1
|
Li X, Zhang H, Zheng W, Sun J, Wang L, He Z. Ozanimod-Dependent Activation of SIRT3/NF-κB/AIM2 Pathway Attenuates Secondary Injury After Intracerebral Hemorrhage. Mol Neurobiol 2023; 60:1117-1131. [PMID: 36417102 DOI: 10.1007/s12035-022-03137-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
Intracerebral hemorrhage (ICH) is characterized by poor prognosis and high mortality rates. To date, satisfactory therapeutic approaches for ICH remain limited, so it is urgently needed to develop a safer and more effective prescription. Secondary inflammatory response has been acknowledged as an aggravating factor to neurological deterioration after ICH. As a component of inflammasome sensors, absent in melanoma 2 (AIM2) plays an important role in the neuroinflammation process. Here, ozanimod, a novel selective sphingosine 1-phosphate receptor modulator, has gained much attention, which alleviates the resultant neuroinflammation and improves functional recovery derived from ICH. In this study, ozanimod improved neurological functions of ICH mice via reduction of hematoma size. Furthermore, both microglial and AIM2 inflammasome activations were reversed by ozanimod, which are confirmed by the downregulation of related inflammatory proteins and cytokines (IL-1β, IL-6, and TNF-α), coupled with the upregulation of SIRT3, by leveraging the Western blot and enzyme-linked immunosorbent assay. Additionally, we find that ozanimod decreases nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) expression. Notably, in vitro cell experiments induced by lipopolysaccharide confirms that the anti-inflammatory effect of ozanimod could be abolished by the SIRT3 inhibitor. In conclusion, these results indicate that ozanimod mitigates ICH-induced secondary inflammatory responses by modulating AIM2 inflammasome mediated by SIRT3/NF-κB/AIM2 pathway. This demonstrates ozanimod orchestrates ICH-induced neuroinflammation and could be a targeted therapy for improving prognosis of ICH.
Collapse
Affiliation(s)
- Xiaoxi Li
- Department of Geriatrics, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Heyu Zhang
- Department of Neurology, the First Affiliated Hospital, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Wenxu Zheng
- Department of Geriatrics, Dalian Friendship Hospital, Dalian, 116100, China
| | - Jizhou Sun
- Department of Neurosurgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Liyuan Wang
- Department of Neurology, the First Hospital of China Medical University, Shenyang, 110001, China.
| | - Zhiyi He
- Department of Neurology, the First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
2
|
Pan F, Xu W, Ding J, Wang C. Elucidating the progress and impact of ferroptosis in hemorrhagic stroke. Front Cell Neurosci 2023; 16:1067570. [PMID: 36713782 PMCID: PMC9874704 DOI: 10.3389/fncel.2022.1067570] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Hemorrhagic stroke is a devastating cerebrovascular disease with high morbidity and mortality, for which effective therapies are currently unavailable. Based on different bleeding sites, hemorrhagic stroke can be generally divided into intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH), whose pathogenesis share some similarity. Ferroptosis is a recently defined programmed cell deaths (PCDs), which is a critical supplement to the hypothesis on the mechanism of nervous system injury after hemorrhagic stroke. Ferroptosis is characterized by distinctive morphological changes of mitochondria and iron-dependent accumulation of lipid peroxides. Moreover, scientists have successfully demonstrated the involvement of ferroptosis in animal models of ICH and SAH, indicating that ferroptosis is a promising target for hemorrhagic stroke therapy. However, the studies on ferroptosis still faces a serious of technical and theoretical challenges. This review systematically elaborates the role of ferroptosis in the pathogenesis of hemorrhagic stroke and puts forward some opinions on the dilemma of ferroptosis research.
Collapse
Affiliation(s)
- Feixia Pan
- Department of Cardiac Surgery, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Weize Xu
- Department of Cardiac Surgery, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jieying Ding
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chencen Wang
- Department of Pediatrics, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua, China,*Correspondence: Chencen Wang,
| |
Collapse
|
3
|
Wang YH, Chen YJ, Yang Y, Zhang KY, Chen XZ, Yang CY, Wang J, Lei XJ, Quan YL, Chen WX, Zhao HL, Yang LK, Feng H. Cyclophilin D-induced mitochondrial impairment confers axonal injury after intracerebral hemorrhage in mice. Neural Regen Res 2023; 18:849-855. [PMID: 36204853 PMCID: PMC9700082 DOI: 10.4103/1673-5374.353495] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The mitochondrial permeability transition pore is a nonspecific transmembrane channel. Inhibition of mitochondrial permeability transition pore opening has been shown to alleviate mitochondrial swelling, calcium overload, and axonal degeneration. Cyclophilin D is an important component of the mitochondrial permeability transition pore. Whether cyclophilin D participates in mitochondrial impairment and axonal injury after intracerebral hemorrhage is not clear. In this study, we established mouse models of intracerebral hemorrhage in vivo by injection of autologous blood and oxyhemoglobin into the striatum in Thy1-YFP mice, in which pyramidal neurons and axons express yellow fluorescent protein. We also simulated intracerebral hemorrhage in vitro in PC12 cells using oxyhemoglobin. We found that axonal degeneration in the early stage of intracerebral hemorrhage depended on mitochondrial swelling induced by cyclophilin D activation and mitochondrial permeability transition pore opening. We further investigated the mechanism underlying the role of cyclophilin D in mouse models and PC12 cell models of intracerebral hemorrhage. We found that both cyclosporin A inhibition and short hairpin RNA interference of cyclophilin D reduced mitochondrial permeability transition pore opening and mitochondrial injury. In addition, inhibition of cyclophilin D and mitochondrial permeability transition pore opening protected corticospinal tract integrity and alleviated motor dysfunction caused by intracerebral hemorrhage. Our findings suggest that cyclophilin D is used as a key mediator of axonal degeneration after intracerebral hemorrhage; inhibition of cyclophilin D expression can protect mitochondrial structure and function and further alleviate corticospinal tract injury and motor dysfunction after intracerebral hemorrhage. Our findings provide a therapeutic target for preventing axonal degeneration of white matter injury and subsequent functional impairment in central nervous diseases.
Collapse
|
4
|
Neuroprotective Effect of Chrysophanol as a PI3K/AKT/mTOR Signaling Inhibitor in an Experimental Model of Autologous Blood-induced Intracerebral Hemorrhage. Curr Med Sci 2022; 42:249-266. [PMID: 35079960 DOI: 10.1007/s11596-022-2496-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/29/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) refers to predominant, sporadic, and non-traumatic bleeding in the brain parenchyma. The PI3K/AKT/mTOR signaling pathway is an important signal transduction pathway regulated by enzyme-linked receptors and has many biological functions in mammals. It plays a key role in neuronal metabolism, gene expression regulation, and tissue homeostasis in the healthy and diseased brain. METHODS In the present study, the role of the PI3K/AKT/mTOR pathway inhibitor chrysophanol (CPH) (10 mg/kg and 20 mg/kg, orally) in the improvement of ICH-associated neurological defects in rats was investigated. Autologous blood (20 µL/5 min/unilateral/intracerebroventricular) mimics ICH-like defects involving cellular and molecular dysfunction and neurotransmitter imbalance. The current study also included various behavioral assessments to examine cognition, memory, and motor and neuromuscular coordination. The protein expression levels of PI3K, AKT, and mTOR as well as myelin basic protein and apoptotic markers, such as Bax, Bcl-2, and caspase-3, were examined using ELISA kits. Furthermore, the levels of various neuroinflammatory cytokines and oxidative stress markers were assessed. Additionally, the neurological severity score, brain water content, gross brain pathology, and hematoma size were used to indicate neurological function and brain edema. RESULTS CPH was found to be neuroprotective by restoring neurobehavioral alterations and significantly reducing the elevated PI3K, AKT, and mTOR protein levels, and modulating the apoptotic markers such as Bax, Bcl-2, and caspase-3 in rat brain homogenate. CPH substantially reduced the inflammatory cytokines like interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. CPH administration restored the neurotransmitters GABA, glutamate, acetylcholine, dopamine, and various oxidative stress markers. CONCLUSION Our results show that CPH may be a promising therapeutic approach for overcoming neuronal damage caused by the overexpression of the PI3K/AKT/mTOR signaling pathway in ICH-induced neurological dysfunctions in rats.
Collapse
|
5
|
Kim JT, Youn DH, Kim BJ, Rhim JK, Jeon JP. Recent Stem Cell Research on Hemorrhagic Stroke : An Update. J Korean Neurosurg Soc 2022; 65:161-172. [PMID: 35193326 PMCID: PMC8918254 DOI: 10.3340/jkns.2021.0126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/25/2021] [Indexed: 11/27/2022] Open
Abstract
Although technological advances and clinical studies on stem cells have been increasingly reported in stroke, research targeting hemorrhagic stroke is still lacking compared to that targeting ischemic stroke. Studies on hemorrhagic stroke are also being conducted, mainly in the USA and China. However, little research has been conducted in Korea. In reality, stem cell research or treatment is unfamiliar to many domestic neurosurgeons. Nevertheless, given the increased interest in regenerative medicine and the increase of life expectancy, attention should be paid to this topic. In this paper, we summarized pre-clinical rodent studies and clinical trials using stem cells for hemorrhagic stroke. In addition, we discussed results of domestic investigations and future perspectives on stem cell research for a better understanding.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Jong Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju, Korea
| | - Jin Pyeong Jeon
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea.,Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|
6
|
Kuramoto Y, Fujita M, Takagi T, Takeda Y, Doe N, Yamahara K, Yoshimura S. Early-phase administration of human amnion-derived stem cells ameliorates neurobehavioral deficits of intracerebral hemorrhage by suppressing local inflammation and apoptosis. J Neuroinflammation 2022; 19:48. [PMID: 35151317 PMCID: PMC8840774 DOI: 10.1186/s12974-022-02411-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 02/05/2022] [Indexed: 12/27/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) is a significant cause of death and disabilities. Recently, cell therapies using mesenchymal stem cells have been shown to improve ICH-induced neurobehavioral deficits. Based on these findings, we designed this study to evaluate the therapeutic efficacy and underlying mechanisms by which human amnion-derived stem cells (hAMSCs) would ameliorate neurobehavioral deficits of ICH-bearing hosts. Methods hAMSCs were induced from amnia obtained by cesarean section and administered intravenously to ICH-bearing mice during the acute phase. The mice were then subject to multitask neurobehavioral tests at the subacute phase. We attempted to optimize the dosage and timing of the hAMSC administrations. In parallel with the hAMSCs, a tenfold higher dose of human adipose-derived stem cells (ADSCs) were used as an experimental control. Specimens were obtained from the ICH lesions to conduct immunostaining, flow cytometry, and Western blotting to elucidate the underlying mechanisms of the hAMSC treatment. Results The intravenous administration of hAMSCs to the ICH-bearing mice effectively improved their neurobehavioral deficits, particularly when the treatment was initiated at Day 1 after the ICH induction. Of note, the hAMSCs promoted clinical efficacy equivalent to or better than that of hADSCs at 1/10 the cell number. The systemically administered hAMSCs were found in the ICH lesions along with the local accumulation of macrophages/microglia. In detail, the hAMSC treatment decreased the number of CD11b+CD45+ and Ly6G+ cells in the ICH lesions, while splenocytes were not affected. Moreover, the hAMSC treatment decreased the number of apoptotic cells in the ICH lesions. These results were associated with suppression of the protein expression levels of macrophage-related factors iNOS and TNFα. Conclusions Intravenous hAMSC administration during the acute phase would improve ICH-induced neurobehavioral disorders. The underlying mechanism was suggested to be the suppression of subacute inflammation and apoptosis by suppressing macrophage/microglia cell numbers and macrophage functions (such as TNFα and iNOS). From a clinical point of view, hAMSC-based treatment may be a novel strategy for the treatment of ICH. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02411-3.
Collapse
|
7
|
Jadaun KS, Mehan S, Sharma A, Siddiqui EM, Kumar S, Alsuhaymi N. Neuroprotective Effect of Chrysophanol as a PI3K/AKT/mTOR Signaling Inhibitor in an Experimental Model of Autologous Blood-induced Intracerebral Hemorrhage. Curr Med Sci 2022:10.1007/s11596-022-2522-7. [PMID: 35099677 DOI: 10.1007/s11596-022-2522-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) refers to predominant, sporadic, and non-traumatic bleeding in the brain parenchyma. The PI3K/AKT/mTOR signaling pathway is an important signal transduction pathway regulated by enzyme-linked receptors and has many biological functions in mammals. It plays a key role in neuronal metabolism, gene expression regulation, and tissue homeostasis in the healthy and diseased brain. METHODS In the present study, the role of the PI3K/AKT/mTOR pathway inhibitor chrysophanol (CPH) (10 mg/kg and 20 mg/kg, orally) in the improvement of ICH-associated neurological defects in rats was investigated. Autologous blood (20 µL/5 min/unilateral/intracerebroventricular) mimics ICH-like defects involving cellular and molecular dysfunction and neurotransmitter imbalance. The current study also included various behavioral assessments to examine cognition, memory, and motor and neuromuscular coordination. The protein expression levels of PI3K, AKT, and mTOR as well as myelin basic protein and apoptotic markers, such as Bax, Bcl-2, and caspase-3, were examined using ELISA kits. Furthermore, the levels of various neuroinflammatory cytokines and oxidative stress markers were assessed. Additionally, the neurological severity score, brain water content, gross brain pathology, and hematoma size were used to indicate neurological function and brain edema. RESULTS CPH was found to be neuroprotective by restoring neurobehavioral alterations and significantly reducing the elevated PI3K, AKT, and mTOR protein levels, and modulating the apoptotic markers such as Bax, Bcl-2, and caspase-3 in rat brain homogenate. CPH substantially reduced the inflammatory cytokines like interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. CPH administration restored the neurotransmitters GABA, glutamate, acetylcholine, dopamine, and various oxidative stress markers. CONCLUSION Our results show that CPH may be a promising therapeutic approach for overcoming neuronal damage caused by the overexpression of the PI3K/AKT/mTOR signaling pathway in ICH-induced neurological dysfunctions in rats.
Collapse
Affiliation(s)
- Kuldeep Singh Jadaun
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Aarti Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Ehraz Mehmood Siddiqui
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sumit Kumar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Naif Alsuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences - AlQunfudah, Umm Al-Qura University, Mekkah, Saudi Arabia
| |
Collapse
|
8
|
Yousefvand S, Hadjzadeh MAR, Keshavarzi Z, Dolatshad H, Vafaee F, Mahmoudabady M, Gholamzadeh Virany Z. Effects of prolactin on movement disorders and APOE, GFAP, and PRL receptor gene expression following intracerebral hemorrhage in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1709-1716. [PMID: 35432801 PMCID: PMC8976900 DOI: 10.22038/ijbms.2021.58176.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022]
Abstract
Objectives Intracerebral hemorrhage (ICH) occurs mostly in the striatum. In ICH, blood prolactin level increases 3-fold. The effects of intracerebroventricular injection (ICV) of prolactin on motor disorders will be investigated. Materials and Methods This study was performed on 32 male Wistar rats in 4 groups: sham, ICH, and prolactin with 1 μg/2 μl (P1) and 2 μg/2 μl (P2) doses. Results The weight of animals on days 1 (P˂0.01), 3, and 7 (P˂0.05) in the sham and P2 groups increased compared with the ICH group. Neurological Deficit Score (NDS) in ICH and P1 groups decreased, and increased compared with sham and ICH groups (P˂0.001), respectively. NDS in the P1 group increased compared with the P2 group on days 1 (P˂0.0 5), 3, and 7 (P˂0.001). The duration time of rotarod in ICH and P1 groups decreased and increased compared with sham and ICH groups (P˂0.001), respectively. The duration time of rotarod in the P1 group on days 3 and 7 increased compared with the P2 group (P˂0.001). Travel distance in days 1(P˂0.01), 3(P˂0.001), and 7(P˂0.01) decreased in the ICH group. Prolactin receptor (PRL receptor) expression in ICH, P1, and P2 groups increased compared with sham and ICH groups (P˂0.001). Glial fibrillary acidic protein (GFAP) expression (P˂0.001) and apolipoprotein E (APOE) (P˂0.01) expression in the ICH group increased compared with the sham group. GFAP and APOE expression in the P1 group increased compared with the ICH group (P˂0.001). APOE expression in the P1 group increased compared with the P2 group (P˂0.001). Conclusion According to the results, prolactin reduces movement disorders.
Collapse
Affiliation(s)
- Shiba Yousefvand
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mousa-al-Reza Hadjzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neuro-Cognitive Sciences, Psychiatry and Behavioural Sciences Research center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zakieh Keshavarzi
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Dolatshad
- Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamzadeh Virany
- Department of Biology, Faculty of Sciences, Islamic Azad University-Mashhad Branch, Mashhad, Iran
| |
Collapse
|
9
|
Zhang H, Wen M, Chen J, Yao C, Lin X, Lin Z, Ru J, Zhuge Q, Yang S. Pyridoxal Isonicotinoyl Hydrazone Improves Neurological Recovery by Attenuating Ferroptosis and Inflammation in Cerebral Hemorrhagic Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9916328. [PMID: 34541001 PMCID: PMC8445720 DOI: 10.1155/2021/9916328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/07/2021] [Accepted: 08/17/2021] [Indexed: 01/08/2023]
Abstract
Ferroptosis and inflammation induced by cerebral hemorrhage result in an excessive inflammatory response and irreversible neuronal injury. Alleviating ferroptosis might be an effective way to prevent neuroinflammatory injury and promote neural functional recovery. Pyridoxal isonicotinoyl hydrazine (PIH), a lipophilic iron-chelating agent, has been reported to reduce excess iron-induced cytotoxicity. However, whether PIH could ameliorate the effects of hemorrhagic stroke is not completely understood. In the present study, the preventive effects of PIH in an intracerebral hemorrhage (ICH) mouse model were investigated. Neurological score, rotarod test, and immunofluorescence around the hematoma were assessed to evaluate the effects of PIH on hemorrhagic injury. The involvement of ferroptosis and inflammation was also examined in vitro to explore the underlying mechanism. Results showed that administration of PIH prevented neuronal cell death and reduced lipid peroxidation in Erastin-treated PC-12 cells. In vivo, mice treated with PIH after ICH attenuated neurological deficit scores. Additionally, we found PIH reduced ROS production, iron accumulation, and lipid peroxidation around the hematoma peripheral tissue. Meanwhile, ICH mice treated with PIH showed an upregulation of the key ferroptosis enzyme, glutathione peroxidase 4, and downregulation of cyclooxygenase-2. Moreover, PIH administration inhibited proinflammatory polarization and reduced interleukin-1 beta and tumor necrosis factor alpha in ICH mice. Collectively, these results demonstrated that PIH protects mice against hemorrhage stroke, which was associated with mitigation of inflammation and ferroptosis.
Collapse
Affiliation(s)
- Hengli Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Min Wen
- Department of Neurosurgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jiayu Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chaojie Yao
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhongxiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Junnan Ru
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Su Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
10
|
Li J, Wu X, He Y, Wu S, Guo E, Feng Y, Yang J, Li J. PINK1 antagonize intracerebral hemorrhage by promoting mitochondrial autophagy. Ann Clin Transl Neurol 2021; 8:1951-1960. [PMID: 34453779 PMCID: PMC8528457 DOI: 10.1002/acn3.51425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/07/2021] [Accepted: 06/23/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) causes neurotransmitter release, oligemia, membrane depolarization, mitochondrial dysfunction, and results in the high rate of mortality and functional disability. Here, we focus on PTEN-induced kinase 1 (PINK1), a mitochondrial-targeted protein kinase, and explore its role in ICH progression. METHODS The qPCR and Western blot were performed to examine the expression of PINK1 in ICH patients and mouse model. PINK1 gain- and loss-of-function mice were used to evaluate their protective role on brain injury and behavioral disorders. Flow cytometry was carried out, mitochondrial membrane potential and reactive oxygen species production were detected to explore the distribution and neuroprotective function of PINK1. RESULTS PINK1 mRNA was upregulated, however, its protein was downregulated in ICH patients. The reduction of PINK1 was mainly happened in microglial cells in ICH model. Overexpression of PINK1 is able to rescue ICH-induced behavioral disorders. PINK1 protects ICH-induced brain injury by promoting mitochondrial autophagy in microglia. CONCLUSION PINK1 possesses a neuroprotective role and antagonizes ICH by promoting mitochondrial autophagy, which may be of value as a therapeutic target for ICH treatment.
Collapse
Affiliation(s)
- Jingchen Li
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoyun Wu
- Department of Geriatric, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanbo He
- Department of Neurosurgery, Pingxiang People's Hospital, Pingxiang County, Hebei, China
| | - Song Wu
- Department of Neurosurgery, Shenze County Hospital, Shenze County, Hebei, China
| | - Erkun Guo
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Feng
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jipeng Yang
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianliang Li
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
11
|
Everitt A, Root B, Calnan D, Manwaring P, Bauer D, Halter R. A bioimpedance-based monitor for real-time detection and identification of secondary brain injury. Sci Rep 2021; 11:15454. [PMID: 34326387 PMCID: PMC8322167 DOI: 10.1038/s41598-021-94600-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
Secondary brain injury impacts patient prognosis and can lead to long-term morbidity and mortality in cases of trauma. Continuous monitoring of secondary injury in acute clinical settings is primarily limited to intracranial pressure (ICP); however, ICP is unable to identify essential underlying etiologies of injury needed to guide treatment (e.g. immediate surgical intervention vs medical management). Here we show that a novel intracranial bioimpedance monitor (BIM) can detect onset of secondary injury, differentiate focal (e.g. hemorrhage) from global (e.g. edema) events, identify underlying etiology and provide localization of an intracranial mass effect. We found in an in vivo porcine model that the BIM detected changes in intracranial volume down to 0.38 mL, differentiated high impedance (e.g. ischemic) from low impedance (e.g. hemorrhagic) injuries (p < 0.001), separated focal from global events (p < 0.001) and provided coarse 'imaging' through localization of the mass effect. This work presents for the first time the full design, development, characterization and successful implementation of an intracranial bioimpedance monitor. This BIM technology could be further translated to clinical pathologies including but not limited to traumatic brain injury, intracerebral hemorrhage, stroke, hydrocephalus and post-surgical monitoring.
Collapse
Affiliation(s)
- Alicia Everitt
- Thayer School of Engineering, Dartmouth College, HB 8000, 14 Engineering Dr., Hanover, NH, 03755, USA.
| | - Brandon Root
- Neurological Surgery, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766, USA
| | - Daniel Calnan
- Neurological Surgery, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766, USA
| | | | - David Bauer
- Neurological Surgery, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766, USA
| | - Ryan Halter
- Thayer School of Engineering, Dartmouth College, HB 8000, 14 Engineering Dr., Hanover, NH, 03755, USA.,Neurological Surgery, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766, USA
| |
Collapse
|
12
|
SRC-3 Deficiency Exacerbates Neurological Deficits in a Mouse Model of Intracerebral Hemorrhage: Role of Oxidative Stress. Neurochem Res 2021; 46:2969-2978. [PMID: 34268655 DOI: 10.1007/s11064-021-03399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Intracerebral hemorrhage (ICH) causes long term neurological abnormality or death. Oxidative stress is closely involved in ICH mediated brain damage. Steroid receptor cofactor 3 (SRC-3), a p160 family member, is widely expressed in the brain and regulates transactivation of Nrf2, a key component of antioxidant response. Our study aims to test if SRC-3 is implicated in ICH mediated brain injury. We first examined levels of SRC-3 and oxidative stress in the brain of mice following ICH and analyzed their correlation. Then ICH was induced in wild type (WT) and SRC-3 knock out mice and how SRC-3 deletion affected ICH induced brain damage, oxidative stress and behavioral outcome was assessed. We found that SRC-3 mRNA and protein expression levels were reduced gradually after ICH induction in WT mice along with an increase in oxidative stress levels. Correlation analysis revealed that SRC-3 mRNA levels negatively correlated with oxidative stress. Deletion of SRC-3 further increased ICH induced brain edema, neurological deficit score and oxidative stress and exacerbated ICH induced behavioral abnormality including motor dysfunction and cognitive impairment. Our findings suggest that SRC-3 is involved in ICH induced brain injury, probably through modulation of oxidative stress.
Collapse
|
13
|
Liu L, Liu KJ, Cao JB, Yang J, Yu HL, He XX, He ZX, Zhu XJ. A Novel Netrin-1-Derived Peptide Enhances Protection against Neuronal Death and Mitigates of Intracerebral Hemorrhage in Mice. Int J Mol Sci 2021; 22:ijms22094829. [PMID: 34063230 PMCID: PMC8125294 DOI: 10.3390/ijms22094829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
It has been reported that Netrin-1 is involved in neuroprotection following injury to the central nervous system. However, the minimal functional domain of Netrin-1 which can preserve the neuroprotection but avoid the major side effects of Netrin remains elusive. Here, we investigated the neuroprotective effect of a peptide E1 derived from Netrin-1′s EGF3 domain (residues 407–422). We found that it interacts with deleted colorectal carcinoma (DCC) to activate focal adhesion kinase phosphorylation exhibiting neuroprotection. The administration of the peptide E1 was able to improve functional recovery through reduced apoptosis in an experimental murine model of intracerebral hemorrhage (ICH). In summary, we reveal a functional sequence of Netrin-1 that is involved in the recovery process after ICH and identify a candidate peptide for the treatment of ICH.
Collapse
|
14
|
Duan L, Zhang Y, Yang Y, Su S, Zhou L, Lo PC, Cai J, Qiao Y, Li M, Huang S, Wang H, Mo Y, Wang Q. Baicalin Inhibits Ferroptosis in Intracerebral Hemorrhage. Front Pharmacol 2021; 12:629379. [PMID: 33815110 PMCID: PMC8017143 DOI: 10.3389/fphar.2021.629379] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke characterized by high mortality and disability rates. To date, the exact etiology of ICH-induced brain injury is still unclear. Moreover, there is no effective treatment to delay or prevent disease progression currently. Increasing evidence suggests that ferroptosis plays a dominant role in the pathogenesis of ICH injury. Baicalin is a main active ingredient of Chinese herbal medicine Scutellaria baicalensis. It has been reported to exhibit neuroprotective effects against ICH-induced brain injury as well as reduce iron deposition in multiple tissues. Therefore, in this study, we focused on the protective mechanisms of baicalin against ferroptosis caused by ICH using a hemin-induced in vitro model and a Type IV collagenase-induced in vivo model. Our results revealed that baicalin enhanced cell viability and suppressed ferroptosis in rat pheochromocytoma PC12 cells treated with hemin, erastin and RSL3. Importantly, baicalin showed anti-ferroptosis effect on primary cortical neurons (PCN). Furthermore, baicalin alleviated motor deficits and brain injury in ICH model mice through inhibiting ferroptosis. Additionally, baicalin existed no obvious toxicity towards the liver and kidney of mice. Evidently, ferroptosis is a key pathological feature of ICH and baicalin can prevent the development of ferroptosis in ICH. As such, baicalin is a potential therapeutic drug for ICH treatment.
Collapse
Affiliation(s)
- Lining Duan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuna Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiyu Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ligui Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Po-Chieh Lo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaying Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiqi Qiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yousheng Mo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Germinal Matrix-Intraventricular Hemorrhage of the Preterm Newborn and Preclinical Models: Inflammatory Considerations. Int J Mol Sci 2020; 21:ijms21218343. [PMID: 33172205 PMCID: PMC7664434 DOI: 10.3390/ijms21218343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
The germinal matrix-intraventricular hemorrhage (GM-IVH) is one of the most important complications of the preterm newborn. Since these children are born at a critical time in brain development, they can develop short and long term neurological, sensory, cognitive and motor disabilities depending on the severity of the GM-IVH. In addition, hemorrhage triggers a microglia-mediated inflammatory response that damages the tissue adjacent to the injury. Nevertheless, a neuroprotective and neuroreparative role of the microglia has also been described, suggesting that neonatal microglia may have unique functions. While the implication of the inflammatory process in GM-IVH is well established, the difficulty to access a very delicate population has lead to the development of animal models that resemble the pathological features of GM-IVH. Genetically modified models and lesions induced by local administration of glycerol, collagenase or blood have been used to study associated inflammatory mechanisms as well as therapeutic targets. In the present study we review the GM-IVH complications, with special interest in inflammatory response and the role of microglia, both in patients and animal models, and we analyze specific proteins and cytokines that are currently under study as feasible predictors of GM-IVH evolution and prognosis.
Collapse
|
16
|
Li M, Xia M, Chen W, Wang J, Yin Y, Guo C, Li C, Tang X, Zhao H, Tan Q, Chen Y, Jia Z, Liu X, Feng H. Lithium treatment mitigates white matter injury after intracerebral hemorrhage through brain-derived neurotrophic factor signaling in mice. Transl Res 2020; 217:61-74. [PMID: 31951826 DOI: 10.1016/j.trsl.2019.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/04/2023]
Abstract
Intracerebral hemorrhage (ICH), a subtype of stroke with high morbidity and mortality, occurs mainly in the basal ganglia and causes white matter injury (WMI), resulting in severe motor dysfunction and poor prognosis in patients. The preservation of the white matter around the hematoma is crucial for motor function recovery, but there is currently no effective treatment for WMI following ICH. Lithium has been widely used for the treatment of bipolar disorder for decades. Although the protective effects of lithium on neurodegenerative diseases and cerebral trauma have been studied in recent years, whether it can be used to alleviate WMI after ICH remains to be researched. The results of this study revealed that ICH caused significant functional and pathological abnormalities in mice. After LiCl was administered to mice with ICH, behavioural performance and electrophysiological functions were improved and ICH-induced white matter pathological injury, including myelin sheath and axonal degeneration, was ameliorated. Furthermore, LiCl treatment decreased the death of mature oligodendrocytes (OLGs) in ICH mice, which may have been attributed to the enhanced expression of brain-derived neurotrophic factor (BDNF) regulated by the LiCl-induced inhibition of glycogen synthase kinase-3β (GSK-3β). The decreased death of OLGs was closely associated with decreased destruction of the myelin sheath and alleviated degradation of the axons. In summary, this study suggests that the protective effect of lithium on WMI after ICH might be related to an increased level of BDNF and that LiCl treatment may be a potential therapeutic method to palliate WMI after ICH.
Collapse
Affiliation(s)
- Mingxi Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Min Xia
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Weixiang Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Jie Wang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yi Yin
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Chao Guo
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Chengcheng Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xiaoqin Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hengli Zhao
- Department of Neurology, The Second Medical Central, Chinese PLA (People's Liberation Army) General Hospital, Beijing, PR China
| | - Qiang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China; State Key Laboratory of Trauma, Burn, and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, PR China; Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Zhengcai Jia
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Xin Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China; Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China.
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China; State Key Laboratory of Trauma, Burn, and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, PR China; Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China.
| |
Collapse
|
17
|
Hiraga SI, Itokazu T, Hoshiko M, Takaya H, Nishibe M, Yamashita T. Microglial depletion under thalamic hemorrhage ameliorates mechanical allodynia and suppresses aberrant axonal sprouting. JCI Insight 2020; 5:131801. [PMID: 32051342 DOI: 10.1172/jci.insight.131801] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/30/2019] [Indexed: 01/14/2023] Open
Abstract
Central poststroke pain (CPSP) is one of the neuropathic pain syndromes that can occur following stroke involving the somatosensory system. However, the underlying mechanism of CPSP remains largely unknown. Here, we established a CPSP mouse model by inducing a focal hemorrhage in the thalamic ventrobasal complex and confirmed the development of mechanical allodynia. In this model, microglial activation was observed in the somatosensory cortex, as well as in the injured thalamus. By using a CSF1 receptor inhibitor, we showed that microglial depletion effectively prevented allodynia development in our CPSP model. In the critical phase of allodynia development, c-fos-positive neurons increased in the somatosensory cortex, accompanied by ectopic axonal sprouting of the thalamocortical projection. Furthermore, microglial ablation attenuated both neuronal hyperactivity in the somatosensory cortex and circuit reorganization. These findings suggest that microglia play a crucial role in the development of CPSP pathophysiology by promoting sensory circuit reorganization.
Collapse
Affiliation(s)
- Shin-Ichiro Hiraga
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine
| | - Maki Hoshiko
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka, Japan
| | - Hironobu Takaya
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Mariko Nishibe
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Office of Strategic Innovative Dentistry, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
18
|
Gautam J, Miner JH, Yao Y. Loss of Endothelial Laminin α5 Exacerbates Hemorrhagic Brain Injury. Transl Stroke Res 2019; 10:705-718. [PMID: 30693425 PMCID: PMC6663661 DOI: 10.1007/s12975-019-0688-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/09/2023]
Abstract
Endothelial cells make laminin-411 and laminin-511. Although laminin-411 is well studied, the role of laminin-511 remains largely unknown due to the embryonic lethality of lama5-/- mutants. In this study, we generated endothelium-specific lama5 conditional knockout (α5-TKO) mice and investigated the biological functions of endothelial lama5 in blood-brain barrier (BBB) maintenance under homeostatic conditions and the pathogenesis of intracerebral hemorrhage (ICH). First, the BBB integrity of α5-TKO mice was measured under homeostatic conditions. Next, ICH was induced in α5-TKO mice and their littermate controls using the collagenase model. Various parameters, including injury volume, neuronal death, neurological score, brain edema, BBB integrity, inflammatory cell infiltration, and gliosis, were examined at various time points after injury. Under homeostatic conditions, comparable levels of IgG or exogenous tracers were detected in α5-TKO and control mice. Additionally, no differences in tight junction expression, pericyte coverage, and astrocyte polarity were found in these mice. After ICH, α5-TKO mice displayed enlarged injury volume, increased neuronal death, elevated BBB permeability, exacerbated infiltration of inflammatory cells (leukocytes, neutrophils, and mononuclear cells), aggravated gliosis, unchanged brain edema, and worse neurological function, compared to the controls. These findings suggest that endothelial lama5 is dispensable for BBB maintenance under homeostatic conditions but plays a beneficial role in ICH.
Collapse
Affiliation(s)
- Jyoti Gautam
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA, 30602, USA
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA, 30602, USA.
| |
Collapse
|
19
|
Xia M, Chen W, Wang J, Yin Y, Guo C, Li C, Li M, Tang X, Jia Z, Hu R, Liu X, Feng H. TRPA1 Activation-Induced Myelin Degradation Plays a Key Role in Motor Dysfunction After Intracerebral Hemorrhage. Front Mol Neurosci 2019; 12:98. [PMID: 31057367 PMCID: PMC6478672 DOI: 10.3389/fnmol.2019.00098] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/03/2019] [Indexed: 12/24/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating disease that is characterized by high morbidity and high mortality. ICH has an annual incidence of 10-30/100,000 people and accounts for approximately 10%-30% of all types of stroke. ICH mostly occurs at the basal ganglia, which is rich in nerve fibers; thus, hemiplegia is quite common in ICH patients with partial sensory disturbance and ectopic blindness. In the clinic, those symptoms are considered to originate from the white matter injury in the area, but the exact mechanisms are unknown, and currently, no effective drug treatments are available to improve the prognosis. Clarifying the mechanisms will contribute to the development of new treatment methods for patients. The transient receptor potential ankyrin 1 (TRPA1) channel is a non-selective cation channel that plays a role in inflammatory pain sensation and nociception and may be a potential regulator in emotion, cognition and social behavior. Here, we report that TRPA1 is involved in myelin damage and oxidative stress injury in a mouse ICH model. Intervention with the TRPA1 channel may be a new method to improve the motor function of patients in the early stage of ICH.
Collapse
Affiliation(s)
- Min Xia
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weixiang Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jie Wang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yi Yin
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chao Guo
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chengcheng Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Mingxi Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoqin Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhengcai Jia
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Rong Hu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
20
|
Vafaee F, Zarifkar A, Emamghoreishi M, Namavar MR, Shahpari M, Zarifkar AH. Effect of Recombinant Insulin-like Growth Factor-2 Injected into the Hippocampus on Memory Impairment Following Hippocampal Intracerebral Hemorrhage in Rats. Galen Med J 2018; 7:e1353. [PMID: 34466449 PMCID: PMC8344085 DOI: 10.22086/gmj.v0i0.1353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 09/28/2018] [Accepted: 10/25/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Insulin-like growth factor 2 (IGF-2) is a growth factor and an anti-inflammatory cytokine that plays a pivotal role in memory. In this study, we examined the effect of recombinant IGF-2 on memory impairment due to intracerebral hemorrhage (ICH). Avoidance and recognition memory, locomotor activity, neurological deficit score (NDS), and the level of the IGF-2 gene expression were evaluated. MATERIALS AND METHODS To induce ICH, 100 μL of autologous blood was injected into the left hippocampus of male Sprague Dawley rats. Recombinant IGF-2 was injected into the damaged hippocampus 30 minutes after the induction of ICH. Then, over two weeks, NDS, locomotor activity, passive avoidance, and novel object recognition (NOR) test were evaluated. Finally, the level of IGF-2 gene expression was evaluated by using the real-time polymerase chain reaction technique. RESULT Our results indicated that recombinant IGF-2 injection significantly increased step-through latency (P<0.001) and total time spent in the dark box (P<0.01). However, no significant difference was seen in recognition memory and NDS. Locomotor activity did not significantly change in any group. A significantly reduced level of IGF-2 was observed after two weeks (P<0.05). CONCLUSION The results of this study show that a single dose of recombinant IGF-2 injection can influence hippocampus-dependent memories. Importantly, IGF-2 did not change locomotor activity and NDS after two weeks, which probably represents its specific function in memory.
Collapse
Affiliation(s)
- Farzaneh Vafaee
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Emamghoreishi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Shahpari
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Hossein Zarifkar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
AC-YVAD-CMK Inhibits Pyroptosis and Improves Functional Outcome after Intracerebral Hemorrhage. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3706047. [PMID: 30410928 PMCID: PMC6206581 DOI: 10.1155/2018/3706047] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/25/2018] [Accepted: 09/17/2018] [Indexed: 01/06/2023]
Abstract
Intracerebral hemorrhage (ICH) refers to bleeding in the brain and is associated with the release of large amount of inflammasomes, and the activation of different cell death pathways. These cell death pathways lead to removal of inactivated and damaged cells and also result in neuronal cell damage. Pyroptosis is a newly discovered cell death pathway that has gained attention in recent years. This pathway mainly depends on activation of caspase-1-mediated cascades to cause cell death. We tested a well-known selective inhibitor of caspase-1, AC-YVAD-CMK, which has previously been found to have neuroprotective effects in ICH mice model, to ascertain its effects on the activation of inflammasomes mediated pyroptosis. Our results showed that AC-YVAD-CMK could reduce caspase-1 activation and inhibit IL-1β production and maturation, but has no effect on NLRP3 expression, an upstream inflammatory complex. AC-YVAD-CMK administration also resulted in reduction in M1-type microglia polarization around the hematoma, while increasing the number of M2-type cells. Furthermore, AC-YVAD-CMK treated mice showed some recovery of neurological function after hemorrhage especially at the hyperacute and subacute stage resulting in some degree of limb movement. In conclusion, we are of the view that AC-YVAD-CMK could inhibit pyroptosis, decrease the secretion or activation of inflammatory factors, and affect the polarization of microglia resulting in improvement of neurological function after ICH.
Collapse
|
22
|
Salehi A, Jullienne A, Wendel KM, Hamer M, Tang J, Zhang JH, Pearce WJ, DeFazio RA, Vexler ZS, Obenaus A. A Novel Technique for Visualizing and Analyzing the Cerebral Vasculature in Rodents. Transl Stroke Res 2018; 10:10.1007/s12975-018-0632-0. [PMID: 29766452 DOI: 10.1007/s12975-018-0632-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/27/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
Abstract
We introduce a novel protocol to stain, visualize, and analyze blood vessels from the rat and mouse cerebrum. This technique utilizes the fluorescent dye, DiI, to label the lumen of the vasculature followed by perfusion fixation. Following brain extraction, the labeled vasculature is then imaged using wide-field fluorescence microscopy for axial and coronal images and can be followed by regional confocal microscopy. Axial and coronal images can be analyzed using classical angiographic methods for vessel density, length, and other features. We also have developed a novel fractal analysis to assess vascular complexity. Our protocol has been optimized for adult rat, adult mouse, and neonatal mouse studies. The protocol is efficient, can be rapidly completed, stains cerebral vessels with a bright fluorescence, and provides valuable quantitative data. This method has a broad range of applications, and we demonstrate its use to study the vasculature in assorted models of acquired brain injury.
Collapse
Affiliation(s)
- Arjang Salehi
- Cell, Molecular and Developmental Biology Program, University of California, Riverside, 1140 Bachelor Hall, Riverside, CA, 92521, USA
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Amandine Jullienne
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Kara M Wendel
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697-4475, USA
| | - Mary Hamer
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
- Department of Pediatrics, University of California, Irvine, Irvine, CA, 92697-4475, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - William J Pearce
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
- Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Richard A DeFazio
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48101, USA
| | - Zinaida S Vexler
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Andre Obenaus
- Cell, Molecular and Developmental Biology Program, University of California, Riverside, 1140 Bachelor Hall, Riverside, CA, 92521, USA.
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA.
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697-4475, USA.
- Department of Pediatrics, University of California, Irvine, Irvine, CA, 92697-4475, USA.
| |
Collapse
|
23
|
Zhu W, Gao Y, Wan J, Lan X, Han X, Zhu S, Zang W, Chen X, Ziai W, Hanley DF, Russo SJ, Jorge RE, Wang J. Changes in motor function, cognition, and emotion-related behavior after right hemispheric intracerebral hemorrhage in various brain regions of mouse. Brain Behav Immun 2018; 69:568-581. [PMID: 29458197 PMCID: PMC5857479 DOI: 10.1016/j.bbi.2018.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/25/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a detrimental type of stroke. Mouse models of ICH, induced by collagenase or blood infusion, commonly target striatum, but not other brain sites such as ventricular system, cortex, and hippocampus. Few studies have systemically investigated brain damage and neurobehavioral deficits that develop in animal models of ICH in these areas of the right hemisphere. Therefore, we evaluated the brain damage and neurobehavioral dysfunction associated with right hemispheric ICH in ventricle, cortex, hippocampus, and striatum. The ICH model was induced by autologous whole blood or collagenase VII-S (0.075 units in 0.5 µl saline) injection. At different time points after ICH induction, mice were assessed for brain tissue damage and neurobehavioral deficits. Sham control mice were used for comparison. We found that ICH location influenced features of brain damage, microglia/macrophage activation, and behavioral deficits. Furthermore, the 24-point neurologic deficit scoring system was most sensitive for evaluating locomotor abnormalities in all four models, especially on days 1, 3, and 7 post-ICH. The wire-hanging test was useful for evaluating locomotor abnormalities in models of striatal, intraventricular, and cortical ICH. The cylinder test identified locomotor abnormalities only in the striatal ICH model. The novel object recognition test was effective for evaluating recognition memory dysfunction in all models except for striatal ICH. The tail suspension test, forced swim test, and sucrose preference test were effective for evaluating emotional abnormality in all four models but did not correlate with severity of brain damage. These results will help to inform future preclinical studies of ICH outcomes.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yufeng Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shanshan Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weidong Zang
- Department of Human Anatomy, Basic Medical College of Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xuemei Chen
- Department of Human Anatomy, Basic Medical College of Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Wendy Ziai
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel F Hanley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Scott J Russo
- Fishberg Department of Neuroscience and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo E Jorge
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Human Anatomy, Basic Medical College of Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
24
|
Yang Y, Zhang X, Ge H, Liu W, Sun E, Ma Y, Zhao H, Li R, Chen W, Yuan J, Chen Q, Chen Y, Liu X, Zhang JH, Hu R, Fan X, Feng H. Epothilone B Benefits Nigrostriatal Pathway Recovery by Promoting Microtubule Stabilization After Intracerebral Hemorrhage. J Am Heart Assoc 2018; 7:JAHA.117.007626. [PMID: 29348323 PMCID: PMC5850167 DOI: 10.1161/jaha.117.007626] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background Many previous clinical studies have demonstrated that the nigrostriatal pathway, which plays a vital role in movement adjustment, is significantly impaired after stroke, according to medical imaging and autopsies. However, the basic pathomorphological changes have been poorly investigated to date. This study was designed to explore the pathomorphological changes, mechanism, and therapeutic method of nigrostriatal impairment after intracerebral hemorrhage (ICH). Methods and Results Intrastriatal injection of autologous blood or microtubule depolymerization reagent nocodazole was performed to mimic the pathology of ICH in C57/BL6 mice. Immunofluorescence, Western blotting, electron microscopy, functional behavioral tests, and anterograde and retrograde neural circuit tracking techniques were used in these mice. The data showed that the number of dopamine neurons and the dopamine concentration were severely decreased and that fine motor function was impaired after ICH. Microtubule depolymerization was the main contributor to the loss of dopamine neurons and to motor function deficits after ICH, as was also proven by intrastriatal injection of nocodazole. Moreover, administration of the microtubule stabilizer epothilone B (1.5 mg/kg) improved the integrity of the nigrostriatal pathway neural circuit, increased the number of dopamine neurons (4598±896 versus 3125±355; P=0.034) and the dopamine concentration (4.28±0.99 versus 3.08±0.75 ng/mg; P=0.041), and enhanced fine motor functional recovery associated with increased acetylated α‐tubulin expression to maintain microtubule stabilization after ICH. Conclusions Our results clarified the pathomorphological changes of the nigrostriatal pathway after ICH and found that epothilone B helped alleviate nigrostriatal pathway injury after ICH, associated with promoting α‐tubulin acetylation to maintain microtubule stabilization, thus facilitating motor recovery.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xuan Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hongfei Ge
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Eryi Sun
- Neurosurgery Department of Guizhou, Medical University Affiliated Hospital, Guiyang, Guizhou, China
| | - Yuanyuan Ma
- Department of Basic Nursing, School of Nursing, Third Military Medical University, Chongqing, China
| | - Hengli Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Rongwei Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weixiang Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jichao Yuan
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - John H Zhang
- Department of Anesthesiology, Neurosurgery and Physiology, Loma Linda University, Loma Linda, CA
| | - Rong Hu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
25
|
Yang J, Wu D, Zhang G, Zhao Y, Jiang M, Yang X, Xu Q, Jiang H. Intracerebral haemorrhage-induced injury progression assessed by cross-sectional photoacoustic tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:5814-5824. [PMID: 29296506 PMCID: PMC5745121 DOI: 10.1364/boe.8.005814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/27/2017] [Accepted: 11/05/2017] [Indexed: 05/03/2023]
Abstract
In this study, we in vivo examined injury progression after intracerebral haemorrhage (ICH) induced by collagenase in mice using cross-sectional photoacoustic tomography (csPAT). csPAT displayed high resolution with high sensitivity for ICH detection. The PAT images obtained showed high correlation with conventional histologic images. Quantitative analysis of the hematoma areas detected by csPAT showed high consistency with the neurologic deficit score (NDS). By utilizing the dual-wavelength method, the development of the hemoglobin area was monitored. Our results indicated that noninvasive csPAT can be used to track the dynamic progression of post-ICH, and to evaluate therapeutic interventions in preclinical ICH models.
Collapse
Affiliation(s)
- Jinge Yang
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Wu
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guang Zhang
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Zhao
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Max Jiang
- College of Medicine, University of Central Florida, 32827, USA
| | - Xin Yang
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiwen Xu
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
| | - Huabei Jiang
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
26
|
Yu L, Lu Z, Burchell S, Nowrangi D, Manaenko A, Li X, Xu Y, Xu N, Tang J, Dai H, Zhang JH. Adropin preserves the blood-brain barrier through a Notch1/Hes1 pathway after intracerebral hemorrhage in mice. J Neurochem 2017; 143:750-760. [PMID: 29030969 DOI: 10.1111/jnc.14238] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/02/2017] [Indexed: 12/15/2022]
Abstract
Adropin is expressed in the CNS and plays a crucial role in the development of stroke. However, little is currently known about the effects of adropin on the blood-brain barrier (BBB) function after intracerebral hemorrhage (ICH). In this study, the role of adropin in collagenase-induced ICH was investigated in mice. At 1-h post-ICH, mice were administered with recombinant human adropin by intranasal. Brain water +content, BBB permeability, and neurological function were measured at different time intervals. Proteins were quantified using western blot analysis, and the localizations of adropin and Notch1 were visualized via immunofluorescence staining. It is shown that adropin reduced brain water content and improved neurological functions. Adropin preserved the functionality of BBB by increasing N-cadherin expression and reducing extravasation of albumin. Moreover, in vivo knockdown of Notch1 and Hes1 both abolished the protective effects of adropin. Taken together, our data demonstrate that adropin constitutes a potential treatment value for ICH by preserving BBB and improving functional outcomes through the Notch1 signaling pathway.
Collapse
Affiliation(s)
- Lingyan Yu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Departments of Anesthesiology and Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Zhengyang Lu
- Departments of Anesthesiology and Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA.,Departments of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Sherrefa Burchell
- Departments of Anesthesiology and Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Derek Nowrangi
- Departments of Anesthesiology and Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Anatol Manaenko
- Departments of Anesthesiology and Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Xue Li
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Departments of Anesthesiology and Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Yang Xu
- Departments of Anesthesiology and Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Ningbo Xu
- Departments of Anesthesiology and Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Jiping Tang
- Departments of Anesthesiology and Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Haibin Dai
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - John H Zhang
- Departments of Anesthesiology and Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
27
|
Burchell SR, Iniaghe LO, Zhang JH, Tang J. Fucoidan from Fucus vesiculosus Fails to Improve Outcomes Following Intracerebral Hemorrhage in Mice. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:191-8. [PMID: 26463947 DOI: 10.1007/978-3-319-18497-5_34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intracerebral hemorrhage (ICH) is the most fatal stroke subtype, with no effective therapies. Hematoma expansion and inflammation play major roles in the pathophysiology of ICH, contributing to primary and secondary brain injury, respectively. Fucoidan, a polysaccharide from the brown seaweed Fucus vesiculosus, has been reported to activate a platelet receptor that may function in limiting bleeding, and to exhibit anti-inflammatory effects. As such, the aim of the present study was to examine the effects of fucoidan on hemorrhaging and neurological outcomes after ICH. Male CD-1 mice were subjected to experimental ICH by infusion of bacterial collagenase. Animals were randomly divided into the following groups: sham, ICH + vehicle, ICH + 25 mg/kg fucoidan, ICH + 75 mg/kg fucoidan, and ICH + 100 mg/kg fucoidan. Brain water content, neurobehavioral outcomes, and hemoglobin content were evaluated at 24 h post ICH. Our findings show that fucoidan failed to attenuate the ICH-induced increase in BWC. The neurological deficits that result from ICH also did not differ in the treatment groups at all three doses. Finally, we found that fucoidan had no effect on the hemoglobin content after ICH. We postulate that fucoidan treatment did not improve the measured outcomes after ICH because we used crude fucoidan, which has a high molecular weight, in our study. High-molecular-weight fucoidans are reported to have less therapeutic potential than low molecular weight fucoidans. They have been shown to exhibit anti-coagulant and pro-apoptotic properties, which seem to outweigh their anti-inflammatory and potential procoagulant abilities. We propose that using a low-molecular-weight fucoidan, or fractionating the crude polysaccharide, may be effective in treating ICH. Future studies are needed to confirm this.
Collapse
Affiliation(s)
- Sherrefa R Burchell
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Loretta O Iniaghe
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Pharmacology and Toxicology, University of Benin, Benin City, Nigeria
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
28
|
Experimental animal models and inflammatory cellular changes in cerebral ischemic and hemorrhagic stroke. Neurosci Bull 2015; 31:717-34. [PMID: 26625873 DOI: 10.1007/s12264-015-1567-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/25/2015] [Indexed: 01/04/2023] Open
Abstract
Stroke, including cerebral ischemia, intracerebral hemorrhage, and subarachnoid hemorrhage, is the leading cause of long-term disability and death worldwide. Animal models have greatly contributed to our understanding of the risk factors and the pathophysiology of stroke, as well as the development of therapeutic strategies for its treatment. Further development and investigation of experimental models, however, are needed to elucidate the pathogenesis of stroke and to enhance and expand novel therapeutic targets. In this article, we provide an overview of the characteristics of commonly-used animal models of stroke and focus on the inflammatory responses to cerebral stroke, which may provide insights into a framework for developing effective therapies for stroke in humans.
Collapse
|
29
|
Recombinant adenovirus encoding NLRP3 RNAi attenuate inflammation and brain injury after intracerebral hemorrhage. J Neuroimmunol 2015; 287:71-5. [DOI: 10.1016/j.jneuroim.2015.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 08/02/2015] [Accepted: 08/04/2015] [Indexed: 12/18/2022]
|
30
|
The Pathophysiology of Intracerebral Hemorrhage Formation and Expansion. Transl Stroke Res 2015; 6:257-63. [DOI: 10.1007/s12975-015-0410-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
|
31
|
Moretti R, Pansiot J, Bettati D, Strazielle N, Ghersi-Egea JF, Damante G, Fleiss B, Titomanlio L, Gressens P. Blood-brain barrier dysfunction in disorders of the developing brain. Front Neurosci 2015; 9:40. [PMID: 25741233 PMCID: PMC4330788 DOI: 10.3389/fnins.2015.00040] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/27/2015] [Indexed: 12/22/2022] Open
Abstract
Disorders of the developing brain represent a major health problem. The neurological manifestations of brain lesions can range from severe clinical deficits to more subtle neurological signs or behavioral problems and learning disabilities, which often become evident many years after the initial damage. These long-term sequelae are due at least in part to central nervous system immaturity at the time of the insult. The blood-brain barrier (BBB) protects the brain and maintains homeostasis. BBB alterations are observed during both acute and chronic brain insults. After an insult, excitatory amino acid neurotransmitters are released, causing reactive oxygen species (ROS)-dependent changes in BBB permeability that allow immune cells to enter and stimulate an inflammatory response. The cytokines, chemokines and other molecules released as well as peripheral and local immune cells can activate an inflammatory cascade in the brain, leading to secondary neurodegeneration that can continue for months or even years and finally contribute to post-insult neuronal deficits. The role of the BBB in perinatal disorders is poorly understood. The inflammatory response, which can be either acute (e.g., perinatal stroke, traumatic brain injury) or chronic (e.g., perinatal infectious diseases) actively modulates the pathophysiological processes underlying brain injury. We present an overview of current knowledge about BBB dysfunction in the developing brain during acute and chronic insults, along with clinical and experimental data.
Collapse
Affiliation(s)
- Raffaella Moretti
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France ; S. Maria della Misericordia Hospital, Università degli Studi di Udine Udine, Italy
| | - Julien Pansiot
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France
| | - Donatella Bettati
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France
| | - Nathalie Strazielle
- Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292 - Lyon University Lyon, France ; Brain-i Lyon, France
| | | | - Giuseppe Damante
- S. Maria della Misericordia Hospital, Università degli Studi di Udine Udine, Italy
| | - Bobbi Fleiss
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France ; Department of Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, St. Thomas' Hospital London, UK
| | - Luigi Titomanlio
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France ; Pediatric Emergency Department, APHP, Robert Debré Hospital Paris, France
| | - Pierre Gressens
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France ; Department of Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, St. Thomas' Hospital London, UK
| |
Collapse
|
32
|
Lei B, Sheng H, Wang H, Lascola CD, Warner DS, Laskowitz DT, James ML. Intrastriatal injection of autologous blood or clostridial collagenase as murine models of intracerebral hemorrhage. J Vis Exp 2014. [PMID: 25046028 DOI: 10.3791/51439] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a common form of cerebrovascular disease and is associated with significant morbidity and mortality. Lack of effective treatment and failure of large clinical trials aimed at hemostasis and clot removal demonstrate the need for further mechanism-driven investigation of ICH. This research may be performed through the framework provided by preclinical models. Two murine models in popular use include intrastriatal (basal ganglia) injection of either autologous whole blood or clostridial collagenase. Since, each model represents distinctly different pathophysiological features related to ICH, use of a particular model may be selected based on what aspect of the disease is to be studied. For example, autologous blood injection most accurately represents the brain's response to the presence of intraparenchymal blood, and may most closely replicate lobar hemorrhage. Clostridial collagenase injection most accurately represents the small vessel rupture and hematoma evolution characteristic of deep hemorrhages. Thus, each model results in different hematoma formation, neuroinflammatory response, cerebral edema development, and neurobehavioral outcomes. Robustness of a purported therapeutic intervention can be best assessed using both models. In this protocol, induction of ICH using both models, immediate post-operative demonstration of injury, and early post-operative care techniques are demonstrated. Both models result in reproducible injuries, hematoma volumes, and neurobehavioral deficits. Because of the heterogeneity of human ICH, multiple preclinical models are needed to thoroughly explore pathophysiologic mechanisms and test potential therapeutic strategies.
Collapse
Affiliation(s)
- Beilei Lei
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University
| | - Huaxin Sheng
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University
| | | | | | - David S Warner
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University; Department of Neurobiology, Duke University
| | - Daniel T Laskowitz
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University; Department of Neurology, Duke University; Department of Neurobiology, Duke University
| | - Michael L James
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University; Department of Neurology, Duke University;
| |
Collapse
|
33
|
Rolland WB, Lekic T, Krafft PR, Hasegawa Y, Altay O, Hartman R, Ostrowski R, Manaenko A, Tang J, Zhang JH. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp Neurol 2012; 241:45-55. [PMID: 23261767 DOI: 10.1016/j.expneurol.2012.12.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/06/2012] [Accepted: 12/13/2012] [Indexed: 12/24/2022]
Abstract
T-lymphocytes promote cerebral inflammation, thus aggravating neuronal injury after stroke. Fingolimod, a sphingosine 1-phosphate receptor analog, prevents the egress of lymphocytes from primary and secondary lymphoid organs. Based on these findings, we hypothesized fingolimod treatment would reduce the number of T-lymphocytes migrating into the brain, thereby ameliorating cerebral inflammation following experimental intracerebral hemorrhage (ICH). We investigated the effects of fingolimod in two well-established murine models of ICH, implementing intrastriatal infusions of either bacterial collagenase (cICH) or autologous blood (bICH). Furthermore, we tested the long term neurological improvements by Fingolimod in a collagenase-induced rat model of ICH. Fingolimod, in contrast to vehicle administration alone, improved neurological functions and reduced brain edema at 24 and 72 h following experimental ICH in CD-1 mice (n=103; p<0.05). Significantly fewer lymphocytes were found in blood and brain samples of treated animals when compared to the vehicle group (p<0.05). Moreover, fingolimod treatment significantly reduced the expression of intercellular adhesion molecule-1 (ICAM-1), interferon-γ (INF-γ), and interleukin-17 (IL-17) in the mouse brain at 72 h post-cICH (p<0.05 compared to vehicle). Long-term neurocognitive performance and histopathological analysis were evaluated in Sprague-Dawley rats between 8 and 10 weeks post-cICH (n=28). Treated rats showed reduced spatial and motor learning deficits, along with significantly reduced brain atrophy and neuronal cell loss within the basal ganglia (p<0.05 compared to vehicle). We conclude that fingolimod treatment ameliorated cerebral inflammation, at least to some extent, by reducing the availability and subsequent brain infiltration of T-lymphocytes, which improved the short and long-term sequelae after experimental ICH in rodents.
Collapse
Affiliation(s)
- William B Rolland
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|