID: PMC6197688 DOI: 10.1371/journal.pone.0206130] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
Therapeutic potential of bone marrow–derived mesenchymal stem cells (BM-MSCs) has been reported in several animal models of liver fibrosis. Interleukin (IL) 17A, IL6 and Stat3 have been described to play crucial roles in chronic liver injury. However, the modulatory effect of MSCs on these markers was controversial in different diseases. BM-MSCs might activate the IL6/STAT3 signaling pathway and promote cell invasion in hepatocellular carcinoma, but the immunomodulatory role of BM-MSCs on IL17A/IL6/STAT3 was not fully elucidated in liver fibrosis. In the present study, we evaluated the capacity of the BM-MSCs in the modulation of cytokines milieu and signal transducers, based on unique inflammatory genes Il17a and Il17f and their receptors Il17rc and their effect on the IL6/STAT3 pathway in CCl4-induced liver fibrosis in rats. A single dose of BM-MSCs was administered to the group with induced liver fibrosis, and the genes and proteins of interest were evaluated along six weeks after treatment. Our results showed a significant downregulation of Il17a, Il17ra, il17f and Il17rc genes. In accordance, BM-MSCs administration declined IL17, IL2 and IL6 serum proteins and downregulated IL17A and IL17RA proteins in liver tissue. Interestingly, BM-MSCs downregulated both Stat3 mRNA expression and p-STAT3, while Stat5a gene was downregulated and p-STAT5 protein was elevated. Also P-SMAD3 and TGFβR2 proteins were downregulated in response to BM-MSCs treatment. Collectively, we suggest that BM-MSCs might play an immunomodulatory role in the treatment of liver fibrosis through downregulation of IL17A affecting IL6/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Shimaa Farouk
- Department of Biology and Biotechnologies, Faculty of Science & Technology, AL-Neelain University, Khartoum, Sudan
| | - Salwa Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
- * E-mail:
| | - Fatma A. Abu Zahra
- Medical Research Center, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Akmal A. El-Ghor
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|