1
|
Vakayil R, Ramasamy S, Alahmadi TA, Almoallim HS, Natarajan N, Mathanmohun M. Boswellia serrata-mediated zinc oxide nanoparticles-coated cotton fabrics for the wound healing and antibacterial applications against nosocomial pathogens. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Acorus calamus-zinc oxide nanoparticle coated cotton fabrics shows antimicrobial and cytotoxic activities against skin cancer cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Andra S, Balu SK, Jeevanandam J, Muthalagu M. Emerging nanomaterials for antibacterial textile fabrication. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1355-1382. [PMID: 33710422 DOI: 10.1007/s00210-021-02064-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022]
Abstract
In recent times, the search for innovative material to fabricate smart textiles has been increasing to satisfy the expectation and needs of the consumers, as the textile material plays a key role in the evolution of human culture. Further, the textile materials provide an excellent environment for the microbes to grow, because of their large surface area and ability to retain moisture. In addition, the growth of harmful bacteria on the textile material not only damages them but also leads to intolerable foul odour and significant danger to public health. In particular, the pathogenic bacteria present in the fabric surface can cause severe skin infections such as skin allergy and irritation via direct human contact and even can lead to heart problems and pneumonia in certain cases. Recently, nanoparticles and nanomaterials play a significant role in textile industries for developing functional smart textiles with self-cleaning, UV-protection, insect repellent, waterproof, anti-static, flame-resistant and antimicrobial-resistant properties. Thus, this review is an overview of various textile fibres that favour bacterial growth and potential antibacterial nanoparticles that can inhibit the growth of bacteria on fabric surfaces. In addition, the probable antibacterial mechanism of nanoparticles and the significance of the fabric surface modification and fabric finishes in improving the long-term antibacterial efficacy of nanoparticle-coated fabrics were also discussed.
Collapse
Affiliation(s)
- Swetha Andra
- Department of Textile Technology, Anna University, Chennai, India
| | | | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | | |
Collapse
|
4
|
AbouAitah K, Bil M, Pietrzykowska E, Szałaj U, Fudala D, Woźniak B, Nasiłowska J, Swiderska-Sroda A, Lojkowski M, Sokołowska B, Swieszkowski W, Lojkowski W. Drug-Releasing Antibacterial Coating Made from Nano-Hydroxyapatite Using the Sonocoating Method. NANOMATERIALS 2021; 11:nano11071690. [PMID: 34203218 PMCID: PMC8307745 DOI: 10.3390/nano11071690] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Medical implant use is associated with a risk of infection caused by bacteria on their surface. Implants with a surface that has both bone growth-promoting properties and antibacterial properties are of interest in orthopedics. In the current study, we fabricated a bioactive coating of hydroxyapatite nanoparticles on polyether ether ketone (PEEK) using the sonocoating method. The sonocoating method creates a layer by immersing the object in a suspension of nanoparticles in water and applying a high-power ultrasound. We show that the simple layer fabrication method results in a well-adhering layer with a thickness of 219 nm to 764 nm. Dropping cefuroxime sodium salt (Cef) antibiotic on the coated substrate creates a layer with a drug release effect and antibacterial activity against Staphylococcus aureus. We achieved a concentration of up to 1 mg of drug per cm2 of the coated substrate. In drug release tests, an initial burst was observed within 24 h, accompanied by a linear stable release effect. The drug-loaded implants exhibited sufficient activity against S. aureus for 24 and 168 h. Thus, the simple method we present here produces a biocompatible coating that can be soaked with antibiotics for antibacterial properties and can be used for a range of medical implants.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza 12622, Egypt
- Correspondence: (K.A.); (W.L.); Tel.: +48-22-6325010 (W.L.); Fax: +48-22-632-4218 (W.L.)
| | - Monika Bil
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02822 Warsaw, Poland;
| | - Elzbieta Pietrzykowska
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02507 Warsaw, Poland; (M.L.); (W.S.)
| | - Urszula Szałaj
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02507 Warsaw, Poland; (M.L.); (W.S.)
| | - Damian Fudala
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
| | - Bartosz Woźniak
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
| | - Justyna Nasiłowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology–State Research Institute, 36 Rakowiecka Street, 02532 Warsaw, Poland; (J.N.); (B.S.)
- High Pressure Food and Soft Matter Processing Group, Institute of High-Pressure Physics, Polish Academy of Sciences, 29/37 Sokołowska Street, 01142 Warsaw, Poland
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
| | - Maciej Lojkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02507 Warsaw, Poland; (M.L.); (W.S.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology–State Research Institute, 36 Rakowiecka Street, 02532 Warsaw, Poland; (J.N.); (B.S.)
- High Pressure Food and Soft Matter Processing Group, Institute of High-Pressure Physics, Polish Academy of Sciences, 29/37 Sokołowska Street, 01142 Warsaw, Poland
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02507 Warsaw, Poland; (M.L.); (W.S.)
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
- Correspondence: (K.A.); (W.L.); Tel.: +48-22-6325010 (W.L.); Fax: +48-22-632-4218 (W.L.)
| |
Collapse
|
5
|
Recent Advances on Antimicrobial and Anti-Inflammatory Cotton Fabrics Containing Nanostructures. Molecules 2021; 26:molecules26103008. [PMID: 34070166 PMCID: PMC8158507 DOI: 10.3390/molecules26103008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 01/15/2023] Open
Abstract
Hydrophilic cotton textiles, used in hospitals and sportswear, are prone to the growth of microorganisms (bacteria, fungi) resulting in hygiene and health risks. Thus, healthcare concerns have motivated the interest for the development of multifunctional antimicrobial cotton fabrics. Moreover, cotton textiles are also used in medical applications such as wound dressings. Their functionalization with anti-inflammatory agents is desirable in order to accelerate cicatrisation in the treatment of chronic wounds. This review summarizes recent advances (from January 2016 to January 2021) on the modification and coating of cotton fabrics with nanostructures (mainly metal and metal oxide nanoparticles, functionalized silica nanoparticles) to provide them antimicrobial (antibacterial and antifungal) and anti-inflammatory properties.
Collapse
|
6
|
Facile Green Synthesis of Copper Oxide Nanoparticles and Their Rhodamine-b Dye Adsorption Property. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02025-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Ferrer-Vilanova A, Alonso Y, Dietvorst J, Pérez-Montero M, Rodríguez-Rodríguez R, Ivanova K, Tzanov T, Vigués N, Mas J, Guirado G, Muñoz-Berbel X. Sonochemical coating of Prussian Blue for the production of smart bacterial-sensing hospital textiles. ULTRASONICS SONOCHEMISTRY 2021; 70:105317. [PMID: 32891882 PMCID: PMC7786536 DOI: 10.1016/j.ultsonch.2020.105317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 08/23/2020] [Indexed: 05/22/2023]
Abstract
In healthcare facilities, environmental microbes are responsible for numerous infections leading to patient's health complications and even death. The detection of the pathogens present on contaminated surfaces is crucial, although not always possible with current microbial detection technologies requiring sample collection and transfer to the laboratory. Based on a simple sonochemical coating process, smart hospital fabrics with the capacity to detect live bacteria by a simple change of colour are presented here. Prussian Blue nanoparticles (PB-NPs) are sonochemically coated on polyester-cotton textiles in a single-step requiring 15 min. The presence of PB-NPs confers the textile with an intensive blue colour and with bacterial-sensing capacity. Live bacteria in the textile metabolize PB-NPs and reduce them to colourless Prussian White (PW), enabling in situ detection of bacterial presence in less than 6 h with the bare eye (complete colour change requires 40 h). The smart textile is sensitive to both Gram-positive and Gram-negative bacteria, responsible for most nosocomial infections. The redox reaction is completely reversible and the textile recovers its initial blue colour by re-oxidation with environmental oxygen, enabling its re-use. Due to its simplicity and versatility, the current technology can be employed in different types of materials for control and prevention of microbial infections in hospitals, industries, schools and at home.
Collapse
Affiliation(s)
- Amparo Ferrer-Vilanova
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Carrer dels Til·lers s/n, Campus Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | - Yasmine Alonso
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | - Jiri Dietvorst
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Carrer dels Til·lers s/n, Campus Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | - Marta Pérez-Montero
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Barcelona, Spain.
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Barcelona, Spain.
| | - Kristina Ivanova
- Universitat Politècnica de Catalunya, Edifici Gaia, Pg. Ernest Lluch/Rambla Sant Nebridi s/n. 08222, Terrassa, Barcelona, Spain.
| | - Tzanko Tzanov
- Universitat Politècnica de Catalunya, Edifici Gaia, Pg. Ernest Lluch/Rambla Sant Nebridi s/n. 08222, Terrassa, Barcelona, Spain.
| | - Núria Vigués
- Departament de Genètica i Microbiologia, Universitat Autonòma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | - Jordi Mas
- Departament de Genètica i Microbiologia, Universitat Autonòma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | - Gonzalo Guirado
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | - Xavier Muñoz-Berbel
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Carrer dels Til·lers s/n, Campus Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
8
|
Román LE, Gomez ED, Solís JL, Gómez MM. Antibacterial Cotton Fabric Functionalized with Copper Oxide Nanoparticles. Molecules 2020; 25:E5802. [PMID: 33316935 PMCID: PMC7764683 DOI: 10.3390/molecules25245802] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Textiles functionalized with cupric oxide (CuO) nanoparticles have become a promising option to prevent the spread of diseases due to their antimicrobial properties, which strongly depend on the structure and morphology of the nanoparticles and the method used for the functionalization process. This article presents a review of work focused on textiles functionalized with CuO nanoparticles, which were classified into two groups, namely, in situ and ex situ. Moreover, the analyzed bacterial strains, the resistance of the antimicrobial properties of textiles to washing processes, and their cytotoxicity were identified. Finally, the possible antimicrobial mechanisms that could develop in Gram-positive and Gram-negative bacteria were described.
Collapse
Affiliation(s)
- Luz E. Román
- Faculty of Science, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 15333, Peru; (L.E.R.); (J.L.S.)
| | - Enrique D. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - José L. Solís
- Faculty of Science, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 15333, Peru; (L.E.R.); (J.L.S.)
| | - Mónica M. Gómez
- Faculty of Science, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 15333, Peru; (L.E.R.); (J.L.S.)
| |
Collapse
|
9
|
Preparation and antimicrobial activity of ZnO-NPs coated cotton/starch and their functionalized ZnO-Ag/cotton and Zn(II) curcumin/cotton materials. Sci Rep 2020; 10:5410. [PMID: 32214118 PMCID: PMC7096510 DOI: 10.1038/s41598-020-61306-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/19/2020] [Indexed: 11/11/2022] Open
Abstract
ZnO-NPs coated cotton or starched cotton fibers were successfully prepared via ultrasound irradiation. Different concentrations of soluble corn starch (1–3 starch wt.%) were used to stabilize ZnO-NPs onto the surface of cotton fabrics as entrapped species. The use of none-toxic biocompatible starch has improved the adhesion properties of the cotton fibers towards ZnO-NPs. This also enhanced the durability of ZnO-NPs onto the cotton fabrics and decreased their leaching from the surface of cotton fabrics. When 3 starch wt.% solution was used, deposition of ZnO-NP increased by 53% after 10 washing cycles. The antibacterial activity against Staphylococcus aureus and Escherichia coli increased by 50 and 21.5%, respectively. Functionalization of ZnO coated cotton with silver nanoparticles (Ag-NPs) and curcumin results in formation of ZnO-Ag/cotton and Zn(II) curcumin/cotton composites. The functionalized nanocomposites ZnO-Ag coated cotton material showed a synergistic antimicrobial behavior than that of individual ZnO/cotton material. The Zn(II) curcumin complex coated cotton showed higher antibacterial activities against both Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) bacteria than that of the ZnO/cotton material.
Collapse
|
10
|
Swar S, Máková V, Horáková J, Kejzlar P, Parma P, Stibor I. A comparative study between chemically modified and copper nanoparticle immobilized Nylon 6 films to explore their efficiency in fighting against two types of pathogenic bacteria. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Ultrasound-assisted catalyst-free phenol-yne reaction for the synthesis of new water-soluble chitosan derivatives and their nanoparticles with enhanced antibacterial properties. Int J Biol Macromol 2019; 139:103-113. [DOI: 10.1016/j.ijbiomac.2019.07.203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023]
|
12
|
Antimicrobial Efficacy of Low Concentration PVP-Silver Nanoparticles Deposited on DBD Plasma-Treated Polyamide 6,6 Fabric. COATINGS 2019. [DOI: 10.3390/coatings9090581] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, a low concentration (10 μg·mL−1) of poly(N-vinylpyrrolidone) (PVP)-coated silver nanoparticles (AgNPs) were deposited by spray and exhaustion (30, 70 and 100 °C) methods onto untreated and dielectric barrier discharge (DBD) plasma-treated polyamide 6,6 (PA66) fabric. DBD plasma-treated samples showed higher AgNP deposition than untreated ones for all methods. After five washing cycles, only DBD plasma-treated samples displayed AgNPs on the fabric surface. The best-performing method was exhaustion at 30 °C, which exhibited less agglomeration and the best antibacterial efficacy against S. aureus (4 log reduction). For E. coli, the antimicrobial effect showed good results in all the exhaustion samples (5 log reduction). Considering the spray method, only the DBD plasma-treated samples showed some bacteriostatic activity for both strains, but the AgNP concentration was not enough to have a bactericidal effect. Our results suggest DBD plasma may be a low cost and chemical-free method for the preparation of antibacterial textiles, allowing for the immobilization of a very low—but effective—concentration of AgNPs.
Collapse
|