1
|
Berg S, Amini N, Solberg S, Ødegård RA, Kulseng BE, Fossmark R, Muller S, Dankel SN, Berge RK, Rønne E, Mjønes P, Hansen R. Ex Vivo Demonstration of a Novel Dual-Frequency Ultrasound Method for Quantitative Measurements of Liver Fat Content. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:159-168. [PMID: 39424495 DOI: 10.1016/j.ultrasmedbio.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE The rise in metabolic dysfunction-associated steatotic liver disease prevalence, closely linked with metabolic syndromes and obesity, demands accurate, cost-effective diagnostic methods for early-stage fat quantification in the liver. Here we demonstrate a novel dual-frequency ultrasound method that enables the quantitative measurement of liver fat fraction ex vivo and its correlation with actual fat content. METHODS A total of 24 Wistar rats were divided into four different groups, where three groups were given a high-fat diet for 2, 4, and 6 wk, and the last group was given a control diet for 6 wk. Livers were imaged with ultrasound ex vivo in a water bath with a dual-frequency ultrasound transducer and experimental imaging protocol implemented on the Verasonics Vantage research ultrasound scanner. Ultrasound data were post-processed to estimate the non-linear bulk elasticity parameter and the liver samples were analyzed with respect to fat fraction and triglycerides. RESULTS Rats given a high-fat diet had increased mean levels of liver fat compared with the control group. More importantly, correlation between the ultrasound-based estimation of the non-linear bulk elasticity parameter and fat fraction and triglycerides on an individual level was found to be strong (R2 = 0.81, p = 5.8 × 10-9 and R2 = 0.72, p = 3.6 × 10-7, respectively). CONCLUSION This study demonstrates the potential of the novel dual-frequency ultrasound method for the quantitative measurement of liver fat fraction in excised rat livers, showing great promise for this method to become clinically relevant in the diagnosis and follow-up of patients with fatty liver disease.
Collapse
Affiliation(s)
- Sigrid Berg
- Department of Health Research, SINTEF Digital, Trondheim, Norway.
| | | | | | - Rønnaug Astri Ødegård
- Regional Center of Obesity Research and Innovation (ObeCe), St Olavs Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bård Eirik Kulseng
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Reidar Fossmark
- Regional Center of Obesity Research and Innovation (ObeCe), St Olavs Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sébastien Muller
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | | | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elin Rønne
- Department of Pathology, St. Olavs Hospital, Trondheim, Norway
| | - Patricia Mjønes
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Pathology, St. Olavs Hospital, Trondheim, Norway
| | - Rune Hansen
- Department of Health Research, SINTEF Digital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
2
|
Fortier V, Mohamed A, McNabb E, Dana J, Zakarian R, Levesque IR, Reinhold C. R 2* Impact on Hepatic Fat Quantification With a Commercial Single Voxel Technique at 1.5 and 3.0 T. Can Assoc Radiol J 2024; 75:838-846. [PMID: 38832642 DOI: 10.1177/08465371241255896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Rationale and Objectives: Fat quantification accuracy using a commercial single-voxel high speed T2-corrected multi-echo (HISTO) technique and its robustness to R2* variations at 3.0 T, such as those introduced by iron in liver, has not been fully established. This study evaluated HISTO at 3.0 T and sought to reproduce results at 1.5 T. Methods: Phantoms were prepared with a range of fat content and R2*. Data were acquired at 1.5 T and 3.0 T, using HISTO and a Dixon technique. Fat quantification accuracy was evaluated as a function of R2*. The patient study included 239 consecutive patients. Data were acquired at 1.5 T or 3.0 T, using HISTO and Dixon techniques. The techniques were compared using Bland-Altman plots. Bias significance was evaluated using a one-sample t-test. Results: In phantoms, HISTO was accurate within 10% up to a R2* of 100 s-1 at both field strengths, while Dixon was accurate within 10% where R2* was accurately quantified (up to 350 s-1 at 1.5 T, and 550 s-1 at 3.0 T). In patients, where R2* was <100 s-1, fat quantification from both techniques agreed at 1.5 T (P = .71), but not at 3.0 T (P = .007), with a bias <1%. Conclusion: Results suggest that HISTO is reliable when R2* is <100 s-1, corresponding to patients with at most mild liver iron overload, and that it should be used with caution when R2* is >100 s-1. Dixon should be preferred for hepatic fat quantification due to its robustness to R2* variations.
Collapse
Affiliation(s)
- Véronique Fortier
- Department of Medical Imaging, McGill University Health Centre, Montreal, QC, Canada
- Diagnostic Radiology, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
- Medical Physics Unit, McGill University, Montreal, QC, Canada
| | - Ahmed Mohamed
- Radiology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Evan McNabb
- Department of Medical Imaging, McGill University Health Centre, Montreal, QC, Canada
| | - Jérémy Dana
- Department of Medical Imaging, McGill University Health Centre, Montreal, QC, Canada
| | - Rita Zakarian
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Ives R Levesque
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
- Medical Physics Unit, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Caroline Reinhold
- Department of Medical Imaging, McGill University Health Centre, Montreal, QC, Canada
- Diagnostic Radiology, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Montreal Imaging Experts Inc., Montreal, QC, Canada
| |
Collapse
|
3
|
Low G, Chee RKW, Wong YJ, Tandon P, Manolea F, Locas S, Ferguson C, Tu W, Wilson MP. Abbreviated Multiparametric MR Solution (the "Liver Triple Screen"), the Future of Non-Invasive MR Quantification of Liver Fat, Iron, and Fibrosis. Diagnostics (Basel) 2024; 14:2373. [PMID: 39518341 PMCID: PMC11545674 DOI: 10.3390/diagnostics14212373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: To review the findings of a multiparametric MRI (the "liver triple screen") solution for the non-invasive assessment of liver fat, iron, and fibrosis in patients with chronic liver disease (CLD). Methods: A retrospective evaluation of all consecutive triple screen MRI cases was performed at our institution over the last 32 months. Relevant clinical, laboratory, and radiologic data were analyzed using descriptive statistics. Results: There were 268 patients, including 162 (60.4%) males and 106 (39.6%) females. The mean age was 54 ± 15.2 years (range 16 to 71 years). The most common cause of CLD was metabolic dysfunction-associated steatotic liver disease (MASLD) at 45.5%. The most common referring physician group was Gastroenterology at 62.7%. In 23.9% of cases, the reason for ordering the MRI was a pre-existing failed or unreliable US elastography. There were 17 cases (6.3%) of MRI technical failure. Our analysis revealed liver fibrosis in 66% of patients, steatosis in 68.3%, and iron overload in 22.1%. Combined fibrosis and steatosis were seen in 28.7%, steatosis and iron overload in 16.8%, fibrosis and iron overload in 6%, and combined fibrosis, steatosis, and iron overload in 4.1%. A positive MEFIB index, a predictor of liver-related outcomes, was found in 57 (27.5%) of 207 patients. Incidental findings were found in 14.9% of all MRIs. Conclusions: The liver triple screen MRI is an effective tool for evaluating liver fat, iron, and fibrosis in patients with CLD. It provides essential clinical information and can help identify MASLD patients at risk for liver-related outcomes.
Collapse
Affiliation(s)
- Gavin Low
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB T6G 1C9, Canada (F.M.); (S.L.); (C.F.); (W.T.); (M.P.W.)
| | - Ryan K. W. Chee
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB T6G 1C9, Canada (F.M.); (S.L.); (C.F.); (W.T.); (M.P.W.)
| | - Yu Jun Wong
- Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, AB T6G 1C9, Canada; (Y.J.W.); (P.T.)
| | - Puneeta Tandon
- Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, AB T6G 1C9, Canada; (Y.J.W.); (P.T.)
| | - Florin Manolea
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB T6G 1C9, Canada (F.M.); (S.L.); (C.F.); (W.T.); (M.P.W.)
| | - Stephanie Locas
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB T6G 1C9, Canada (F.M.); (S.L.); (C.F.); (W.T.); (M.P.W.)
| | - Craig Ferguson
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB T6G 1C9, Canada (F.M.); (S.L.); (C.F.); (W.T.); (M.P.W.)
| | - Wendy Tu
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB T6G 1C9, Canada (F.M.); (S.L.); (C.F.); (W.T.); (M.P.W.)
| | - Mitchell P. Wilson
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB T6G 1C9, Canada (F.M.); (S.L.); (C.F.); (W.T.); (M.P.W.)
| |
Collapse
|
4
|
Yao S, Wei Y, Ye Z, Chen J, Duan T, Zhang Z, Song B. Hepatic Steatosis Has No Effect in Diagnosis Accuracy of LI-RADS v2018 Categorization of Hepatocellular Carcinoma in MR Imaging. J Magn Reson Imaging 2024; 59:2060-2070. [PMID: 34121266 DOI: 10.1002/jmri.27783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In clinical practice, hepatocellular carcinoma (HCC) is widely diagnosed by using MRI, however, whether the imaging features are affected by hepatic steatosis (HS) is still unknown. PURPOSE To investigate and compare the differences in HCC related imaging features between with- and without-HS groups, and to further determine whether HS affects the diagnosis accuracy of Liver Imaging Reporting and Data System (LI-RADS) v2018 of HCC in MRI. STUDY TYPE Prospective. SUBJECTS One hundred and seventy-one patients (mean age, 52 ± 11 years; range, 26-83 years) including 137 men and 34 women. FIELD STRENGTH/SEQUENCE 3.0 T, gradient echo (GRE). ASSESSMENT Subjects were classified as HS and non-HS groups according to MRI-proton density fat-fraction (PDFF). HS was defined as MRI-PDFF >5.6%. Three radiologists accessed HCC features and assigned LI-RADS categories in MRI independently based on LI-RADS v2018. Frequencies of HCC major features and LR categorization assignment between the two groups as well as interobserver agreement between the two radiologists were assessed. STATISTICAL TESTS Unpaired t-test, Chi-square test, Fisher's exact test, kappa statistic, intraclass correlation coefficient (ICC). A two-sided P value <0.05 was considered as statistically significant. RESULTS Major features including arterial hyperenhancement (APHE), enhancing "capsule" and nonperipheral "washout" observed between HS and non-HS groups were not significantly different (78.95% vs.78.62%, P = 0.866; 57.89% vs.52.98%, P = 0.483; and 75% vs.81.46%, P = 0.257, respectively), and the assessment of observation size showed a borderline difference (P = 0.059). No significant difference in LR-5 assignment between the two groups (69.74% vs. 72.85% for reader 1, P = 0.641; 71.05% vs. 72.19% for reader 2, P = 0.877). Interobserver agreement between the two radiologists showed almost perfect in LR-5 assignment (κ = 0.869) and size observation (ICC = 0.997). DATA CONCLUSION The diagnosis of HCC based on LI-RADS v2018 in MRI is of comparable performance regardless of HS, in which there is no significant difference in either the major imaging features or LR categorization. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 2.
Collapse
Affiliation(s)
- Shan Yao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Duan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Jia S, Zhou J, Zhang Q, Zhou S, Wang Z, Ye X, Wu J. Clinical research of fibroscan ‒ TE-CAP at noninvasive diagnosis of hepatic steatosis in children. Clinics (Sao Paulo) 2024; 79:100387. [PMID: 38805982 PMCID: PMC11152890 DOI: 10.1016/j.clinsp.2024.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND & AIMS The authors assess the diagnostic accuracy of the Transient Elastography-Controlled Attenuation Parameter (TE-CAP) in children of Southern China. METHODS 105 obese or overweight children and adolescents were enrolled in the diagnostic test of TE-CAP assessment of hepatic steatosis using MRI-PDFF. Hepatic steatosis grades S0-S3 were classified. Statistical correlation, agreement and consistency between methods were evaluated. The diagnostic efficiency of TE-CAP was evaluated. The authors used the cutoff value of TE-CAP to detect hepatic steatosis in another 356 children. RESULTS The Area Under Curve (AUC) of TE-CAP for grade ≥ S1, ≥ S2, and ≥ S3 steatosis were 0.975, 0.984, and 0.997, respectively. For detecting ≥ S1 steatosis, TE-CAP had a sensitivity of 96 % and a specificity of 97 %. For detecting ≥ S2 steatosis, TE-CAP had a sensitivity of 97 % and a specificity of 93 %. For detecting ≥ S3 steatosis, TE-CAP had a sensitivity of 1 and a specificity of 94 %. TE-CAP and MRI-PDFF had a linear correlation (r = 0. 0.87, p < 0.001). The hepatic steatosis was identified in 40.2 % (143/356) of children in which the obesity and overweight were 69.8 % (113/162) and 40.0 % (18/45). CONCLUSION TE-CAP showed excellent diagnostic accuracy in pediatric hepatic steatosis.
Collapse
Affiliation(s)
- Shuangzhen Jia
- Department of Gastroenterology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing City, China
| | - Jianli Zhou
- Department of Gastroenterology, Shenzhen Children's Hospital, Shenzhen City, China
| | - Qiao Zhang
- Department of Gastroenterology, Shenzhen Children's Hospital, Shenzhen City, China
| | - Shaoming Zhou
- Department of Gastroenterology, Shenzhen Children's Hospital, Shenzhen City, China
| | - Zhaoxia Wang
- Department of Gastroenterology, Shenzhen Children's Hospital, Shenzhen City, China
| | - Xiaolin Ye
- Department of Gastroenterology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing City, China
| | - Jie Wu
- Department of Gastroenterology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing City, China.
| |
Collapse
|
6
|
Zhou M, Huang H, Fan Y, Chen M, Li M, Wang Y. The application of quantitative perfusion analysis of golden-angle radial sparse parallel MRI and R2∗ value for predicting pathological prognostic factors in rectal cancer. Clin Radiol 2024; 79:124-132. [PMID: 38030505 DOI: 10.1016/j.crad.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
AIM To investigate the diagnostic value of golden-angle radial sparse parallel magnetic resonance imaging (MRI) (GRASP) and R2∗ in predicting the prognostic factors of resectable rectal cancer. MATERIALS AND METHODS A total of 108 patients with rectal adenocarcinoma were included in this retrospective study. The volume transfer constant (Ktrans), rate constant (Kep), plasma volume fraction (Ve), and R2∗ were obtained. Univariate and multivariate logistic regression were conducted. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of the imaging parameters. RESULTS The Ktrans was found to be significantly higher in rectal cancers with positive lymph node metastasis (LNM), higher tumour grade, positive lymphovascular invasion (LVI), and higher ki-67 (all p<0.05). The Kep was also significantly higher in the LNM-positive group (p<0.001), while the R2∗ was higher in rectal cancers with LNM-positive, higher tumour grade, LVI-positive, and higher ki-67 (all p<0.05). Combining the Ktrans and R2∗ provided the highest area under the ROC curve (AUC) for LNM-positive and higher ki-67 tumours differentiation (0.790 and 0.823, respectively). DISCUSSION Combining quantitative parameters of the Ktrans and R2∗ could be used to non-invasively predict pathological prognostic factors preoperatively.
Collapse
Affiliation(s)
- M Zhou
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - H Huang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Y Fan
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - M Chen
- Department of MR Scientific Marketing, Siemens Healthineers, Shanghai, 200135, China
| | - M Li
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Y Wang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
7
|
Gupta A, Dixit R, Prakash A. Non-invasive hepatic fat quantification: Can multi-echo Dixon help? Radiol Bras 2024; 57:e20230125. [PMID: 38993969 PMCID: PMC11235074 DOI: 10.1590/0100-3984.2023.0125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 07/13/2024] Open
Abstract
Objective To evaluate the diagnostic accuracy of multi-echo Dixon magnetic resonance imaging (MRI) in hepatic fat quantification, in comparison with that of magnetic resonance spectroscopy (MRS), on 3.0-T MRI. Materials and Methods Fifty-five adults with no known liver disease underwent MRI in a 3.0-T scanner for determination of the hepatic fat fraction, with two techniques: multi-echo Dixon, in a manually drawn region of interest (ROI) and in the entire liver parenchyma (automated segmentation); and MRS. The diagnostic accuracy and cutoff value for multi-echo Dixon were determined, with MRS being used as the reference standard. Results The mean fat fraction obtained by multi-echo Dixon in the manually drawn ROI and in the entire liver was 5.2 ± 5.8% and 6.6 ± 5.2%, respectively, whereas the mean hepatic fat fraction obtained by MRS was 5.7 ± 6.4%. A very strong positive correlation and good agreement were observed between MRS and multi-echo Dixon, for the ROI (r = 0.988, r2 = 0.978, p < 0.001) and for the entire liver parenchyma (r = 0.960, r2 = 0.922, p < 0.001). A moderate positive correlation was observed between the hepatic fat fraction and body mass index of the participants, regardless of the fat estimation technique employed. Conclusion For hepatic fat quantification, multi-echo Dixon MRI demonstrated a very strong positive correlation and good agreement with MRS (often considered the gold-standard noninvasive technique). Because multi-echo Dixon MRI is more readily available than is MRS, it can be used as a rapid tool for hepatic fat quantification, especially when the hepatic fat distribution is not homogeneous.
Collapse
Affiliation(s)
- Akarshi Gupta
- Department of Radiodiagnosis, Lok Nayak Hospital - Maulana Azad
Medical College, New Delhi, India
| | - Rashmi Dixit
- Department of Radiodiagnosis, Lok Nayak Hospital - Maulana Azad
Medical College, New Delhi, India
| | - Anjali Prakash
- Department of Radiodiagnosis, Lok Nayak Hospital - Maulana Azad
Medical College, New Delhi, India
| |
Collapse
|
8
|
Hajibonabi F, Sharma P, Davarpanah AH, Balthazar P, Moreno CC, Pectasides M, Nandwana SB. Performing Quality Control on Magnetic Resonance Imaging Liver Fat/Iron Quantification Studies: A Critical Requirement. J Comput Assist Tomogr 2023; 47:689-697. [PMID: 37707397 DOI: 10.1097/rct.0000000000001471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
OBJECTIVE Nonalcoholic fatty liver and iron overload can lead to cirrhosis requiring early detection. Magnetic resonance (MR) imaging utilizing chemical shift-encoded sequences and multi-Time of Echo single-voxel spectroscopy (SVS) are frequently used for assessment. The purpose of this study was to assess various quality factors of technical acceptability and any deficiencies in technologist performance in these fat/iron MR quantification studies. METHODS Institutional review board waived retrospective quality improvement review of 87 fat/iron MR studies performed over a 6-month period was evaluated. Technical acceptability/unacceptability for chemical shift-encoded sequences (q-Dixon and IDEAL-IQ) included data handling errors (missing maps), liver field coverage, fat/water swap, motion, or other artifacts. Similarly, data handling (missing table/spectroscopy), curve-fit, fat- and water-peak separation, and water-peak sharpness were evaluated for SVS technical acceptability. RESULTS Data handling errors were found in 11% (10/87) of studies with missing maps or entire sequence (SVS or q-Dixon). Twenty-seven percent (23/86) of the q-Dixon/IDEAL-IQ were technically unacceptable (incomplete liver-field [39%], other artifacts [35%], significant/severe motion [18%], global fat/water swap [4%], and multiple reasons [4%]). Twenty-eight percent (21/75) of SVS sequences were unacceptable (water-peak broadness [67%], poor curve-fit [19%] overlapping fat and water peaks [5%], and multiple reasons [9%]). CONCLUSIONS A high rate of preventable errors in fat/iron MR quantification studies indicates the need for routine quality control and evaluation of technologist performance and technical deficiencies that may exist within a radiology practice. Potential solutions such as instituting a checklist for technologists during each acquisition procedure and routine auditing may be required.
Collapse
Affiliation(s)
- Farid Hajibonabi
- From the Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | | | | | | | | | | | | |
Collapse
|
9
|
Su P, Chen JG, Tang DH. Exercise against nonalcoholic fatty liver disease: Possible role and mechanism of lipophagy. Life Sci 2023; 327:121837. [PMID: 37301321 DOI: 10.1016/j.lfs.2023.121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease worldwide. NAFLD is prevalent in about 30% of people worldwide. The lack of physical activity is considered as one of the risks for NAFLD, and approximately one-third of NAFLD patients hardly engage in physical activity. It is acknowledged that exercise is one of the optimal non-pharmacological methods for preventing and treating NAFLD. Different forms of exercise such as aerobic exercise, resistance exercise and even simply physical activity in a higher level can be beneficial in reducing liver lipid accumulation and disease progression for NAFLD patients. In NAFLD patients, exercise is helpful in lowering steatosis and enhancing liver function. The mechanisms underlying the prevention and treatment of NAFLD by exercise are various and complex. Current studies on the mechanisms have focused on the pro-lipolytic, anti-inflammatory, and antioxidant and lipophagy. Promotion of lipophagy is regarded as an important mechanism for prevention and improvement of NAFLD by exercise. Recent studies have investigated the above mechanism, yet the potential mechanism has not been completely elucidated. Thus, in this review, we cover the recent advances of exercise-promoted lipophagy in NAFLD treatment and prevention. Furthermore, given the fact that exercise activates SIRT1, we discuss the possible regulatory mechanisms of lipophagy by SIRT1 during exercise. These mechanisms need to be verified by further experimental studies.
Collapse
Affiliation(s)
- Pei Su
- Department of College of P.E. and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, People's Republic of China.
| | - Jian-Gang Chen
- Department of College of P.E. and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, People's Republic of China.
| | - Dong-Hui Tang
- Department of College of P.E. and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, People's Republic of China.
| |
Collapse
|
10
|
Jayasekera D, Hartmann P. Noninvasive biomarkers in pediatric nonalcoholic fatty liver disease. World J Hepatol 2023; 15:609-640. [PMID: 37305367 PMCID: PMC10251277 DOI: 10.4254/wjh.v15.i5.609] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide among children and adolescents. It encompasses a spectrum of disease, from its mildest form of isolated steatosis, to nonalcoholic steatohepatitis (NASH) to liver fibrosis and cirrhosis, or end-stage liver disease. The early diagnosis of pediatric NAFLD is crucial in preventing disease progression and in improving outcomes. Currently, liver biopsy is the gold standard for diagnosing NAFLD. However, given its invasive nature, there has been significant interest in developing noninvasive methods that can be used as accurate alternatives. Here, we review noninvasive biomarkers in pediatric NAFLD, focusing primarily on the diagnostic accuracy of various biomarkers as measured by their area under the receiver operating characteristic, sensitivity, and specificity. We examine two major approaches to noninvasive biomarkers in children with NAFLD. First, the biological approach that quantifies serological biomarkers. This includes the study of individual circulating molecules as biomarkers as well as the use of composite algorithms derived from combinations of biomarkers. The second is a more physical approach that examines data measured through imaging techniques as noninvasive biomarkers for pediatric NAFLD. Each of these approaches was applied to children with NAFLD, NASH, and NAFLD with fibrosis. Finally, we suggest possible areas for future research based on current gaps in knowledge.
Collapse
Affiliation(s)
- Dulshan Jayasekera
- Department of Internal Medicine and Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, United States
| | - Phillipp Hartmann
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
11
|
Low G, Ferguson C, Locas S, Tu W, Manolea F, Sam M, Wilson MP. Multiparametric MR assessment of liver fat, iron, and fibrosis: a concise overview of the liver "Triple Screen". Abdom Radiol (NY) 2023; 48:2060-2073. [PMID: 37041393 DOI: 10.1007/s00261-023-03887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 04/13/2023]
Abstract
Chronic liver disease (CLD) is a common source of morbidity and mortality worldwide. Non-alcoholic fatty liver disease (NAFLD) serves as a major cause of CLD with a rising annual prevalence. Additionally, iron overload can be both a cause and effect of CLD with a negative synergistic effect when combined with NAFLD. The development of state-of-the-art multiparametric MR solutions has led to a change in the diagnostic paradigm in CLD, shifting from traditional liver biopsy to innovative non-invasive methods for providing accurate and reliable detection and quantification of the disease burden. Novel imaging biomarkers such as MRI-PDFF for fat, R2 and R2* for iron, and liver stiffness for fibrosis provide important information for diagnosis, surveillance, risk stratification, and treatment. In this article, we provide a concise overview of the MR concepts and techniques involved in the detection and quantification of liver fat, iron, and fibrosis including their relative strengths and limitations and discuss a practical abbreviated MR protocol for clinical use that integrates these three MR biomarkers into a single simplified MR assessment. Multiparametric MR techniques provide accurate and reliable non-invasive detection and quantification of liver fat, iron, and fibrosis. These techniques can be combined in a single abbreviated MR "Triple Screen" assessment to offer a more complete metabolic imaging profile of CLD.
Collapse
Affiliation(s)
- Gavin Low
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Craig Ferguson
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Stephanie Locas
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Wendy Tu
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Florin Manolea
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Medica Sam
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Mitchell P Wilson
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada.
| |
Collapse
|
12
|
The relationship of Megamonas species with nonalcoholic fatty liver disease in children and adolescents revealed by metagenomics of gut microbiota. Sci Rep 2022; 12:22001. [PMID: 36539432 PMCID: PMC9767906 DOI: 10.1038/s41598-022-25140-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children and adolescents. The gut microbiota plays an important role in the pathophysiology of NAFLD through the gut-liver axis. Therefore, we aimed to investigate the genus and species of gut microbiota and their functions in children and adolescents with NAFLD. From May 2017 to July 2018, a total of 58 children and adolescents, including 27 abnormal weight (AW) (obese) NAFLD patients, 16 AW non-NAFLD children, and 15 healthy children, were enrolled in this study at Shenzhen Children's Hospital. All of them underwent magnetic resonance spectroscopy (MRS) to quantify the liver fat fraction. Stool samples were collected and analysed with metagenomics. According to body mass index (BMI) and MRS proton density fat fraction (MRS-PDFF), we divided the participants into BMI groups, including the AW group (n = 43) and the Lean group (n = 15); MRS groups, including the NAFLD group (n = 27) and the Control group (n = 31); and BMI-MRS 3 groups, including NAFLD_AW (AW children with NAFLD) (n = 27), Ctrl_AW (n = 16) (AW children without NAFLD) and Ctrl_Lean (n = 15). There was no difference in sex or age among those groups (p > 0.05). In the BMI groups, at the genus level, Dialister, Akkermansia, Odoribacter, and Alistipes exhibited a significant decrease in AW children compared with the Lean group. At the species level, Megamonas hypermegale was increased in the AW group, while Akkermansia muciniphila, Dialister invisus, Alistipes putredinis, Bacteroides massiliensis, Odoribacter splanchnicus, and Bacteroides thetaiotaomicron were decreased in AW children, compared to the Lean group. Compared with the Control group, the genus Megamonas, the species of Megamonas hypermegale and Megamonas rupellensis, increased in the NAFLD group. Furthermore, the genus Megamonas was enriched in the NAFLD_AW group, while Odoribacter, Alistipes, Dialister, and Akkermansia were depleted compared with the Ctrl_Lean or Ctrl_AW group at the genus level. Megamonas hypermegale and Megamonas rupellensis exhibited a significant increase in NAFLD_AW children compared with the Ctrl_Lean or Ctrl_AW group at the species level. Compared with healthy children, the pathways of P461-PWY contributed by the genus Megamonas were significantly increased in NAFLD_AW. We found that compared to healthy children, the genus Megamonas was enriched, while Megamonas hypermegale and Megamonas rupellensis were enriched at the species level in children and adolescents with NAFLD. This indicates that the NAFLD status and/or diet associated with NAFLD patients might lead to the enrichment of the genus Megamonas or Megamonas species.
Collapse
|
13
|
Sim KC, Kim MJ, Cho Y, Kim HJ, Park BJ, Sung DJ, Han NY, Han YE, Kim TH, Lee YJ. Radiomics Analysis of Magnetic Resonance Proton Density Fat Fraction for the Diagnosis of Hepatic Steatosis in Patients With Suspected Non-Alcoholic Fatty Liver Disease. J Korean Med Sci 2022; 37:e339. [PMID: 36536543 PMCID: PMC9763710 DOI: 10.3346/jkms.2022.37.e339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND This study aimed to assess the diagnostic feasibility of radiomics analysis based on magnetic resonance (MR)-proton density fat fraction (PDFF) for grading hepatic steatosis in patients with suspected non-alcoholic fatty liver disease (NAFLD). METHODS This retrospective study included 106 patients with suspected NAFLD who underwent a hepatic parenchymal biopsy. MR-PDFF and MR spectroscopy were performed on all patients using a 3.0-T scanner. Following whole-volume segmentation of the MR-PDFF images, 833 radiomic features were analyzed using a commercial program. Radiologic features were analyzed, including median and mean values of the multiple regions of interest and variable clinical features. A random forest regressor was used to extract the important radiomic, radiologic, and clinical features. The model was trained using 20 repeated 10-fold cross-validations to classify the NAFLD steatosis grade. The area under the receiver operating characteristic curve (AUROC) was evaluated using a classifier to diagnose steatosis grades. RESULTS The levels of pathological hepatic steatosis were classified as low-grade steatosis (grade, 0-1; n = 82) and high-grade steatosis (grade, 2-3; n = 24). Fifteen important features were extracted from the radiomic analysis, with the three most important being wavelet-LLL neighboring gray tone difference matrix coarseness, original first-order mean, and 90th percentile. The MR spectroscopy mean value was extracted as a more important feature than the MR-PDFF mean or median in radiologic measures. Alanine aminotransferase has been identified as the most important clinical feature. The AUROC of the classifier using radiomics was comparable to that of radiologic measures (0.94 ± 0.09 and 0.96 ± 0.08, respectively). CONCLUSION MR-PDFF-derived radiomics may provide a comparable alternative for grading hepatic steatosis in patients with suspected NAFLD.
Collapse
Affiliation(s)
- Ki Choon Sim
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Min Ju Kim
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.
| | - Yongwon Cho
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
- AI Center, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hyun Jin Kim
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Beom Jin Park
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Deuk Jae Sung
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Na Yeon Han
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Yeo Eun Han
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Tae Hyung Kim
- Department of Gastroenterology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Yoo Jin Lee
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Cusi K, Isaacs S, Barb D, Basu R, Caprio S, Garvey WT, Kashyap S, Mechanick JI, Mouzaki M, Nadolsky K, Rinella ME, Vos MB, Younossi Z. American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocr Pract 2022; 28:528-562. [PMID: 35569886 DOI: 10.1016/j.eprac.2022.03.010] [Citation(s) in RCA: 475] [Impact Index Per Article: 158.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To provide evidence-based recommendations regarding the diagnosis and management of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) to endocrinologists, primary care clinicians, health care professionals, and other stakeholders. METHODS The American Association of Clinical Endocrinology conducted literature searches for relevant articles published from January 1, 2010, to November 15, 2021. A task force of medical experts developed evidence-based guideline recommendations based on a review of clinical evidence, expertise, and informal consensus, according to established American Association of Clinical Endocrinology protocol for guideline development. RECOMMENDATION SUMMARY This guideline includes 34 evidence-based clinical practice recommendations for the diagnosis and management of persons with NAFLD and/or NASH and contains 385 citations that inform the evidence base. CONCLUSION NAFLD is a major public health problem that will only worsen in the future, as it is closely linked to the epidemics of obesity and type 2 diabetes mellitus. Given this link, endocrinologists and primary care physicians are in an ideal position to identify persons at risk on to prevent the development of cirrhosis and comorbidities. While no U.S. Food and Drug Administration-approved medications to treat NAFLD are currently available, management can include lifestyle changes that promote an energy deficit leading to weight loss; consideration of weight loss medications, particularly glucagon-like peptide-1 receptor agonists; and bariatric surgery, for persons who have obesity, as well as some diabetes medications, such as pioglitazone and glucagon-like peptide-1 receptor agonists, for those with type 2 diabetes mellitus and NASH. Management should also promote cardiometabolic health and reduce the increased cardiovascular risk associated with this complex disease.
Collapse
Affiliation(s)
- Kenneth Cusi
- Guideine and Algorithm Task Forces Co-Chair, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida
| | - Scott Isaacs
- Guideline and Algorithm Task Forces Co-Chair, Division of Endocrinology, Emory University School of Medicine, Atlanta, Georgia
| | - Diana Barb
- University of Florida, Gainesville, Florida
| | - Rita Basu
- Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sonia Caprio
- Yale University School of Medicine, New Haven, Connecticut
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Jeffrey I Mechanick
- The Marie-Josee and Henry R. Kravis Center for Cardiovascular Health at Mount Sinai Heart, Icahn School of Medicine at Mount Sinai
| | | | - Karl Nadolsky
- Michigan State University College of Human Medicine, Grand Rapids, Michigan
| | - Mary E Rinella
- AASLD Representative, University of Pritzker School of Medicine, Chicago, Illinois
| | - Miriam B Vos
- Center for Clinical and Translational Research, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Zobair Younossi
- AASLD Representative, Inova Medicine, Inova Health System, Falls Church, Virginia
| |
Collapse
|
15
|
Brancato V, Della Pepa G, Bozzetto L, Vitale M, Annuzzi G, Basso L, Cavaliere C, Salvatore M, Rivellese AA, Monti S. Evaluation of a Whole-Liver Dixon-Based MRI Approach for Quantification of Liver Fat in Patients with Type 2 Diabetes Treated with Two Isocaloric Different Diets. Diagnostics (Basel) 2022; 12:diagnostics12020514. [PMID: 35204604 PMCID: PMC8871286 DOI: 10.3390/diagnostics12020514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Dixon-based methods for the detection of fatty liver have the advantage of being non-invasive, easy to perform and analyze, and to provide a whole-liver coverage during the acquisition. The aim of the study was to assess the feasibility of a whole-liver Dixon-based approach for liver fat quantification in type 2 diabetes (T2D) patients who underwent two different isocaloric dietary treatments: a diet rich in monosaturated fatty acids (MUFA) and a multifactorial diet. Thirty-nine T2D patients were randomly assigned to MUFA diet (n = 21) and multifactorial diet (n = 18). The mean values of the proton density fat fraction (PDFF) over the whole liver and over the ROI corresponding to that chosen for MRS were compared to MRS-PDFF using Spearman’s correlation (ρ). Before–after changes in percentage of liver volume corresponding to MRI-PDFF above thresholds associated with hepatic steatosis (LV%TH, with TH = 5.56%, 7.97% and 8.8%) were considered to assess the proposed approach and compared between diets using Wilcoxon rank-sum test. Statistical significance set at p < 0.05. A strong linear relationship was found between MRS-PDFF and MRI-PDFFs (ρ = 0.85, p < 0.0001). Changes in LV%TH% were significantly higher (p < 0.05) in the multifactorial diet than in MUFA diet (25% vs. 9%, 35% vs. 12%, and 38% vs. 13% decrease, respectively, for TH = 5.56%, 7.97%, and 8.8%) and this was reproducible compared to results obtained using the standard liver fat analysis. A volumetric approach based on Dixon method could be an effective, non-invasive technique that could be used for the quantitative analysis of hepatic steatosis in T2D patients.
Collapse
Affiliation(s)
- Valentina Brancato
- IRCCS Synlab SDN, 80143 Naples, Italy; (L.B.); (C.C.); (M.S.)
- Correspondence:
| | - Giuseppe Della Pepa
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (G.D.P.); (L.B.); (M.V.); (G.A.); (A.A.R.)
| | - Lutgarda Bozzetto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (G.D.P.); (L.B.); (M.V.); (G.A.); (A.A.R.)
| | - Marilena Vitale
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (G.D.P.); (L.B.); (M.V.); (G.A.); (A.A.R.)
| | - Giovanni Annuzzi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (G.D.P.); (L.B.); (M.V.); (G.A.); (A.A.R.)
| | - Luca Basso
- IRCCS Synlab SDN, 80143 Naples, Italy; (L.B.); (C.C.); (M.S.)
| | - Carlo Cavaliere
- IRCCS Synlab SDN, 80143 Naples, Italy; (L.B.); (C.C.); (M.S.)
| | - Marco Salvatore
- IRCCS Synlab SDN, 80143 Naples, Italy; (L.B.); (C.C.); (M.S.)
| | - Angela Albarosa Rivellese
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (G.D.P.); (L.B.); (M.V.); (G.A.); (A.A.R.)
| | - Serena Monti
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy;
| |
Collapse
|
16
|
Yang Y, Xu K, Chen X, Ding J, Shi J, Li J. The Accuracy and Clinical Relevance of the Multi-echo Dixon Technique for Evaluating Changes to Hepatic Steatosis in Patients with Non-alcoholic Fatty Liver Disease Treated with Formulated Food. Magn Reson Med Sci 2022; 22:263-271. [PMID: 35676065 PMCID: PMC10086395 DOI: 10.2463/mrms.mp.2021-0168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The Multi-echo Dixon (ME-Dixon) is a non-invasive quantitative MRI technique to diagnose non-alcoholic fatty liver disease (NAFLD). In this study, the hydrogen proton MR spectroscopy (1H-MRS) was used as a reference to explore the accuracy of the ME-Dixon technique in evaluating hepatic steatosis in NAFLD patients after ingesting formulated food and its correlation with changes in clinical indicators. METHODS Twenty-seven patients with NAFLD were enrolled. Fifteen patients completed 12 weeks of treatment with prebiotics and dietary fiber. In addition, abdominal MRI scans and blood tests were performed before and after treatment. The MRI-proton density fat fraction (MRI-PDFF) and MRS-PDFF were measured using the ME-Dixon and 1H-MRS techniques. The Bland-Altman method and Pearson correlation analysis were used to test the consistency of the two techniques for measuring the liver fat content and the changed values. Besides, correlation analysis was conducted between the MRI-PDFF value and metabolic indicators. RESULTS In the PDFF quantification of 42 person-times and the monitoring of the PDFF change in 15 patients under treatment, there was a good consistency and a correlation between MRI and MRS. At baseline, MRI-PDFF was positively correlated with insulin resistance index (HOMA-IR), fatty liver index (FLI), and liver enzymes. After treatment, the changes in MRI-PDFF were positively correlated with the recovery degree of FLI and liver enzymes. CONCLUSION ME-Dixon has a good consistency and a correlation with MRS in quantifying the liver fat content and monitoring the treatment effect, which may be used as an accurate indicator for clinical monitoring of changes in the liver fat content.
Collapse
Affiliation(s)
- Ying Yang
- Department of Radiology, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine
| | - Kuanghui Xu
- Department of Radiology, Hangzhou Normal University Affiliated Hospital
| | - Xiaofei Chen
- Department of Radiology, Hangzhou Normal University Affiliated Hospital
| | - Jianping Ding
- Department of Radiology, Hangzhou Normal University Affiliated Hospital
| | - Junping Shi
- Department of Clinical Medicine, Medical College, Hangzhou Normal University
| | - Jie Li
- Department of Radiology, Hangzhou Normal University Affiliated Hospital
| |
Collapse
|
17
|
Patil SB, Cannane S, Poyyamoli S, Anand RR, Kasi V. Role of Advanced MRI Techniques in the Quantitative Assessment of Liver Fat—A Multimodality-Based Comparative Study of Diagnostic Performance in a Tertiary Care Institute. JOURNAL OF GASTROINTESTINAL AND ABDOMINAL RADIOLOGY 2021. [DOI: 10.1055/s-0041-1731964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Abstract
Objective To evaluate the accuracy of noninvasive imaging methods including gray-scale ultrasound, ultrasound shear wave elastography, unenhanced computed tomography (CT), and proton density fat fraction (PDFF) on magnetic resonance imaging (MRI) using three-dimensional (3D) multiecho multipoint chemical shift–encoded spoiled gradient echo (q-DIXON) sequence in the quantification of hepatic steatosis, with proton MR spectroscopy (H1-MRS) as the reference standard in Indian population.
Methods Our study included 100 consecutive adult patients referred to the department of radiology in our hospital for imaging of liver. Fat content of liver was recorded using MRI (H1-MRS and q-DIXON), unenhanced CT (average liver attenuation [ALI] and liver attenuation index [LAI]) and ultrasonography (USG) (gray-scale grading and shear wave elastography [SWE]). Data were analyzed by linear regression and Bland–Altman analysis for each technique compared with H1-MRS. The diagnostic performances of all the methods were compared using DeLong test, for detection of mild and moderate-to-severe hepatic steatosis, separately.
Results MRI q-DIXON PDFF showed excellent correlation (r = 0.917, r2 = 0.840) and strong agreement (1.48 ±3.01) with H1-MRS-derived PDFF measurements. Unenhanced CT-based methods showed moderate correlation with modest agreement (r = −0.826, r2 = 0.681, −40.18 ± 16.05 for ALI and r = −0.858, r2 = 0.735, 13.4 ± 15.3 for LAI) whereas USG gray-scale assessment showed low correlation (weighted Kappa value 0.366) with H1-MRS PDFF. No correlation was found between USG-SWE results and PDFF measured with H1-MRS. Comparison of areas under curve (AUCs) using DeLong test revealed that MRI q-DIXON method performed the best for diagnosis of hepatic steatosis compared with rest. For moderate to severe steatosis, MRI q-DIXON and unenhanced CT-based methods had comparable diagnostic performance with AUCs not showing statistically significant differences.
Conclusion MRI q-DIXON shows strongest correlation with MRS and should be preferred for estimation of hepatic fat, especially when MRS is not available. Unenhanced CT shows limited diagnostic performance in detecting mild steatosis; however, it certainly has a role in diagnosing moderate-to-severe hepatic steatosis, such as evaluating donor candidates for living donor liver transplantation. USG, using both the traditional four-grade visual assessment and elastography in the present form, appears to have limited role in liver fat quantification.
Collapse
Affiliation(s)
- Santosh B. Patil
- Department of Vascular and Interventional Radiology, Kovai Medical Center and Hospital, Coimbatore, India
| | - Seetharaman Cannane
- Department of Radiodiagnosis, Kovai Medical Center and Hospital, Coimbatore, India
| | - Santhosh Poyyamoli
- Department of Vascular and Interventional Radiology, Kovai Medical Center and Hospital, Coimbatore, India
| | - Rinoy R. Anand
- Department of Vascular and Interventional Radiology, Kovai Medical Center and Hospital, Coimbatore, India
| | - Venkatesh Kasi
- Department of Radiology, Kovai Medical Center and Hospital, Coimbatore, India
| |
Collapse
|
18
|
Tran BV, Ujita K, Taketomi-Takahashi A, Hirasawa H, Suto T, Tsushima Y. Reliability of ultrasound hepatorenal index and magnetic resonance imaging proton density fat fraction techniques in the diagnosis of hepatic steatosis, with magnetic resonance spectroscopy as the reference standard. PLoS One 2021; 16:e0255768. [PMID: 34383812 PMCID: PMC8360521 DOI: 10.1371/journal.pone.0255768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 07/24/2021] [Indexed: 01/14/2023] Open
Abstract
PURPOSE To evaluate the reliability of ultrasound hepatorenal index (US-HRI) and magnetic resonance imaging proton density fat fraction (MRI-PDFF) techniques in the diagnosis of hepatic steatosis, with magnetic resonance spectroscopy proton density fat fraction (MRS-PDFF) as the reference standard. MATERIALS AND METHODS Fifty-two adult volunteers (30 men, 22 women; age, 31.5 ± 6.5 years) who had no history of kidney disease or viral/alcoholic hepatitis were recruited to undergo abdominal US, MRI, and MRS examinations. US-HRI was calculated from the average of three pairs of regions of interest (ROIs) measurements placed in the liver parenchyma and right renal cortex. On MRI, the six-point Dixon technique was employed for calculating proton density fat fraction (MRI-PDFF). An MRS sequence with a typical voxel size of 27 ml was chosen to estimate MRS-PDFF as the gold standard. The data were evaluated using Pearson's correlation coefficient and receiver operating characteristic (ROC) curves. RESULTS The Pearson correlation coefficients of US-HRI and MRI-PDFF with MRS-PDFF were 0.38 (p = 0.005) and 0.95 (p<0.001), respectively. If MRS-PDFF ≥5.56% was defined as the gold standard of fatty liver disease, the areas under the curve (AUCs), cut-off values, sensitivities and specificities of US-HRI and MRI-PDFF were 0.74, 1.54, 50%, 91.7% and 0.99, 2.75%, 100%, 88.9%, respectively. The intraclass correlation coefficients (ICCs) of US-HRI and MRI-PDFF were 0.70 and 0.85. CONCLUSION MRI-PDFF was more reliable than US-HRI in diagnosing hepatic steatosis.
Collapse
Affiliation(s)
- Bien Van Tran
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kouichi Ujita
- Department of Radiology, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Ayako Taketomi-Takahashi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiromi Hirasawa
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Takayuki Suto
- Department of Radiology, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
19
|
Shi GZ, Chen H, Zeng WK, Gao M, Wang MZ, Zhang HT, Shen J. R2* value derived from multi-echo Dixon technique can aid discrimination between benign and malignant focal liver lesions. World J Gastroenterol 2021; 27:1182-1193. [PMID: 33828393 PMCID: PMC8006098 DOI: 10.3748/wjg.v27.i12.1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/02/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND R2* estimation reflects the paramagnetism of the tumor tissue, which may be used to differentiate between benign and malignant liver lesions when contrast agents are contraindicated.
AIM To investigate whether R2* derived from multi-echo Dixon imaging can aid differentiating benign from malignant focal liver lesions (FLLs) and the impact of 2D region of interest (2D-ROI) and volume of interest (VOI) on the outcomes.
METHODS We retrospectively enrolled 73 patients with 108 benign or malignant FLLs. All patients underwent conventional abdominal magnetic resonance imaging and multi-echo Dixon imaging. Two radiologists independently measured the mean R2* values of lesions using 2D-ROI and VOI approaches. The Bland–Altman plot was used to determine the interobserver agreement between R2* measurements. Intraclass correlation coefficient (ICC) was used to determine the reliability between the two readers. Mean R2* values were compared between benign and malignant FFLs using the nonparametric Mann–Whitney test. Receiver operating characteristic curve analysis was used to determine the diagnostic performance of R2* in differentiation between benign and malignant FFLs. We compared the diagnostic performance of R2* measured by 2D-ROI and VOI approaches.
RESULTS This study included 30 benign and 78 malignant FLLs. The interobserver reproducibility of R2* measurements was excellent for the 2D-ROI (ICC = 0.994) and VOI (ICC = 0.998) methods. Bland–Altman analysis also demonstrated excellent agreement. Mean R2* was significantly higher for malignant than benign FFLs as measured by 2D-ROI (P < 0.001) and VOI (P < 0.001). The area under the curve (AUC) of R2* measured by 2D-ROI was 0.884 at a cut-off of 25.2/s, with a sensitivity of 84.6% and specificity of 80.0% for differentiating benign from malignant FFLs. R2* measured by VOI yielded an AUC of 0.875 at a cut-off of 26.7/s in distinguishing benign from malignant FFLs, with a sensitivity of 85.9% and specificity of 76.7%. The AUCs of R2* were not significantly different between the 2D-ROI and VOI methods.
CONCLUSION R2* derived from multi-echo Dixon imaging whether by 2D-ROI or VOI can aid in differentiation between benign and malignant FLLs.
Collapse
Affiliation(s)
- Guang-Zi Shi
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Hong Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Wei-Ke Zeng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Ming Gao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Meng-Zhu Wang
- MR Scientific Marketing, Siemens Healthineers, Guangzhou 510120, Guangdong Province, China
| | - Hui-Ting Zhang
- MR Scientific Marketing, Siemens Healthineers, Guangzhou 510120, Guangdong Province, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| |
Collapse
|
20
|
Virarkar M, Szklaruk J, Jensen CT, Taggart MW, Bhosale P. What's New in Hepatic Steatosis. Semin Ultrasound CT MR 2021; 42:405-415. [PMID: 34130852 DOI: 10.1053/j.sult.2021.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic steatosis can lead to liver cancer, cirrhosis, and portal hypertension. There are two main types, non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease. The detection and quantification of hepatic steatosis with lifestyle changes can slow the evolution from NAFLD to steatohepatitis. Currently, the gold standard for the quantification of fat in the liver is biopsy, has some limitations. Hepatic steatosis is frequently detected during cross sectional imaging. Ultrasound (US), Computed Tomography (CT), and Magnetic Resonance Imaging (MRI) provide noninvasive assessment of liver parenchyma and can detect fat infiltration in the liver. However, the non-invasive quantification of hepatic steatosis by imaging has been challenging. Recent MRI techniques show great promise in the detection and quantification of liver fat. The aim of this article is to review the utilization of non-invasive imaging modalities for the detection and quantification of hepatic steatosis, to evaluate their advantages and limitations.
Collapse
Affiliation(s)
- Mayur Virarkar
- Department of Neuroradiology, The University of Texas Health Science Center, Houston, TX.
| | - Janio Szklaruk
- Department of Abdominal Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Corey T Jensen
- Department of Abdominal Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Melissa W Taggart
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Priya Bhosale
- Department of Abdominal Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
21
|
Jia S, Zhao Y, Liu J, Guo X, Chen M, Zhou S, Zhou J. Magnetic Resonance Imaging-Proton Density Fat Fraction vs. Transient Elastography-Controlled Attenuation Parameter in Diagnosing Non-alcoholic Fatty Liver Disease in Children and Adolescents: A Meta-Analysis of Diagnostic Accuracy. Front Pediatr 2021; 9:784221. [PMID: 35087774 PMCID: PMC8787332 DOI: 10.3389/fped.2021.784221] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Aim: Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children and adolescents, and its prevalence increases with obesity. Magnetic resonance imaging (MRI) and transient elastography (TE) have been widely used to non-invasively evaluate NAFLD in adults. This study aimed to determine the efficacy and accuracy of MRI-proton density fat fraction (MRI-PDFF) and TE-controlled attenuation parameter (TE-CAP) in distinguishing hepatic steatosis in children and adolescents. Materials and Methods: In this meta-analysis, the PubMed, Cochrane Library, Embase, Medline, and Web of Science databases were searched for articles that reported studies on the accuracy of MRI-PDFF or TE-CAP in grading the steatosis in children and adolescents with NAFLD. This study compared the sensitivity, specificity, and hierarchical summary receiver operating characteristic curves (HSROCs) of MRI-PDFF and TE-CAP in distinguishing between steatosis grades S0 and S1-3. Results: A total of eight articles involving 874 children and adolescents with NAFLD were included in this study. The proportions of steatosis grades were 5 and 95% for S0 and S1-3, respectively. MRI-PDFF accurately diagnosed S1-3 steatosis, with a summary sensitivity of 0.95 (95% CI, 0.92-0.97), specificity of 0.92 (95% CI, 0.77-0.98), and HSROC of 0.96 (95% CI, 0.94-0.98). Likewise, TE-CAP accurately diagnosed S1-3 steatosis, with a summary sensitivity of 0.86 (95% CI, 0.70-0.94), specificity of 0.88 (95% CI, 0.71-0.96), and HSROC of 0.94 (95% CI, 0.91-0.95). Following a "positive" measurement (over the threshold value) for S1-3, the corresponding post-test probabilities of MRI-PDFF and TE-CAP for the presence of steatosis reached 92 and 88%, respectively, at the pretest probability of 50%. When the values were below the mentioned threshold values ("negative" results), the post-test probabilities of MRI-PDFF and TE-CAP became 5 and 13%, respectively. Conclusion: Both MRI-PDFF and TE-CAP are highly accurate non-invasive methods to grade the hepatic steatosis in children and adolescents with NAFLD. Furthermore, MRI-PDFF is significantly more accurate in assessing steatosis grade than TE-CAP. Systematic Review Registration: PROSPERO, identifier: CRD42021220422.
Collapse
Affiliation(s)
- Shuangzhen Jia
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yuzhen Zhao
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Jiaqi Liu
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xu Guo
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Moxian Chen
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Shaoming Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Jianli Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
22
|
Chen H, Zeng WK, Shi GZ, Gao M, Wang MZ, Shen J. Liver fat accumulation measured by high-speed T2-corrected multi-echo magnetic resonance spectroscopy can predict risk of cholelithiasis. World J Gastroenterol 2020; 26:4996-5007. [PMID: 32952345 PMCID: PMC7476179 DOI: 10.3748/wjg.v26.i33.4996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/14/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver fat accumulation is associated with increased cholesterol synthesis and hypersecretion of biliary cholesterol, which may be related to the development of cholelithiasis.
AIM To investigate whether liver fat accumulation measured by high-speed T2-corrected multi-echo magnetic resonance spectroscopy (MRS) is a risk factor for cholelithiasis.
METHODS Forty patients with cholelithiasis and thirty-one healthy controls were retrospectively enrolled. The participants underwent high-speed T2-corrected multi-echo single-voxel MRS of the liver at a 3T MR scanner. The proton density fat fraction (PDFF) and R2 value were calculated. Serum parameters and waist circumference (WC) were recorded. Spearman’s correlation analysis was used to analyze the relationship between PDFF, R2, and WC values. Multivariate logistic regression analysis was carried out to determine the significant predictors of the risk of cholelithiasis. Receiver operating characteristic curve (ROC) analysis was used to evaluate the discriminative performance of significant predictors.
RESULTS Patients with cholelithiasis had higher PDFF, R2, and WC values compared with healthy controls (5.8% ± 4.2% vs 3.3% ± 2.4%, P = 0.001; 50.4 ± 24.8/s vs 38.3 ± 8.8/s, P = 0.034; 85.3 ± 9.0 cm vs 81.0 ± 6.9 cm, P = 0.030; respectively). Liver iron concentration extrapolated from R2 values was significantly higher in the cholelithiasis group (2.21 ± 2.17 mg/g dry tissue vs 1.22 ± 0.49 mg/g dry tissue, P = 0.034) than in the healthy group. PDFF was positively correlated with WC (r = 0.502, P < 0.001) and R2 (r = 0.425, P < 0.001). Multivariate logistic regression analysis showed that only PDFF was an independent risk factor for cholelithiasis (odds ratio = 1.79, 95%CI: 1.22-2.62, P = 0.003). ROC analysis showed that the area under the curve of PDFF was 0.723 for discriminating cholelithiasis from healthy controls, with a sensitivity of 55.0% and specificity of 83.9% when the cut-off value of PDFF was 4.4%.
CONCLUSION PDFF derived from high speed T2-corrected multi-echo MRS can predict the risk of cholelithiasis.
Collapse
Affiliation(s)
- Hong Chen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Wei-Ke Zeng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Guang-Zi Shi
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Ming Gao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Meng-Zhu Wang
- Department of MR Scientific Marketing, Siemens Healthineers, Guangzhou 510120, Guangdong Province, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| |
Collapse
|
23
|
Abstract
There are >1.5 billion people with chronic liver disease worldwide, causing liver diseases to be a significant global health issue. Diffuse parenchymal liver diseases, including hepatic steatosis, fibrosis, metabolic diseases, and hepatitis cause chronic liver injury and may progress to fibrosis and eventually hepatocellular carcinoma. As early diagnosis and treatment of these diseases impact the progression and outcome, the need for assessment of the liver parenchyma has increased. While the current gold standard for evaluation of the hepatic parenchymal tissue, biopsy has disadvantages and limitations. Consequently, noninvasive methods have been developed based on serum biomarkers and imaging techniques. Conventional imaging modalities such as ultrasound, computed tomography scan, and magnetic resonance imaging provide noninvasive options for assessment of liver tissue. However, several recent advances in liver imaging techniques have been introduced. This review article focuses on the current status of imaging methods for diffuse parenchymal liver diseases assessment including their diagnostic accuracy, advantages and disadvantages, and comparison between different techniques.
Collapse
|
24
|
Ruby L, Kunut A, Nakhostin DN, Huber FA, Finkenstaedt T, Frauenfelder T, Sanabria SJ, Rominger MB. Speed of sound ultrasound: comparison with proton density fat fraction assessed with Dixon MRI for fat content quantification of the lower extremity. Eur Radiol 2020; 30:5272-5280. [DOI: 10.1007/s00330-020-06885-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/24/2020] [Accepted: 04/09/2020] [Indexed: 11/29/2022]
|
25
|
Abstract
Objective Today, a biopsy is the gold standard in the diagnosis of non-alcoholic fatty liver. However, a biopsy is an invasive technique, limited to the sample taken, and it may lead to misdiagnosis. Therefore, novel noninvasive options are needed. The objective of this study was to investigate the accuracy of magnetic resonance (MR) Dixon sequence and elastography using magnetic resonance spectroscopy (MRS) as a reference in the quantification of hepatic steatosis. Methods A total of 60 patients were included in the study. All patients underwent magnetic resonance imaging (MRI), MRS, and elastography in order to quantify hepatosteatosis. MRI and MRS imaging studies were performed using MR Dixon and high-speed T2-corrected multiple-echo 1H-MRS sequence (HISTO) sequences, respectively, in order to calculate proton density fat fraction (PDFF) values. Results The mean MRI-PDFF value with the MRS region of interest (ROI) was found as 9.4% ± 12.1%. The mean MRS-PDFF was found as 8.9% ± 11.3%. No statistically significant difference was found between MRS-PDFF and MRI-PDFF values measured in ROI (p < 0.005). The correlation between MRS-PDFF and MRI-PDFF was examined with Spearman’s correlation analysis. Accordingly, there was an excellent correlation between MRS and MRI values measured in ROI (r ≥ 0.8, p < 0.001). Sensitivity, specificity, positive predictive value, and negative predictive value were calculated as 96%, 100%, 89.5%, and 92.6%, respectively, for MRI-PDFF in predicting hepatic steatosis for the same ROI localization with MRS. The optimum cut-off value of MRS-PDFF in predicting hepatic steatosis was found as 5.3% using the same ROI localization with MRS. Conclusion The results of this study indicated an excellent correlation between MRI-PDFF and MRS-PDFF. The multi-echo Dixon MRI technique seems a promising alternative method in the detection of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Isil Yurdaisik
- Radiology, Istinye University Gaziosmanpasa Medical Park Hospital, Istanbul, TUR
| | - Fuad Nurili
- Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
26
|
Zhao Y, Zhou J, Liu J, Wang Z, Chen M, Zhou S. Metagenome of Gut Microbiota of Children With Nonalcoholic Fatty Liver Disease. Front Pediatr 2019; 7:518. [PMID: 31921729 PMCID: PMC6933441 DOI: 10.3389/fped.2019.00518] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/29/2019] [Indexed: 02/05/2023] Open
Abstract
Aim: To investigate the intestinal flora of nonalcoholic fatty liver disease (NAFLD) in Chinese children and adolescents using metagenomic approach. Methods: All participants underwent magnetic resonance spectroscopy (MRS) to quantify liver fat content. Hepatic steatosis was defined as MRS proton density fat fraction (MRS-PDFF) >5%. A total of 58 children and adolescents were enrolled in this study, including 25 obese NAFLD patients, 18 obese non-NAFLD children, and 15 healthy children. Stool samples were collected and analyzed with metagenomics. We used Shannon index to reflect the alpha diversities of gut microbiota. Wilcoxon rank sum test and Kruskal-Wallis test were performed to evaluate alpha diversities between groups. At last, the differences of gut microbiota composition and functional annotations between obese with and without NAFLD and healthy children were assessed by Kruskal-Wallis test. Results: Significant differences in gut microbiota composition and functional annotations among three groups of children and adolescents have been observed. Deep sequencing of gut microbiota revealed high abundance of phylum Proteobacteria (Gammaproteobacteria) in obese NAFLD patients, comparing with the control group. Overall, obese children without NAFLD had less abundant Helicobacter and Helicobacter pylori. Compared to the control group, in obese children with NAFLD, the abundance of Bacteroidetes (Alistipes) were significantly reduced. Faecalibacterium prausnitzii was the only species representing a difference between obese children with and without NAFLD. There were not significant differences in terms of alpha diversity among three groups. Functional annotations demonstrated that several pathways were differentially enriched between groups, including metabolism of other amino acids, replication and repair, folding, sorting, degradation, and glycan biosynthesis and metabolism. Conclusion: Significantly differences are observed in gut microbiota composition and functional annotations between obese children with and without NAFLD in comparison to the healthy children group. The characteristic of gut microbiota in this study may contribute to a further understanding the gut-liver axis of pediatric NAFLD in China.
Collapse
Affiliation(s)
- Yuzhen Zhao
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Jianli Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Jiaqi Liu
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Zhaoxia Wang
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Moxian Chen
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
- *Correspondence: Moxian Chen
| | - Shaoming Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
- Shaoming Zhou
| |
Collapse
|