1
|
Desagoni M, Nagababu C, Punna N. Expeditious synthesis of CF 3-phenanthridones through a base-mediated cross-conjugated vinylogous benzannulation (VBA). Org Biomol Chem 2024; 23:113-117. [PMID: 39545810 DOI: 10.1039/d4ob01480d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Herein, we report a mild, efficient, and rapid approach for the preparation of CF3-phenanthridones through a cross-conjugated vinylogous [4 + 2] benzannulation of easily accessible 4-methyl-3-trifluoroacetylquinolones and nitro-olefins. The present transformation is superior to previous approaches for obtaining CF3-phenanthridones, in that it proceeds exclusively with the assistance of a simple base, eliminating the need for transition metal catalysts or oxidants. The strong electron-withdrawing nature of the CF3-group present in the quinolone moiety promotes the formation of a reactive cross-conjugated vinylogous enolate.
Collapse
Affiliation(s)
- Madhu Desagoni
- Fluoro-Agro chemicals Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chavakula Nagababu
- Fluoro-Agro chemicals Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagender Punna
- Fluoro-Agro chemicals Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Liu ZX, Li HY, Shen S, Yang XL, Niu X. TEMPO as Hydrogen Atom Transfer Catalyst in Enhancing Iminyl Radical Cyclization of O-Acetyl Oxime toward Phenanthridines and Isoquinolines. J Org Chem 2024; 89:15459-15471. [PMID: 39414781 DOI: 10.1021/acs.joc.4c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Herein, we present a strategy for promoting the cyclization of ortho-aryl or ortho alkenyl arylketone oxime ethers C-N bonds using TEMPO as a direct hydrogen atom transfer (HAT) catalyst. The reaction employs a green solvent and requires no introduction of metal additives. It only needs catalytic amount of TEMPO to drive the reaction. Gram-scale reaction yields the corresponding products with satisfactory yields, providing a novel and efficient method for the synthesis of phenanthridine and isoquinoline derivatives.
Collapse
Affiliation(s)
- Zi-Xuan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Hao-Yuan Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Shigang Shen
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiaoying Niu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
3
|
Lin Y, Hashimoto R, Chang TC, Tanaka K. Synthesis of phenanthridine derivatives by a water-compatible gold-catalyzed hydroamination. Bioorg Med Chem 2024; 113:117928. [PMID: 39299083 DOI: 10.1016/j.bmc.2024.117928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Since transition-metal-catalyzed reactions are one of the most powerful and direct approaches for the synthesis of organic molecules, translating them to biological systems for biomedical applications is an emerging field. The manipulation of transition metal reactions in biological settings for uncaging prodrugs and synthesizing bioactive drugs has been widely studied. To expand the toolbox of transition-metal-mediated prodrug strategy, this work introduces the 2'-alkynl-biphenylamine precursors for the synthesis of phenanthridine derivatives using a water-compatible gold-catalyzed hydroamination under mild conditions. Moreover, the structure-reactivity relationship revealed that the nucleophilicity of the amine group in the precursor was critical for facilitating the gold-catalyzed synthesis of phenanthridine derivatives. The research shows the potential to be used for phenanthridine-based prodrug designs in an aqueous solution.
Collapse
Affiliation(s)
- Yixuan Lin
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Riichi Hashimoto
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Tsung-Che Chang
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
4
|
Attiach CM, Kumar A, Daniel J, Blanchard-Desce M, Maruani A, Dalko PI. Red-shifted two-photon-sensitive phenanthridine photocages: synthesis and characterisation. Chem Commun (Camb) 2024; 60:8260-8263. [PMID: 39011868 DOI: 10.1039/d4cc02852j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Herein we describe the rational design, synthesis and photophysical study of a novel class of phenanthridine-based, one- and two-photon sensitive, photoremovable protecting groups with absorption wavelengths extending beyond 400 nm. This design facilitated the development of scaffolds with enhanced uncaging quantum yield, paving the way for broader applications in controlled drug delivery and molecular manipulation.
Collapse
Affiliation(s)
- Célest M Attiach
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 75006 Paris, France.
| | - Amit Kumar
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 75006 Paris, France.
| | - Jonathan Daniel
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | | | - Antoine Maruani
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 75006 Paris, France.
| | - Peter I Dalko
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 75006 Paris, France.
| |
Collapse
|
5
|
Dong Y, Wu H, Liu J, Zheng S, Liang B, Zhang C, Ling Y, Wu X, Chen J, Yu X, Feng S, Huang W. Multicolor Photochemical Printing Inside Polymer Matrices for Advanced Photonic Anticounterfeiting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401294. [PMID: 38547590 DOI: 10.1002/adma.202401294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/24/2024] [Indexed: 04/05/2024]
Abstract
Conventional security inks, generally directly printed on the data page surface, are vulnerable to counterfeiters, thereby raising the risk of chemical structural deciphering. In fact, polymer film-based data pages with customized patterns embedded within polymer matrix, rather than printed on the surface, emerge as a promising solution. Therefore, the key lies in developing fluorophores offering light dose-controlled fluorescent color inside polymer matrices. Though conventional fluorophores often suffer from photobleaching and uncontrolled photoreactions, disqualifying them for this purpose. Herein a diphenanthridinylfumaronitrile-based phototransformers (trans-D5) that undergoes photoisomerization and subsequent photocyclization during photopolymerization of the precursor, successively producing cis- and cyclo-D5 with stepwise redshifted solid-state emissions is developed. The resulting cyclo-D5 exhibits up to 172 nm emission redshift in rigidifying polymer matrices, while trans-D5 experiences a slightly blueshifted emission (≈28 nm), cis-D5 undergoes a modest redshift (≈14 nm). The markedly different rigidochromic behaviors of three D5 molecules within polymer matrices enable multicolor photochemical printing with a broad hue ranging from 38 to 10 via an anticlockwise direction in Munsell color space, yielding indecipherable fluorescent patterns in polymer films. This work provides a new method for document protection and implements advanced security features that are unattainable with conventional inks.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Huacan Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shiya Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Baoshuai Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Chuang Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yao Ling
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaosong Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jiamao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaolan Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Matić J, Piotrowski P, Vrban L, Kobetić R, Vianello R, Jurić I, Fabijanić I, Pernar Kovač M, Brozovic A, Piantanida I, Schmuck C, Radić Stojković M. Distinctive Nucleic Acid Recognition by Lysine-Embedded Phenanthridine Peptides. Int J Mol Sci 2024; 25:4866. [PMID: 38732083 PMCID: PMC11084427 DOI: 10.3390/ijms25094866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Three new phenanthridine peptide derivatives (19, 22, and 23) were synthesized to explore their potential as spectrophotometric probes for DNA and RNA. UV/Vis and circular dichroism (CD) spectra, mass spectroscopy, and computational analysis confirmed the presence of intramolecular interactions in all three compounds. Computational analysis revealed that compounds alternate between bent and open conformations, highlighting the latter's crucial influence on successful polynucleotide recognition. Substituting one glycine with lysine in two regioisomers (22, 23) resulted in stronger binding interactions with DNA and RNA than for a compound containing two glycines (19), thus emphasizing the importance of lysine. The regioisomer with lysine closer to the phenanthridine ring (23) exhibited a dual and selective fluorimetric response with non-alternating AT and ATT polynucleotides and induction of triplex formation from the AT duplex. The best binding constant (K) with a value of 2.5 × 107 M-1 was obtained for the interaction with AT and ATT polynucleotides. Furthermore, apart from distinguishing between different types of ds-DNA and ds-RNA, the same compound could recognize GC-rich DNA through distinct induced CD signals.
Collapse
Affiliation(s)
- Josipa Matić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Patryciusz Piotrowski
- Institute for Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany; (P.P.)
| | - Lucija Vrban
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.V.); (R.V.)
| | - Renata Kobetić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Robert Vianello
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.V.); (R.V.)
| | - Ivona Jurić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Ivana Fabijanić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Margareta Pernar Kovač
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (M.P.K.); (A.B.)
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (M.P.K.); (A.B.)
| | - Ivo Piantanida
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Carsten Schmuck
- Institute for Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany; (P.P.)
| | - Marijana Radić Stojković
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| |
Collapse
|
7
|
Chen J, Chen Y, Liu J, Feng S, Huang W, Ling Y, Dong Y, Huang W. In Situ Optical Detection of Amines at a Parts-per-Quadrillion Level by Severing the Through-Space Conjugated Supramolecular Domino. J Am Chem Soc 2024; 146:2604-2614. [PMID: 38230966 DOI: 10.1021/jacs.3c11480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Conventional fluorophores suffer from low sensitivity and selectivity in amine detection due to the inherent limitations in their "one-to-one" stoichiometric sensing mechanism. Herein, we propose a "one-to-many" chain reaction-like sensing mechanism by creating a domino chain consisting of one fluorescent molecule (e.g., PTF1) and up to 40 nonemissive polymer chains (pPFPA) comprising over thousand repeating units (PFPA). PTF1 (the domino trigger) interacts with adjacent PFPA units (the following blocks) through polar-π interactions and initiates the domino effect, creating effective through-space conjugation along pPFPA chains and generating amplified yellow fluorescent signals through charge transfer between PTF1 and pPFPA. Amine exposure causes rapid dismantling of the fluorophore-pPFPA-based domino chain and significantly reduces the amplified emissions, thus providing an ultrasensitive method for detecting amines. Relying on the above merits, we achieve a limit of detection of 177 ppq (or 1.67 × 10-12 M) for triethylamine, which is nearly 4 orders lower than that of previous methods. Additionally, the distinct reactivity of pPFPA toward different amines allows for the discrimination of primary, secondary, and tertiary amines. This study presents a "domino effect" sensing mechanism that has not yet been reported and provides a general approach for chemical detection that is beyond the reach of conventional methods.
Collapse
Affiliation(s)
- Jiamao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350002, P. R. China
| | - Yuanyuan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350002, P. R. China
| | - Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350002, P. R. China
| | - Yao Ling
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Schlosser J, Fedorova O, Fedorov Y, Ihmels H. Photoinduced in situ generation of DNA-targeting ligands: DNA-binding and DNA-photodamaging properties of benzo[ c]quinolizinium ions. Beilstein J Org Chem 2024; 20:101-117. [PMID: 38264449 PMCID: PMC10804566 DOI: 10.3762/bjoc.20.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
The photoreactions of selected styrylpyridine derivatives to the corresponding benzo[c]quinolizinium ions are described. It is shown that these reactions are more efficient in aqueous solution (97-44%) than in organic solvents (78-20% in MeCN). The quinolizinium derivatives bind to DNA by intercalation with binding constants of 6-11 × 104 M-1, as shown by photometric and fluorimetric titrations as well as by CD- and LD-spectroscopic analyses. These ligand-DNA complexes can also be established in situ upon irradiation of the styrylpyridines and formation of the intercalator directly in the presence of DNA. In addition to the DNA-binding properties, the tested benzo[c]quinolizinium derivatives also operate as photosensitizers, which induce DNA damage at relative low concentrations and short irradiation times, even under anaerobic conditions. Investigations of the mechanism of the DNA damage revealed the involvement of intermediate hydroxyl radicals and C-centered radicals. Under aerobic conditions, singlet oxygen only contributes to marginal extent to the DNA damage.
Collapse
Affiliation(s)
- Julika Schlosser
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and (Bio)Technology (Cµ), University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Olga Fedorova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991 Moscow, Russia
| | - Yuri Fedorov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991 Moscow, Russia
| | - Heiko Ihmels
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and (Bio)Technology (Cµ), University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
9
|
Zbancioc G, Mangalagiu II, Moldoveanu C. The Effective Synthesis of New Benzoquinoline Derivatives as Small Molecules with Anticancer Activity. Pharmaceuticals (Basel) 2023; 17:52. [PMID: 38256886 PMCID: PMC10820420 DOI: 10.3390/ph17010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
In this study, some novel benzo[c]quinoline derivatives were synthesized, their structural characteristics were described, and their in vitro anticancer efficacy was investigated. The synthesis involves an initial quaternization of the nitrogen atom from benzo[c]quinoline and then a [3+2] dipolar cycloaddition reaction of the in situ formed ylide. The effectiveness of synthesis using traditional thermal heating (TH) compared to microwave (MW) and ultrasound (US) irradiation was investigated in detail. The setup of a reaction under MW or US irradiation offers a number of additional benefits: higher yields, a reduction in the amount of solvent used compared to TH, a reduction in the reaction time from hours to minutes, and a reduction in the amount of energy consumed. The structure of all the obtained compounds was proved by several spectral techniques (FTIR, HRMS, and NMR). All benzo[c]quinoline derivatives (quaternary salts and cycloadducts) along with ten other benzo[f]quinoline derivatives (quaternary salts and cycloadducts), previously obtained, were tested in an in vitro single-dose anticancer experiment. The results demonstrated that the cycloadducts 5a-c and 6a-c exhibit stronger anticancer activity than quaternary salts 3a-c. The most active compound is compound 5a, with anticancer activity on most of the cell lines studied, while the second most active compound is 6c, showing significant lethality for the SR leukemia cell line (17%). Structure-activity relationship (SAR) correlations are also included in the study.
Collapse
Affiliation(s)
- Gheorghita Zbancioc
- Chemistry Department, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
| | - Ionel I. Mangalagiu
- Chemistry Department, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
- Institute of Interdisciplinary Research-CERNESIM Centre, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Costel Moldoveanu
- Chemistry Department, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
| |
Collapse
|
10
|
Lin X, Meng X, Lin J. The possible role of Wnt/β-catenin signalling in vitiligo treatment. J Eur Acad Dermatol Venereol 2023; 37:2208-2221. [PMID: 36912722 DOI: 10.1111/jdv.19022] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023]
Abstract
Vitiligo is a common chronic skin disease which has an adverse impact on patients' life. Its pathogenesis is complex, involving autoimmunity and oxidative stress (OS). Autoimmunity leads to the loss of epidermal melanocytes and the formation of the depigmented patches of the disease. Treatment of vitiligo should control the exaggerated immune response to arrest the progress of active disease, and then promote melanocytes to repigmentation. Wnt/β-catenin signalling pathway has been of recent interest in vitiligo. Wnt/β-catenin signalling pathway is downregulated in vitiligo. Upregulation of Wnt/β-catenin signalling possibly control vitiligo autoimmune response by protecting melanocyte from OS damage, inhibiting CD8+ T cell effector cell differentiation and enhancing Treg. Wnt/β-catenin signalling plays a critical role in the melanocyte regeneration by driving the differentiation of melanocyte stem cells (McSCs) into melanocytes. Promoting Wnt/β-catenin signalling can not only arrest the progress of active disease of vitiligo but also promote repigmentation. Some of the main effective therapies for vitiligo are likely to work by activating Wnt/β-catenin signalling. Agents that can enhance the effect of Wnt/β-catenin signalling may become potential candidates for the development of new drugs for vitiligo treatment.
Collapse
Affiliation(s)
- Xiran Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xianmin Meng
- Department of Pathology and Laboratory Medicine, Axia Women's Health, Oaks, Pennsylvania, USA
| | - Jingrong Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Ebensperger P, Zmyslia M, Lohner P, Braunreuther J, Deuringer B, Becherer A, Süss R, Fischer A, Jessen-Trefzer C. A Dual-Metal-Catalyzed Sequential Cascade Reaction in an Engineered Protein Cage. Angew Chem Int Ed Engl 2023; 62:e202218413. [PMID: 36799770 DOI: 10.1002/anie.202218413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/18/2023]
Abstract
Herein, we describe the creation of an artificial protein cage housing a dual-metal-tagged guest protein that catalyzes a linear, two-step sequential cascade reaction. The guest protein consists of a fusion protein of HaloTag and monomeric rhizavidin. Inside the protein capsid, we established a ruthenium-catalyzed allylcarbamate deprotection reaction followed by a gold-catalyzed ring-closing hydroamination reaction that led to indoles and phenanthridines with an overall yield of up to 66 % in aqueous solutions. Furthermore, we show that the encapsulation stabilizes the metal catalysts against deactivation by air, proteins and cell lysate.
Collapse
Affiliation(s)
- Paul Ebensperger
- Institute of Organic Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| | - Mariia Zmyslia
- Institute of Organic Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| | - Philipp Lohner
- Institute of Organic Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| | - Judith Braunreuther
- Institute of Organic Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| | - Benedikt Deuringer
- Institute of Pharmaceutical Science, University of Freiburg, Sonnenstrasse 5, 79104, Freiburg i. Br., Germany
| | - Anita Becherer
- Institute of Inorganic and Analytical Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| | - Regine Süss
- Institute of Pharmaceutical Science, University of Freiburg, Sonnenstrasse 5, 79104, Freiburg i. Br., Germany
| | - Anna Fischer
- Institute of Inorganic and Analytical Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| | - Claudia Jessen-Trefzer
- Institute of Organic Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| |
Collapse
|
12
|
Okamura H, Iida M, Kaneyama Y, Nagatsugi F. o-Nitrobenzyl Oxime Ethers Enable Photoinduced Cyclization Reaction to Provide Phenanthridines under Aqueous Conditions. Org Lett 2023; 25:466-470. [PMID: 36629406 DOI: 10.1021/acs.orglett.2c04015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this paper, we describe a novel N-O photolysis of o-nitrobenzyl oxime ethers that enables the synthesis of phenanthridines via intramolecular cyclization reactions. Without the use of additional photocatalysts or photosensitizers, the process proceeds with an efficiency of ≤96% upon exposure of the sample to near-visible light (405 nm) under aqueous conditions. Through the photoinduced production of a fluorescent phenanthridine derivative in HeLa cells, the progress of the reaction under biological conditions was demonstrated. This photoinduced cyclization reaction could be used as a different photochemical instrument to control biological processes by inducing the production of bioactive molecules.
Collapse
Affiliation(s)
- Hidenori Okamura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Momoka Iida
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yui Kaneyama
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
13
|
Li N, Hong B, Zhao J, Gu Z. Nitrenoid from Oxime: A Practical Synthesis of Planar Chiral Ferrocenyl Phenanthridines via Nitrene-Involved Ring-Expansion Reaction. Angew Chem Int Ed Engl 2023; 62:e202215530. [PMID: 36344436 DOI: 10.1002/anie.202215530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 11/09/2022]
Abstract
Nitrenes and nitrenoids are highly reactive species and the proposed key intermediates in nitrogen-containing heterocyclic compound synthesis. In this work, we developed a practical method for the synthesis of phenanthridines by the reaction of oximes and Grignard reagents (with or without diethylzinc) via ring-expansion of magnesium coordinated nitrenoid complex as the key step. The method has been used to synthesize optically active planar chiral ferrocenyl phenanthridines.
Collapse
Affiliation(s)
- Na Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Biqiong Hong
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, P. R. China
| | - Jinbo Zhao
- Faculty of Chemistry and Life Science, Changchun University of Technology, 2055 Yan'An Street, Changchun, Jilin 130012, P. R. China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.,College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
14
|
Excitation of phenanthridines in aqueous solution: Comparative theoretical analysis. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Zhu M, Tian Y, Sha J, Fu W. Photocatalytic radical cascade cyclization of
N
‐(o–cyanobiaryl) acrylamides: access to CF
2
H‐functionalized pyrido[4,3,2‐gh] phenanthridines. ChemistrySelect 2022. [DOI: 10.1002/slct.202203986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mei Zhu
- College of Food and Drug Luoyang Normal University 471934 Luoyang P. R. China
| | - Yunfei Tian
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Fuction-Oriented Porous Materials Luoyang Normal University 471022 Luoyang P. R. China
| | - Jinyu Sha
- College of Food and Drug Luoyang Normal University 471934 Luoyang P. R. China
| | - Weijun Fu
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Fuction-Oriented Porous Materials Luoyang Normal University 471022 Luoyang P. R. China
| |
Collapse
|
16
|
Therapeutic in vivo synthetic chemistry using an artificial metalloenzyme with glycosylated human serum albumin. Adv Carbohydr Chem Biochem 2022; 82:11-34. [PMID: 36470648 DOI: 10.1016/bs.accb.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The concept of "therapeutic in vivo synthetic chemistry" refers to chemical synthesis in living systems using new-to-nature reactions for the treatment or diagnosis of diseases. This review summarizes our development of therapeutic in vivo synthetic chemistry using glycan-modified human serum albumin (glycoHSA) and utilizing the selective glycan-targeting and metal protective effects of metal catalysts. The four artificial metalloenzymes with glycoHSA provided good cancer treatment results based on on-site drug synthesis and selective cell-tagging strategies. Thus, we propose that therapeutic in vivo synthetic chemistry using glycoHSA as a new modality of therapy or diagnosis is applicable to a wide range of diseases.
Collapse
|
17
|
Nemez DB, Lozada IB, Braun JD, Williams JAG, Herbert DE. Synthesis and Coordination Chemistry of a Benzannulated Bipyridine: 6,6'-Biphenanthridine. Inorg Chem 2022; 61:13386-13398. [PMID: 35972335 DOI: 10.1021/acs.inorgchem.2c01514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis, characterization, and coordination chemistry of a doubly π-extended bipyridine analogue, 6,6'-biphenanthridine (biphe), is presented. The structure of the molecule has been determined in the solid state by X-ray diffraction, showing an angle of 72.6° between the phenanthridine planes. The free, uncoordinated organic molecule displays blue fluorescence in solution. It can be singly protonated with strong acids, and the protonated form displays more intense yellow emission. The effect of acid on the excited states is interpreted with the aid of TDDFT calculations. Two Ru(II) coordination complexes, tris(6,6'-biphenanthridine)ruthenium(II) dichloride, [Ru(biphe)3]Cl2, and bis(2,2'-bipyridine)(6,6'-biphenanthridine)ruthenium(II) tetraphenylborate, [Ru(bpy)2(biphe)](BPh4)2, are also reported and their structures determined in the solid state by X-ray diffraction. Both complexes display emission at 77 K that is strongly bathochromically shifted by almost 200 nm compared to that of the archetypal 3MLCT emitter [Ru(bpy)3]2+. Such a red shift is consistent with the more extended conjugation and lower-energy π* orbitals associated with the biphe ligand, lowering the energy of the 3MLCT excited state, as revealed by TDDFT calculations. The efficient non-radiative decay that is typical of such low-energy emitters renders the phosphorescence extremely weak and short-lived at ambient temperature, and rapid ligand photodissociation also competes with radiative decay, especially in the heteroleptic complex. Electrochemical analysis illustrates the effect of biphe's stabilized vacant π* manifold, with multiple reversible reductions evident at much less negative potentials than those observed for [Ru(bpy)3]2+.
Collapse
Affiliation(s)
- Dion B Nemez
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Issiah B Lozada
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Jason D Braun
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | | | - David E Herbert
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
18
|
Liu L, Zhang Q, Wang C. Redox-Neutral Generation of Iminyl Radicals by N-Heterocyclic Carbene Catalysis: Rapid Access to Phenanthridines from Vinyl Azides. Org Lett 2022; 24:5913-5917. [PMID: 35925779 DOI: 10.1021/acs.orglett.2c02118] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An N-heterocyclic carbene-catalyzed oxidant-, metal- and light-free iminyl radical generation pathway stemming from the reaction of vinyl azide and α-bromo ester is uncovered. This newly developed methodology is successfully applied to the redox-neutral construction of a number of diversified phenanthridine derivatives with nice functional group compatibility. Insights from the mechanism study reveal that this NHC-catalyzed transformation potentially proceeds through an alkyl radical addition-initiated HAS process, with the iminyl radical as an active intermediate.
Collapse
Affiliation(s)
- Lixia Liu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong511443, China
| | - Qijing Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong511443, China
| | - Chengming Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong511443, China
| |
Collapse
|
19
|
Feng S, Zhu L, Wang D, Li C, Chen Y, Chen X, Liu J, Huang W, Ling Y, Huang W. Rigidity-Tuned Full-Color Emission: Uncommon Luminescence Change from Polymer Free-Volume Variations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201337. [PMID: 35417926 DOI: 10.1002/adma.202201337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Probing the rigidity change of microenvironments via tracking embedded molecular fluorophore emissions represents a robust approach to monitor various polymer microstructural evolutions and biomolecular events with a high spatiotemporal resolution. However, reported fluorophores exclusively blueshift their emissions (termed as "rigidochromism") or merely alter intensities upon rigidification, suffering from inferior sensitivities, low-contrast outputs, and attenuated biocompatibilities. Here, phenanthridine-fused triazatruxene fluorophores (PTFs) with pronounced bathochromic emission (up to 135 nm) toward rigidifying media at a low loading of 5 ppm without sacrificing the quantum yields and lifetime are developed. PTFs effectively interact with polymeric matrixes through polar-π interactions and form charge-transfer complexes, resulting to a remarkable fluorescent color change from blue to red-orange over matrix rigidifying. Such a unique anti-rigidochromism enables a highly sensitive rigidity detection (i.e., a subtle polymer molecular-weight change (as low as 1000 Da vs up to 10 kDa for conventional probes) can result to obvious emission color changes). PTFs are able to noninvasively detect polymerization kinetics and in situ optically report polymer degradations. The broadly (nearly full-spectrum) tunable emission and the efficient coupling between anti-rigidochromism and polymer hierarchical structures/topologies render fluorescence with controlled wavelength and chirality, leading to an unprecedented free-volume-based data encryption and anti-counterfeiting technology with a superhigh security level.
Collapse
Affiliation(s)
- Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Lijuan Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Donghui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Cong Li
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Yuanyuan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Xiaowei Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Wei Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yao Ling
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
20
|
Tripathy AR, A RR, Kumar A, Yatham VR. Photocatalyzed alkylative cyclization of 2-isocyanobiphenyls with unactivated alkyl iodides. Org Biomol Chem 2022; 20:3136-3144. [PMID: 35343547 DOI: 10.1039/d2ob00314g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report the first photocatalyzed radical cascade cyclization of 2-isocyanobiaryls with unactivated alkyl iodides. This simple protocol operates under mild reaction conditions and affords 6-alkyl phenanthridines in good yields. To elucidate the reaction mechanism, Stern-Volmer quenching studies were carried out and these studies revealed that the photocatalyst is not directly involved in a single electron transfer process with the alkyl iodide.
Collapse
Affiliation(s)
- Alisha Rani Tripathy
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), 695551, India.
| | - Rizwana Rahmathulla A
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), 695551, India.
| | - Amit Kumar
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), 695551, India.
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), 695551, India.
| |
Collapse
|
21
|
Synthesis, Bio-physical and anti-Leishmanial studies of some novel indolo[3,2-a]phenanthridine derivatives. Bioorg Chem 2022; 123:105766. [DOI: 10.1016/j.bioorg.2022.105766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/25/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023]
|
22
|
Jamuna K, Thimmarayaperumal S, Aravind MK, Sivakumar S, Ashokkumar B. Synthesis of indenophenanthridine via a [4+2] annulation strategy: a “turn-off’’ Fe 3+ ion sensor, practical application in live cell imaging and reversible acidochromism studies. NEW J CHEM 2022. [DOI: 10.1039/d2nj00579d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient protocol has been developed for the synthesis of a novel fluorescent probe, 1,2-disubstituted-indeno[1,2,3-gh]phenanthridine, derived from a series of α-oxo-ketene dithioacetals (OKDTAs) and indenoquinoline under essential conditions via a [4+2] annulation in excellent yield.
Collapse
Affiliation(s)
- Kannan Jamuna
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India
| | | | | | - Shanmugam Sivakumar
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India
| | | |
Collapse
|
23
|
Natarajan P, Chuskit D, Priya, Manjeet. 9,10‐Phenanthrenedione‐Catalyzed, Visible‐Light‐Promoted Radical Intramolecular Cyclization of N‐Biarylglycine Esters: One‐Pot synthesis of Phenanthridine‐6‐Carboxylates. ChemistrySelect 2021. [DOI: 10.1002/slct.202103001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Palani Natarajan
- Department of Chemistry & Centre for Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Deachen Chuskit
- Department of Chemistry & Centre for Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Priya
- Department of Chemistry & Centre for Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Manjeet
- Department of Chemistry Guru Jambheshwar University of Science and Technology Hisar Haryana India
| |
Collapse
|
24
|
Shan L, Li H, Min L, Weng Y, Wang X, Hu Y. Bischler-Napieralski Synthesis of 6-Alkynyl Phenanthridines Based on Tf 2O-Promoted Electrophilic Activation of N-Aryl-2-propynamides. J Org Chem 2021; 86:15726-15732. [PMID: 34618460 DOI: 10.1021/acs.joc.1c01543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient method for the synthesis of 6-alkynyl phenanthridines was developed. The method offered the first example to use 2-propynamides as substrates in the Bischler-Napieralski reaction and to create alkynylnitrilium triflates as new active intermediates in organic synthesis.
Collapse
Affiliation(s)
- Lidong Shan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Hongchen Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Lin Min
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Yunxiang Weng
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Xinyan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Yuefei Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
25
|
Maslah H, Skarbek C, Gourson C, Plamont MA, Pethe S, Jullien L, Le Saux T, Labruère R. In-Cell Generation of Anticancer Phenanthridine Through Bioorthogonal Cyclization in Antitumor Prodrug Development. Angew Chem Int Ed Engl 2021; 60:24043-24047. [PMID: 34487611 DOI: 10.1002/anie.202110041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/26/2021] [Indexed: 01/06/2023]
Abstract
Pharmacological inactivation of antitumor drugs toward healthy cells is a critical factor in prodrug development. Typically, pharmaceutical chemists graft temporary moieties to existing antitumor drugs to reduce their pharmacological activity. Here, we report a platform able to generate the cytotoxic agent by intramolecular cyclization. Using phenanthridines as cytotoxic model compounds, we designed ring-opened biaryl precursors that generated the phenanthridines through bioorthogonal irreversible imination. This reaction was triggered by reactive oxygen species, commonly overproduced in cancer cells, able to convert a vinyl boronate ester function into a ketone that subsequently reacted with a pendant aniline. An inactive precursor was shown to engender a cytotoxic phenanthridine against KB cancer cells. Moreover, the kinetic of cyclization of this prodrug was extremely rapid inside living cells of KB cancer spheroids so as to circumvent drug action.
Collapse
Affiliation(s)
- Hichem Maslah
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France
| | - Charles Skarbek
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France
| | - Catherine Gourson
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France
| | - Marie-Aude Plamont
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Stéphanie Pethe
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France
| | - Ludovic Jullien
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Thomas Le Saux
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Raphaël Labruère
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France
| |
Collapse
|
26
|
Ntsimango S, Ngwira KJ, Bode ML, de Koning CB. Synthesis of phenanthridines via a novel photochemically-mediated cyclization and application to the synthesis of triphaeridine. Beilstein J Org Chem 2021; 17:2340-2347. [PMID: 34621397 PMCID: PMC8450941 DOI: 10.3762/bjoc.17.152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022] Open
Abstract
Readily synthesized biphenyl-2-carbaldehyde O-acetyl oximes were exposed to UV radiation affording phenanthridines. The scope and limitations of this novel reaction were explored. For example, exposure of 2',3'-dimethoxy-[1,1'-biphenyl]-2-carbaldehyde O-acetyl oxime to UV radiation afforded 4-methoxyphenanthridine in 54% yield. This methodology was applied to the synthesis of trisphaeridine to afford the product in four linear steps in an overall yield of 6.5% from 1-bromo-2,4,5-trimethoxybenzene.
Collapse
Affiliation(s)
- Songeziwe Ntsimango
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
| | - Kennedy J Ngwira
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
| | - Moira L Bode
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
| | - Charles B de Koning
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
| |
Collapse
|
27
|
Gao Y, Zhao Q, Li L, Ma YN. Synthesis of Six-Membered N-Heterocycle Frameworks Based on Intramolecular Metal-Free N-Centered Radical Chemistry. CHEM REC 2021; 22:e202100218. [PMID: 34618405 DOI: 10.1002/tcr.202100218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/29/2022]
Abstract
The formation of intramolecular C-N bond represents a powerful strategy in organic transformation as the great importance of N-heterocycles in the fields of natural products and bioactive molecules. This personal account describes the synthesis of cyclic phosphinamidation, benzosultam, benzosulfoximine, phenanthridine and their halogenated compounds through transition-metal-free intramolecular oxidative C-N bond formation. Mechanism study reveals that N-X bond is initially formed under the effect of hypervalent halogen, which is very unstable and easily undergoes thermal or light homolytic cleavage to generate nitrogen radical. Then the nitrogen radical is trapped by the arene to give aryl radical. Rearomatization of aryl radical under the oxidant to provide corresponding N-heterocycle. Under suitable conditions, the N-heterocycles can be further transformed to halogenated N-heterocycles.
Collapse
Affiliation(s)
- Yan Gao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Qianyi Zhao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Lixin Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
| | - Yan-Na Ma
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
28
|
Maslah H, Skarbek C, Gourson C, Plamont M, Pethe S, Jullien L, Le Saux T, Labruère R. In‐Cell Generation of Anticancer Phenanthridine Through Bioorthogonal Cyclization in Antitumor Prodrug Development. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hichem Maslah
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay 91405 Orsay France
| | - Charles Skarbek
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay 91405 Orsay France
| | - Catherine Gourson
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay 91405 Orsay France
| | - Marie‐Aude Plamont
- PASTEUR Département de chimie École normale supérieure PSL University Sorbonne Université CNRS 24, rue Lhomond 75005 Paris France
| | - Stéphanie Pethe
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay 91405 Orsay France
| | - Ludovic Jullien
- PASTEUR Département de chimie École normale supérieure PSL University Sorbonne Université CNRS 24, rue Lhomond 75005 Paris France
| | - Thomas Le Saux
- PASTEUR Département de chimie École normale supérieure PSL University Sorbonne Université CNRS 24, rue Lhomond 75005 Paris France
| | - Raphaël Labruère
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay 91405 Orsay France
| |
Collapse
|
29
|
Hernández‐Ruiz R, Rubio‐Presa R, Suárez‐Pantiga S, Pedrosa MR, Fernández‐Rodríguez MA, Tapia MJ, Sanz R. Mo-Catalyzed One-Pot Synthesis of N-Polyheterocycles from Nitroarenes and Glycols with Recycling of the Waste Reduction Byproduct. Substituent-Tuned Photophysical Properties. Chemistry 2021; 27:13613-13623. [PMID: 34288167 PMCID: PMC8518888 DOI: 10.1002/chem.202102000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 12/26/2022]
Abstract
A catalytic domino reduction-imine formation-intramolecular cyclization-oxidation for the general synthesis of a wide variety of biologically relevant N-polyheterocycles, such as quinoxaline- and quinoline-fused derivatives, and phenanthridines, is reported. A simple, easily available, and environmentally friendly dioxomolybdenum(VI) complex has proven to be a highly efficient and versatile catalyst for transforming a broad range of starting nitroarenes involving several redox processes. Not only is this a sustainable, step-economical as well as air- and moisture-tolerant method, but also it is worth highlighting that the waste byproduct generated in the first step of the sequence is recycled and incorporated in the final target molecule, improving the overall synthetic efficiency. Moreover, selected indoloquinoxalines have been photophysically characterized in cyclohexane and toluene with exceptional fluorescence quantum yields above 0.7 for the alkyl derivatives.
Collapse
Affiliation(s)
- Raquel Hernández‐Ruiz
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - Rubén Rubio‐Presa
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - Samuel Suárez‐Pantiga
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - María R. Pedrosa
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - Manuel A. Fernández‐Rodríguez
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
- Current address: Departamento de Química Orgánica y Química InorgánicaCampus Científico-TecnológicoFacultad de FarmaciaUniversidad de AlcaláAutovía A-II, Km 33.128805-Alcalá de HenaresMadridSpain
| | - M. José Tapia
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| | - Roberto Sanz
- Departamento de QuímicaFacultad de CienciasUniversidad de BurgosPza. Misael Bañuelos s/n09001-BurgosSpain
| |
Collapse
|
30
|
Sun SY, Raju S, Vedarethinam G, Chen PL, Chuang SC. TfOH-promoted Classical Nazarov-type Cyclization of Benzofulvenes: Synthesis of Polycyclic 5 H,10' H-spiro[benzo[ k]phenanthridine-5,6'-dibenzopentalenes]. Org Lett 2021; 23:6212-6216. [PMID: 34355911 DOI: 10.1021/acs.orglett.1c01809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The reaction of o-benzofulvene with TfOH leads to intramolecular cyclization through novel C-C and C-N bond formation, resulting in the formation of 5H,10'H-spiro[benzo[k]phenanthridine-5,6'-dibenzopentalene]. This protocol provides a new molecular framework with reasonable to excellent yields and tolerates various electron-withdrawing/donating substituents. This method yields diastereoselectivity of up to >20:1. Furthermore, it is free of bases, oxidants, and metals and proceeds under mild reaction conditions, which are favorable for synthetic organic chemistry.
Collapse
Affiliation(s)
- Shang-You Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010, ROC
| | - Selvam Raju
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010, ROC
| | - Guganchandar Vedarethinam
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30010, ROC
| | - Pei-Lin Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| | - Shih-Ching Chuang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30010, ROC
| |
Collapse
|
31
|
Correia JTM, Santos MS, Pissinati EF, da Silva GP, Paixão MW. Recent Advances on Photoinduced Cascade Strategies for the Synthesis of N-Heterocycles. CHEM REC 2021; 21:2666-2687. [PMID: 34288377 DOI: 10.1002/tcr.202100160] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022]
Abstract
Over the last decade, visible-light photocatalysis has proved to be a powerful tool for the construction of N-heterocyclic frameworks, important constituents of natural products, insecticides, pharmacologically relevant therapeutic agents and catalysts. This account highlights recent developments and established methods towards the photocatalytic cascades for preparation of different classes of N-heterocycles, giving emphasis on our contribution to the field.
Collapse
Affiliation(s)
- José Tiago M Correia
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Marilia S Santos
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Emanuele F Pissinati
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Gustavo P da Silva
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Márcio W Paixão
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| |
Collapse
|
32
|
Nakamura K, Kobayashi E, Moriyama K, Togo H. Preparation of 6-substituted phenanthridines from o-biaryl ketoximes via the Beckmann rearrangement. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Vadivel M, Aravinda T, Swamynathan K, Kumar BV, Kumar S. DNA binding activity of novel discotic phenathridine derivative. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Chang T, Vong K, Yamamoto T, Tanaka K. Prodrug Activation by Gold Artificial Metalloenzyme‐Catalyzed Synthesis of Phenanthridinium Derivatives via Hydroamination. Angew Chem Int Ed Engl 2021; 60:12446-12454. [DOI: 10.1002/anie.202100369] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Tsung‐Che Chang
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- GlycoTargeting Research Laboratory RIKEN Baton Zone Program, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Tomoya Yamamoto
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- GlycoTargeting Research Laboratory RIKEN Baton Zone Program, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- Biofunctional Chemical Laboratory, A. Butlerov Institute of Chemistry Kazan Federal University 18 Kremlyovskaya Street 420008 Kazan Russia
| |
Collapse
|
35
|
Chang T, Vong K, Yamamoto T, Tanaka K. Prodrug Activation by Gold Artificial Metalloenzyme‐Catalyzed Synthesis of Phenanthridinium Derivatives via Hydroamination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tsung‐Che Chang
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- GlycoTargeting Research Laboratory RIKEN Baton Zone Program, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Tomoya Yamamoto
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- GlycoTargeting Research Laboratory RIKEN Baton Zone Program, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- Biofunctional Chemical Laboratory, A. Butlerov Institute of Chemistry Kazan Federal University 18 Kremlyovskaya Street 420008 Kazan Russia
| |
Collapse
|
36
|
Talukdar V, Vijayan A, Kumar Katari N, Radhakrishnan KV, Das P. Recent Trends in the Synthesis and Mechanistic Implications of Phenanthridines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Vishal Talukdar
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad 826004 India
| | - Ajesh Vijayan
- Department of Chemistry CHRIST (Deemed to be University) Hosur road Bengaluru 560029 India
| | | | - K. V. Radhakrishnan
- CSIR – National Institute for Interdisciplinary Science and Technology Thiruvananthapuram 695019 India
| | - Parthasarathi Das
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad 826004 India
| |
Collapse
|
37
|
Bortolozzi R, Ihmels H, Schulte R, Stremmel C, Viola G. Synthesis, DNA-binding and antiproliferative properties of diarylquinolizinium derivatives. Org Biomol Chem 2021; 19:878-890. [PMID: 33410854 DOI: 10.1039/d0ob02298e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A series of ten 2,7- and 2,8-diarylquinolizinium derivatives was synthesized and their DNA-binding and cytotoxic properties were investigated. Except for one nitro-substituted derivative all tested diarylquinolizinium ions bind to DNA with sufficient affinity (2 × 104 M-1-2 × 105 M-1). It was shown with photometric, fluorimetric and polarimetric titrations as well as with flow-LD analysis that the ligands bind mainly by intercalation to duplex DNA, however, depending on the ligand-DNA ratio, groove binding and backbone association were also observed with some derivatives. The biological activity was further investigated with tests of cytotoxicity and antiproliferative properties towards non-tumor cells and selected cancer cells, along with cell cycle analysis and an annexin-V assay. Notably, substrates that carry donor-functionalities in the 4-position of the phenyl substituents revealed a strong, and in some cases selective, antiproliferative activity as quantified by the growth inhibition, GI50, at very low micromolar and even submicromolar level both in leukemia and solid tumors.
Collapse
Affiliation(s)
- Roberta Bortolozzi
- Department of Women's and Child's health, Oncohematology laboratory, University of Padova, Via Giustiniani 2, I-35128 Padova, Italy. giampietro,
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Robin Schulte
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Christopher Stremmel
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Giampietro Viola
- Department of Women's and Child's health, Oncohematology laboratory, University of Padova, Via Giustiniani 2, I-35128 Padova, Italy. giampietro,
| |
Collapse
|
38
|
Wang X, Kohl B, Rominger F, Elbert SM, Mastalerz M. A Triptycene-Based Enantiopure Bis(Diazadibenzoanthracene) by a Chirality-Assisted Synthesis Approach. Chemistry 2020; 26:16036-16042. [PMID: 32648593 PMCID: PMC7756852 DOI: 10.1002/chem.202002781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/14/2022]
Abstract
By applying a chirality-assisted synthesis (CAS) approach enantiopure diaminodibromotriptycenes were converted to rigid chiral helical diazadibenzoanthracenes, which show besides pronounced Cotton effects in circular dichroism spectra higher photoluminescence quantum yields as comparable carbacyclic analogues. For the enantiopure building blocks, a protocol was developed allowing the large scale synthesis without the necessity of separation via HPLC.
Collapse
Affiliation(s)
- Xubin Wang
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Bernd Kohl
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Sven M. Elbert
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Michael Mastalerz
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
39
|
Nagode SB, Kant R, Rastogi N. Hantzsch Ester-Mediated Synthesis of Phenanthridines under Visible-Light Irradiation. Chem Asian J 2020; 15:3513-3518. [PMID: 32935472 DOI: 10.1002/asia.202000888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/09/2020] [Indexed: 01/08/2023]
Abstract
An efficient photocatalytic synthesis of phenanthridines mediated by an organo-photoredox initiator Hantzsch ester has been developed via denitrogenative intramolecular annulation of benzotriazolyl chalcones. The highly reducing photoactivated Hantzsch ester facilitates the transformation of benzotriazolyl chalcones into phenanthridinyl chalcones through photoinduced electron transfer (PET) and hydrogen atom transfer (HAT) processes. The mild reaction conditions utilizing inexpensive Hantzsch ester as photosensitizer, wide reaction scope and excellent functional group tolerance are notable attributes of the methodology.
Collapse
Affiliation(s)
- Savita B Nagode
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sec. 10, JankipuramExtension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ruchir Kant
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Sec. 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sec. 10, JankipuramExtension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
40
|
Phenanthridine derivatives as potential HIV-1 protease inhibitors. Biomed Rep 2020; 13:66. [PMID: 33149910 DOI: 10.3892/br.2020.1373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
In the present study, the antiviral activity of phenanthridine derivatives was assessed. In total, the inhibitory effect of eight structurally similar low-molecular-weight hydrophobic compounds on HIV-1 protease (HIVp) was investigated. HIVp is a key enzyme in the HIV-1 life cycle. Surface plasmon resonance technology was used for affinity assessment of compounds binding with either monomeric or dimeric forms of HIVp. HIVp enzyme inhibition assays with chromogenic substrate VII were also used to determine the IC50 values. The most potent compound was 3,3,9,9-tetramethyl-3,4,9,10-tetrahydro-2H,8H-phenanthridine-1,7-dione which binds to monomeric and dimeric forms of HIVp (apparent dissociation constant, 2-7 µM; IC50, 36 µМ), while possessing the most favorable Absorption, Distribution, Metabolism and Excretion parameters. Molecular docking simulations highlighted certain differences in the binding patterns of the phenanthridine derivatives with HIVp amino acid residues forming the flaps domain, monomer/monomer interfaces and the active site cavity of HIVp. Thus, it was hypothesized that the inhibitory effect of phenanthridine compounds on the enzymatic activity of HIVp may be due to restriction of substrate access to the HIVp active site.
Collapse
|
41
|
Gao Y, Jing Y, Li L, Zhang J, Chen X, Ma YN. Synthesis of Phenanthridines through Iodine-Supported Intramolecular C–H Amination and Oxidation under Visible Light. J Org Chem 2020; 85:12187-12198. [DOI: 10.1021/acs.joc.0c01390] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yan Gao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yi Jing
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lixin Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan-Na Ma
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
42
|
Kos M, Žádný J, Storch J, Církva V, Cuřínová P, Sýkora J, Císařová I, Kuriakose F, Alabugin IV. Oxidative Photocyclization of Aromatic Schiff Bases in Synthesis of Phenanthridines and Other Aza-PAHs. Int J Mol Sci 2020; 21:ijms21165868. [PMID: 32824231 PMCID: PMC7461585 DOI: 10.3390/ijms21165868] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/30/2022] Open
Abstract
The oxidative photocyclization of aromatic Schiff bases was investigated as a potential method for synthesis of phenanthridine derivatives, biologically active compounds with medical applications. Although it is possible to prepare the desired phenanthridines using such an approach, the reaction has to be performed in the presence of acid and TEMPO to increase reaction rate and yield. The reaction kinetics was studied on a series of substituted imines covering the range from electron-withdrawing to electron-donating substituents. It was found that imines with electron-withdrawing substituents react one order of magnitude faster than imines bearing electron-donating groups. The 1H NMR monitoring of the reaction course showed that a significant part of the Z isomer in the reaction is transformed into E isomer which is more prone to photocyclization. The portion of the Z isomer transformed showed a linear correlation to the Hammett substituent constants. The reaction scope was expanded towards synthesis of larger aromatic systems, namely to the synthesis of strained aromatic systems, e.g., helicenes. In this respect, it was found that the scope of oxidative photocyclization of aromatic imines is limited to the formation of no more than five ortho-fused aromatic rings.
Collapse
Affiliation(s)
- Martin Kos
- Department of Advanced Materials and Organic Synthesis, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague 6, Czech Republic; (M.K.); (J.Ž.); (J.S.)
| | - Jaroslav Žádný
- Department of Advanced Materials and Organic Synthesis, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague 6, Czech Republic; (M.K.); (J.Ž.); (J.S.)
| | - Jan Storch
- Department of Advanced Materials and Organic Synthesis, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague 6, Czech Republic; (M.K.); (J.Ž.); (J.S.)
| | - Vladimír Církva
- Department of Advanced Materials and Organic Synthesis, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague 6, Czech Republic; (M.K.); (J.Ž.); (J.S.)
- Correspondence: (V.C.); (J.S.); (I.V.A.)
| | - Petra Cuřínová
- Department of Analytical Chemistry, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague 6, Czech Republic;
| | - Jan Sýkora
- Department of Analytical Chemistry, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague 6, Czech Republic;
- Correspondence: (V.C.); (J.S.); (I.V.A.)
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic;
| | - Febin Kuriakose
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA;
| | - Igor. V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA;
- Correspondence: (V.C.); (J.S.); (I.V.A.)
| |
Collapse
|
43
|
Vanadium(V) Complex-Catalyzed One-Pot Synthesis of Phenanthridines via a Pictet-Spengler-Dehydrogenative Aromatization Sequence. Catalysts 2020. [DOI: 10.3390/catal10080860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phenanthridine and its derivatives are important structural motifs that exist in natural products, biologically active compounds, and functional materials. Here, we report a mild, one-pot synthesis of 6-arylphenanthridine derivatives by a sequential cascade Pictet-Spengler-dehydrogenative aromatization reaction mediated by oxovanadium(V) complexes under aerobic conditions. The reaction of 2-(3,5-dimethoxyphenyl)aniline with a range of commercially available aryl aldehydes provided the desired phenanthridine derivatives in up to 96% yield. The ability of vanadium(V) complexes to function as efficient redox and Lewis acid catalysts enables the sequential reaction to occur under mild conditions.
Collapse
|
44
|
Del Tito A, Abdulla HO, Ravelli D, Protti S, Fagnoni M. Photocatalyzed syntheses of phenanthrenes and their aza-analogues. A review. Beilstein J Org Chem 2020; 16:1476-1488. [PMID: 32647549 PMCID: PMC7323630 DOI: 10.3762/bjoc.16.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/02/2020] [Indexed: 01/25/2023] Open
Abstract
Phenanthrenes and their aza-analogues have important applications in materials science and in medicine. Aim of this review is to collect recent reports describing their synthesis, which make use of radical cyclizations promoted by a visible light-triggered photocatalytic process.
Collapse
Affiliation(s)
- Alessandra Del Tito
- Photogreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Havall Othman Abdulla
- Photogreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
- Chemistry Department, College of Science, Salahaddin University, Erbil, Iraq
| | - Davide Ravelli
- Photogreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Stefano Protti
- Photogreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- Photogreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
45
|
Babu SS, Shahid M, Gopinath P. Dual palladium-photoredox catalyzed chemoselective C-H arylation of phenylureas. Chem Commun (Camb) 2020; 56:5985-5988. [PMID: 32347860 DOI: 10.1039/d0cc01443e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly chemoselective C-H arylation of phenylureas has been accomplished using dual palladium-photoredox catalysis at room temperature without any additives, base or external oxidants. Regioselective C-H arylation of N,N'-diaryl substituted unsymmetrical phenylureas has also been accomplished by a careful choice of aryl groups.
Collapse
Affiliation(s)
- Sakamuri Sarath Babu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India.
| | - M Shahid
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India.
| | - Purushothaman Gopinath
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India.
| |
Collapse
|
46
|
Affiliation(s)
- Ju Wang
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Chen-Fu Liu
- School of Pharmaceutical Sciences; Gannan Medical University; 341000 Ganzhou P. R. China
| | - Quan Zheng
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| |
Collapse
|
47
|
Matsushita Y, Ochi R, Tanaka Y, Koike T, Akita M. Energy transfer-driven regioselective synthesis of functionalized phenanthridines by visible-light Ir photocatalysis. Org Chem Front 2020. [DOI: 10.1039/d0qo00271b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A photocatalytic strategy for selective synthesis of 2-substituted phenanthridines from N-iminylpyridinium salts has been developed.
Collapse
Affiliation(s)
- Yuki Matsushita
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Rika Ochi
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
- School of Materials and Chemical Technology
| | - Takashi Koike
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
- School of Materials and Chemical Technology
| | - Munetaka Akita
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
- School of Materials and Chemical Technology
| |
Collapse
|
48
|
Belyaeva KV, Nikitina LP, Mal’kina AG, Afonin AV, Trofimov BA. Cyanoacetylene-driven base catalyzed synthesis of dihydropyrimidophenanthridinones from phenanthridine and water. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Nakazato R, Sano K, Ichihara H, Ishida T, Shimada T, Takagi S. Factors for the emission enhancement of dimidium in specific media such as in DNA and on a clay surface. Phys Chem Chem Phys 2019; 21:22732-22739. [PMID: 31384860 DOI: 10.1039/c9cp03285a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dimidium (3,8-diamino-5-methyl-6-phenylphenanthridinium: NH2PhP) is a well-known fluorophore as a DNA probe, although its fluorescence enhancement mechanism is not clear. In this study, we investigated the fluorescence enhancement mechanism of NH2PhP on a clay surface by observing the fluorescence behavior. Four systematically selected phenanthridinium derivatives (PDs): NH2PhP, 3,8-bisdimethylamino-5-methyl-6-phenylphenanthridinium (NMe2PhP), 5-methyl-6-phenylphenanthridinium (PhP) and 5-methylphenanthridinium (P) and synthetic clay were used as guest and host materials, respectively. It was revealed that the suppression of hydrogen bonding with water (N-HOH or NH-OH2) is the dominant factor for the fluorescence enhancement on the clay surface for NH2PhP and NMe2PhP. In addition, judging from the fluorescence enhancement for NH2PhP, NMe2PhP and PhP and no fluorescence enhancement for P on the clay surface, the suppression of rotation of the phenyl ring was indicated to make a partial contribution to the fluorescence enhancement mechanism. Because the fluorescence enhancement behavior was quite similar on the clay surface and in DNA, the obtained results afford an important clue to discuss the fluorescence enhancement mechanism of NH2PhP in DNA.
Collapse
Affiliation(s)
- Ryosuke Nakazato
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji-shi, Tokyo 192-0397, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Metal- and additive-free cascade trifluoroethylation/cyclization of organic isoselenocyanates by phenyl(2,2,2-trifluoroethyl)iodonium triflate. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|