1
|
Lloyd A, Roiser JP, Skeen S, Freeman Z, Badalova A, Agunbiade A, Busakhwe C, DeFlorio C, Marcu A, Pirie H, Saleh R, Snyder T, Fearon P, Viding E. Reviewing explore/exploit decision-making as a transdiagnostic target for psychosis, depression, and anxiety. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:793-815. [PMID: 38653937 PMCID: PMC11390819 DOI: 10.3758/s13415-024-01186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
In many everyday decisions, individuals choose between trialling something novel or something they know well. Deciding when to try a new option or stick with an option that is already known to you, known as the "explore/exploit" dilemma, is an important feature of cognition that characterises a range of decision-making contexts encountered by humans. Recent evidence has suggested preferences in explore/exploit biases are associated with psychopathology, although this has typically been examined within individual disorders. The current review examined whether explore/exploit decision-making represents a promising transdiagnostic target for psychosis, depression, and anxiety. A systematic search of academic databases was conducted, yielding a total of 29 studies. Studies examining psychosis were mostly consistent in showing that individuals with psychosis explored more compared with individuals without psychosis. The literature on anxiety and depression was more heterogenous; some studies found that anxiety and depression were associated with more exploration, whereas other studies demonstrated reduced exploration in anxiety and depression. However, examining a subset of studies that employed case-control methods, there was some evidence that both anxiety and depression also were associated with increased exploration. Due to the heterogeneity across the literature, we suggest that there is insufficient evidence to conclude whether explore/exploit decision-making is a transdiagnostic target for psychosis, depression, and anxiety. However, alongside our advisory groups of lived experience advisors, we suggest that this context of decision-making is a promising candidate that merits further investigation using well-powered, longitudinal designs. Such work also should examine whether biases in explore/exploit choices are amenable to intervention.
Collapse
Affiliation(s)
- Alex Lloyd
- Clinical, Educational and Health Psychology, Psychology and Language Sciences, University College London, 26 Bedford Way, London, WC1H 0AP, UK.
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Sarah Skeen
- Institute for Life Course Health Research, Stellenbosch University, Stellenbosch, South Africa
| | - Ze Freeman
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Aygun Badalova
- Institute of Neurology, University College London, London, UK
| | | | | | | | - Anna Marcu
- Young People's Advisor Group, London, UK
| | | | | | | | - Pasco Fearon
- Clinical, Educational and Health Psychology, Psychology and Language Sciences, University College London, 26 Bedford Way, London, WC1H 0AP, UK
- Centre for Family Research, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Essi Viding
- Clinical, Educational and Health Psychology, Psychology and Language Sciences, University College London, 26 Bedford Way, London, WC1H 0AP, UK
| |
Collapse
|
2
|
Kwak S, Kim H, Kim KY, Oh DY, Lee D, Nam G, Lee JY. Neuroanatomical and neurocognitive correlates of delusion in Alzheimer's disease and mild cognitive impairment. BMC Neurol 2024; 24:89. [PMID: 38448803 PMCID: PMC10916051 DOI: 10.1186/s12883-024-03568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Neuropsychiatric symptoms and delusions are highly prevalent among people with dementia. However, multiple roots of neurobiological bases and shared neural basis of delusion and cognitive function remain to be characterized. By utilizing a fine-grained multivariable approach, we investigated distinct neuroanatomical correlates of delusion symptoms across a large population of dementing illnesses. METHODS In this study, 750 older adults with mild cognitive impairment and Alzheimer's disease completed brain structural imaging and neuropsychological assessment. We utilized principal component analysis followed by varimax rotation to identify the distinct multivariate correlates of cortical thinning patterns. Five of the cognitive domains were assessed whether the general cognitive abilities mediate the association between cortical thickness and delusion. RESULTS The result showed that distributed thickness patterns of temporal and ventral insular cortex (component 2), inferior and lateral prefrontal cortex (component 1), and somatosensory-visual cortex (component 5) showed negative correlations with delusions. Subsequent mediation analysis showed that component 1 and 2, which comprises inferior frontal, anterior insula, and superior temporal regional thickness accounted for delusion largely through lower cognitive functions. Specifically, executive control function assessed with the Trail Making Test mediated the relationship between two cortical thickness patterns and delusions. DISCUSSION Our findings suggest that multiple distinct subsets of brain regions underlie the delusions among older adults with cognitive impairment. Moreover, a neural loss may affect the occurrence of delusion in dementia largely due to impaired general cognitive abilities.
Collapse
Affiliation(s)
- Seyul Kwak
- Department of Psychology, Pusan National University, Busan, Republic of Korea
| | - Hairin Kim
- Department of Psychiatry, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Keun You Kim
- Department of Psychiatry, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Da Young Oh
- Department of Psychiatry, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Dasom Lee
- Department of Psychiatry, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Gieun Nam
- Department of Psychiatry, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea.
- Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Huang LY, Parker DA, Ethridge LE, Hamm JP, Keedy SS, Tamminga CA, Pearlson GD, Keshavan MS, Hill SK, Sweeney JA, McDowell JE, Clementz BA. Double dissociation between P300 components and task switch error type in healthy but not psychosis participants. Schizophr Res 2023; 261:161-169. [PMID: 37776647 PMCID: PMC11015813 DOI: 10.1016/j.schres.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/02/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Event-related potentials (ERPs) during oddball tasks and the behavioral performance on the Penn Conditional Exclusion Task (PCET) measure context-appropriate responding: P300 ERPs to oddball targets reflect detection of input changes and context updating in working memory, and PCET performance indexes detection, adherence, and maintenance of mental set changes. More specifically, PCET variables quantify cognitive functions including inductive reasoning (set 1 completion), mental flexibility (perseverative errors), and working memory maintenance (regressive errors). Past research showed that both P300 ERPs and PCET performance are disrupted in psychosis. This study probed the possible neural correlates of 3 PCET abnormalities that occur in participants with psychosis via the overlapping cognitive demands of the two study paradigms. In a two-tiered analysis, psychosis (n = 492) and healthy participants (n = 244) were first divided based on completion of set 1 - which measures subjects' ability to use inductive reasoning to arrive at the correct set. Results showed that participants who failed set 1 produced lower parietal P300, independent of clinical status. In the second tier of analysis, a double dissociation was found among healthy set 1 completers: frontal P300 amplitudes were negatively associated with perseverative errors, and parietal P300 was negatively associated with regressive errors. In contrast, psychosis participants showed global P300 reductions regardless of PCET performance. From this we conclude that in psychosis, overall activations evoked by the oddball task are reduced while the cognitive functions required by PCET are still somewhat supported, showing some level of independence or compensatory physiology in psychosis between neural activities underlying the two tasks.
Collapse
Affiliation(s)
- Ling-Yu Huang
- Departments of Psychology & Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, USA
| | - David A Parker
- Departments of Psychology & Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, USA
| | - Lauren E Ethridge
- Department of Psychology and Pediatrics, University of Oklahoma, Norman, OK, USA
| | - Jordan P Hamm
- Department of Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Sarah S Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, IL, USA
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - S Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Jennifer E McDowell
- Departments of Psychology & Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, USA
| | - Brett A Clementz
- Departments of Psychology & Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Srivastav S, Cui X, Varela RB, Kesby JP, Eyles D. Increasing dopamine synthesis in nigrostriatal circuits increases phasic dopamine release and alters dorsal striatal connectivity: implications for schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:69. [PMID: 37798312 PMCID: PMC10556015 DOI: 10.1038/s41537-023-00397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
One of the most robust neurochemical abnormalities reported in patients with schizophrenia is an increase in dopamine (DA) synthesis and release, restricted to the dorsal striatum (DS). This hyper functionality is strongly associated with psychotic symptoms and progresses in those who later transition to schizophrenia. To understand the implications of this progressive neurobiology on brain function, we have developed a model in rats which we refer to as EDiPs (Enhanced Dopamine in Prodromal schizophrenia). The EDiPs model features a virally mediated increase in dorsal striatal (DS) DA synthesis capacity across puberty and into adulthood. This protocol leads to progressive changes in behaviour and neurochemistry. Our aim in this study was to explore if increased DA synthesis capacity alters the physiology of DA release and DS connectivity. Using fast scan cyclic voltammetry to assess DA release we show that evoked/phasic DA release is increased in the DS of EDiPs rats, whereas tonic/background levels of DA remain unaffected. Using quantitative immunohistochemistry methods to quantify DS synaptic architecture we show a presynaptic marker for DA release sites (Bassoon) was elevated within TH axons specifically within the DS, consistent with the increased phasic DA release in this region. Alongside changes in DA systems, we also show increased density of vesicular glutamate transporter 1 (VGluT1) synapses in the EDiPs DS suggesting changes in cortical connectivity. Our data may prove relevant in understanding the long-term implications for DS function in response to the robust and prolonged increases in DA synthesis uptake and release reported in schizophrenia.
Collapse
Affiliation(s)
- Sunil Srivastav
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia
| | | | - James P Kesby
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia
| | - Darryl Eyles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Young MK, Conn KA, Das J, Zou S, Alexander S, Burne TH, Kesby JP. Activity in the Dorsomedial Striatum Underlies Serial Reversal Learning Performance Under Probabilistic Uncertainty. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:1030-1041. [PMID: 37881585 PMCID: PMC10593872 DOI: 10.1016/j.bpsgos.2022.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Corticostriatal circuits, particularly the dorsomedial striatum (DMS) and lateral orbitofrontal cortex, are critical for navigating reversal learning under probabilistic uncertainty. These same areas are implicated in the reversal learning impairments observed in individuals with psychosis as well as their psychotic symptoms, suggesting that they may share a common neurobiological substrate. To address this question, we used psychostimulant exposure and specific activation of the DMS during reversal learning in mice to assess corticostriatal activity. Methods We used amphetamine treatment to induce psychosis-relevant neurobiology in male mice during reversal learning and to examine pathway-specific corticostriatal activation. To determine the causal role of DMS activity, we used chemogenetics to drive midbrain inputs during a range of probabilistic contingencies. Results Mice treated with amphetamine showed altered punishment learning, which was associated with decreased shifting after losses and increased perseverative errors after reversals. Reversal learning performance and strategies were dependent on increased activity in lateral orbitofrontal cortex to DMS circuits as well as in the DMS itself. Specific activation of midbrain to DMS circuits also decreased shifting after losses and reversal learning performance. However, these alterations were dependent on the probabilistic contingency. Conclusions Our work suggests that the DMS plays a multifaceted role in reversal learning. Increasing DMS activity impairs multiple reversal learning processes dependent on the level of uncertainty, confirming its role in the maintenance and selection of incoming cortical inputs. Together, these outcomes suggest that elevated dopamine levels in the DMS could contribute to decision-making impairments in individuals with psychosis.
Collapse
Affiliation(s)
- Madison K. Young
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Kyna-Anne Conn
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Joyosmita Das
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Simin Zou
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Centre for Mental Health Research, Brisbane, Queensland, Australia
| | - Thomas H.J. Burne
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Centre for Mental Health Research, Brisbane, Queensland, Australia
| | - James P. Kesby
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Centre for Mental Health Research, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Baker A, Suetani S, Cosgrove P, Siskind D, Murray GK, Scott JG, Kesby JP. Reversal learning in those with early psychosis features contingency-dependent changes in loss response and learning. Cogn Neuropsychiatry 2023; 28:342-360. [PMID: 37737715 DOI: 10.1080/13546805.2023.2259019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
INTRODUCTION People with psychotic disorders commonly feature broad decision-making impairments that impact their functional outcomes. Specific associative/reinforcement learning problems have been demonstrated in persistent psychosis. But these phenotypes may differ in early psychosis, suggesting that aspects of cognition decline over time. METHODS The present proof-of-concept study examined goal-directed action and reversal learning in controls and those with early psychosis. RESULTS Equivalent performance was observed between groups during outcome-specific devaluation, and reversal learning at an 80:20 contingency (reward probability for high:low targets). But when the low target reward probability was increased (80:40) those with early psychosis altered their response to loss, whereas controls did not. Computational modelling confirmed that in early psychosis there was a change in punishment learning that increased the chance of staying with the same stimulus after a loss, multiple trials into the future. In early psychosis, the magnitude of this response was greatest in those with higher IQ and lower clinical severity scores. CONCLUSIONS We show preliminary evidence that those with early psychosis present with a phenotype that includes altered responding to loss and hyper-adaptability in response to outcome changes. This may reflect a compensatory response to overcome the milieu of corticostriatal changes associated with psychotic disorders.
Collapse
Affiliation(s)
- Andrea Baker
- Queensland Centre for Mental Health Research, Brisbane, Australia
| | - Shuichi Suetani
- Queensland Centre for Mental Health Research, Brisbane, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- School of Medicine and Dentistry, Griffith University, Brisbane, Australia
- Institute for Urban Indigenous Health, Brisbane, Australia
| | - Peter Cosgrove
- Queensland Centre for Mental Health Research, Brisbane, Australia
| | - Dan Siskind
- Queensland Centre for Mental Health Research, Brisbane, Australia
- Metro South Addiction and Mental Health Services, Brisbane, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Graham K Murray
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - James G Scott
- Queensland Centre for Mental Health Research, Brisbane, Australia
- Child Health Research Centre, University of Queensland, Brisbane, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - James P Kesby
- Queensland Centre for Mental Health Research, Brisbane, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Sagud M, Tudor L, Nedic Erjavec G, Nikolac Perkovic M, Uzun S, Mimica N, Madzarac Z, Zivkovic M, Kozumplik O, Konjevod M, Svob Strac D, Pivac N. Genotypic and Haplotypic Association of Catechol- O-Methyltransferase rs4680 and rs4818 Gene Polymorphisms with Particular Clinical Symptoms in Schizophrenia. Genes (Basel) 2023; 14:1358. [PMID: 37510262 PMCID: PMC10379812 DOI: 10.3390/genes14071358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Catechol-O-methyl transferase (COMT) gene variants are involved in different neuropsychiatric disorders and cognitive impairments, associated with altered dopamine function. This study investigated the genotypic and haplotypic association of COMT rs4680 and rs4618 polymorphisms with the severity of cognitive and other clinical symptoms in 544 male and 385 female subjects with schizophrenia. COMT rs4818 G carriers were more frequent in male patients with mild abstract thinking difficulties, compared to CC homozygotes or C allele carriers. Male carriers of COMT rs4680 A allele had worse abstract thinking (N5) scores than GG carriers, whereas AA homozygotes were more frequent in male subjects with lower scores on the intensity of the somatic concern (G1) item, compared to G carriers. Male carriers of COMT rs4818-rs4680 GA haplotype had the highest scores on the G1 item (somatic concern), whereas GG haplotype carriers had the lowest scores on G2 (anxiety) and G6 (depression) items. COMT GG haplotype was less frequent in female patients with severe disturbance of volition (G13 item) compared to the group with mild symptoms, while CG haplotype was more frequent in female patients with severe then mild symptoms. These findings suggest the sex-specific genotypic and haplotypic association of COMT variants with a severity of cognitive and other clinical symptoms of schizophrenia.
Collapse
Affiliation(s)
- Marina Sagud
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (M.S.); (Z.M.); (M.Z.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.U.); (N.M.)
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.); (D.S.S.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.); (D.S.S.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.); (D.S.S.)
| | - Suzana Uzun
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia;
| | - Ninoslav Mimica
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia;
| | - Zoran Madzarac
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (M.S.); (Z.M.); (M.Z.)
| | - Maja Zivkovic
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (M.S.); (Z.M.); (M.Z.)
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia;
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.); (D.S.S.)
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.); (D.S.S.)
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.); (D.S.S.)
- University of Applied Sciences Hrvatsko Zagorje Krapina, 49000 Krapina, Croatia
| |
Collapse
|
8
|
Conn KA, Zou S, Das J, Alexander S, Burne TH, Kesby JP. Activating the dorsomedial and ventral midbrain projections to the striatum differentially impairs goal-directed action in male mice. Neuropharmacology 2023; 234:109550. [PMID: 37085011 DOI: 10.1016/j.neuropharm.2023.109550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/29/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
The cognitive symptoms of schizophrenia are wide ranging and include impaired goal-directed action. This could be driven by an increase in dopamine transmission in the dorsomedial striatum, a pathophysiological hallmark of schizophrenia. Although commonly associated with psychotic symptoms, dopamine signalling in this region also modulates associative learning that aids in the execution of actions. To gain a better understanding of the role of subcortical dopamine in learning and decision-making, we assessed goal-directed action in male mice using the cross-species outcome-specific devaluation task (ODT). First, we administered systemic amphetamine during training to determine the impact of altered dopaminergic signaling on associative learning. Second, we used pathway-specific chemogenetic approaches to activate the dorsomedial and ventral striatal pathways (that originate in the midbrain) to separately assess learning and performance. Amphetamine treatment during learning led to a dose-dependent impairment in goal-directed action. Activation of both striatal pathways during learning also impaired performance. However, when these pathways were activated during choice, only activation of the ventral pathway impaired goal-directed action. This suggests that elevated transmission in the dorsomedial striatal pathway impairs associative learning processes that guide the goal-directed execution of actions. By contrast, elevated transmission of the ventral striatal pathway disrupts the encoding of outcome values that are important for both associative learning and choice performance. These findings highlight the differential roles of the dorsomedial and ventral inputs into the striatum in goal-directed action and provides insight into how striatal dopamine signaling may contribute to the cognitive problems in those with schizophrenia.
Collapse
Affiliation(s)
- Kyna-Anne Conn
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Simin Zou
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Joyosmita Das
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Suzy Alexander
- Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia
| | - Thomas Hj Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia; Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia
| | - James P Kesby
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia; Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia; QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.
| |
Collapse
|
9
|
Knolle F, Sterner E, Moutoussis M, Adams RA, Griffin JD, Haarsma J, Taverne H, Goodyer IM, Fletcher PC, Murray GK. Action selection in early stages of psychosis: an active inference approach. J Psychiatry Neurosci 2023; 48:E78-E89. [PMID: 36810306 PMCID: PMC9949875 DOI: 10.1503/jpn.220141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND To interact successfully with their environment, humans need to build a model to make sense of noisy and ambiguous inputs. An inaccurate model, as suggested to be the case for people with psychosis, disturbs optimal action selection. Recent computational models, such as active inference, have emphasized the importance of action selection, treating it as a key part of the inferential process. Based on an active inference framework, we sought to evaluate previous knowledge and belief precision in an action-based task, given that alterations in these parameters have been linked to the development of psychotic symptoms. We further sought to determine whether task performance and modelling parameters would be suitable for classification of patients and controls. METHODS Twenty-three individuals with an at-risk mental state, 26 patients with first-episode psychosis and 31 controls completed a probabilistic task in which action choice (go/no-go) was dissociated from outcome valence (gain or loss). We evaluated group differences in performance and active inference model parameters and performed receiver operating characteristic (ROC) analyses to assess group classification. RESULTS We found reduced overall performance in patients with psychosis. Active inference modelling revealed that patients showed increased forgetting, reduced confidence in policy selection and less optimal general choice behaviour, with poorer action-state associations. Importantly, ROC analysis showed fair-to-good classification performance for all groups, when combining modelling parameters and performance measures. LIMITATIONS The sample size is moderate. CONCLUSION Active inference modelling of this task provides further explanation for dysfunctional mechanisms underlying decision-making in psychosis and may be relevant for future research on the development of biomarkers for early identification of psychosis.
Collapse
Affiliation(s)
- Franziska Knolle
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | - Elisabeth Sterner
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | - Michael Moutoussis
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | - Rick A Adams
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | - Juliet D Griffin
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | - Joost Haarsma
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | - Hilde Taverne
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | - Ian M Goodyer
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | - Paul C Fletcher
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | - Graham K Murray
- From the Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany (Knolle, Sterner); the Department of Psychiatry, University of Cambridge, Cambridge, UK (Knolle, Griffin, Taverne, Goodyer, Fletcher, Murray); the Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London, UK (Moutoussis, Adams); the Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK (Adams); the Wellcome Centre for Human Neuroimaging, University College London, London, UK (Haarsma); the University of Amsterdam, Amsterdam, NL (Taverne); Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK (Goodyer, Fletcher); Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK (Murray)
| | | |
Collapse
|
10
|
Arnautovska U, Kesby JP, Korman N, Rebar AL, Chapman J, Warren N, Rossell SL, Dark FL, Siskind D. Biopsychology of Physical Activity in People with Schizophrenia: An Integrative Perspective on Barriers and Intervention Strategies. Neuropsychiatr Dis Treat 2022; 18:2917-2926. [PMID: 36544549 PMCID: PMC9763049 DOI: 10.2147/ndt.s393775] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
People with severe mental illness such as schizophrenia experience high physical comorbidity, leading to a 15-20-year mortality gap compared with the general population. Lifestyle behaviours such as physical activity (PA) play important roles in the quest to bridge this gap. Interventions to increase PA engagement in this population have potential to be efficacious; however, their effectiveness can be hindered by low participant engagement, including low adherence and high drop-out, and by implementation of interventions that are not designed to compensate for the cognitive and motivational impairments characteristic for this group. Moreover, and importantly, the negative symptoms of schizophrenia are associated with neurobiological changes in the brain, which-based on principles of biopsychology-can contribute to poor motivation and impaired decision-making processes and behavioural maintenance. To increase PA levels in people with schizophrenia, better understanding of these neurological changes that impact PA engagement is needed. This has the potential to inform the design of interventions that, through enhancement of motivation, could effectively increase PA levels in this specific population. Incorporating strategies that address the dopamine dysregulation associated with schizophrenia, such as boosting the role of reward and self-determined motivation, may improve long-term PA maintenance, leading to habitual PA. Consideration of motivation and behavioural maintenance is also needed to impart health benefits such as prevention of chronic disease, which is associated with currently low PA levels in this high metabolic risk population. Taking a biopsychological perspective, we outline the neural pathways involved in motivation that are impacted by schizophrenia and propose strategies for promoting motivation for and PA engagement from adoption to habit formation.
Collapse
Affiliation(s)
- Urska Arnautovska
- Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
- Metro South Addictions and Mental Health Service, Woolloongabba, QLD, Australia
| | - James P Kesby
- Centre for Mental Health, Griffith University, Nathan, QLD, Australia
- Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia
| | - Nicole Korman
- Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
- Metro South Addictions and Mental Health Service, Woolloongabba, QLD, Australia
| | - Amanda L Rebar
- Motivation of Health Behaviours Lab, Appleton Institute, School of Health, Medical, and Applied Sciences; Central Queensland University, Rockhampton, QLD, Australia
| | - Justin Chapman
- Metro South Addictions and Mental Health Service, Woolloongabba, QLD, Australia
- Centre for Mental Health, Griffith University, Nathan, QLD, Australia
| | - Nicola Warren
- Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
- Metro South Addictions and Mental Health Service, Woolloongabba, QLD, Australia
| | - Susan L Rossell
- Centre for Mental Health, School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia
- Psychiatry, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Frances L Dark
- Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
- Metro South Addictions and Mental Health Service, Woolloongabba, QLD, Australia
| | - Dan Siskind
- Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
- Metro South Addictions and Mental Health Service, Woolloongabba, QLD, Australia
- Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia
| |
Collapse
|