1
|
Antal C, de Almeida RG. Grasping the Concept of an Object at a Glance: Category Information Accessed by Brief Dichoptic Presentation. Cogn Sci 2024; 48:e70002. [PMID: 39428757 DOI: 10.1111/cogs.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/14/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
What type of conceptual information about an object do we get at a brief glance? In two experiments, we investigated the nature of conceptual tokening-the moment at which conceptual information about an object is accessed. Using a masked picture-word congruency task with dichoptic presentations at "brief" (50-60 ms) and "long" (190-200 ms) durations, participants judged the relation between a picture (e.g., a banana) and a word representing one of four property types about the object: superordinate (fruit), basic level (banana), a high-salient (yellow), or low-salient feature (peel). In Experiment 1, stimuli were presented in black-and-white; in Experiment 2, they were presented in red and blue, with participants wearing red-blue anaglyph glasses. This manipulation allowed for the independent projection of stimuli to the left- and right-hemisphere visual areas, aiming to probe the early effects of these projections in conceptual tokening. Results showed that superordinate and basic-level properties elicited faster and more accurate responses than high- and low-salient features at both presentation times. This advantage persisted even when the objects were divided into categories (e.g., animals, vegetables, vehicles, tools), and when objects contained high-salient visual features. However, contrasts between categories show that animals, fruits, and vegetables tend to be categorized at the superordinate level, while vehicles tend to be categorized at the basic level. Also, for a restricted class of objects, high-salient features representing diagnostic color information (yellow for the picture of a banana) facilitated congruency judgments to the same extent as that of superordinate and basic-level labels. We suggest that early access to object concepts yields superordinate and basic-level information, with features only yielding effects at a later stage of processing, unless they represent diagnostic color information. We discuss these results advancing a unified theory of conceptual representation, integrating key postulates of atomism and feature-based theories.
Collapse
Affiliation(s)
- Caitlyn Antal
- Department of Psychology, McGill University
- Department of Psychology, Concordia University
| | | |
Collapse
|
2
|
Catak EN, Ogmen H, Kafaligonul H. Attentional load leads to distinct changes in early and late cortical processing of target visibility under visual masking. Conscious Cogn 2024; 125:103760. [PMID: 39305788 DOI: 10.1016/j.concog.2024.103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 11/05/2024]
Abstract
Visual masking and attentional selection play important roles in controlling information processing for perception. Using an experimental design combining metacontrast with attentional load, we investigated the time course of changes in event-related potentials under different attentional load and masking conditions. The behavioral results indicated significant effects of attentional load on masking functions (i.e., masking strength as a function of stimulus onset asynchrony between target and mask). The analyses of neural activities revealed significant effects of masking and attentional load on early components located over occipital and parieto-occipital scalp sites. There were also significant modulations in the late positivity range centered over centro-parietal electrodes. However, the nature of modulations in early and late components was different. These findings overall highlight the diverse nature of masking and attentional influences on visual processing, particularly suggesting that attentional load in the visual field may have distinct effects at different stages of perceptual processing.
Collapse
Affiliation(s)
- Esra Nur Catak
- Department of Neuroscience, Bilkent University, Ankara, Turkiye; Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkiye
| | - Haluk Ogmen
- Laboratory of Perceptual and Cognitive Dynamics, Electrical & Computer Engineering, Ritchie School of Engineering & Computer Science, University of Denver, Denver, CO, USA
| | - Hulusi Kafaligonul
- Department of Neuroscience, Bilkent University, Ankara, Turkiye; Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkiye; Neuroscience and Neurotechnology Center of Excellence (NÖROM), Faculty of Medicine, Gazi University, Ankara, Turkiye.
| |
Collapse
|
3
|
Akdogan I, Ogmen H, Kafaligonul H. The phase coherence of cortical oscillations predicts dynamic changes in perceived visibility. Cereb Cortex 2024; 34:bhae380. [PMID: 39319441 PMCID: PMC11422671 DOI: 10.1093/cercor/bhae380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
The phase synchronization of brain oscillations plays an important role in visual processing, perceptual awareness, and performance. Yet, the cortical mechanisms underlying modulatory effects of post-stimulus phase coherence and frequency-specific oscillations associated with different aspects of vision are still subject to debate. In this study, we aimed to identify the post-stimulus phase coherence of cortical oscillations associated with perceived visibility and contour discrimination. We analyzed electroencephalogram data from two masking experiments where target visibility was manipulated by the contrast ratio or polarity of the mask under various onset timing conditions (stimulus onset asynchronies, SOAs). The behavioral results indicated an SOA-dependent suppression of target visibility due to masking. The time-frequency analyses revealed significant modulations of phase coherence over occipital and parieto-occipital regions. We particularly identified modulations of phase coherence in the (i) 2-5 Hz frequency range, which may reflect feedforward-mediated contour detection and sustained visibility; and (ii) 10-25 Hz frequency range, which may be associated with suppressed visibility through inhibitory interactions between and within synchronized neural pathways. Taken together, our findings provide evidence that oscillatory phase alignments, not only in the pre-stimulus but also in the post-stimulus window, play a crucial role in shaping perceived visibility and dynamic vision.
Collapse
Affiliation(s)
- Irem Akdogan
- Department of Neuroscience, Bilkent University, Cankaya, Ankara 06800, Türkiye
- Aysel Sabuncu Brain Research Center, Bilkent University, Cankaya, Ankara 06800, Türkiye
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Cankaya, Ankara 06800, Türkiye
| | - Haluk Ogmen
- Laboratory of Perceptual and Cognitive Dynamics, Electrical & Computer Engineering, Ritchie School of Engineering & Computer Science, University of Denver, Denver, CO 80210, United States
| | - Hulusi Kafaligonul
- Department of Neuroscience, Bilkent University, Cankaya, Ankara 06800, Türkiye
- Aysel Sabuncu Brain Research Center, Bilkent University, Cankaya, Ankara 06800, Türkiye
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Cankaya, Ankara 06800, Türkiye
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Faculty of Medicine, Gazi University, Yenimahalle, Ankara 06560, Türkiye
| |
Collapse
|
4
|
Jiang M, Ito H, Kanematsu T. Factors contributing to transient-induced fading: Examining the impact of luminance contrasts and subjective contours. Iperception 2024; 15:20416695241290462. [PMID: 39492871 PMCID: PMC11528573 DOI: 10.1177/20416695241290462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/21/2024] [Indexed: 11/05/2024] Open
Abstract
Transient-induced fading is a phenomenon where a peripheral target perceptually fades when a surrounding object is flashed. It has been suggested that the transient-induced fading could be affected not only by the lower-level factors such as the luminance contrast change, but also by the higher-level factors such as Gestalt grouping by similarity. In the present study, Experiment 1 investigated whether the perceptual fading of a visual target could be strongly induced when a ring area surrounding the target with high luminance contrast disappeared rather than appeared. Experiment 2 examined the effect of the (dis)appearance of a higher-level object (Kanizsa-type subjective contour) on the fading perception. Experiment 3 further investigated whether the rating of the perceived effortlessness of a subjective contour could be positively correlated with the fading duration of the target. Our results revealed that perceptual fading was mainly induced by the disappearance of fan areas inside black disks producing a subjective contour surrounding the target. Disappearance of a perceptual object at the representation level does not trigger the transient-induced fading even if a higher-level factor (e.g., grouping by similarity) affects the fading objects.
Collapse
|
5
|
Hochmitz I, Abu-Akel A, Yeshurun Y. Interference across time: dissociating short from long temporal interference. Front Psychol 2024; 15:1393065. [PMID: 39114585 PMCID: PMC11305178 DOI: 10.3389/fpsyg.2024.1393065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/04/2024] [Indexed: 08/10/2024] Open
Abstract
Our ability to identify an object is often impaired by the presence of preceding and/or succeeding task-irrelevant items. Understanding this temporal interference is critical for any theoretical account of interference across time and for minimizing its detrimental effects. Therefore, we used the same sequences of 3 orientation items, orientation estimation task, and computational models, to examine temporal interference over both short (<150 ms; visual masking) and long (175-475 ms; temporal crowding) intervals. We further examined how inter-item similarity modifies these different instances of temporal interference. Qualitatively different results emerged for interference of different scales. Interference over long intervals mainly degraded the precision of the target encoding while interference over short intervals mainly affected the signal-to-noise ratio. Although both interference instances modulated substitution errors (reporting a wrong item) and were alleviated with dissimilar items, their characteristics were markedly disparate. These findings suggest that different mechanisms mediate temporal interference of different scales.
Collapse
Affiliation(s)
- Ilanit Hochmitz
- The Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
| | - Ahmad Abu-Akel
- School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Haifa Brain and Behavior Hub (HBB), University of Haifa, Haifa, Israel
| | - Yaffa Yeshurun
- The Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
6
|
Campbell A, Tanaka JW. Fast saccades to faces during the feedforward sweep. J Vis 2024; 24:16. [PMID: 38630459 PMCID: PMC11037494 DOI: 10.1167/jov.24.4.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/19/2023] [Indexed: 04/19/2024] Open
Abstract
Saccadic choice tasks use eye movements as a response method, typically in a task where observers are asked to saccade as quickly as possible to an image of a prespecified target category. Using this approach, face-selective saccades have been observed within 100 ms poststimulus. When taking into account oculomotor processing, this suggests that faces can be detected in as little as 70 to 80 ms. It has therefore been suggested that face detection must occur during the initial feedforward sweep, since this latency leaves little time for feedback processing. In the current experiment, we tested this hypothesis using backward masking-a technique shown to primarily disrupt feedback processing while leaving feedforward activation relatively intact. Based on minimum saccadic reaction time, we found that face detection benefited from ultra-fast, accurate saccades within 110 to 160 ms and that these eye movements are obtainable even under extreme masking conditions that limit perceptual awareness. However, masking did significantly increase the median SRT for faces. In the manual responses, we found remarkable detection accuracy for faces and houses, even when participants indicated having no visual experience of the test images. These results provide evidence for the view that the saccadic bias to faces is initiated by coarse information used to categorize faces in the feedforward sweep but that, in most cases, additional processing is required to quickly reach the threshold for saccade initiation.
Collapse
Affiliation(s)
- Alison Campbell
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- https://orcid.org/0000-0001-6891-8609
| | - James W Tanaka
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- https://orcid.org/0000-0001-6559-0388
| |
Collapse
|
7
|
Nakashima Y, Kanazawa S, Yamaguchi MK. Metacontrast masking is ineffective in the first 6 months of life. Cognition 2024; 242:105666. [PMID: 37984131 DOI: 10.1016/j.cognition.2023.105666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
Metacontrast masking is one of the most widely studied types of visual masking, in which a visual stimulus is rendered invisible by a subsequent mask that does not spatially overlap with the target. Metacontrast has been used for many decades as a tool to study visual processing and conscious perception in adults. However, there are so far no infant studies on metacontrast and it remains unknown even whether it occurs in infants. The present study examined metacontrast masking in 3- to 8-month-old infants (N = 168) using a habituation paradigm. We found that metacontrast is ineffective for infants under 7 months and that younger infants can perceive a masked stimulus that older infants cannot. Our results suggest that metacontrast is distinct from other simple types of masking that occur in early infancy, and would be consistent with the idea that metacontrast results from the disruption of recurrent processing.
Collapse
Affiliation(s)
- Yusuke Nakashima
- Research and Development Initiative, Chuo University, 742-1 Higashinakano, Hachioji-shi, Tokyo 192-0393, Japan.
| | - So Kanazawa
- Department of Psychology, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Masami K Yamaguchi
- Department of Psychology, Chuo University, 742-1 Higashinakano, Hachioji-shi, Tokyo 192-0393, Japan
| |
Collapse
|
8
|
Wan Y, Sarter N. Attention Limitations in the Detection and Identification of Alarms in Close Temporal Proximity. HUMAN FACTORS 2024; 66:234-257. [PMID: 35012376 DOI: 10.1177/00187208211063991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE The aim of this study was to establish the effects of simultaneous and asynchronous masking on the detection and identification of visual and auditory alarms in close temporal proximity. BACKGROUND In complex and highly coupled systems, malfunctions can trigger numerous alarms within a short period of time. During such alarm floods, operators may fail to detect and identify alarms due to asynchronous and simultaneous masking. To date, the effects of masking on detection and identification have been studied almost exclusively for two alarms during single-task performance. This research examines 1) how masking affects alarm detection and identification in multitask environments and 2) whether those effects increase as a function of the number of alarms. METHOD Two experiments were conducted using a simulation of a drone-based package delivery service. Participants were required to ensure package delivery and respond to visual and auditory alarms associated with eight drones. The alarms were presented at various stimulus onset asynchronies (SOAs). The dependent measures included alarm detection rate, identification accuracy, and response time. RESULTS Masking was observed intramodally and cross-modally for visual and auditory alarms. The SOAs at which asynchronous masking occurred were longer than reported in basic research on masking. The effects of asynchronous and, even more so, simultaneous masking became stronger as the number of alarms increased. CONCLUSION Masking can lead to breakdowns in the detection and identification of alarms in close temporal proximity in complex data-rich domains. APPLICATION The findings from this research provide guidance for the design of alarm systems.
Collapse
|
9
|
Su Y, Wachtler T, Shi Z. Reference induces biases in late visual processing. Sci Rep 2023; 13:18624. [PMID: 37903860 PMCID: PMC10616182 DOI: 10.1038/s41598-023-44827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 11/01/2023] Open
Abstract
How we perceive a visual stimulus can be influenced by its surrounding context. For example, the presence of a reference skews the perception of a similar feature in a stimulus, a phenomenon called reference repulsion. Ongoing research so far remains inconclusive regarding the stage of visual information processing where such repulsion occurs. We examined the influence of a reference on late visual processing. We measured the repulsion effect caused by an orientation reference presented after an orientation ensemble stimulus. The participants' reported orientations were significantly biased away from the post-stimulus reference, displaying typical characteristics of reference repulsion. Moreover, explicit discrimination choices between the reference and the stimulus influenced the magnitudes of repulsion effects, which can be explained by an encoding-decoding model that differentiates the re-weighting of sensory representations in implicit and explicit processes. These results support the notion that reference repulsion may arise at a late decision-related stage of visual processing, where different sensory decoding strategies are employed depending on the specific task.
Collapse
Affiliation(s)
- Yannan Su
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany.
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Thomas Wachtler
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
- Bernstein Center for Computational Neuroscience, Munich, Germany
| | - Zhuanghua Shi
- General and Experimental Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
10
|
Liaw YS, Augustine GJ. The claustrum and consciousness: An update. Int J Clin Health Psychol 2023; 23:100405. [PMID: 37701759 PMCID: PMC10493512 DOI: 10.1016/j.ijchp.2023.100405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
The seminal paper of Crick and Koch (2005) proposed that the claustrum, an enigmatic and thin grey matter structure that lies beside the insular cortex, may be involved in the processing of consciousness. As a result, this otherwise obscure structure has received ever-increasing interest in the search for neural correlates of consciousness. Here we review theories of consciousness and discuss the possible relationship between the claustrum and consciousness. We review relevant experimental evidence collected since the Crick and Koch (2005) paper and consider whether these findings support or contradict their hypothesis. We also explore how future experimental work can be designed to clarify how consciousness emerges from neural activity and to understand the role of the claustrum in consciousness.
Collapse
Affiliation(s)
- Yin Siang Liaw
- Neuroscience & Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - George J. Augustine
- Neuroscience & Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
11
|
Carlos BJ, Santacroce LA, Tamber-Rosenau BJ. The slow rate of working memory consolidation from vision is a structural limit. Atten Percept Psychophys 2023; 85:2210-2225. [PMID: 37495932 DOI: 10.3758/s13414-023-02757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
The speed with which information from vision is transformed into working memory (WM) representations that resist interference from ongoing perception and cognition is the subject of conflicting results. Using distinct paradigms, researchers have arrived at estimates of the consolidation time course ranging from 25 ms to 1 s - a range of more than an order of magnitude. However, comparisons of consolidation duration across very different estimation paradigms rely on the implicit assumption that WM consolidation speed is a stable, structural constraint of the WM system. The extremely large variation in WM consolidation speed estimates across measurement approaches motivated the current work's goal of determining whether consolidation speed truly is a stable structural constraint of WM encoding, or instead might be under strategic control as suggested by some accounts. By manipulating the relative task priority of WM encoding and a subsequent sensorimotor decision in a dual-task paradigm, the current experiments demonstrate that the long duration of WM consolidation does not change as a result of task-specific strategies. These results allow comparison of WM consolidation across estimation approaches, are consistent with recent multi-phase WM consolidation models, and are consistent with consolidation duration being an inflexible structural limit.
Collapse
Affiliation(s)
- Brandon J Carlos
- University of Houston Department of Psychology, Houston, TX, USA.
| | | | | |
Collapse
|
12
|
Komiyama T, Takedomi H, Aoyama C, Goya R, Shimegi S. Acute exercise has specific effects on the formation process and pathway of visual perception in healthy young men. Eur J Neurosci 2023; 58:3239-3252. [PMID: 37424403 DOI: 10.1111/ejn.16082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
Visual perception is formed over time through the formation process and visual pathway. Exercise improves visual perception, but it is unclear whether exercise modulates nonspecifically or specifically the formation process and pathway of visual perception. Healthy young men performed the visual detection task in a backward masking paradigm before and during cycling exercise at a mild intensity or rest (control). The task presented gratings of a circular patch (target) and annulus (mask) arranged concentrically as a visual stimulus and asked if the presence and striped pattern (feature) of the target were detected. The relationship between the orientations of the gratings of the target and the mask included iso-orientation and orthogonal orientation to investigate the orientation selectivity of the masking effect. The masking effect was evaluated by perceptual suppressive index (PSI). Exercise improved feature detection (∆PSI; Exercise: -20.6%, Control: 1.7%) but not presence detection (∆PSI; Exercise: 8.9%, Control: 29.6%) compared to the control condition, and the improving effect resulted from the attenuation of the non-orientation-selective (∆PSI; Exercise: -29.0%, Control: 16.8%) but not orientation-selective masking effect (∆PSI; Exercise: -3.1%, Control: 11.7%). These results suggest that exercise affects the formation process of the perceptual feature of the target stimulus by suppressively modulating the neural networks responsible for the non-orientation-selective surround interaction in the subcortical visual pathways, whose effects are inherited by the cortical visual pathways necessary for perceptual image formation. In conclusion, our findings suggest that acute exercise improves visual perception transiently through the modulation of a specific formation process of visual processing.
Collapse
Affiliation(s)
- Takaaki Komiyama
- Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Science, Osaka University, Toyonaka, Japan
| | - Hiromasa Takedomi
- Graduate School of Frontier of Biosciences, Osaka University, Toyonaka, Japan
| | - Chisa Aoyama
- Graduate School of Medicine, Osaka University, Toyonaka, Japan
| | - Ryoma Goya
- Graduate School of Frontier of Biosciences, Osaka University, Toyonaka, Japan
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| | - Satoshi Shimegi
- Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Science, Osaka University, Toyonaka, Japan
- Graduate School of Frontier of Biosciences, Osaka University, Toyonaka, Japan
- Graduate School of Medicine, Osaka University, Toyonaka, Japan
| |
Collapse
|
13
|
MacLean MW, Hadid V, Spreng RN, Lepore F. Revealing robust neural correlates of conscious and unconscious visual processing: activation likelihood estimation meta-analyses. Neuroimage 2023; 273:120088. [PMID: 37030413 DOI: 10.1016/j.neuroimage.2023.120088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Our ability to consciously perceive information from the visual scene relies on a myriad of intrinsic neural mechanisms. Functional neuroimaging studies have sought to identify the neural correlates of conscious visual processing and to further dissociate from those pertaining to preconscious and unconscious visual processing. However, delineating what core brain regions are involved in eliciting a conscious percept remains a challenge, particularly regarding the role of prefrontal-parietal regions. We performed a systematic search of the literature that yielded a total of 54 functional neuroimaging studies. We conducted two quantitative meta-analyses using activation likelihood estimation to identify reliable patterns of activation engaged by i. conscious (n = 45 studies, comprising 704 participants) and ii. unconscious (n = 16 studies, comprising 262 participants) visual processing during various task performances. Results of the meta-analysis specific to conscious percepts quantitatively revealed reliable activations across a constellation of regions comprising the bilateral inferior frontal junction, intraparietal sulcus, dorsal anterior cingulate, angular gyrus, temporo-occipital cortex and anterior insula. Neurosynth reverse inference revealed conscious visual processing to be intertwined with cognitive terms related to attention, cognitive control and working memory. Results of the meta-analysis on unconscious percepts revealed consistent activations in the lateral occipital complex, intraparietal sulcus and precuneus. These findings highlight the notion that conscious visual processing readily engages higher-level regions including the inferior frontal junction and unconscious processing reliably recruits posterior regions, mainly the lateral occipital complex.
Collapse
|
14
|
Pang DKF, Elntib S. Further evidence and theoretical framework for a subliminal sensory buffer store (SSBS). Conscious Cogn 2023; 107:103452. [PMID: 36508898 DOI: 10.1016/j.concog.2022.103452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
We recently provided evidence that strongly masked stimuli are not erased or overwritten but are briefly stored in a subliminal sensory buffer store (SSBS), where information can accumulate through repetition and become consciously accessible. SSBS supports a direct prediction made by the global workspace theory of consciousness (GWT) and has implications on discussions about conscious overflow and the problem of the criterion. Here we show that the presentation sequence and the time from the target presentation to evaluation does not significantly impact perception. We suggest that selected information from this subliminal sensory buffer store is transferred into a type of supraliminal short-term memory that keeps stable representations for longer durations with full conscious access. We argue that the level of conscious access of memory storage has a greater impact on subsequent reportability than initial phenomenology and needs to be included more prominently in discussions on perception and consciousness.
Collapse
Affiliation(s)
- Damian K F Pang
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Liverpool L69 3BX, the United Kingdom of Great Britain and Northern Ireland.
| | - Stamatis Elntib
- Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Liverpool L69 3BX, the United Kingdom of Great Britain and Northern Ireland; School of Psychology and Counselling, Faculty of Arts and Social Sciences, The Open University, the United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
15
|
Ishida R, Ishii A, Matsuo T, Minami T, Yoshikawa T. Association between eating behavior and the immediate neural activity caused by viewing food images presented in and out of awareness: A magnetoencephalography study. PLoS One 2022; 17:e0275959. [PMID: 36580472 PMCID: PMC9799321 DOI: 10.1371/journal.pone.0275959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/27/2022] [Indexed: 12/30/2022] Open
Abstract
Obesity is a serious health problem in modern society. Considering the fact that the outcomes of treatments targeting appetitive behavior are suboptimal, one potential reason proposed for these poor outcomes is that appetitive behavior is driven more by unconscious decision-making processes than by the conscious ones targeted by traditional behavioral treatments. In this study, we aimed to investigate both the conscious and unconscious decision-making processes related to eating behavior, and to examine whether an interaction related to eating behavior exists between conscious and unconscious neural processes. The study was conducted on healthy male volunteers who viewed pictures of food and non-food items presented both above and below the awareness threshold. The oscillatory brain activity affected by viewing the pictures was assessed by magnetoencephalography. A visual backward masking procedure was used to present the pictures out of awareness. Neural activity corresponding to the interactions between sessions (i.e., food or non-food) and conditions (i.e., visible or invisible) was observed in left Brodmann's areas 45 and 47 in the high-gamma (60-200 Hz) frequency range. The interactions were associated with eating behavior indices such as emotional eating and cognitive restraint, suggesting that conscious and unconscious neural processes are differently involved in eating behavior. These findings provide valuable clues for devising methods to assess conscious and unconscious appetite regulation in individuals with normal or abnormal eating behavior.
Collapse
Affiliation(s)
- Rika Ishida
- Department of Sports Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akira Ishii
- Department of Sports Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| | - Takashi Matsuo
- Department of Sports Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takayuki Minami
- Department of Sports Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Yoshikawa
- Department of Sports Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
16
|
The limits of unconscious semantic priming. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Nakayama R, Bardin JB, Koizumi A, Motoyoshi I, Amano K. Building a decoder of perceptual decisions from microsaccades and pupil size. Front Psychol 2022; 13:942859. [PMID: 36176801 PMCID: PMC9514321 DOI: 10.3389/fpsyg.2022.942859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Many studies have reported neural correlates of visual awareness across several brain regions, including the sensory, parietal, and frontal areas. In most of these studies, participants were instructed to explicitly report their perceptual experience through a button press or verbal report. It is conceivable, however, that explicit reporting itself may trigger specific neural responses that can confound the direct examination of the neural correlates of visual awareness. This suggests the need to assess visual awareness without explicit reporting. One way to achieve this is to develop a technique to predict the visual awareness of participants based on their peripheral responses. Here, we used eye movements and pupil sizes to decode trial-by-trial changes in the awareness of a stimulus whose visibility was deteriorated due to adaptation-induced blindness (AIB). In the experiment, participants judged whether they perceived a target stimulus and rated the confidence they had in their perceptual judgment, while their eye movements and pupil sizes were recorded. We found that not only perceptual decision but also perceptual confidence can be separately decoded from the eye movement and pupil size. We discuss the potential of this technique with regard to assessing visual awareness in future neuroimaging experiments.
Collapse
Affiliation(s)
- Ryohei Nakayama
- Department of Psychology, The University of Tokyo, Tokyo, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka, Japan
| | - Jean-Baptiste Bardin
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka, Japan
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ai Koizumi
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka, Japan
- Sony Computer Science Laboratories, Inc., Tokyo, Japan
| | - Isamu Motoyoshi
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kaoru Amano
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Osaka, Japan
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
- *Correspondence: Kaoru Amano,
| |
Collapse
|
18
|
Dai Q, Yao L, Wu Q, Yu Y, Li W, Yang J, Takahashi S, Ejima Y, Wu J. Enhancing free choice masked priming via switch trials during repeated practice. Front Psychol 2022; 13:927234. [PMID: 36160507 PMCID: PMC9493449 DOI: 10.3389/fpsyg.2022.927234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
The masked priming paradigm has been extensively used to investigate the indirect impacts of unconscious stimuli on conscious behaviors, and the congruency effect of priming on free choices has gained increasing attention. Free choices allow participants to voluntarily choose a response from multiple options during each trial. While repeated practice is known to increase priming effects in subliminal visual tasks, whether practice increases the priming effect of free choices in the masked priming paradigm is unclear. And it is also not clear how the proportions of free choice and forced choice trials in one block will affect the free choice masked priming effect. The present study applied repeated practice in the masked priming paradigm and found that after training, the participants were more likely to be influenced by masked primes during free choice, but this training process did not alter the visibility of masked stimuli. In addition, this study revealed that when the proportions of free choice and forced choice trials were equal during the training stage, this enhanced effect by practice was the strongest. These results indicated that practice could enhance masked stimulus processing in free-choice, and that the learning effect may mainly be derived from the early selection and integrated processing of masked stimuli.
Collapse
Affiliation(s)
- Qi Dai
- Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Lichang Yao
- Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Qiong Wu
- School of Education, Suzhou University of Science and Technology, Suzhou, China
- *Correspondence: Qiong Wu,
| | - Yiyang Yu
- Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Wen Li
- School of Education, Suzhou University of Science and Technology, Suzhou, China
| | - Jiajia Yang
- Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Satoshi Takahashi
- Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Yoshimichi Ejima
- Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Jinglong Wu
- Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
- Beijing Institute of Technology, Beijing, China
| |
Collapse
|
19
|
Tisserand R, Rasman BG, Omerovic N, Peters RM, Forbes PA, Blouin JS. Unperceived motor actions of the balance system interfere with the causal attribution of self-motion. PNAS NEXUS 2022; 1:pgac174. [PMID: 36714829 PMCID: PMC9802180 DOI: 10.1093/pnasnexus/pgac174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/25/2022] [Indexed: 02/01/2023]
Abstract
The instability of human bipedalism demands that the brain accurately senses balancing self-motion and determines whether movements originate from self-generated actions or external disturbances. Here, we challenge the longstanding notion that this process relies on a single representation of the body and world to accurately perceive postural orientation and organize motor responses to control balance self-motion. Instead, we find that the conscious sense of balance can be distorted by the corrective control of upright standing. Using psychophysics, we quantified thresholds to imposed perturbations and balance responses evoking cues of self-motion that are (in)distinguishable from corrective balance actions. When standing immobile, participants clearly perceived imposed perturbations. Conversely, when freely balancing, participants often misattributed their own corrective responses as imposed motion because their balance system had detected, integrated, and responded to the perturbation in the absence of conscious perception. Importantly, this only occurred for perturbations encoded ambiguously with balance-correcting responses and that remained below the natural variability of ongoing balancing oscillations. These findings reveal that our balance system operates on its own sensorimotor principles that can interfere with causal attribution of our actions, and that our conscious sense of balance depends critically on the source and statistics of induced and self-generated motion cues.
Collapse
Affiliation(s)
- Romain Tisserand
- School of Kinesiology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada,Institut PPRIME (UPR3346), Université de Poitiers ENSMA, CNRS, 86360 Chasseneuil-du-Poitou, France,Centre de Recherches sur la Cognition et l'Apprentissage (UMR 7295), Université de Poitiers, Université de Tours, CNRS, 86073 Poitiers, France
| | - Brandon G Rasman
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands,School of Physical Education, Sport, and Exercise Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Nina Omerovic
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
| | - Ryan M Peters
- School of Kinesiology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada,Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | | |
Collapse
|
20
|
Shao J, Bakhtiar M, Zhang C. Impaired Categorical Perception of Speech Sounds Under the Backward Masking Condition in Adults Who Stutter. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:2554-2570. [PMID: 35858255 DOI: 10.1044/2022_jslhr-21-00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE Evidence increasingly indicates that people with developmental stuttering have auditory perception deficits. Our previous research has indicated similar but slower performance in categorical perception of the speech sounds under the quiet condition in children who stutter and adults who stutter (AWS) compared with their typically fluent counterparts. We hypothesized that the quiet condition may not be sufficiently sensitive to reveal subtle perceptual deficiencies in people who stutter. This study examined this hypothesis by testing the categorical perception of speech and nonspeech sounds under backward masking condition (i.e., a noise was presented immediately after the target stimuli). METHOD Fifteen Cantonese-speaking AWS and 15 adults who do not stutter (AWNS) were tested on the categorical perception of four stimulus continua, namely, consonant varying in voice onset time (VOT), vowel, lexical tone, and nonspeech, under the backward masking condition using identification and discrimination tasks. RESULTS AWS demonstrated a broader boundary width than AWNS in the identification task. AWS also exhibited a worse performance than AWNS in the discrimination of between-category stimuli but a comparable performance in the discrimination of within-category stimuli, indicating reduced sensitivity to sounds that belonged to different phonemic categories among AWS. Moreover, AWS showed similar patterns of impaired categorical perception across the four stimulus types, although the boundary location on the VOT continuum occurred at an earlier point in AWS than in AWNS. CONCLUSIONS The findings provide robust evidence that AWS exhibit impaired categorical perception of speech and nonspeech sounds under the backward masking condition. Temporal processing (i.e., VOT manipulation), frequency/spectral/formant processing (i.e., lexical tone or vowel manipulations), and nonlinguistic pitch processing were all found to be impaired in AWS. Altogether, the findings support the hypothesis that AWS might be less efficient in accessing the phonemic representations when exposed to a demanding listening condition. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.20249718.
Collapse
Affiliation(s)
- Jing Shao
- Department of English Language and Literature, Hong Kong Baptist University, Kowloon Tong
| | - Mehdi Bakhtiar
- Unit of Human Communication, Development, and Information Sciences, University of Hong Kong, Pokfulam
| | - Caicai Zhang
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hung Hom
| |
Collapse
|
21
|
Effects of spatial attention on spatial and temporal acuity: A computational account. Atten Percept Psychophys 2022; 84:1886-1900. [PMID: 35729455 DOI: 10.3758/s13414-022-02527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 11/08/2022]
Abstract
In our daily lives, the visual system receives a plethora of visual information that competes for the brain's limited processing capacity. Nevertheless, not all visual information is useful for our cognitive, emotional, social, and ultimately survival purposes. Therefore, the brain employs mechanisms to select critical information and thereby optimizes its limited resources. Attention is the selective process that serves such a function. In particular, covert spatial attention - attending to a particular location in the visual field without eye movements - improves spatial resolution and paradoxically deteriorates temporal resolution. The neural correlates underlying these attentional effects still remainelusive. In this work, we tested a neural model's predictions that explain these phenomena based on interactions between channels with different spatiotemporal sensitivities - namely, the magnocellular (transient) and parvocellular (sustained) channels. More specifically, our model postulates that spatial attention enhances activities in the parvocellular pathway, thereby producing improved performance in spatial resolution tasks. However, the enhancement of parvocellular activities leads to decreased magnocellular activities due to parvo-magno inhibitory interactions. As a result, spatial attention hampers temporal resolution. We compared the predictions of the model to psychophysical data, and show that our model can account qualitatively and quantitatively for the effects of spatial attention on spatial and temporal acuity.
Collapse
|
22
|
Medina J. Using single cases to understand visual processing: The magnocellular pathway. Cogn Neuropsychol 2022; 39:106-108. [PMID: 35677970 DOI: 10.1080/02643294.2022.2083949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jared Medina
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
23
|
Caggiano P, Grossi G, De Mattia LC, vanVelzen J, Cocchini G. Objects with motor valence affect the visual processing of human body parts: Evidence from behavioural and ERP studies. Cortex 2022; 153:194-206. [DOI: 10.1016/j.cortex.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/06/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
|
24
|
Gambarota F, Tsuchiya N, Pastore M, Di Polito N, Sessa P. Unconscious Visual Working Memory: A critical review and Bayesian meta-analysis. Neurosci Biobehav Rev 2022; 136:104618. [PMID: 35289273 DOI: 10.1016/j.neubiorev.2022.104618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
Abstract
The relationship between consciousness and working memory (WM) has been recently debated both at the theoretical and methodological levels (Persuh et al., 2018; Velichkovsky, 2017). While there is behavioral and neural evidence that argues for the existence of unconscious WM, several methodological concerns have been raised, rendering this issue highly controversial. To address the robustness of the previous findings, here we adopt a meta-analytic approach to estimate the effect size and heterogeneity of the previously reported unconscious WM results, also including unpublished results. We used meta-regression to isolate relevant experimental variables, in particular, consciousness manipulation and the WM paradigm to identify the source of the heterogeneity in the reported effect size of the unconscious WM. Our meta-analysis supports the existence of the unconscious WM effect and critically reveals several experimental variables that contribute to relevant heterogeneity. Our analysis clarifies several theoretical and methodological issues. We recommend that future studies explicitly operationalize the definition of consciousness, standardize the methodology and systematically explore the role of critical variables for the unconscious WM effect.
Collapse
Affiliation(s)
- Filippo Gambarota
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy; Padova Neuroscience Center, University of Padova, Via Giuseppe Orus, 2, 35131 Padova, Italy.
| | - Naotsugu Tsuchiya
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Victoria, Australia; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan; Advanced Telecommunications Research Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan.
| | - Massimiliano Pastore
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy.
| | - Nicola Di Polito
- Medical Neurosciences Program, Charité Universitätsmedizin, Charitépl 1, 10117, Berlin, Germany.
| | - Paola Sessa
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy; Padova Neuroscience Center, University of Padova, Via Giuseppe Orus, 2, 35131 Padova, Italy.
| |
Collapse
|
25
|
Revealing a competitive dynamic in rapid categorization with object substitution masking. Atten Percept Psychophys 2022; 84:638-646. [PMID: 35199323 DOI: 10.3758/s13414-022-02442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 11/08/2022]
Abstract
Categorization at different levels of abstraction have distinct time courses, but the different levels are often considered separately. Superordinate-level categorization is typically faster than basic-level categorization at ultra-rapid exposure durations (< 33 ms) while basic-level categorization is faster than superordinate-level categorization at longer exposure durations. This difference may be due to a competitive dynamic between levels of categorization. By leveraging object substitution masking, we found a distinct time course of masking effects for each level of categorization. Superordinate-level categorization showed a masking effect earlier than basic-level categorization. However, when basic-level categorization first showed a masking effects, superordinate-level categorization was spared despite its earlier masking effect. This unique pattern suggests a trade-off between the two levels of categorization over time. Such an effect supports an account of categorization that depends on the interaction of perceptual encoding, selective attention, and competition between levels of category representation.
Collapse
|
26
|
Geuzebroek AC, Woutersen K, van den Berg AV. When You Do Not Get the Whole Picture: Scene Perception After Occipital Cortex Lesions. Front Neurosci 2021; 15:716273. [PMID: 34966253 PMCID: PMC8710569 DOI: 10.3389/fnins.2021.716273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Occipital cortex lesions (OCLs) typically result in visual field defects (VFDs) contralateral to the damage. VFDs are usually mapped with perimetry involving the detection of point targets. This, however, ignores the important role of integration of visual information across locations in many tasks of everyday life. Here, we ask whether standard perimetry can fully characterize the consequences of OCLs. We compare performance on a rapid scene discrimination task of OCL participants and healthy observers with simulated VFDs. While the healthy observers will only suffer the loss of part of the visual scene, the damage in the OCL participants may further compromise global visual processing. Methods: VFDs were mapped with Humphrey perimetry, and participants performed two rapid scene discrimination tasks. In healthy participants, the VFDs were simulated with hemi- and quadrant occlusions. Additionally, the GIST model, a computational model of scene recognition, was used to make individual predictions based on the VFDs. Results: The GIST model was able to predict the performance of controls regarding the effects of the local occlusion. Using the individual predictions of the GIST model, we can determine that the variability between the OCL participants is much larger than the extent of the VFD could account for. The OCL participants can further be categorized as performing worse, the same, or better as their VFD would predict. Conclusions: While in healthy observers the extent of the simulated occlusion accounts for their performance loss, the OCL participants' performance is not fully determined by the extent or shape of their VFD as measured with Humphrey perimetry. While some OCL participants are indeed only limited by the local occlusion of the scene, for others, the lesions compromised the visual network in a more global and disruptive way. Yet one outperformed a healthy observer, suggesting a possible adaptation to the VFD. Preliminary analysis of neuroimaging data suggests that damage to the lateral geniculate nucleus and corpus callosum might be associated with the larger disruption of rapid scene discrimination. We believe our approach offers a useful behavioral tool for investigating why similar VFDs can produce widely differing limitations in everyday life.
Collapse
Affiliation(s)
- Anna C. Geuzebroek
- Donders Institute for Brain, Cognition and Behavior, Center for Cognitive Neuroscience, Radboud University, Nijmegen, Netherlands
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Karlijn Woutersen
- Donders Institute for Brain, Cognition and Behavior, Center for Cognitive Neuroscience, Radboud University Medical Center (RadboudUMC), Nijmegen, Netherlands
| | - Albert V. van den Berg
- Donders Institute for Brain, Cognition and Behavior, Center for Cognitive Neuroscience, Radboud University Medical Center (RadboudUMC), Nijmegen, Netherlands
| |
Collapse
|
27
|
Denison RN, Carrasco M, Heeger DJ. A dynamic normalization model of temporal attention. Nat Hum Behav 2021; 5:1674-1685. [PMID: 34140658 PMCID: PMC8678377 DOI: 10.1038/s41562-021-01129-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
Vision is dynamic, handling a continuously changing stream of input, yet most models of visual attention are static. Here, we develop a dynamic normalization model of visual temporal attention and constrain it with new psychophysical human data. We manipulated temporal attention-the prioritization of visual information at specific points in time-to a sequence of two stimuli separated by a variable time interval. Voluntary temporal attention improved perceptual sensitivity only over a specific interval range. To explain these data, we modelled voluntary and involuntary attentional gain dynamics. Voluntary gain enhancement took the form of a limited resource over short time intervals, which recovered over time. Taken together, our theoretical and experimental results formalize and generalize the idea of limited attentional resources across space at a single moment to limited resources across time at a single location.
Collapse
Affiliation(s)
- Rachel N Denison
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA.
| | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| | - David J Heeger
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
28
|
Winters JJ. The Temporally-Integrated Causality Landscape: Reconciling Neuroscientific Theories With the Phenomenology of Consciousness. Front Hum Neurosci 2021; 15:768459. [PMID: 34803643 PMCID: PMC8599361 DOI: 10.3389/fnhum.2021.768459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022] Open
Abstract
In recent years, there has been a proliferation of neuroscientific theories of consciousness. These include theories which explicitly point to EM fields, notably Operational Architectonics and, more recently, the General Resonance Theory. In phenomenological terms, human consciousness is a unified composition of contents. These contents are specific and meaningful, and they exist from a subjective point of view. Human conscious experience is temporally continuous, limited in content, and coherent. Based upon those phenomenal observations, pre-existing theories of consciousness, and a large body of experimental evidence, I derived the Temporally-Integrated Causality Landscape (TICL). In brief, the TICL proposes that the neural correlate of consciousness is a structure of temporally integrated causality occurring over a large portion of the thalamocortical system. This structure is composed of a large, integrated set of neuronal elements (the System), which contains some subsystems, defined as having a higher level of temporally-integrated causality than the System as a whole. Each Subsystem exists from the point of view of the System, in the form of meaningful content. In this article, I review the TICL and consider the importance of EM forces as a mechanism of neural causality. I compare the fundamentals of TICL to those of several other neuroscientific theories. Using five major characteristics of phenomenal consciousness as a standard, I compare the basic tenets of Integrated Information Theory, Global Neuronal Workspace, General Resonance Theory, Operational Architectonics, and the Temporo-spatial Theory of Consciousness with the framework of the TICL. While the literature concerned with these theories tends to focus on different lines of evidence, there are fundamental areas of agreement. This means that, in time, it may be possible for many of them to converge upon the truth. In this analysis, I conclude that a primary distinction which divides these theories is the feature of spatial and temporal nesting. Interestingly, this distinction does not separate along the fault line between theories explicitly concerned with EM fields and those which are not. I believe that reconciliation is possible, at least in principle, among those theories that recognize the following: just as the contents of consciousness are distinctions within consciousness, the neural correlates of conscious content should be distinguishable from but fall within the spatial and temporal boundaries of the full neural correlates of consciousness.
Collapse
Affiliation(s)
- Jesse J Winters
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, United States
| |
Collapse
|
29
|
Nakamura T, Murakami I. Common-onset masking terminates the temporal evolution of orientation repulsion. J Vis 2021; 21:5. [PMID: 34342645 PMCID: PMC8340666 DOI: 10.1167/jov.21.8.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022] Open
Abstract
Our conscious awareness of visual events does not arise instantaneously. Previous studies on backward masking have investigated dynamic internal processes making targets visible or invisible subjectively. However, to understand the whole picture of our rich conscious experiences, the emergence of various phenomenal attributes of consciousness beyond visibility must be delineated. We quantified appearance as the strength of orientation repulsion during common-onset masking and found that masking reduced the repulsion in a near-vertical target grating surrounded by tilted inducers. Furthermore, this reduction was seen only when the inducers were presented together with or after the target. This demonstrates that orientation repulsion involves slow contextual modulation and that masking influences this modulation at a later period. Although appearance was altered as such, orientation discriminability was not reduced by masking in any of our experiments. We propose a process in which internal representations of objects spend a certain amount of time evolving before we become aware of them. Backward masking compulsorily terminates this temporal evolution of internal representations and allows premature representations to arise in our awareness.
Collapse
Affiliation(s)
- Tomoya Nakamura
- Department of Psychology, The University of Tokyo, Tokyo, Japan
| | - Ikuya Murakami
- Department of Psychology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Buonocore A, Dietze N, McIntosh RD. Time-dependent inhibition of covert shifts of attention. Exp Brain Res 2021; 239:2635-2648. [PMID: 34216231 PMCID: PMC8354873 DOI: 10.1007/s00221-021-06164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 06/23/2021] [Indexed: 11/03/2022]
Abstract
Visual transients can interrupt overt orienting by abolishing the execution of a planned eye movement due about 90 ms later, a phenomenon known as saccadic inhibition (SI). It is not known if the same inhibitory process might influence covert orienting in the absence of saccades, and consequently alter visual perception. In Experiment 1 (n = 14), we measured orientation discrimination during a covert orienting task in which an uninformative exogenous visual cue preceded the onset of an oriented probe by 140-290 ms. In half of the trials, the onset of the probe was accompanied by a brief irrelevant flash, a visual transient that would normally induce SI. We report a time-dependent inhibition of covert orienting in which the irrelevant flash impaired orientation discrimination accuracy when the probe followed the cue by 190 and 240 ms. The interference was more pronounced when the cue was incongruent with the probe location, suggesting an impact on the reorienting component of the attentional shift. In Experiment 2 (n = 12), we tested whether the inhibitory effect of the flash could occur within an earlier time range, or only within the later, reorienting range. We presented probes at congruent cue locations in a time window between 50 and 200 ms. Similar to Experiment 1, discrimination performance was altered at 200 ms after the cue. We suggest that covert attention may be susceptible to similar inhibitory mechanisms that generate SI, especially in later stages of attentional shifting (> 200 ms after a cue), typically associated with reorienting.
Collapse
Affiliation(s)
- Antimo Buonocore
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, 72076, Tübingen, BW, Germany.
- Hertie Institute for Clinical Brain Research, Tübingen University, 72076, Tübingen, BW, Germany.
| | - Niklas Dietze
- Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, UK
- Neuro-Cognitive Psychology, Department of Psychology, Bielefeld University, 33501, Bielefeld, NRW, Germany
- Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33501, Bielefeld, NRW, Germany
| | - Robert D McIntosh
- Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
31
|
Seijdel N, Loke J, van de Klundert R, van der Meer M, Quispel E, van Gaal S, de Haan EHF, Scholte HS. On the Necessity of Recurrent Processing during Object Recognition: It Depends on the Need for Scene Segmentation. J Neurosci 2021; 41:6281-6289. [PMID: 34088797 PMCID: PMC8287993 DOI: 10.1523/jneurosci.2851-20.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/11/2021] [Accepted: 05/13/2021] [Indexed: 11/21/2022] Open
Abstract
Although feedforward activity may suffice for recognizing objects in isolation, additional visual operations that aid object recognition might be needed for real-world scenes. One such additional operation is figure-ground segmentation, extracting the relevant features and locations of the target object while ignoring irrelevant features. In this study of 60 human participants (female and male), we show objects on backgrounds of increasing complexity to investigate whether recurrent computations are increasingly important for segmenting objects from more complex backgrounds. Three lines of evidence show that recurrent processing is critical for recognition of objects embedded in complex scenes. First, behavioral results indicated a greater reduction in performance after masking objects presented on more complex backgrounds, with the degree of impairment increasing with increasing background complexity. Second, electroencephalography (EEG) measurements showed clear differences in the evoked response potentials between conditions around time points beyond feedforward activity, and exploratory object decoding analyses based on the EEG signal indicated later decoding onsets for objects embedded in more complex backgrounds. Third, deep convolutional neural network performance confirmed this interpretation. Feedforward and less deep networks showed a higher degree of impairment in recognition for objects in complex backgrounds compared with recurrent and deeper networks. Together, these results support the notion that recurrent computations drive figure-ground segmentation of objects in complex scenes.SIGNIFICANCE STATEMENT The incredible speed of object recognition suggests that it relies purely on a fast feedforward buildup of perceptual activity. However, this view is contradicted by studies showing that disruption of recurrent processing leads to decreased object recognition performance. Here, we resolve this issue by showing that how object recognition is resolved and whether recurrent processing is crucial depends on the context in which it is presented. For objects presented in isolation or in simple environments, feedforward activity could be sufficient for successful object recognition. However, when the environment is more complex, additional processing seems necessary to select the elements that belong to the object and by that segregate them from the background.
Collapse
Affiliation(s)
- Noor Seijdel
- Department of Psychology, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
- Amsterdam Brain and Cognition Center, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
| | - Jessica Loke
- Department of Psychology, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
- Amsterdam Brain and Cognition Center, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
| | - Ron van de Klundert
- Department of Psychology, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
| | - Matthew van der Meer
- Department of Psychology, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
| | - Eva Quispel
- Department of Psychology, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
| | - Simon van Gaal
- Department of Psychology, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
- Amsterdam Brain and Cognition Center, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
| | - Edward H F de Haan
- Department of Psychology, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
- Amsterdam Brain and Cognition Center, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
| | - H Steven Scholte
- Department of Psychology, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
- Amsterdam Brain and Cognition Center, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
| |
Collapse
|
32
|
Temporal crowding is a unique phenomenon reflecting impaired target encoding over large temporal intervals. Psychon Bull Rev 2021; 28:1885-1893. [PMID: 34080137 DOI: 10.3758/s13423-021-01943-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 11/08/2022]
Abstract
Crowding refers to impaired object identification when presented with other objects, and it is well established that spatial crowding-crowding from adjacent objects-affects many aspects of visual perception and cognition. A similar interference also occurs across time-the identification of a target object is impaired when distracting objects precede and succeed it. When such interference is observed with relatively long interitem intervals it is termed temporal crowding. Thus far, little was known about temporal crowding and its underlying processes. Particularly it was unknown which aspects of visual processing are impaired by temporal crowding, and the answer to this question bears critical theoretical implications. To reveal the nature of this impairment we used a continuous-report task and a mixture-model analysis. In three experiments, observers viewed sequences of three oriented items separated by relatively long intervals (170-475ms). The target was the second item in the sequence, and the task was to reproduce its orientation. The findings suggest that temporal crowding impairs target encoding and increases substitution errors, but there was no evidence of a reduced signal-to-noise ratio. This pattern of results was similar regardless of stimuli duration and target-distractor similarity. However, it differed considerably from the pattern found for ordinary masking and spatial crowding, indicating that temporal crowding is a unique phenomenon. Moreover, the finding that temporal crowding affected the precision of target encoding even when the items were separated by almost half a second suggests that visual processing requires a surprisingly long time to complete.
Collapse
|
33
|
Nagle F, Johnston A. Recognising the dynamic form of fire. Sci Rep 2021; 11:10566. [PMID: 34011973 PMCID: PMC8134437 DOI: 10.1038/s41598-021-89453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/13/2021] [Indexed: 11/25/2022] Open
Abstract
Encoding and recognising complex natural sequences provides a challenge for human vision. We found that observers could recognise a previously presented segment of a video of a hearth fire when embedded in a longer sequence. Recognition performance declined when the test video was spatially inverted, but not when it was hue reversed or temporally reversed. Sampled motion degraded forwards/reversed playback discrimination, indicating observers were sensitive to the asymmetric pattern of motion of flames. For brief targets, performance increased with target length. More generally, performance depended on the relative lengths of the target and embedding sequence. Increased errors with embedded sequence length were driven by positive responses to non-target sequences (false alarms) rather than omissions. Taken together these observations favour interpreting performance in terms of an incremental decision-making model based on a sequential statistical analysis in which evidence accrues for one of two alternatives. We also suggest that prediction could provide a means of providing and evaluating evidence in a sequential analysis model.
Collapse
Affiliation(s)
- Fintan Nagle
- CoMPLEX, University College London, London, WC1E 6BT, UK. .,Imperial College, Exhibition Road, London, SW7 2AZ, UK.
| | - Alan Johnston
- CoMPLEX, University College London, London, WC1E 6BT, UK.,School of Psychology, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
34
|
Pang DKF, Elntib S. Strongly masked content retained in memory made accessible through repetition. Sci Rep 2021; 11:10284. [PMID: 33986370 PMCID: PMC8119432 DOI: 10.1038/s41598-021-89512-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/21/2021] [Indexed: 02/03/2023] Open
Abstract
A growing body of evidence indicates that information can be stored even in the absence of conscious awareness. Despite these findings, unconscious memory is still poorly understood with limited evidence for unconscious iconic memory storage. Here we show that strongly masked visual data can be stored and accumulate to elicit clear perception. We used a repetition method across a wide range of conditions (Experiment 1) and a more focused follow-up experiment with enhanced masking conditions (Experiment 2). Information was stored despite being masked, demonstrating that masking did not erase or overwrite memory traces but limited perception. We examined the temporal properties and found that stored information followed a gradual but rapid decay. Extraction of meaningful information was severely impaired after 300 ms, and most data was lost after 700 ms. Our findings are congruent with theories of consciousness that are based on an integration of subliminal information and support theoretical predictions based on the global workspace theory of consciousness, especially the existence of an implicit iconic memory buffer store.
Collapse
Affiliation(s)
- Damian K. F. Pang
- grid.10025.360000 0004 1936 8470Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Liverpool, L69 3BX UK ,grid.25879.310000 0004 1936 8972School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Stamatis Elntib
- grid.10025.360000 0004 1936 8470Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Liverpool, L69 3BX UK
| |
Collapse
|
35
|
Has Silemek AC, Ranjeva J, Audoin B, Heesen C, Gold SM, Kühn S, Weygandt M, Stellmann J. Delayed access to conscious processing in multiple sclerosis: Reduced cortical activation and impaired structural connectivity. Hum Brain Mapp 2021; 42:3379-3395. [PMID: 33826184 PMCID: PMC8249884 DOI: 10.1002/hbm.25440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/24/2023] Open
Abstract
Although multiple sclerosis (MS) is frequently accompanied by visuo‐cognitive impairment, especially functional brain mechanisms underlying this impairment are still not well understood. Consequently, we used a functional MRI (fMRI) backward masking task to study visual information processing stratifying unconscious and conscious in MS. Specifically, 30 persons with MS (pwMS) and 34 healthy controls (HC) were shown target stimuli followed by a mask presented 8–150 ms later and had to compare the target to a reference stimulus. Retinal integrity (via optical coherence tomography), optic tract integrity (visual evoked potential; VEP) and whole brain structural connectivity (probabilistic tractography) were assessed as complementary structural brain integrity markers. On a psychophysical level, pwMS reached conscious access later than HC (50 vs. 16 ms, p < .001). The delay increased with disease duration (p < .001, β = .37) and disability (p < .001, β = .24), but did not correlate with conscious information processing speed (Symbol digit modality test, β = .07, p = .817). No association was found for VEP and retinal integrity markers. Moreover, pwMS were characterized by decreased brain activation during unconscious processing compared with HC. No group differences were found during conscious processing. Finally, a complementary structural brain integrity analysis showed that a reduced fractional anisotropy in corpus callosum and an impaired connection between right insula and primary visual areas was related to delayed conscious access in pwMS. Our study revealed slowed conscious access to visual stimulus material in MS and a complex pattern of functional and structural alterations coupled to unconscious processing of/delayed conscious access to visual stimulus material in MS.
Collapse
Affiliation(s)
- Arzu C. Has Silemek
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Jean‐Philippe Ranjeva
- Aix‐Marseille UniversityCNRS, CRMBMMarseille CedexFrance
- APHMHopital de la Timone, CEMEREMMarseilleFrance
| | - Bertrand Audoin
- Aix‐Marseille UniversityCNRS, CRMBMMarseille CedexFrance
- APHMHopital de la Timone, CEMEREMMarseilleFrance
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
- Klinik und Poliklinik für NeurologieUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| | - Stefan M. Gold
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
- Charité ‐ Universitätsmedizin Berlin, Freie Universität BerlinHumboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Klinik für Psychiatrie & Psychotherapie und Medizinische Klinik m.S. Psychosomatik, Campus Benjamin Franklin (CBF)BerlinGermany
| | - Simone Kühn
- Clinic for Psychiatry and PsychotherapyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Lise Meitner Group for Environmental NeuroscienceMax Planck Institute for Human DevelopmentBerlinGermany
| | - Martin Weygandt
- Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research CenterBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research CenterBerlinGermany
| | - Jan‐Patrick Stellmann
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
- Aix‐Marseille UniversityCNRS, CRMBMMarseille CedexFrance
- APHMHopital de la Timone, CEMEREMMarseilleFrance
- Klinik und Poliklinik für NeurologieUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
36
|
Neural correlates of metacontrast masking across different contrast polarities. Brain Struct Funct 2021; 226:3067-3081. [PMID: 33779794 DOI: 10.1007/s00429-021-02260-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/16/2021] [Indexed: 01/01/2023]
Abstract
Metacontrast masking is a powerful illusion to investigate the dynamics of perceptual processing and to control conscious visual perception. However, the neural mechanisms underlying this fundamental investigative tool are still debated. In the present study, we examined metacontrast masking across different contrast polarities by employing a contour discrimination task combined with EEG (Electroencephalography). When the target and mask had the same contrast polarity, a typical U-shaped metacontrast function was observed. A change in mask polarity (i.e., opposite mask polarity) shifted this masking function to a monotonic increasing function such that the target visibility was strongly suppressed at stimulus onset asynchronies less than 50 ms. This transition in metacontrast function has been typically interpreted as an increase in intrachannel inhibition of the sustained activities functionally linked to object visibility and identity. Our EEG analyses revealed an early (160-300 ms) and a late (300-550 ms) spatiotemporal cluster associated with this effect of polarity. The early cluster was mainly over occipital and parieto-occipital scalp sites. On the other hand, the later modulations of the evoked activities were centered over parietal and centro-parietal sites. Since both of these clusters were beyond 160 ms, the EEG results point to late recurrent inhibitory mechanisms. Although the findings here do not directly preclude other proposed mechanisms for metacontrast, they highlight the involvement of recurrent intrachannel inhibition in metacontrast masking.
Collapse
|
37
|
Güldener L, Jüllig A, Soto D, Pollmann S. Feature-Based Attentional Weighting and Re-weighting in the Absence of Visual Awareness. Front Hum Neurosci 2021; 15:610347. [PMID: 33584229 PMCID: PMC7878679 DOI: 10.3389/fnhum.2021.610347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Visual attention evolved as an adaptive mechanism allowing us to cope with a rapidly changing environment. It enables the facilitated processing of relevant information, often automatically and governed by implicit motives. However, despite recent advances in understanding the relationship between consciousness and visual attention, the functional scope of unconscious attentional control is still under debate. Here, we present a novel masking paradigm in which volunteers were to distinguish between varying orientations of a briefly presented, masked grating stimulus. Combining signal detection theory and subjective measures of awareness, we show that performance on unaware trials was consistent with visual selection being weighted towards repeated orientations of Gabor patches and reallocated in response to a novel unconsciously processed orientation. This was particularly present in trials in which the prior feature was strongly weighted and only if the novel feature was invisible. Thus, our results provide evidence that invisible orientation stimuli can trigger the reallocation of history-guided visual selection weights.
Collapse
Affiliation(s)
- Lasse Güldener
- Department of Experimental Psychology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Antonia Jüllig
- Department of Experimental Psychology, Otto-von-Guericke-University, Magdeburg, Germany
| | - David Soto
- Ikerbasque, Basque Foundation for Science, Basque Center on Cognition, Brain, and Language (BCBL), San Sebastian, Spain
| | - Stefan Pollmann
- Department of Experimental Psychology, Otto-von-Guericke-University, Magdeburg, Germany.,Department of Experimental Psychology and Center of Behavioral Brain Science, Otto-von-Guericke-University, Magdeburg, Germany.,Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, China
| |
Collapse
|
38
|
Yildirim FZ, Coates DR, Sayim B. Redundancy masking: The loss of repeated items in crowded peripheral vision. J Vis 2021; 20:14. [PMID: 32330230 PMCID: PMC7405779 DOI: 10.1167/jov.20.4.14] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Crowding is the deterioration of target identification in the presence of neighboring objects. Recent studies using appearance-based methods showed that the perceived number of target elements is often diminished in crowding. Here we introduce a related type of diminishment in repeating patterns (sets of parallel lines), which we term “redundancy masking.” In four experiments, observers were presented with arrays of small numbers of lines centered at 10° eccentricity. The task was to indicate the number of lines. In Experiment 1, spatial characteristics of redundancy masking were examined by varying the inter-line spacing. We found that redundancy masking decreased with increasing inter-line spacing and ceased at spacings of approximately 0.25 times the eccentricity. In Experiment 2, we assessed whether the strength of redundancy masking differed between radial and tangential arrangements of elements as it does in crowding. Redundancy masking was strong with radially arranged lines (horizontally arranged vertical lines), and absent with tangentially arranged lines (vertically arranged horizontal lines). In Experiment 3, we investigated whether target size (line width and length) modulated redundancy masking. There was an effect of width: Thinner lines yielded stronger redundancy masking. We did not find any differences between the tested line lengths. In Experiment 4, we varied the regularity of the line arrays by vertically or horizontally jittering the positions of the lines. Redundancy masking was strongest with regular spacings and weakened with decreasing regularity. Our experiments show under which conditions whole items are lost in crowded displays, and how this redundancy masking resembles—and partly diverges from—crowded identification. We suggest that redundancy masking is a contributor to the deterioration of performance in crowded displays with redundant patterns.
Collapse
|
39
|
Uetsuki M, Watanabe J, Maruya K. "Textual Prosody" Can Change Impressions of Reading in People With Normal Hearing and Hearing Loss. Front Psychol 2020; 11:548619. [PMID: 33391068 PMCID: PMC7773827 DOI: 10.3389/fpsyg.2020.548619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/30/2020] [Indexed: 11/13/2022] Open
Abstract
Recently, dynamic text presentation, such as scrolling text, has been widely used. Texts are often presented at constant timing and speed in conventional dynamic text presentation. However, dynamic text presentation enables visually presented texts to indicate timing information, such as prosody, and the texts might influence the impression of reading. In this paper, we examined this possibility by focusing on the temporal features of digital text in which texts are represented sequentially and with varying speed, duration, and timing. We call this "textual prosody." We used three types of textual prosody: "Recorded," "Shuffled," and "Constant." Recorded prosody is the reproduction of a reader's reading with pauses and varying speed that simulates talking. Shuffled prosody randomly shuffles the time course of speed and pauses in the recorded type. Constant prosody has a constant presentation speed and provides no timing information. Experiment 1 examined the effect of textual prosody on people with normal hearing. Participants read dynamic text with textual prosody silently and rated their impressions of texts. The results showed that readers with normal hearing preferred recorded textual prosody and constant prosody at the optimum speed (6 letters/second). Recorded prosody was also preferred at a low presentation speed. Experiment 2 examined the characteristics of textual prosody using an articulatory suppression paradigm. The results showed that some textual prosody was stored in the articulatory loop despite it being presented visually. In Experiment 3, we examined the effect of textual prosody with readers with hearing loss. The results demonstrated that readers with hearing loss had positive impressions at relatively low presentation speeds when the recorded prosody was presented. The results of this study indicate that the temporal structure is processed regardless of whether the input is visual or auditory. Moreover, these results suggest that textual prosody can enrich reading not only in people with normal hearing but also in those with hearing loss, regardless of acoustic experiences.
Collapse
Affiliation(s)
- Miki Uetsuki
- Department of Community Studies, Aoyama Gakuin University, Kanagawa, Japan
| | - Junji Watanabe
- Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Kanagawa, Japan
| | - Kazushi Maruya
- Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Kanagawa, Japan
| |
Collapse
|
40
|
Schütz C, Güldenpenning I, Koester D, Schack T. Social cues can impact complex behavior unconsciously. Sci Rep 2020; 10:21017. [PMID: 33273521 PMCID: PMC7712880 DOI: 10.1038/s41598-020-77646-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/09/2020] [Indexed: 12/02/2022] Open
Abstract
In three experiments, we investigated the effect of unconscious social priming on human behavior in a choice reaction time task. Photographs of a basketball player passing a ball to the left/right were used as target stimuli. Participants had to respond to the pass direction either by a whole-body (complex) response or a button-press (simple) response. Visually masked stimuli, showing both a task-relevant cue (pass direction) and a task-irrelevant, social cue (gaze direction), were used as primes. Subliminal social priming was found for kinematic (center of pressure) and chronometric measures (response times): gaze direction in the primes affected responses to the pass direction in the targets. The social priming effect diminished when gaze information was unhelpful or even detrimental to the task. Social priming of a complex behavior does not require awareness or intentionality, indicating automatic processing. Nevertheless, it can be controlled by top-down, strategic processes.
Collapse
Affiliation(s)
- Christoph Schütz
- Faculty of Psychology and Sports Science, Bielefeld University, 33615, Bielefeld, Germany.
| | | | - Dirk Koester
- Faculty Business and Management, BSP Business School Berlin, 12247, Berlin, Germany
| | - Thomas Schack
- Faculty of Psychology and Sports Science, Bielefeld University, 33615, Bielefeld, Germany.,Center for Cognitive Interaction Technology (CITEC), Bielefeld University, 33619, Bielefeld, Germany.,Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld University, 33615, Bielefeld, Germany
| |
Collapse
|
41
|
Zajac IT, Burns NR. Relationships between three auditory inspection time tasks and processing speed. AUSTRALIAN JOURNAL OF PSYCHOLOGY 2020. [DOI: 10.1111/j.1742-9536.2011.00020.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ian T. Zajac
- University of Adelaide, Psychology, North Terrace, Adelaide, South Australia, Australia
| | - Nicholas R. Burns
- University of Adelaide, Psychology, North Terrace, Adelaide, South Australia, Australia
| |
Collapse
|
42
|
Niu X, Huang S, Yang S, Wang Z, Li Z, Shi L. Comparison of pop-out responses to luminance and motion contrasting stimuli of tectal neurons in pigeons. Brain Res 2020; 1747:147068. [PMID: 32827547 DOI: 10.1016/j.brainres.2020.147068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022]
Abstract
The emergence of visual saliency has been widely studied in the primary visual cortex and the superior colliculus (SC) in mammals. There are fewer studies on the pop-out response to motion direction contrasting stimuli taken in the optic tectum (OT, homologous to mammalian SC), and these are mainly of owls and fish. To our knowledge the influence of spatial luminance has not been reported. In this study, we have recorded multi-units in pigeon OT and analyzed the tectal response to spatial luminance contrasting, motion direction contrasting, and contrasting stimuli from both feature dimensions. The comparison results showed that 1) the tectal response would pop-out in either motion direction or spatial luminance contrasting conditions. 2) The modulation from motion direction contrasting was independent of the temporal luminance variation of the visual stimuli. 3) When both spatial luminance and motion direction were salient, the response of tectal neurons was modulated more intensely by motion direction than by spatial luminance. The phenomenon was consistent with the innate instinct of avians in their natural environment. This study will help to deepen the understanding of mechanisms involved in bottom-up visual information processing and selective attention in the avian.
Collapse
Affiliation(s)
- Xiaoke Niu
- Henan Key Laboratory of Brain-Computer Interface Technology, School of Electrical Engineering, ZhengZhou University, Zhengzhou 450001, China; College of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China.
| | - Shuman Huang
- Henan Key Laboratory of Brain-Computer Interface Technology, School of Electrical Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Shangfei Yang
- Henan Key Laboratory of Brain-Computer Interface Technology, School of Electrical Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Zhizhong Wang
- Henan Key Laboratory of Brain-Computer Interface Technology, School of Electrical Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Zhihui Li
- Henan Key Laboratory of Brain-Computer Interface Technology, School of Electrical Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Li Shi
- Henan Key Laboratory of Brain-Computer Interface Technology, School of Electrical Engineering, ZhengZhou University, Zhengzhou 450001, China; Department of Automation, Tsinghua University, Beijing 100000, China.
| |
Collapse
|
43
|
How ubiquitous is the direct-gaze advantage? Evidence for an averted-gaze advantage in a gaze-discrimination task. Atten Percept Psychophys 2020; 83:215-237. [PMID: 33135097 PMCID: PMC7875945 DOI: 10.3758/s13414-020-02147-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 12/23/2022]
Abstract
Human eye gaze conveys an enormous amount of socially relevant information, and the rapid assessment of gaze direction is of particular relevance in order to adapt behavior accordingly. Specifically, previous research demonstrated evidence for an advantage of processing direct (vs. averted) gaze. The present study examined discrimination performance for gaze direction (direct vs. averted) under controlled presentation conditions: Using a backward-masking gaze-discrimination task, photographs of faces with direct and averted gaze were briefly presented, followed by a mask stimulus. Additionally, effects of facial context on gaze discrimination were assessed by either presenting gaze direction in isolation (i.e., by only showing the eye region) or in the context of an upright or inverted face. Across three experiments, we consistently observed a facial context effect with highest discrimination performance for faces presented in upright position, lower performance for inverted faces, and lowest performance for eyes presented in isolation. Additionally, averted gaze was generally responded to faster and with higher accuracy than direct gaze, indicating an averted-gaze advantage. Overall, the results suggest that direct gaze is not generally associated with processing advantages, thereby highlighting the important role of presentation conditions and task demands in gaze perception.
Collapse
|
44
|
Abir Y, Hassin RR. Getting to the heart of it: Multi-method exploration of nonconscious prioritization processes. Conscious Cogn 2020; 85:103005. [PMID: 32977241 DOI: 10.1016/j.concog.2020.103005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/09/2020] [Accepted: 08/09/2020] [Indexed: 11/26/2022]
Abstract
Understanding the determinants of consciousness is crucial for theories that see it as functionally adaptive, and for explaining how consciousness affects higher-level cognition. The invention of continuous flash suppression (CFS), a long-duration suppression technique, resulted in a proliferation of research into the process of prioritization for consciousness. We developed a new technique, repeated masked suppression (RMS), that facilitates the measurement of long suppression times, but relies on different visual principles. RMS enables a theoretical leap: It allows scientists to examine the central process of prioritization across different suppression methods. In five experiments (n = 282) we collected chronometric RMS and CFS data, finding that the previously reported face inversion effect and the face priority-dimension generalize beyond CFS. Our results validate the use of multi-method designs in the study of prioritization for consciousness. Furthermore, we show how RMS could be used online to reach diverse samples, previously beyond the reach of consciousness science.
Collapse
Affiliation(s)
- Yaniv Abir
- Psychology Department, Columbia University, USA
| | - Ran R Hassin
- Department of Psychology and The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
45
|
Wang S, Eccleston C, Keogh E. The Time Course of Facial Expression Recognition Using Spatial Frequency Information: Comparing Pain and Core Emotions. THE JOURNAL OF PAIN 2020; 22:196-208. [PMID: 32771561 DOI: 10.1016/j.jpain.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 06/20/2020] [Accepted: 07/12/2020] [Indexed: 10/23/2022]
Abstract
We are able to recognize others' experience of pain from their facial expressions. However, little is known about what makes the recognition of pain possible and whether it is similar or different from core emotions. This study investigated the mechanisms underpinning the recognition of pain expressions, in terms of spatial frequency (SF) information analysis, and compared pain with 2 core emotions (ie, fear and happiness). Two experiments using a backward masking paradigm were conducted to examine the time course of low- and high-SF information processing, by manipulating the presentation duration of face stimuli and target-mask onset asynchrony. Overall, we found a temporal advantage of low-SF over high-SF information for expression recognition, including pain. This asynchrony between low- and high-SF happened at a very early stage of information extraction, which indicates that the decoding of low-SF expression information is not only faster but possibly occurs before the processing of high-SF information. Interestingly, the recognition of pain was also found to be slower and more difficult than core emotions. It is suggested that more complex decoding process may be involved in the successful recognition of pain from facial expressions, possibly due to the multidimensional nature of pain experiences. PERSPECTIVE: Two studies explore the perceptual and temporal properties of the decoding of pain facial expressions. At very early stages of attention, the recognition of pain was found to be more difficult than fear and happiness. It suggests that pain is a complex expression, and requires additional time to detect and process.
Collapse
Affiliation(s)
- Shan Wang
- Centre for Pain Research, University of Bath, Bath, United Kingdom; Department of Psychology, University of Bath, Bath, United Kingdom; Division of Social Sciences, Duke Kunshan University, Kunshan, Jiangsu Province, China.
| | - Christopher Eccleston
- Centre for Pain Research, University of Bath, Bath, United Kingdom; Department of Experimental-Clinical and Health Psychology, Ghent University, Belgium
| | - Edmund Keogh
- Centre for Pain Research, University of Bath, Bath, United Kingdom; Department of Psychology, University of Bath, Bath, United Kingdom
| |
Collapse
|
46
|
Nakamura T, Lavrenteva S, Murakami I. Four-dot masking in monoptic and dichoptic viewing. Sci Rep 2020; 10:11120. [PMID: 32632121 PMCID: PMC7338523 DOI: 10.1038/s41598-020-67922-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/16/2020] [Indexed: 11/18/2022] Open
Abstract
In visual backward masking paradigms, the visibility of a target is reduced using various kinds of mask stimuli presented immediately after the target. Four-dot masking is one such kind of backward masking, caused by four surrounding dots neither spatially adjacent nor similar to the target. Four-dot masking is often considered to involve object-level interferences. However, low-level contributions such as lateral inhibition and motion detection are also possible. To elucidate the loci of the underlying mechanism within the visual hierarchy, we compared the masking effect between monoptic and dichoptic viewing conditions. A target and a four-dot mask, which also served as a spatial cue to the target location, were presented to the same eye in monoptic viewing, whereas they were presented to different eyes in dichoptic viewing. Observers were then asked to discriminate the target shape. We found a significant decline in the correct response rate compared to the baseline condition in which the four-dot mask was not presented, and the masking effect was equivalent between the monoptic and dichoptic viewings. These results demonstrate that four-dot masking stems exclusively from processing within the binocular pathway.
Collapse
Affiliation(s)
- Tomoya Nakamura
- Department of Psychology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Sofia Lavrenteva
- Department of Psychology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuya Murakami
- Department of Psychology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
47
|
Winters JJ. The temporally-integrated causality landscape: A theoretical framework for consciousness and meaning. Conscious Cogn 2020; 83:102976. [PMID: 32590193 DOI: 10.1016/j.concog.2020.102976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 02/28/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023]
Abstract
Theoretical approaches to understanding consciousness have begun to converge upon areas of general agreement, yet substantive differences remain. Here, I introduce a new theoretical framework for the emergence of consciousness from the functional integration of the thalamocortical system: the Temporally-Integrated Causality Landscape (TICL). TICL presents a novel perspective which addresses important phenomenological characteristics of consciousness that other frameworks, such as IIT, do not. First, the TICL is based upon the observation that conscious experiences are temporally continuous, not discrete. Secondly, the TICL establishes a thalamocortical basis for the point-of-view. According to TICL, consciousness is composed of contents that arise from neuronal subsystems that have meaning from the point-of-view of the larger, integrated system in which they are nested. Meaningful contents emerge from the subsystems because they exhibit a level of temporally-integrated causality (TIC) that is distinguishable from that of the larger system.
Collapse
Affiliation(s)
- Jesse J Winters
- Department of Psychiatry, University of Michigan, Ann Arbor MI, USA.
| |
Collapse
|
48
|
Trouilloud A, Kauffmann L, Roux-Sibilon A, Rossel P, Boucart M, Mermillod M, Peyrin C. Rapid scene categorization: From coarse peripheral vision to fine central vision. Vision Res 2020; 170:60-72. [PMID: 32259648 DOI: 10.1016/j.visres.2020.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/12/2019] [Accepted: 02/17/2020] [Indexed: 12/01/2022]
Abstract
Studies on scene perception have shown that the rapid extraction of low spatial frequencies (LSF) allows a coarse parsing of the scene, prior to the analysis of high spatial frequencies (HSF) containing details. Many studies suggest that scene gist recognition can be achieved with only the low resolution of peripheral vision. Our study investigated the advantage of peripheral vision on central vision during a scene categorization task (indoor vs. outdoor). In Experiment 1, we used large scene photographs from which we built one central disk and four circular rings of different eccentricities. The central disk either contained or not an object semantically related to the scene category. Results showed better categorization performances for the peripheral rings, despite the presence of an object in central vision that was semantically related to the scene category that significantly improved categorization performances. In Experiment 2, the central disk and rings were assembled from Central to Peripheral vision (CtP sequence) or from Peripheral to Central vision (PtC sequence). Results revealed better performances for PtC than CtP sequences, except when no central object was present under rapid categorization constraints. As Experiment 3 suggested that the PtC advantage was not explained by a reduction of the visibility of the object in the central disk by the surrounding peripheral rings (CtP sequence), results are interpreted in the context of a predominant coarse-to-fine processing during scene categorization, with greater efficiency and utility of coarse peripheral vision relative to fine central vision during rapid scene categorization.
Collapse
Affiliation(s)
- Audrey Trouilloud
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | - Louise Kauffmann
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France; Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France
| | - Alexia Roux-Sibilon
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | - Pauline Rossel
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | - Muriel Boucart
- SCALab, University of Lille, Centre National de la Recherche Scientifique, Lille, France
| | - Martial Mermillod
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | - Carole Peyrin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France.
| |
Collapse
|
49
|
Hirose N, Hattori S, Mori S. Breaking Surface Feature Continuity of Previewed Mask Reinstates Object Substitution Masking12. JAPANESE PSYCHOLOGICAL RESEARCH 2020. [DOI: 10.1111/jpr.12275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Perception and decision mechanisms involved in average estimation of spatiotemporal ensembles. Sci Rep 2020; 10:1318. [PMID: 31992785 PMCID: PMC6987113 DOI: 10.1038/s41598-020-58112-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/10/2020] [Indexed: 11/08/2022] Open
Abstract
A number of studies on texture and ensemble perception have shown that humans can immediately estimate the average of spatially distributed visual information. The present study characterized mechanisms involved in estimating averages for information distributed over both space and time. Observers viewed a rapid sequence of texture patterns in which elements' orientation were determined by dynamic Gaussian noise with variable spatial and temporal standard deviations (SDs). We found that discrimination thresholds increased beyond a certain spatial SD if temporal SD was small, but if temporal SD was large, thresholds remained nearly constant regardless of spatial SD. These data are at odds with predictions that threshold is uniquely determined by spatiotemporal SD. Moreover, a reverse correlation analysis revealed that observers judged the spatiotemporal average orientation largely depending on the spatial average orientation over the last few frames of the texture sequence - a recency effect widely observed in studies of perceptual decision making. Results are consistent with the notion that the visual system rapidly computes spatial ensembles and adaptively accumulates information over time to make a decision on spatiotemporal average. A simple computational model based on this notion successfully replicated observed data.
Collapse
|