1
|
Panigrahi SD, Klebba KC, Rodriguez EN, Mayhan CM, Kotagiri N, Kumari H. Enhancing antibacterial efficacy through macrocyclic host complexation of fluoroquinolone antibiotics for overcoming resistance. Sci Rep 2024; 14:24637. [PMID: 39428392 PMCID: PMC11491488 DOI: 10.1038/s41598-024-73568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
The use of supramolecular assemblies in pharmaceuticals has garnered significant interest. Recent studies have shown that the activities of antibacterial agents can be enhanced through complexation with cyclic oligomers and metal ions. Notably, these complexes sometimes possess greater therapeutic properties than the parent drugs. To develop microbiologically potent supramolecular drugs, the complexation of macrocyclic hosts with fluoroquinolone (FQ) antibiotics was investigated. FQs are a successful family of antibiotics that target the bacterial enzymes DNA gyrase and DNA topoisomerase IV, leading to bacterial cell death through the inhibition of DNA synthesis. However, antibiotic resistance resulting from the repeated use of FQs over time has limited their effectiveness against resistant pathogens. To overcome this issue, the encapsulation of FQs in polyphenolic macrocycles was investigated. This study highlights resorcinarene, a polyphenolic host with antibacterial properties, and its ability to chemically interact with FQs. The inclusion complexation process was analyzed using NMR and FTIR techniques. The binding constants determined by 1H-NMR titration revealed that levofloxacin forms more stable complexes with resorcinarene than with β-cyclodextrin, which aligned with MD simulations. Assessment of the geometric characteristics of the inclusion complexes using 2D NMR analysis confirmed that different moieties of various FQs can fit into a single host cavity and improve activity against gram-negative bacteria. Overall, these findings suggest that encapsulation in polyphenolic macrocycles is a promising strategy for utilizing FQs against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Suchitra D Panigrahi
- James L. Winkle College of Pharmacy University of Cincinnati, 231 Albert Sabin Way, Medical Science Building 3109C, Cincinnati, OH, 45267-0514, USA
| | - Karoline C Klebba
- Helias Catholic High School, 1305 Swifts Hwy, Jefferson City, MO, 65109, USA
| | - Emily N Rodriguez
- Helias Catholic High School, 1305 Swifts Hwy, Jefferson City, MO, 65109, USA
| | - Collin M Mayhan
- James L. Winkle College of Pharmacy University of Cincinnati, 231 Albert Sabin Way, Medical Science Building 3109C, Cincinnati, OH, 45267-0514, USA
- Helias Catholic High School, 1305 Swifts Hwy, Jefferson City, MO, 65109, USA
| | - Nalinikanth Kotagiri
- James L. Winkle College of Pharmacy University of Cincinnati, 231 Albert Sabin Way, Medical Science Building 3109C, Cincinnati, OH, 45267-0514, USA
| | - Harshita Kumari
- James L. Winkle College of Pharmacy University of Cincinnati, 231 Albert Sabin Way, Medical Science Building 3109C, Cincinnati, OH, 45267-0514, USA.
| |
Collapse
|
2
|
Zhang Y, Li H, Hai X, Guo X, Di X. Designing green and recyclable switchable supramolecular deep eutectic solvents for efficient extraction of flavonoids from Scutellariae Radix and mechanism exploration. J Chromatogr A 2024; 1730:465084. [PMID: 38879980 DOI: 10.1016/j.chroma.2024.465084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
A green and recyclable switchable supramolecular deep eutectic solvent (SS-DES) was designed and prepared for effective extraction of flavonoids from Scutellariae Radix. The novel SS-DES has both excellent extraction performance of DES and the host guest inclusion of cyclodextrin, thereby showing superior extraction efficiency and selectivity. The characteristic of polarity switching can endow the SS-DES with achieving homogeneous extraction and rapid two-phase separation, shorting per-treatment time largely. Parameters affecting the extraction performance were investigated by the response surface methodology. The results indicated that the SS-DES showed better extraction yield of total flavonoids (157.95 mg/g) compared with pure DES (135 mg/g) and traditional organic solvent (60 % ethanol, 104.87 mg/g). Moreover, the switching mechanism of SS-DES was characterized by FT-IR and 1H NMR, and the extraction mechanism was studied by density functional theory and molecular docking analysis. After evaluating the ecological impact of the method, the cytotoxicity of SS-DES was investigated and the result displayed that its toxicity was very low or even negligible with the EC50>2000 mg/L. After being adsorbed by macroporous AB-8 resin, the regenerated SS-DES was recycled 5 times and the extraction efficiency still remained above 90 %, indicating the desirable reusability. Therefore, the proposed method was efficient and sustainable, and revealed favorable application prospect for the extraction of bio-active compounds from plant materials.
Collapse
Affiliation(s)
- Yanhui Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Hongbo Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoqin Hai
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoli Guo
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Xin Di
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
3
|
Etri K, Pluhár Z. Exploring Chemical Variability in the Essential Oils of the Thymus Genus. PLANTS (BASEL, SWITZERLAND) 2024; 13:1375. [PMID: 38794445 PMCID: PMC11124942 DOI: 10.3390/plants13101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Thyme remains an indispensable herb today, finding its place in gastronomy, medicine, cosmetics, and gardens worldwide. It is highly valued in herbal remedies and pharmaceutical formulations for its antibacterial, antifungal, and antioxidant properties derived from the richness of its essential oil, which comprises various volatile components. However, climate change poses a significant challenge today, potentially affecting the quality of thyme, particularly the extracted essential oil, along with other factors such as biotic influences and the plant's geographical distribution. Consequently, complex diversity in essential oil composition was observed, also influenced by genetic diversity within the same species, resulting in distinct chemotypes. Other factors contributing to this chemodiversity include the chosen agrotechnology and processing methods of thyme, the extraction of the essential oil, and storage conditions. In this review, we provide the latest findings on the factors contributing to the chemovariability of thyme essential oil.
Collapse
Affiliation(s)
- Karim Etri
- Department of Medicinal and Aromatic Plants, Institute of Horticultural Science, Hungarian University of Agriculture and Life Sciences, H-1118 Villányi Str. 29–43, 1118 Budapest, Hungary;
| | | |
Collapse
|
4
|
Krekhova F, Meshcheva D, Shishov A, Bulatov A. In situ formation of natural deep eutectic solvent on membrane after fat hydrolysis for lindane isomers determination in peanut paste. Talanta 2024; 271:125737. [PMID: 38309113 DOI: 10.1016/j.talanta.2024.125737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
In this work a sample pretreatment approach assumed liquid-liquid microextraction based on the in situ formation of a hydrophobic natural deep eutectic solvent on a hydrophobic membrane impregnated with natural terpenoid was developed. The procedure included alkaline hydrolysis of a food sample containing fat to form fatty acids, which acted as precursors for the in situ formation of the deep eutectic solvent with natural terpenoid. Two processes were observed on the membrane surface: in situ formation of the hydrophobic deep eutectic solvent and liquid-liquid microextraction of the target analytes. After microextraction, the membrane containing the analytes was easily removed from the sample solution. The developed approach was applied to the separation and preconcentration of hydrophobic organochlorine pesticides (ɑ-hexachlorocyclohexane and γ-hexachlorocyclohexane) from a hydrophobic sample matrix (peanut paste), followed by their determination by gas chromatography with electron capture detection. Under optimal conditions, the limits of detection and quantification for both analytes were 0.3 and 1.0 μg kg-1, respectively. The procedure allowed the separation of fat-soluble analytes from a complex sample matrix with a high content of fat. The extraction recoveries were in the range of 93-95 %.
Collapse
Affiliation(s)
- Firuza Krekhova
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia.
| | - Daria Meshcheva
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Andrey Shishov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
5
|
Georgiou N, Kakava MG, Routsi EA, Petsas E, Stavridis N, Freris C, Zoupanou N, Moschovou K, Kiriakidi S, Mavromoustakos T. Quercetin: A Potential Polydynamic Drug. Molecules 2023; 28:8141. [PMID: 38138630 PMCID: PMC10745404 DOI: 10.3390/molecules28248141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The study of natural products as potential drug leads has gained tremendous research interest. Quercetin is one of those natural products. It belongs to the family of flavonoids and, more specifically, flavonols. This review summarizes the beneficial pharmaceutical effects of quercetin, such as its anti-cancer, anti-inflammatory, and antimicrobial properties, which are some of the quercetin effects described in this review. Nevertheless, quercetin shows poor bioavailability and low solubility. For this reason, its encapsulation in macromolecules increases its bioavailability and therefore pharmaceutical efficiency. In this review, a brief description of the different forms of encapsulation of quercetin are described, and new ones are proposed. The beneficial effects of applying new pharmaceutical forms of nanotechnology are outlined.
Collapse
Affiliation(s)
- Nikitas Georgiou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Margarita Georgia Kakava
- Laboratory of Organic Chemistry and Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece;
| | - Efthymios Alexandros Routsi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Errikos Petsas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Nikolaos Stavridis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Christoforos Freris
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Nikoletta Zoupanou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Kalliopi Moschovou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Sofia Kiriakidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
- Departamento de Quimica Orgánica, Facultade de Quimica, Universidade de Vigo, 36310 Vigo, Spain
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| |
Collapse
|
6
|
Naeem A, Yu C, Zang Z, Zhu W, Deng X, Guan Y. Synthesis and Evaluation of Rutin–Hydroxypropyl β-Cyclodextrin Inclusion Complexes Embedded in Xanthan Gum-Based (HPMC-g-AMPS) Hydrogels for Oral Controlled Drug Delivery. Antioxidants (Basel) 2023; 12:antiox12030552. [PMID: 36978800 PMCID: PMC10044933 DOI: 10.3390/antiox12030552] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Oxidants play a significant role in causing oxidative stress in the body, which contributes to the development of diseases. Rutin—a powerful antioxidant—may be useful in the prevention and treatment of various diseases by scavenging oxidants and reducing oxidative stress. However, low solubility and oral bioavailability have restricted its use. Due to the hydrophobic nature of rutin, it cannot be easily loaded inside hydrogels. Therefore, first rutin inclusion complexes (RIC) with hydroxypropyl-β-cyclodextrin (HP-βCD) were prepared to improve its solubility, followed by incorporation into xanthan gum-based (hydroxypropyl methylcellulose-grafted-2-acrylamido -2-methyl-1-propane sulfonic acid) hydrogels for controlled drug release in order to improve the bioavailability. Rutin inclusion complexes and hydrogels were validated by FTIR, XRD, SEM, TGA, and DSC. The highest swelling ratio and drug release occurred at pH 1.2 (28% swelling ratio and 70% drug release) versus pH 7.4 (22% swelling ratio, 65% drug release) after 48 h. Hydrogels showed high porosity (94%) and biodegradation (9% in 1 week in phosphate buffer saline). Moreover, in vitro antioxidative and antibacterial studies (Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli) confirmed the antioxidative and antibacterial potential of the developed hydrogels.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence: (A.N.); (Y.G.)
| | - Chengqun Yu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zhenzhong Zang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xuezhen Deng
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence: (A.N.); (Y.G.)
| |
Collapse
|
7
|
Nakhle L, Kfoury M, Greige-Gerges H, Landy D. Retention of a plethora of essential oils and aromas in deep eutectic solvent:water:cyclodextrin mixtures. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Kinart Z, Tomaš R. Studies of the Formation of Inclusion Complexes Derivatives of Cinnamon Acid with α-Cyclodextrin in a Wide Range of Temperatures Using Conductometric Methods. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144420. [PMID: 35889293 PMCID: PMC9318531 DOI: 10.3390/molecules27144420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
The electrical conductivities of aqueous solutions of sodium salts of trans-4-hydroxycinnamic acid (trans-p-coumaric acid), trans-3,4-dihydroxycinnamic acid (trans-caffeic acid), trans-4-hydroxy-3-methoxycinnamic acid, (trans-ferulic acid) and trans-3-phenylacrylic acid (trans-cinnamic acid) with α-cyclodextrin were measured in the temperature range of 288.15 K–318.15 K. For the first time in the literature, using the limiting molar conductivity (Λmo) obtained from conductivity measurements, the values of the complexation constants (Kf) of the salts of phenolic acid derivatives with α-cyclodextrin were determined using a modified low concentration chemical model (IcCM). An attempt was also made to analyze the individual thermodynamic functions ΔGo, ΔHo and ΔSo describing the complexation process as a function of temperature changes. The obtained results show that the process of formation of inclusion complexes is exothermic and is spontaneous.
Collapse
Affiliation(s)
- Zdzisław Kinart
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Lodz, Poland
- Correspondence:
| | - Renato Tomaš
- Department of Physical Chemistry, University of Split, Ruđera Boškovića 35, HR-21000 Split, Croatia;
| |
Collapse
|
9
|
Bai MY, Zhou Q, Zhang J, Li T, Cheng J, Liu Q, Xu WR, Zhang YC. Antioxidant and antibacterial properties of essential oils-loaded β-cyclodextrin-epichlorohydrin oligomer and chitosan composite films. Colloids Surf B Biointerfaces 2022; 215:112504. [PMID: 35453062 DOI: 10.1016/j.colsurfb.2022.112504] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 01/11/2023]
Abstract
Chitosan (CS) is becoming increasingly popular in food packaging due to its natural degradability and great film-forming properties. Nevertheless, its poor antibacterial properties and inadequate antioxidant properties prevent it from being used effectively. In this study, β-cyclodextrin-epichlorohydrin (β-CD-EP) oligomers were prepared and encapsulated with natural essential oils cinnamaldehyde and thymol, and then the inclusion complexes (IC) were incorporated into chitosan in various contents to afford a series of CS-IC composite films. The impacts of IC on the morphological, mechanical, thermal, and water resistance properties, antioxidant and antibacterial activities of chitosan films, as well as the loading and sustained release behavior of IC, were thoroughly examined. The results turned out that the essential oils were well-loaded with high encapsulation efficiency and showed a significant slow-release effect. It was also found that the tensile strength and the elongation at break decreased with increasing IC contents, while the thermal stability was enhanced. The incorporation of IC dramatically promoted the antioxidant and antibacterial properties of the chitosan films towards Gram-positive bacteria. Based on our findings, chitosan films containing essential oils-loaded β-CD-EP oligomers may serve as an effective food packaging material.
Collapse
Affiliation(s)
- Mei-Yan Bai
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Qi Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Jie Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China; Hainan Health Management College, Haikou 570228, China
| | - Ting Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Jun Cheng
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Qun Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China
| | - Wen-Rong Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, School of Chemical Engineering and Technology or School of Science, Hainan University, Haikou 570228, PR China.
| | - Yu-Cang Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
10
|
Peimanfard S, Zarrabi A, Trotta F, Matencio A, Cecone C, Caldera F. Developing Novel Hydroxypropyl-β-Cyclodextrin-Based Nanosponges as Carriers for Anticancer Hydrophobic Agents: Overcoming Limitations of Host–Guest Complexes in a Comparative Evaluation. Pharmaceutics 2022; 14:pharmaceutics14051059. [PMID: 35631645 PMCID: PMC9147629 DOI: 10.3390/pharmaceutics14051059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
This study aimed to design and fabricate novel hydroxypropyl-β-cyclodextrin-based hypercrosslinked polymers, called nanosponges, as carriers for anticancer hydrophobic agents and compare them with host–guest complexes of hydroxypropyl-β-cyclodextrin, a remarkable solubilizer, to investigate their application in improving the pharmaceutical properties of the flavonoid naringenin, a model hydrophobic nutraceutical with versatile anticancer effects. For this purpose, three new nanosponges, crosslinked with pyromellitic dianhydride, citric acid, and carbonyldiimidazole, were fabricated. The carbonate nanosponge synthesized by carbonyldiimidazole presented the highest naringenin loading capacity (≈19.42%) and exerted significantly higher antiproliferative effects against MCF-7 cancer cells compared to free naringenin. Additionally, this carbonate nanosponge formed a stable nanosuspension, providing several advantages over the naringenin/hydroxypropyl-β-cyclodextrin host–guest complex, including an increase of about 3.62-fold in the loading capacity percentage, sustained released pattern (versus the burst pattern of host–guest complex), and up to an 8.3-fold increase in antiproliferative effects against MCF-7 cancer cells. Both naringenin-loaded carriers were less toxic to L929 murine fibroblast normal cells than MCF-7 cancer cells. These findings suggest that hydroxypropyl-β-cyclodextrin-based carbonate nanosponges could be a good candidate as a drug delivery system with potential applications in cancer treatment.
Collapse
Affiliation(s)
- Shohreh Peimanfard
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran;
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (C.C.); (F.C.)
| | - Ali Zarrabi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran;
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
- Correspondence: or (A.Z.); (F.T.); (A.M.)
| | - Francesco Trotta
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (C.C.); (F.C.)
- Correspondence: or (A.Z.); (F.T.); (A.M.)
| | - Adrián Matencio
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (C.C.); (F.C.)
- Correspondence: or (A.Z.); (F.T.); (A.M.)
| | - Claudio Cecone
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (C.C.); (F.C.)
| | - Fabrizio Caldera
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (C.C.); (F.C.)
| |
Collapse
|
11
|
Uribe LA, Leonardo S, Nielsen TT, Steinmann C, Campàs M, Fragoso A. Supramolecular Complexes of Plant Neurotoxin Veratridine with Cyclodextrins and Their Antidote-like Effect on Neuro-2a Cell Viability. Pharmaceutics 2022; 14:pharmaceutics14030598. [PMID: 35335973 PMCID: PMC8951692 DOI: 10.3390/pharmaceutics14030598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/27/2023] Open
Abstract
Veratridine (VTD) is a plant neurotoxin that acts by blocking the voltage-gated sodium channels (VGSC) of cell membranes. Symptoms of VTD intoxication include intense nausea, hypotension, arrhythmia, and loss of consciousness. The treatment for the intoxication is mainly focused on treating the symptoms, meaning there is no specific antidote against VTD. In this pursuit, we were interested in studying the molecular interactions of VTD with cyclodextrins (CDs). CDs are supramolecular macrocycles with the ability to form host–guest inclusion complexes (ICs) inside their hydrophobic cavity. Since VTD is a lipid-soluble alkaloid, we hypothesized that it could form stable inclusion complexes with different types of CDs, resulting in changes to its physicochemical properties. In this investigation, we studied the interaction of VTD with β-CD, γ-CD and sulfobutyl ether β-CD (SBCD) by isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR) spectroscopy. Docking and molecular dynamics studies confirmed the most stable configuration for the inclusion complexes. Finally, with an interest in understanding the effects of the VTD/CD molecular interactions, we performed cell-based assays (CBAs) on Neuro-2a cells. Our findings reveal that the use of different amounts of CDs has an antidote-like concentration-dependent effect on the cells, significantly increasing cell viability and thus opening opportunities for novel research on applications of CDs and VTD.
Collapse
Affiliation(s)
- Laura A. Uribe
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain;
| | - Sandra Leonardo
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain; (S.L.); (M.C.)
| | - Thorbjørn Terndrup Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (T.T.N.); (C.S.)
| | - Casper Steinmann
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (T.T.N.); (C.S.)
| | - Mònica Campàs
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain; (S.L.); (M.C.)
| | - Alex Fragoso
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain;
- Correspondence:
| |
Collapse
|
12
|
Cedillo-Flores OE, Rodríguez-Laguna N, Hipólito-Nájera AR, Nivón-Ramírez D, Gómez-Balderas R, Moya-Hernández R. Effect of the pH on the thermodynamic stability of inclusion complexes of thymol and carvacrol in β-cyclodextrin in water. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Cyclodextrins-in-Liposomes: A Promising Delivery System for Lippia sidoides and Syzygium aromaticum Essential Oils. Life (Basel) 2022; 12:life12010095. [PMID: 35054487 PMCID: PMC8779023 DOI: 10.3390/life12010095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 11/17/2022] Open
Abstract
Biological activity of essential oils (EOs) has been extensively reported; however, their low aqueous solubility, high photosensitivity, and volatility compromise a broad industrial use of these compounds. To overcome these limitations, we proposed a nanoencapsulation approach to protect EOs, that aims to increase their stability and modulate their release profile. In this study, drug-in-cyclodextrin-in-liposomes encapsulating two essential oils (Lippia sidoides and Syzygium aromaticum) and their respective major compounds (thymol and eugenol) were produced by ethanol injection and freeze-dried to form proliposomes and further physicochemically characterized. Liposomes showed high physical stability over one month of storage at 4 °C, with slight changes in the mean size, polydispersity index (PDI), and zeta potential. Reconstituted proliposomes showed a mean size between 350 and 3300 nm, PDI from 0.29 to 0.41, and zeta potential between -22 and -26 mV. Differential scanning calorimetry and X-ray diffraction of proliposomes revealed a less-ordered crystalline structure, leading to high retention of the major bioactive compounds (between 73% and 93% for eugenol, and 74% and 84% for thymol). This work highlights the advantages of using drug-in-cyclodextrin-in-liposomes as delivery systems to retain volatile compounds, increasing their physicochemical stability and their promising potential to be utilized as carriers in products in the pharmaceutical, food, and cosmetic industries.
Collapse
|
14
|
Marzouk MAEH, Darwish MK, Yassin GE, El-Fattah MAA. Pulsatile Chronotherapeutic Drug Delivery for Controlling Early Morning Surge in Blood Pressure; Effect of Coating on Eplerenone In-vitro, In-vivo Release and Urinary Na/K Ratio. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Ghada Ehab Yassin
- Al-Azhar University, Egypt; October University for Modern Sciences and Art, Egypt
| | | |
Collapse
|
15
|
Liu T, Feng C, Li Z, Gu Z, Ban X, Hong Y, Cheng L, Li C. Efficient formation of carvacrol inclusion complexes during β-cyclodextrin glycosyltransferase-catalyzed cyclodextrin synthesis. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Mashaqbeh H, Obaidat R, Al-Shar’i N. Evaluation and Characterization of Curcumin-β-Cyclodextrin and Cyclodextrin-Based Nanosponge Inclusion Complexation. Polymers (Basel) 2021; 13:polym13234073. [PMID: 34883577 PMCID: PMC8658939 DOI: 10.3390/polym13234073] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 02/02/2023] Open
Abstract
Cyclodextrin polymers and cyclodextrin-based nanosponges have been widely investigated for increasing drug bioavailability. This study examined curcumin's complexation stability and solubilization with β-cyclodextrin and β-cyclodextrin-based nanosponge. Nanosponges were prepared through the cross-linking of β-cyclodextrin with different molar ratios of diphenyl carbonate. Phase solubility experiments were conducted to evaluate the formed complexes and evaluate the potential of using β-cyclodextrin and nanosponge in pharmaceutical formulations. Furthermore, physicochemical characterizations of the prepared complexes included PXRD, FTIR, NMR, and DSC. In addition, in vitro release studies were performed for the prepared formulations. The formation of β-cyclodextrin complexes enhanced curcumin solubility up to 2.34-fold compared to the inherent solubility, compared to a 2.95-fold increment in curcumin solubility when loaded in β-cyclodextrin-based nanosponges. Interestingly, the stability constant for curcumin nanosponges was (4972.90 M-1), which was ten times higher than that for the β-cyclodextrin complex, where the value was 487.34 M-1. The study results indicated a decrease in the complexation efficiency and solubilization effect with the increased cross-linker amount. This study's findings showed the potential of using cyclodextrin-based nanosponge and the importance of studying the effect of cross-linking density for the preparation of β-cyclodextrin-based nanosponges to be used for pharmaceutical formulations.
Collapse
Affiliation(s)
- Hadeia Mashaqbeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
- Correspondence: (H.M.); (R.O.)
| | - Rana Obaidat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
- Correspondence: (H.M.); (R.O.)
| | - Nizar Al-Shar’i
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan;
| |
Collapse
|
17
|
Aguado R, Murtinho D, Valente AJM. Association of antioxidant monophenolic compounds with β-cyclodextrin-functionalized cellulose and starch substrates. Carbohydr Polym 2021; 267:118189. [PMID: 34119157 DOI: 10.1016/j.carbpol.2021.118189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Polysaccharide substrates loaded with antioxidant and antimicrobial compounds, effectively protected by cyclodextrin moieties, can be a long-lasting solution to confer certain properties to fabrics, paper and other materials. β-Cyclodextrin was attached to α-cellulose, bleached pulp and starch by a two-step esterification with a tetracarboxylic acid. The resulting derivatives were characterized by spectroscopy, thermal degradation analysis and capability of phenolphthalein inclusion. The carriers, containing between 89 and 171 μmol of β-cyclodextrin per gram, were loaded with carvacrol, cuminaldehyde, cinnamaldehyde and hydroxytyrosol. From a stoichiometric addition, the percentage of compound retained ranged from 49% (hydroxytyrosol in pulp-cyclodextrin) to 92% (carvacrol in starch-cyclodextrin). Finally, the release rate to aqueous ethanol was measured over eight days and fitted to kinetic models. From the analysis of the mean dissolution time, it can be concluded that inserting β-cyclodextrin units enhanced the long-term holding of phenolic active compounds in carbohydrate matrices.
Collapse
Affiliation(s)
- Roberto Aguado
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Dina Murtinho
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Artur J M Valente
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
18
|
Pandey R, Bhairam M, Shukla SS, Gidwani B. Colloidal and vesicular delivery system for herbal bioactive constituents. ACTA ACUST UNITED AC 2021; 29:415-438. [PMID: 34327650 DOI: 10.1007/s40199-021-00403-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The main objective of the present review is to explore and examine the effectiveness of currently developed novel techniques to resolve the issues which are associated with the herbal constituents/extract. METHODS A systematic thorough search and collection of reviewed information from Science direct, PubMed and Google Scholar databases based on various sets of key phrases have been performed. All the findings from these data have been studied and briefed based on their relevant and irrelevant information. RESULT Herbal drugs are gaining more popularity in the modern world due to their applications in curing various ailments with minimum toxic effects, side effect or adverse effect. However, various challenges exist with herbal extracts/plant actives such as poor solubility (water/lipid), poor permeation, lack of targeting specificity, instability in highly acidic pH, and liver metabolism, etc. Nowadays with the expansion in the technology, novel drug delivery system provides avenues and newer opportunity towards the delivery of herbal drugs with improved physical chemical properties, pharmacokinetic and pharmacodynamic. Developing nano-strategies like Polymeric nanoparticles, Liposomes, Niosomes, Microspheres, Phytosomes, Nanoemulsion and Self Nano Emulsifying Drug Delivery System, etc. imparts benefits for delivery of phyto formulation and herbal bioactives. Nano formulation of phytoconstituents/ herbal extract could lead to enhancement of aqueous solubility, dissolution, bioavailability, stability, reduce toxicity, permeation, sustained delivery, protection from enzymatic degradation, etc. CONCLUSION: Based on the above findings, the conclusion can be drawn that the nano sized novel drug delivery systems of herbal and herbal bioactives have a potential future for upgrading the pharmacological action and defeating or overcoming the issues related with these constituents. The aims of the present review was to summarize and critically analyze the recent development of nano sized strategies for promising phytochemicals delivery systems along with their therapeutic applications supported by experimental evidence and discussing the opportunities for further aspects.
Collapse
Affiliation(s)
- Ravindra Pandey
- Columbia Institute of Pharmacy Raipur, Raipur, Chhattisgarh, India.
| | - Monika Bhairam
- Columbia Institute of Pharmacy Raipur, Raipur, Chhattisgarh, India
| | | | - Bina Gidwani
- Columbia Institute of Pharmacy Raipur, Raipur, Chhattisgarh, India
| |
Collapse
|
19
|
Truzzi E, Rustichelli C, de Oliveira Junior ER, Ferraro L, Maretti E, Graziani D, Botti G, Beggiato S, Iannuccelli V, Lima EM, Dalpiaz A, Leo E. Nasal biocompatible powder of Geraniol oil complexed with cyclodextrins for neurodegenerative diseases: physicochemical characterization and in vivo evidences of nose to brain delivery. J Control Release 2021; 335:191-202. [PMID: 34019946 DOI: 10.1016/j.jconrel.2021.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/16/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022]
Abstract
Recently, many studies have shown that plant metabolites, such as geraniol (GER), may exert anti-inflammatory effects in neurodegenerative diseases and, in particular, Parkinson's disease (PD) models. Unfortunately, delivering GER to the CNS via nose-to-brain is not feasible due to its irritant effects on the mucosae. Therefore, in the present study β-cyclodextrin (βCD) and its hydrophilic derivative hydroxypropyl-beta-cyclodextrin (HPβCD) were selected as potential carriers for GER nose-to-brain delivery. Inclusion complexes were formulated and the biocompatibility with nasal mucosae and drug bioavailability into cerebrospinal fluid (CSF) were studied in rats. It has been demonstrated by DTA, FT-IR and NMR analyses that both the CDs were able to form 1:1 GER-CD complexes, arising long-term stable powders after the freeze-drying process. GER-HPβCD-5 and GER-βCD-2 complexes exhibited comparable results, except for morphology and solubility, as demonstrated by SEM analysis and phase solubility study, respectively. Even though both complexes were able to directly and safely deliver GER to CNS, GER-βCD-2 displayed higher ability in releasing GER in the CSF. In conclusion, βCD complexes can be considered a very promising tool in delivering GER into the CNS via nose-to-brain route, preventing GER release into the bloodstream and ensuring the integrity of the nasal mucosa.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| | - Cecilia Rustichelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| | - Edilson Ribeiro de Oliveira Junior
- Faculty of Pharmacy, Laboratory of Pharmaceutical Technology - FarmaTec, Federal University of Goiás, Rua 240, esquina com 5a Avenida, s/n, Setor Universitário, Goiânia, CEP 74605-170, Brazil
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA Center, Via L. Borsari 46, I-44121 Ferrara, Italy.
| | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| | - Daniel Graziani
- School of Veterinary and Animal Sciences - Molecular, Cell and Tissue Analysis Laboratory, Federal University of Goiás, Av. Esperança. s/n. Campus Samambaia, Goiânia, GO 74690-900. Brazil
| | - Giada Botti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy.
| | - Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini - campus universitario, 66100 Chieti, Italy.
| | - Valentina Iannuccelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| | - Eliana Martins Lima
- Faculty of Pharmacy, Laboratory of Pharmaceutical Technology - FarmaTec, Federal University of Goiás, Rua 240, esquina com 5a Avenida, s/n, Setor Universitário, Goiânia, CEP 74605-170, Brazil.
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy.
| | - Eliana Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| |
Collapse
|
20
|
Nakhaee Moghadam M, Jamshidi A, Fazly Bazzaz BS, Azizzadeh M, Movaffagh J. Saccharomyces cerevisiae as a delivery system of Zataria multiflora Boiss. essential oil as a natural preservative for food applications: Encapsulation of Iranian Zataria multiflora Boiss. essential oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2006-2013. [PMID: 32949151 DOI: 10.1002/jsfa.10818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/10/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The following study is an evaluation of the encapsulation, stability and release profile of Iranian Zateria multiflora boiss essential oil (ZEO) in Saccharomyces cerevisiae yeast cells. Encapsulation was performed with different essential oil / yeast weight ratios at different temperatures. The encapsulation efficiency and stability of the loaded yeasts and the release profiles of carvacrol and thymol (as the main active ingredients of ZEO) were also investigated. RESULT The encapsulation efficiencies of carvacrol and thymol at a ZEO / yeast weight ratio of 1.25 were 30.9% ± 0.01% and 44.5% ± 0.02%, respectively. Loaded yeast cells were stable during the 4-week storage period. Both carvacrol and thymol showed substantial releases of around 60% during the first hour and around 70% during the second hour at two different water temperatures, followed by steady release. CONCLUSION Zateria multiflora boiss essential oil can be encapsulated effectively in S. cerevisiae yeast cells, refrigerated without degradation, and released efficiently. Zateria multiflora boiss essential oil encapsulated into S. cerevisiae yeast may be used as a potential preservative for the food and drug industry. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maryam Nakhaee Moghadam
- Department of Food Hygiene, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdollah Jamshidi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - BiBi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Azizzadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jebrail Movaffagh
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Patiño Vidal C, López de Dicastillo C, Rodríguez-Mercado F, Guarda A, Galotto MJ, Muñoz-Shugulí C. Electrospinning and cyclodextrin inclusion complexes: An emerging technological combination for developing novel active food packaging materials. Crit Rev Food Sci Nutr 2021; 62:5495-5510. [PMID: 33605809 DOI: 10.1080/10408398.2021.1886038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review was focused on describing the combination of electrospinning and cyclodextrin inclusion complexes as one of the newest alternatives for the development of food packaging materials with antimicrobial and/or antioxidant properties. The advantages of this technological combination, the routes to design the active materials, the characterization and application of such materials were reviewed. Electrospinning has allowed developing active packaging materials composed by fibrillary structures with a high ratio surface-to-volume. On the other hand, cyclodextrin inclusion complexes have maintained the properties of active compounds when they have been incorporated in packaging materials. Both methods have been recently combined and novel active food packaging materials have been obtained through three different routes. Polymeric solutions containing preformed (route 1) or in-situ formed (route 2) cyclodextrin inclusion complexes have been electrospun to obtain packaging materials. Furthermore, cyclodextrin inclusion complexes solutions have been directly electrospun (route 3) in order to produce those materials. The developed packaging materials have exhibited a high active compound loading with a long lasting release. Therefore, the protection of different foodstuff against microbial growth, oxidation and quality decay as well as the maintenance of their physical and sensory properties have been achieved when those materials were applied as active packaging.
Collapse
Affiliation(s)
- Cristian Patiño Vidal
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Carol López de Dicastillo
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Francisco Rodríguez-Mercado
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Abel Guarda
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - María José Galotto
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Cristina Muñoz-Shugulí
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| |
Collapse
|
22
|
Muñoz-Shugulí C, Vidal CP, Cantero-López P, Lopez-Polo J. Encapsulation of plant extract compounds using cyclodextrin inclusion complexes, liposomes, electrospinning and their combinations for food purposes. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Barreto da Silva L, Camargo SB, Moraes RDA, Medeiros CF, Jesus ADM, Evangelista A, Villarreal CF, Quintans-Júnior LJ, Silva DF. Antihypertensive effect of carvacrol is improved after incorporation in β-cyclodextrin as a drug delivery system. Clin Exp Pharmacol Physiol 2020; 47:1798-1807. [PMID: 32568422 DOI: 10.1111/1440-1681.13364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/20/2020] [Accepted: 06/10/2020] [Indexed: 01/28/2023]
Abstract
Carvacrol (CARV), has been shown to possess various pharmacological properties, especially in the treatment of cardiovascular diseases. We evaluated the antihypertensive effect of the CARV free and encapsulation of CARV in β-cyclodextrin (CARV/β-CD), and whether CARV/β-CD is able to improve the antihypertensive effects of CARV free in spontaneously hypertensive rats (SHR). The rats were randomly divided into four groups, each treated daily for 21 days and the mean arterial pressure and heart rate was measured every 5 days: group 1, Wistar-vehicle solution; group 2, SHR-vehicle; group 3, SHR-CARV 50 mg/kg/d; and group 4, CARV/β-CD 50 mg/kg/d. After 21 days of treatment, the mesenteric artery from treated animals was tested for phenylephrine (Phe) and sodium nitroprusside (SNP) sensitivity. In addition, administration of CARV/β-CD induced important antihypertensive activity when compared with the uncomplexed form, reducing the progression of arterial hypertension in SHR. Moreover, pharmacological potency to Phe in the SHR-CARV and CARV/β-CD groups was increased, approaching values expressed in the Wistar-vehicle. Furthermore, CARV/β-CD reduced the production of the pro-inflammatory mediator, IL-1β, and increased anti-inflammatory cytokine, IL-10. Together, these results produced evidence that the encapsulation of CARV in β-CD can improve cardiovascular activity, showing potential anti-inflammatory and antihypertensive effects.
Collapse
Affiliation(s)
- Liliane Barreto da Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador, Brazil
| | - Samuel Barbosa Camargo
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador, Brazil
| | - Raiana Dos Anjos Moraes
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador, Brazil
| | - Carla Fiama Medeiros
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador, Brazil
| | - Anderson de Melo Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador, Brazil
| | | | | | | | - Darízy Flávia Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
24
|
Muzaffar S, Imtiaz S, Ali SM. Demonstrating accuracy of the proposed protocol for structure elucidation of cyclodextrin inclusion complexes by validation using DFT studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Going deep inside bioactive-loaded nanocarriers through Nuclear Magnetic Resonance (NMR) spectroscopy. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Çakır MA, Icyer NC, Tornuk F. Optimization of production parameters for fabrication of thymol-loaded chitosan nanoparticles. Int J Biol Macromol 2020; 151:230-238. [DOI: 10.1016/j.ijbiomac.2020.02.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
|
27
|
Application of nano/microencapsulated phenolic compounds against cancer. Adv Colloid Interface Sci 2020; 279:102153. [PMID: 32289738 DOI: 10.1016/j.cis.2020.102153] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
Nowadays, polyphenols as bioactive compounds are being used in producing anti-cancer drugs. Low stability against harsh environmental conditions, untargeted release, low solubility, and low absorption of pure phenolic molecules are significant barriers, which decrease the functions of polyphenols. Recently, the nanoencapsulation processes have been applied to overcome these restrictions, in which the anti-cancer activity of polyphenols has been noticeably increased. This review will focus on the anti-cancer activity of polyphenols, and the effect of loading polyphenolics into various micro/nanoencapsulation systems on their anti-cancer activity. Different encapsulation systems such as lipid and polymer based nanoparticles, and solid form of encapsulated phenolic molecules by nano-spray dryer and electrospinnig have been used for loading of polyphenols. Incorporation of phenolic molecules into various carriers inevitably increases their anti-cancer activity. Because, in this way, encapsulated cargos can provide a targeted release, which will increase the bioavailability of phenolic molecules and their functions such as absorption into cancer cell.
Collapse
|
28
|
Lu H, Gao M, Song R, Ye L, Zhang A, Feng Z. Hydroxypropyl β‐Cyclodextrin Solubilizing Hydrophobic Initiator to Initiate Copper‐Mediated RDRP of NIPAM in Aqueous Media. ChemistrySelect 2020. [DOI: 10.1002/slct.202000269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hang Lu
- School of Materials Science & EngineeringBeijing Institute of Technology No. 5 South Street Zhongguancun Beijing 100081 China
| | - Ming Gao
- School of Materials Science & EngineeringBeijing Institute of Technology No. 5 South Street Zhongguancun Beijing 100081 China
| | - Ronghao Song
- School of Materials Science & EngineeringBeijing Institute of Technology No. 5 South Street Zhongguancun Beijing 100081 China
| | - Lin Ye
- School of Materials Science & EngineeringBeijing Institute of Technology No. 5 South Street Zhongguancun Beijing 100081 China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications No. 5 South Street Zhongguancun Beijing 100081 China
| | - Ai‐Ying Zhang
- School of Materials Science & EngineeringBeijing Institute of Technology No. 5 South Street Zhongguancun Beijing 100081 China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications No. 5 South Street Zhongguancun Beijing 100081 China
| | - Zeng‐Guo Feng
- School of Materials Science & EngineeringBeijing Institute of Technology No. 5 South Street Zhongguancun Beijing 100081 China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications No. 5 South Street Zhongguancun Beijing 100081 China
| |
Collapse
|
29
|
Li Z, Feng Y, Li Z, Gu Z, Chen S, Hong Y, Cheng L, Li C. Inclusion of tributyrin during enzymatic synthesis of cyclodextrins by β-cyclodextrin glycosyltransferase from Bacillus circulans. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Chitosan-based hydrogels loading with thyme oil cyclodextrin inclusion compounds: From preparation to characterization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109303] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Celebioglu A, Uyar T. Encapsulation and Stabilization of α-Lipoic Acid in Cyclodextrin Inclusion Complex Electrospun Nanofibers: Antioxidant and Fast-Dissolving α-Lipoic Acid/Cyclodextrin Nanofibrous Webs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13093-13107. [PMID: 31693349 DOI: 10.1021/acs.jafc.9b05580] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, electrospinning of nanofibers from alpha-lipoic acid/cyclodextrin inclusion complex systems was successfully performed without having any polymeric matrix. Alpha-lipoic acid (α-LA) is a natural antioxidant compound which is widely used as a food supplement. However, it has limited water solubility and poor thermal and oxidative stability. Nevertheless, it is possible to enhance its water solubility and thermal stability by inclusion complexation with cyclodextrins. Here, hydroxypropyl-beta-cyclodextrin (HP-β-CyD) and hydroxypropyl-gamma-cyclodextrin (HP-γ-CyD) were chosen as host molecules for forming inclusion complexation with α-LA. Accordingly, α-LA was inclusion complexed with HP-β-CyD and HP-γ-CyD by using very high concentrated aqueous solutions of CyD (200%, w/v) having 1/1 and 2/1 molar ratio of α-LA/CyD. Except α-LA/HP-β-CyD (1/1) solution, other α-LA/CyD solutions were turbid indicating the presence of some noncomplexed α-LA whereas α-LA/HP-β-CyD (1/1) solution was very homogeneous signifying that α-LA was fully complexed with HP-β-CyD. Even so, electrospinning was performed for all of the α-LA/HP-β-CyD (1/1 and 2/1) and α-LA/HP-γ-CyD (1/1 and 2/1) aqueous solutions, and defect-free bead-less and uniform nanofibers were successfully obtained for all of the α-LA/CyD solutions. However, the electrospinning process for α-LA/CyD (1/1) systems was much more efficient than the α-LA/CyD (2/1) systems, and we were able to produce self-standing and flexible nanofibrous webs from α-LA/CyD (1/1) systems. α-LA was efficiently preserved during the electrospinning process of α-LA/CyD (1/1) systems and the resulting electrospun α-LA/HP-β-CyD and α-LA/HP-γ-CyD nanofibers were produced with the molar ratios of ∼1/1 and ∼0.85/1 (α-LA/CyD), respectively. The better encapsulation efficiency of α-LA in α-LA/HP-β-CyD nanofibers was due to higher solubility increase and higher binding strength between α-LA and HP-β-CyD as revealed by the phase solubility test. α-LA was in the amorphous state in α-LA/CyD nanofibers and both α-LA/HP-β-CyD and α-LA/HP-γ-CyD nanofibers were dissolved very quickly in water and also when they wetted with artificial saliva. Additionally, the antioxidant activity of pure α-LA and α-LA/CyD nanofibers was comparatively evaluated using ABTS radical cation assay. α-LA/CyD nanofibers have shown significantly higher antioxidant performance compared to pure α-LA owing to improved water solubility by CyD inclusion complexation. The thermal stability enhancement of α-LA in α-LA/CyD nanofibers was achieved compared to pure α-LA under heat treatment (100 °C for 24 h). These promising results support that antioxidant α-LA/CyD nanofibers may have potential applications as orally fast-dissolving food supplements.
Collapse
Affiliation(s)
- Asli Celebioglu
- Department of Fiber Science & Apparel Design, College of Human Ecology , Cornell University , Ithaca , New York 14853 , United States
| | - Tamer Uyar
- Department of Fiber Science & Apparel Design, College of Human Ecology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
32
|
Inoue Y, Shinohara I, Murata I, Kanamoto I. Study on the molecular stability, solubility, and diffusibility of guaiazulene included in β- and γ-cyclodextrin. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Saffarionpour S. Nanoencapsulation of Hydrophobic Food Flavor Ingredients and Their Cyclodextrin Inclusion Complexes. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02285-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
34
|
Kfoury M, Geagea C, Ruellan S, Greige-Gerges H, Fourmentin S. Effect of cyclodextrin and cosolvent on the solubility and antioxidant activity of caffeic acid. Food Chem 2019; 278:163-169. [DOI: 10.1016/j.foodchem.2018.11.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022]
|
35
|
Jyoti, Dheer D, Singh D, Kumar G, Karnatak M, Chandra S, Prakash Verma V, Shankar R. Thymol Chemistry: A Medicinal Toolbox. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573407214666180503120222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Thymol is a natural phenolic monoterpenoid widely used in pharmaceutical and
food preservative applications. Thymol isomeric with carvacrol, extracted primarily from Thymus species
(Trachyspermum ammi) and other plants sources such as Baccharisgrise bachii and Centipeda minima,
has ethnopharmacological characteristics.
<p></p>
Methods: This review was prepared by analyzing articles published on thymol moiety in last decade and
selected from Science Direct, Scopus, Pub Med, Web of Science and SciFinder. The selected articles are
classified and gives brief introduction about thymol and its isolation, illustrates its natural as well as
synthetic sources, and also therapeutic benefits of thymol worldwide
<p></p>
Results: Thymol has been covering different endeavors such as antimicrobial, antioxidant, antiinflammatory,
antibacterial, antifungal, antidiarrhoeal, anthelmintic, analgesic, digestive, abortifacient,
antihypertensive, spermicidal, depigmenting, antileishmanial, anticholinesterase, insecticidal and many
others. This phenolic compound is among the essential scaffolds for medicinal chemists to synthesize
more bio-active molecules by further derivatization of the thymol moiety.
<p></p>
Conclusion: Thymol is an interesting scaffold due to its different activities and derivatization of thymol
is proved to enhance its biological activities. However, more robust, randomised, controlled clinical
trials would be desirable with well-characterised thymol preparations to corroborate its beneficial effects
in diseased patients. Moreover, in view of the potential use of thymol and thymol-rich essential oils in
the treatment of human infections, comprehensive studies on chronic and acute toxicity and also teratogenicity
are to be recommended.
Collapse
Affiliation(s)
- Jyoti
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Divya Dheer
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Davinder Singh
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Gulshan Kumar
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Manvika Karnatak
- Department of Chemistry, Banasthali University, Banasthali, Rajasthan 304022, India
| | - Suresh Chandra
- Genetics Resources & Agrotechnology Division, CSIR-IIIM, Jammu 180001, India
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Banasthali, Rajasthan 304022, India
| | - Ravi Shankar
- Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
36
|
Dogan YE, Satilmis B, Uyar T. Synthesis and characterization of bio-based benzoxazines derived from thymol. J Appl Polym Sci 2019. [DOI: 10.1002/app.47371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yelda Ertas Dogan
- Institute of Materials Science and Nanotechnology; UNAM-National Nanotechnology Research Center, Bilkent University; Ankara 06800 Turkey
| | - Bekir Satilmis
- Institute of Materials Science and Nanotechnology; UNAM-National Nanotechnology Research Center, Bilkent University; Ankara 06800 Turkey
- Department of Chemistry; Faculty of Science and Arts, Ahi Evran University; Kirsehir 40100 Turkey
| | - Tamer Uyar
- Institute of Materials Science and Nanotechnology; UNAM-National Nanotechnology Research Center, Bilkent University; Ankara 06800 Turkey
| |
Collapse
|
37
|
Antioxidant and antimicrobial properties of randomly methylated β cyclodextrin - captured essential oils. Food Chem 2018; 278:305-313. [PMID: 30583377 DOI: 10.1016/j.foodchem.2018.11.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 01/27/2023]
Abstract
Free essential oils and their active components have a low physiochemical stability and low aqueous solubility which limit their applications as food preservatives and in packaging industry. The aim of this study was to characterize the physicochemical properties, antioxidant activities and antimicrobial activity of randomly methylated β cyclodextrin (RAMEB) encapsulated thyme oil, lemon balm oil, lavender oil, peppermint oil and their active components that include thymol, citral, linalool, menthol and borneol. Inclusion complex formation of essential oils (EOs) and RAMEB were evaluated by several methods. Antioxidant capacities of RAMEB-EOs/components were reported to be more stable than free EOs/components (P < 0.05). Rapid SYBR green I/propidium iodide live/dead microbial cellular discrimination assay for Schizosaccharomyces pombe, Escherichia coli and Staphylococcus aureus showed similar results when compared with flow cytometry analysis (P < 0.01) suggesting that our novel microplate fluorescence method could be applied for the fast live/dead microbial discrimination in antimicrobial assays.
Collapse
|
38
|
Ceborska M. Structural investigation of solid state host/guest complexes of native cyclodextrins with monoterpenes and their simple derivatives. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
|
40
|
Gaur S, Lopez EC, Ojha A, Andrade JE. Functionalization of Lipid-Based Nutrient Supplement with β-Cyclodextrin Inclusions of Oregano Essential Oil. J Food Sci 2018; 83:1748-1756. [PMID: 29771453 DOI: 10.1111/1750-3841.14178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 04/01/2018] [Accepted: 04/06/2018] [Indexed: 12/17/2022]
Abstract
Intestinal parasitic infection is one of the main causes of acute undernutrition in children. Oral consumption of oregano essential oil (OEO) can reduce intestinal parasitic infections, however, its addition to therapeutic and supplementary foods is hampered by its undesirable flavor. The objective of this study was to develop a functional lipid-based nutrient supplement (LNS) containing OEO, which is stable, acceptable and provides targeted intestinal delivery of bioactive. β-cyclodextrin (β-CyD) inclusion complexes of OEO (β-CyD-OEO), and carvacrol (β-CyD-CV) (1:1 molar) were prepared using slurry complexation (-20 °C) method and characterized based on encapsulation efficiency, moisture content, morphology, and 2-phase in vitro digestion stability. Carvacrol (CV) content was measured using reverse phase HPLC-UV. LNS containing β-CyD-OEO (27.2 mg encapsulate/20 g LNS) was formulated using Indian staples and ingredients. Discriminatory sensory tests (triangle) were performed with college students (n = 58) and low-income women (n = 25), with young children at home (1 to 6 years), living in Mehsana, India to evaluate differences between LNS with and without bioactive ingredient (β-CyD-OEO only). Moisture of dried complexes ranged 9.1% to 9.7% d.b., whereas water activity 0.35 to 0.412. The complex size and encapsulation efficiency of β-CyD-OEO and β-CyD-CV were 1.5 to 7 μm and 4 to 20 μm, and 86.04 ± 4.48% and 81.39 ± 3.34%, respectively. The bioactive complexes were stable through the gastric and intestinal phases. Bioaccessibility of encapsulated CV ranged 6.0% to 7.7%. Sensory tests revealed no differences (P > 0.05) in color, aroma, and taste between LNS with and without β-CyD-OEO complexes. Functionalization of LNS with β-CyD-OEO is feasible based on in vitro stability and sensory studies. PRACTICAL APPLICATION Despite its antiparasitic activities, the addition of oregano essential oil into foods is limited due to its strong flavor and volatility. In this study, we evaluated the encapsulation of oregano essential oil with β-cyclodextrin and its addition into lipid-based nutrition supplements. The results revealed that complex encapsulation efficiency was above 80%. Also, the bioactive complexes were stable under in vitro gastrointestinal conditions. Sensory evaluation of LNS with and without encapsulated essential oil showed no difference in terms of color, aroma, and taste. The functional LNS can both address nutrient insufficiency as well as parasitic infection among malnourished populations in low-resource settings.
Collapse
Affiliation(s)
- Shashank Gaur
- Dept. of Food Science and Human Nutrition, Univ. of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Emely C Lopez
- Dept. of Food Science and Human Nutrition, Univ. of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Ankur Ojha
- Dept. of Food Science and Technology, Natl. Inst. of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028, India
| | - Juan E Andrade
- Dept. of Food Science and Human Nutrition, Univ. of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.,Div. of Nutritional Sciences, Univ. of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| |
Collapse
|
41
|
Characterization of Cyclodextrin/Volatile Inclusion Complexes: A Review. Molecules 2018; 23:molecules23051204. [PMID: 29772824 PMCID: PMC6100373 DOI: 10.3390/molecules23051204] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 11/17/2022] Open
Abstract
Cyclodextrins (CDs) are a family of cyclic oligosaccharides that constitute one of the most widely used molecular hosts in supramolecular chemistry. Encapsulation in the hydrophobic cavity of CDs positively affects the physical and chemical characteristics of the guests upon the formation of inclusion complexes. Such a property is interestingly employed to retain volatile guests and reduce their volatility. Within this scope, the starting crucial point for a suitable and careful characterization of an inclusion complex is to assess the value of the formation constant (Kf), also called stability or binding constant. This task requires the application of the appropriate analytical method and technique. Thus, the aim of the present paper is to give a general overview of the main analytical tools used for the determination of Kf values for CD/volatile inclusion complexes. This review emphasizes on the advantages, inconvenients and limits of each applied method. A special attention is also dedicated to the improvement of the current methods and to the development of new techniques. Further, the applicability of each technique is illustrated by a summary of data obtained from the literature.
Collapse
|
42
|
Chitosan nanoparticles functionalized with β-cyclodextrin: a promising carrier for botanical pesticides. Sci Rep 2018; 8:2067. [PMID: 29391538 PMCID: PMC5794797 DOI: 10.1038/s41598-018-20602-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/17/2018] [Indexed: 01/22/2023] Open
Abstract
Carvacrol and linalool are natural compounds extracted from plants and are known for their insecticidal and repellent activities, respectively. However, their low aqueous solubility, high photosensitivity, and high volatility restrict their application in the control of agricultural pests. The encapsulation of volatile compounds can be an effective way of overcoming such problems. Inclusion complexes between beta-cyclodextrin (β-CD) and carvacrol (CVC) or linalool (LNL) were investigated. Inclusion complexes were prepared by the kneading method. Both complexes presented 1:1 host:guest stoichiometry and the highest affinity constants were observed at 20 °C for both molecules. The nanoparticles containing carvacrol and linalool had mean diameters of 175.2 and 245.8 nm, respectively and high encapsulation efficiencies (<90%) were achieved for both compounds. Biological assays with mites (Tetranychus urticae) showed that the nanoparticles possessed repellency, acaricidal, and oviposition activities against this organism. Nanoencapsulated carvacrol and linalool were significantly more effective in terms of acaricidal and oviposition activities, while the unencapsulated compounds showed better repellency activity. The nanoformulations prepared in this study are good candidates for the sustainable and effective use of botanical compounds in agriculture, contributing to the reduction of environmental contamination, as well as promoting the effective control of pests in agriculture.
Collapse
|
43
|
Thymol/cyclodextrin inclusion complex nanofibrous webs: Enhanced water solubility, high thermal stability and antioxidant property of thymol. Food Res Int 2017; 106:280-290. [PMID: 29579928 DOI: 10.1016/j.foodres.2017.12.062] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/11/2017] [Accepted: 12/24/2017] [Indexed: 12/27/2022]
Abstract
The development of novel nanomaterials that provide an efficient encapsulation and protection for the active food additives is one of the main focuses of current research efforts at food application areas. From this point of view, in this study, nanofibrous webs from inclusion complexes (IC) of modified cyclodextrins (hydroxypropyl-β-cyclodextrin (HPβCD), hydroxypropyl-γ-cyclodextrin (HPγCD) and methyl-β-cyclodextrin (MβCD)) and essential oils compound (i.e. thymol) was produced through electrospinning technique. While pure thymol has a highly volatile nature, the volatility of thymol was effectively suppressed by the inclusion complexation and ~88-100% (w/w) of thymol was preserved in electrospun thymol/cyclodextrin inclusion complex nanofibers (Thymol/CD-IC NF). The aqueous solubility enhancement for hydrophobic thymol was demonstrated by phase solubility diagram which also suggested the 1:1M inclusion complexation between thymol and CD molecules. Besides, Thymol/CD-IC NF displayed quite fast disintegration in water compared to poorly water soluble thymol. By inclusion complexation, high temperature stability for volatile thymol was achieved for Thymol/CD-IC NF samples. The loading of thymol in Thymol/CD-IC NF conferred DPPH radical scavenging ability to these nanofibrous webs. So, the Thymol/CD-IC NF have shown antioxidant activity along with enhanced water solubility and high thermal stability of thymol. In brief, encapsulation of essential oil compounds such as thymol in electrospun CD-IC nanofibers can promote its potential application in food and oral-care products by associating the large surface area of nanofibrous webs along with CD inclusion complexation which provides enhanced water solubility and antioxidant property, and high temperature stability for thymol.
Collapse
|
44
|
Kashapov RR, Mamedov VA, Zhukova NA, Kadirov MK, Nizameev IR, Zakharova LY, Sinyashin OG. Controlling the binding of hydrophobic drugs with supramolecular assemblies of β-cyclodextrin. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Aytac Z, Ipek S, Durgun E, Tekinay T, Uyar T. Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem 2017; 233:117-124. [PMID: 28530556 DOI: 10.1016/j.foodchem.2017.04.095] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Thymol (THY)/γ-Cyclodextrin(γ-CD) inclusion complex (IC) encapsulated electrospun zein nanofibrous webs (zein-THY/γ-CD-IC-NF) were fabricated as a food packaging material. The formation of THY/γ-CD-IC (1:1 and 2:1) was proved by experimental (X-ray diffraction (XRD), thermal gravimetric analysis (TGA), 1H NMR) and computational techniques. THY/γ-CD-IC (2:1) exhibited higher preservation rate and stability than THY/γ-CD-IC (1:1). It is worth mentioning that zein-THY/γ-CD-IC-NF (2:1) preserved much more THY as observed in TGA and stability of THY/γ-CD-IC (2:1) was higher, as shown by a modelling study. Therefore, much more THY was released from zein-THY/γ-CD-IC-NF (2:1) than zein-THY-NF and zein-THY/γ-CD-IC-NF (1:1). Similarly, antibacterial activity of zein-THY/γ-CD-IC-NF (2:1) was higher than zein-THY-NF and zein-THY/γ-CD-IC-NF (1:1). It was demonstrated that zein-THY/γ-CD-IC-NF (2:1) was most effective in inhibiting the growth of bacteria on meat samples. These webs show potential application as an antibacterial food packaging material.
Collapse
Affiliation(s)
- Zeynep Aytac
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Semran Ipek
- Department of Engineering Physics, Istanbul Medeniyet University, Istanbul 34700, Turkey
| | - Engin Durgun
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Turgay Tekinay
- Life Sciences Application and Research Center, Gazi University, Ankara 06830, Turkey; Faculty of Medicine, Department of Medical Biology and Genetics, Gazi University, Ankara 06560, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey.
| |
Collapse
|
46
|
Rakmai J, Cheirsilp B, Torrado-Agrasar A, Simal-Gándara J, Mejuto JC. Encapsulation of yarrow essential oil in hydroxypropyl-beta-cyclodextrin: physiochemical characterization and evaluation of bio-efficacies. CYTA - JOURNAL OF FOOD 2017. [DOI: 10.1080/19476337.2017.1286523] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jaruporn Rakmai
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai Campus, Hat Yai, Thailand
| | - Benjamas Cheirsilp
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai Campus, Hat Yai, Thailand
| | - Ana Torrado-Agrasar
- Department of Analytical Chemistry and Food Science, Faculty of Science, University of Vigo, Ourense Campus, Ourense, Spain
| | - Jesús Simal-Gándara
- Department of Analytical Chemistry and Food Science, Faculty of Science, University of Vigo, Ourense Campus, Ourense, Spain
| | - Juan Carlos Mejuto
- Department of Physical Chemistry, Faculty of Science, University of Vigo, Ourense Campus, Ourense, Spain
| |
Collapse
|
47
|
Menezes PDP, Serafini MR, de Carvalho YMBG, Soares Santana DV, Lima BS, Quintans-Júnior LJ, Marreto RN, de Aquino TM, Sabino AR, Scotti L, Scotti MT, Grangeiro-Júnior S, de Souza Araújo AA. Kinetic and physical-chemical study of the inclusion complex of β-cyclodextrin containing carvacrol. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.06.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|