1
|
Arango JC, Pintro CJ, Singh A, Claridge SA. Inkjet Printing of Nanoscale Functional Patterns on 2D Crystalline Materials and Transfer to Soft Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8055-8065. [PMID: 38300756 PMCID: PMC10875643 DOI: 10.1021/acsami.3c16687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Nanometer-scale control over surface functionality is important in applications ranging from nanoscale electronics to regenerative medicine. However, approaches that provide precise control over surface chemistry at the nanometer scale are often challenging to use with higher throughput and in more heterogeneous environments (e.g., complex solutions, porous interfaces) common for many applications. Here, we demonstrate a scalable inkjet-based method to generate 1 nm-wide functional patterns on 2D materials such as graphite, which can then be transferred to soft materials such as hydrogels. We examine fluid dynamics associated with the inkjet printing process for low-viscosity amphiphile inks designed to maximize ordering with limited residue and show that microscale droplet fluid dynamics influence nanoscale molecular ordering. Additionally, we show that scalable patterns generated in this way can be transferred to hydrogel materials and used to create surface chemical patterns that induce adsorption of charged particles, with effects strong enough to overcome electrostatic repulsion between a charged hydrogel and a like-charged nanoparticle.
Collapse
Affiliation(s)
- Juan C. Arango
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
| | - Chris J. Pintro
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
| | - Anamika Singh
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
| | - Shelley A. Claridge
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette 47907, Indiana
| |
Collapse
|
2
|
Wang CM, Chan HS, Liao CL, Chang CW, Liao WS. Gap-directed chemical lift-off lithographic nanoarchitectonics for arbitrary sub-micrometer patterning. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:34-44. [PMID: 36703907 PMCID: PMC9830500 DOI: 10.3762/bjnano.14.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/28/2022] [Indexed: 05/09/2023]
Abstract
We introduce a unique soft lithographic operation that exploits stamp roof collapse-induced gaps to selectively remove an alkanethiol self-assembled monolayer (SAM) on Au to generate surface patterns that are orders of magnitude smaller than structures on the original elastomer stamp. The smallest achieved feature dimension is 5 nm using a micrometer-scale structured stamp in a chemical lift-off lithography (CLL) process. Molecular patterns retained in the gaps between stamp features and their circumscribed or inscribed circles follow mathematical predictions, and their sizes can be tuned by altering the stamp structure dimensions, including height, pitch, and shape. These generated surface molecular patterns can function as biorecognition arrays or be transferred to the underneath Au layer for metallic structure creation. By combining CLL process with this gap phenomenon, soft material properties that are previously thought as demerits can be used to achieve sub-10 nm features in a straightforward sketch.
Collapse
Affiliation(s)
- Chang-Ming Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hong-Sheng Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Li Liao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Che-Wei Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ssu Liao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
3
|
Singh A, Shi A, Claridge SA. Nanometer-scale patterning of hard and soft interfaces: from photolithography to molecular-scale design. Chem Commun (Camb) 2022; 58:13059-13070. [DOI: 10.1039/d2cc05221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many areas of modern materials chemistry, from nanoscale electronics to regenerative medicine, require design of precisely-controlled chemical environments at near-molecular scales on both hard and soft surfaces.
Collapse
Affiliation(s)
- Anamika Singh
- Purdue University, Chemistry, West Lafayette, Indiana, USA
| | - Anni Shi
- Purdue University, Chemistry, West Lafayette, Indiana, USA
| | - Shelley A. Claridge
- Purdue University, Chemistry and Biomedical Engineering, 560 Oval Drive, West Lafayette, Indiana, USA
| |
Collapse
|
4
|
Antibody Printing Technologies. Methods Mol Biol 2020. [PMID: 33237416 DOI: 10.1007/978-1-0716-1064-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Antibody microarrays are routinely employed in the lab and in the clinic for studying protein expression, protein-protein, and protein-drug interactions. The microarray format reduces the size scale at which biological and biochemical interactions occur, leading to large reductions in reagent consumption and handling times while increasing overall experimental throughput. Specifically, antibody microarrays, as a platform, offer a number of different advantages over traditional techniques in the areas of drug discovery and diagnostics. While a number of different techniques and approaches have been developed for creating micro and nanoscale antibody arrays, issues relating to sensitivity, cost, and reproducibility persist. The aim of this review is to highlight current state-of the-art techniques and approaches for creating antibody arrays by providing latest accounts of the field while discussing potential future directions.
Collapse
|
5
|
Cheung KM, Stemer DM, Zhao C, Young TD, Belling JN, Andrews AM, Weiss PS. Chemical Lift-Off Lithography of Metal and Semiconductor Surfaces. ACS MATERIALS LETTERS 2020; 2:76-83. [PMID: 32405626 PMCID: PMC7220117 DOI: 10.1021/acsmaterialslett.9b00438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chemical lift-off lithography (CLL) is a subtractive soft-lithographic technique that uses polydimethylsiloxane (PDMS) stamps to pattern self-assembled monolayers of functional molecules for applications ranging from biomolecule patterning to transistor fabrication. A hallmark of CLL is preferential cleavage of Au-Au bonds, as opposed to bonds connecting the molecular layer to the substrate, i.e., Au-S bonds. Herein, we show that CLL can be used more broadly as a technique to pattern a variety of substrates composed of coinage metals (Pt, Pd, Ag, Cu), transition and reactive metals (Ni, Ti, Al), and a semiconductor (Ge) using straightforward alkanethiolate self-assembly chemistry. We demonstrate high-fidelity patterning in terms of precise features over large areas on all surfaces investigated. We use patterned monolayers as chemical resists for wet etching to generate metal microstructures. Substrate atoms, along with alkanethiolates, were removed as a result of lift-off, as previously observed for Au. We demonstrate the formation of PDMS-stamp-supported bimetallic monolayers by performing CLL on two different metal surfaces using the same PDMS stamp. By expanding the scope of the surfaces compatible with CLL, we advance and generalize CLL as a method to pattern a wide range of substrates, as well as to produce supported metal monolayers, both with broad applications in surface and materials science.
Collapse
Affiliation(s)
- Kevin M. Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dominik M. Stemer
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Thomas D. Young
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jason N. Belling
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Anne M. Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Chen CY, Wang CM, Liao WS. A Special Connection between Nanofabrication and Analytical Devices: Chemical Lift-Off Lithography. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180373] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chong-You Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chang-Ming Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ssu Liao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Chen CY, Li HH, Chu HY, Wang CM, Chang CW, Lin LE, Hsu CC, Liao WS. Finely Tunable Surface Wettability by Two-Dimensional Molecular Manipulation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41814-41823. [PMID: 30412374 DOI: 10.1021/acsami.8b16424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Local molecular environment governs material interface properties, especially the substrate's exposing behavior and overall functionality expression. Although current techniques can provide efficient surface property modification, challenges in molecule spatial distribution and composition controls limited the generation of homogeneous and finely tunable molecular environment. In this study, Au-thiolate rupturing operation in chemical lift-off lithography (CLL) is used to manipulate the substrate interface molecular environment. The creation of randomly distributed artificial self-assembled monolayer defects generates vacancies for substrate property modification through back-insertion of molecules with opposite functionalities. Surface wettability adjustment is utilized as an example, where well-controllable molecule distribution provides finely tunable substrate affinity toward liquids with different physical properties. The distinct property difference between two surface regions assists microdroplet formation when liquids flow through, not only water solution but also low-surface-tension organic liquids. These microdroplet arrays become a template to guide material assembly in its formation process and act as pH-sensitive platforms for high-throughput detection. Furthermore, the tunability of the molecular pattern in this approach helps minimize the coffee-ring effect and the sweet-spot issue in matrix-assisted laser desorption/ionization mass spectrometry. Two-dimensional molecular manipulation in the CLL operation, therefore, holds the capability toward controlling homogeneous material surface property and toward exhibiting behavior adjustments.
Collapse
Affiliation(s)
- Chong-You Chen
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Hsiang-Hua Li
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Hsiao-Yuan Chu
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Chang-Ming Wang
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Che-Wei Chang
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Li-En Lin
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Wei-Ssu Liao
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| |
Collapse
|
8
|
Chen CY, Chang CH, Wang CM, Li YJ, Chu HY, Chan HH, Huang YW, Liao WS. Large Area Nanoparticle Alignment by Chemical Lift-Off Lithography. NANOMATERIALS 2018; 8:nano8020071. [PMID: 29382044 PMCID: PMC5853703 DOI: 10.3390/nano8020071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
Abstract
Nanoparticle alignment on the substrate attracts considerable attention due to its wide application in different fields, such as mechanical control, small size electronics, bio/chemical sensing, molecular manipulation, and energy harvesting. However, precise nanoparticle positioning and deposition control with high fidelity are still challenging. Herein, a straightforward strategy for high quality nanoparticle-alignment by chemical lift-off lithography (CLL) is demonstrated. This technique creates high resolution self-assembled monolayer (SAM) chemical patterns on gold substrates, enabling nanoparticle-selective deposition and precise alignment. The fabricated nanoparticle arrangement geometries and dimensions are well-controllable in a large area. With proper nanoparticle surface functionality control and adequate substrate molecular manipulation, well-defined nanoparticle arrays with single-particle-wide alignment resolution are achieved.
Collapse
Affiliation(s)
| | | | - Chang-Ming Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Yi-Jing Li
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Hsiao-Yuan Chu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Hong-Hseng Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Yu-Wei Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Wei-Ssu Liao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
9
|
Chen CY, Wang CM, Chen PS, Liao WS. Surface functional DNA density control by programmable molecular defects. Chem Commun (Camb) 2018; 54:4100-4103. [DOI: 10.1039/c7cc09908h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Spatially programmable molecular-level defects via straightforward chemical lift-off manipulation leads to the direct regulation of complex surface DNA densities.
Collapse
Affiliation(s)
- Chong-You Chen
- Department of Chemistry
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Chang-Ming Wang
- Department of Chemistry
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Pai-Shan Chen
- Department and Graduate Institute of Forensic Medicine
- National Taiwan University
- Taipei 10002
- Taiwan
| | - Wei-Ssu Liao
- Department of Chemistry
- National Taiwan University
- Taipei 10617
- Taiwan
| |
Collapse
|