1
|
González-Ponce KS, Celaya-Herrera S, Mendoza-Acosta MF, Casados-Vázquez LE. Cell-Free Systems and Their Importance in the Study of Membrane Proteins. J Membr Biol 2025; 258:15-28. [PMID: 39760767 DOI: 10.1007/s00232-024-00333-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/14/2024] [Indexed: 01/07/2025]
Abstract
The Cell-Free Protein Synthesis (CFPS) is an innovative technique used to produce various proteins. It has several advantages, including short expression times, no strain engineering is required, and toxic proteins such as membrane proteins can be produced. However, the most important advantage is that it eliminates the need for a living cell as a production system. Membrane proteins (MPs) are difficult to express in heterologous strains such as Escherichia coli. Modified strains must be used, and sometimes the strain produces them as inclusion bodies, which makes purification difficult. CFPS can avoid the problem of toxicity and, with the use of additives, allows the production of folded and functional membrane proteins. In this review, we focus on describing what cell-free systems are. We address the advantages and disadvantages of the different organisms that can be used to obtain cell extracts, including PURE systems, where the components are obtained recombinantly, and the methodologies that allow the synthesis of membrane proteins in cell-free systems, which, given their hydrophobic nature, require additives for their correct folding.
Collapse
Affiliation(s)
- Karen Stephania González-Ponce
- Departamento de Alimentos. División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Irapuato Silao km 9, 36500, Irapuato, Guanajuato, México
| | - Samuel Celaya-Herrera
- Departamento de Formación Integral e Institucional, Fraccionamiento Industrial Puerto Interior, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional. Avenida Mineral de Valenciana 200, C.P. 36275, Silao de La Victoria, Guanajuato, México
| | - María Fernanda Mendoza-Acosta
- Posgrado en Biociencias, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Irapuato Silao km 9, 36500, Irapuato, Guanajuato, México
| | - Luz Edith Casados-Vázquez
- Departamento de Alimentos. División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Irapuato Silao km 9, 36500, Irapuato, Guanajuato, México.
- Posgrado en Biociencias, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Irapuato Silao km 9, 36500, Irapuato, Guanajuato, México.
- Investigadoras e Investigadores por México CONAHCYT, Consejo Nacional de Humanidades Ciencias y Tecnologías, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, 03940, Mexico, México.
| |
Collapse
|
2
|
Zeng J, Wang H, Xu Y, Han J, Li Y, Wen S, Wu C, Li D, Liu Z, Zhang X, Tian GB, Dong M. A Clostridioides difficile cell-free gene expression system for prototyping and gene expression analysis. Appl Environ Microbiol 2025; 91:e0156624. [PMID: 39745467 PMCID: PMC11784378 DOI: 10.1128/aem.01566-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/06/2024] [Indexed: 02/01/2025] Open
Abstract
Clostridioides difficile is an obligate anaerobic, Gram-positive bacterium that produces toxins. Despite technological progress, conducting gene expression analysis of C. difficile under different conditions continues to be labor-intensive. Therefore, there is a demand for simplified tools to investigate the transcriptional and translational regulation of C. difficile. The cell-free gene expression (CFE) system has demonstrated utility in various applications, including prototyping, protein production, and in vitro screening. In this study, we developed a C. difficile CFE system capable of in vitro transcription and translation (TX-TL) in the presence of oxygen. Through optimization of cell extract preparation and reaction systems, we increased the protein yield significantly. Furthermore, our observations indicated that this system exhibited higher protein yield using linear DNA templates than circular plasmids for in vitro expression. The prototyping capability of the C. difficile CFE system was assessed using a series of synthetic Clostridium promoters, demonstrating a good correlation between in vivo and in vitro expression. Additionally, we tested the expression of tcdB and tcdR from clinically relevant C. difficile strains using the CFE system, confirming higher toxin expression of the hypervirulent strain R20291. We believe that the CFE system can not only serve as a platform for in vitro protein synthesis and genetic part prototyping but also has the potential to be a simplified model for studying metabolic regulations in Clostridioides difficile.IMPORTANCEClostridioides difficile has been listed as an urgent threat due to its antibiotic resistance, and it is crucial to conduct gene expression analysis to understand gene functionality. However, this task can be challenging, given the need to maintain the bacterium in an anaerobic environment and the inefficiency of introducing genetic material into C. difficile cells. Conversely, the C. difficile cell-free gene expression (CFE) system enables in vitro transcription and translation in the presence of oxygen within just half an hour. Furthermore, the composition of the CFE system is adaptable, permitting the addition or removal of elements, regulatory proteins for example, during the reaction. As a result, this system could potentially offer an efficient and accessible approach to accelerate the study of gene expression and function in Clostridioides difficile.
Collapse
Affiliation(s)
- Ji Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Hao Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Yuxi Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Jianying Han
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Yannan Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Shu'an Wen
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Changbu Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Dani Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Xiaokang Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Min Dong
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Casteleijn MG, Abendroth U, Zemella A, Walter R, Rashmi R, Haag R, Kubick S. Beyond In Vivo, Pharmaceutical Molecule Production in Cell-Free Systems and the Use of Noncanonical Amino Acids Therein. Chem Rev 2025. [PMID: 39841856 DOI: 10.1021/acs.chemrev.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Throughout history, we have looked to nature to discover and copy pharmaceutical solutions to prevent and heal diseases. Due to the advances in metabolic engineering and the production of pharmaceutical proteins in different host cells, we have moved from mimicking nature to the delicate engineering of cells and proteins. We can now produce novel drug molecules, which are fusions of small chemical drugs and proteins. Currently we are at the brink of yet another step to venture beyond nature's border with the use of unnatural amino acids and manufacturing without the use of living cells using cell-free systems. In this review, we summarize the progress and limitations of the last decades in the development of pharmaceutical protein development, production in cells, and cell-free systems. We also discuss possible future directions of the field.
Collapse
Affiliation(s)
| | - Ulrike Abendroth
- VTT Technical Research Centre of Finland Ltd, 02150 Espoo, Finland
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany
| | - Ruben Walter
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany
| | - Rashmi Rashmi
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Rainer Haag
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Stefan Kubick
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14469 Potsdam, Germany
- B4 PharmaTech GmbH, Altensteinstraße 40, 14195 Berlin, Germany
| |
Collapse
|
4
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Diaz KJ, Jarquin J, Petrosyan A, Takahashi MK. Improved RNA toehold switch sensitivity using the NanoLuc complementation reporter. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001334. [PMID: 39839716 PMCID: PMC11749064 DOI: 10.17912/micropub.biology.001334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025]
Abstract
RNA toehold switches are powerful tools that can be used as biosensors to detect nearly any RNA sequence. In the presence of a specific RNA trigger, the toehold switch allows translation of a reporter protein. Toehold switches expressed in cell-free expression systems have been used as biosensors for several viruses and bacterial RNAs. Here we explore the use of the NanoLuc complementation reporter NanoBiT and found that it provides improved sensitivity over sfGFP. This reporter can be applied broadly across other RNA toehold switch applications.
Collapse
Affiliation(s)
- Katherinne J Diaz
- Biology Department, California State University, Northridge, Northridge, California, United States
| | - Julian Jarquin
- Biology Department, California State University, Northridge, Northridge, California, United States
| | - Aleksandr Petrosyan
- Biology Department, California State University, Northridge, Northridge, California, United States
| | - Melissa K Takahashi
- Biology Department, California State University, Northridge, Northridge, California, United States
| |
Collapse
|
6
|
Lehr FX, Gaizauskaite A, Lipińska KE, Gilles S, Sahoo A, Inckemann R, Niederholtmeyer H. Modular Golden Gate Assembly of Linear DNA Templates for Cell-Free Prototyping. Methods Mol Biol 2025; 2850:197-217. [PMID: 39363073 DOI: 10.1007/978-1-0716-4220-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Cell-free transcription and translation (TXTL) systems have emerged as a powerful tool for testing genetic regulatory elements and circuits. Cell-free prototyping can dramatically accelerate the design-build-test-learn cycle of new functions in synthetic biology, in particular when quick-to-assemble linear DNA templates are used. Here, we describe a Golden-Gate-assisted, cloning-free workflow to rapidly produce linear DNA templates for TXTL reactions by assembling transcription units from basic genetic parts of a modular cloning toolbox. Functional DNA templates composed of multiple parts such as promoter, ribosomal binding site (RBS), coding sequence, and terminator are produced in vitro in a one-pot Golden Gate assembly reaction followed by polymerase chain reaction (PCR) amplification. We demonstrate assembly, cell-free testing of promoter and RBS combinations, as well as characterization of a repressor-promoter pair. By eliminating time-consuming transformation and cloning steps in cells and by taking advantage of modular cloning toolboxes, our cell-free prototyping workflow can produce data for large numbers of new assembled constructs within a single day.
Collapse
Affiliation(s)
- François-Xavier Lehr
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Aukse Gaizauskaite
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
- Synthetic Biology, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Katarzyna Elżbieta Lipińska
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Sara Gilles
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Arpita Sahoo
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - René Inckemann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Henrike Niederholtmeyer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
- Synthetic Biology, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany.
| |
Collapse
|
7
|
Kapasiawala M, Murray RM. Metabolic Perturbations to an Escherichia coli-based Cell-Free System Reveal a Trade-off between Transcription and Translation. ACS Synth Biol 2024; 13:3976-3990. [PMID: 39565716 DOI: 10.1021/acssynbio.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Cell-free transcription-translation (TX-TL) systems have been used for diverse applications, but their performance and scope are limited by variability and poor predictability. To understand the drivers of this variability, we explored the effects of metabolic perturbations to anEscherichia coli (E. coli) Rosetta2 TX-TL system. We targeted three classes of molecules: energy molecules, in the form of nucleotide triphosphates (NTPs); central carbon "fuel" molecules, which regenerate NTPs; and magnesium ions (Mg2+). Using malachite green mRNA aptamer (MG aptamer) and destabilized enhanced green fluorescent protein (deGFP) as transcriptional and translational readouts, respectively, we report the presence of a trade-off between optimizing total protein yield and optimizing total mRNA yield, as measured by integrating the area under the curve for mRNA time-course dynamics. We found that a system's position along the trade-off curve is strongly determined by Mg2+ concentration, fuel type and concentration, and cell lysate preparation and that variability can be reduced by modulating these components. Our results further suggest that the trade-off arises from limitations in translation regulation and inefficient energy regeneration. This work advances our understanding of the effects of fuel and energy metabolism on TX-TL in cell-free systems and lays a foundation for improving TX-TL performance, lifetime, standardization, and prediction.
Collapse
Affiliation(s)
- Manisha Kapasiawala
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Richard M Murray
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
8
|
Bartsch T, Lütz S, Rosenthal K. Cell-free protein synthesis with technical additives - expanding the parameter space of in vitro gene expression. Beilstein J Org Chem 2024; 20:2242-2253. [PMID: 39286794 PMCID: PMC11403795 DOI: 10.3762/bjoc.20.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Biocatalysis has established itself as a successful tool in organic synthesis. A particularly fast technique for screening enzymes is the in vitro expression or cell-free protein synthesis (CFPS). The system is based on the transcription and translation machinery of an extract-donating organism to which substrates such as nucleotides and amino acids, as well as energy molecules, salts, buffer, etc., are added. After successful protein synthesis, further substrates can be added for an enzyme activity assay. Although mimicking of cell-like conditions is an approach for optimization, the physical and chemical properties of CFPS are not well described yet. To date, standard conditions have mainly been used for CFPS, with little systematic testing of whether conditions closer to intracellular conditions in terms of viscosity, macromolecules, inorganic ions, osmolarity, or water content are advantageous. Also, very few non-physiological conditions have been tested to date that would expand the parameter space in which CFPS can be performed. In this study, the properties of an Escherichia coli extract-based CFPS system are evaluated, and the parameter space is extended to high viscosities, concentrations of inorganic ion and osmolarity using ten different technical additives including organic solvents, polymers, and salts. It is shown that the synthesis of two model proteins, namely superfolder GFP (sfGFP) and the enzyme truncated human cyclic GMP-AMP synthase fused to sfGFP (thscGAS-sfGFP), is very robust against most of the tested additives.
Collapse
Affiliation(s)
- Tabea Bartsch
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Stephan Lütz
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Katrin Rosenthal
- School of Science, Constructor University, Campus Ring 6, 28759 Bremen, Germany
| |
Collapse
|
9
|
Sword TT, Dinglasan JLN, Abbas GSK, Barker JW, Spradley ME, Greene ER, Gooden DS, Emrich SJ, Gilchrist MA, Doktycz MJ, Bailey CB. Profiling expression strategies for a type III polyketide synthase in a lysate-based, cell-free system. Sci Rep 2024; 14:12983. [PMID: 38839808 PMCID: PMC11153635 DOI: 10.1038/s41598-024-61376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Some of the most metabolically diverse species of bacteria (e.g., Actinobacteria) have higher GC content in their DNA, differ substantially in codon usage, and have distinct protein folding environments compared to tractable expression hosts like Escherichia coli. Consequentially, expressing biosynthetic gene clusters (BGCs) from these bacteria in E. coli often results in a myriad of unpredictable issues with regard to protein expression and folding, delaying the biochemical characterization of new natural products. Current strategies to achieve soluble, active expression of these enzymes in tractable hosts can be a lengthy trial-and-error process. Cell-free expression (CFE) has emerged as a valuable expression platform as a testbed for rapid prototyping expression parameters. Here, we use a type III polyketide synthase from Streptomyces griseus, RppA, which catalyzes the formation of the red pigment flaviolin, as a reporter to investigate BGC refactoring techniques. We applied a library of constructs with different combinations of promoters and rppA coding sequences to investigate the synergies between promoter and codon usage. Subsequently, we assess the utility of cell-free systems for prototyping these refactoring tactics prior to their implementation in cells. Overall, codon harmonization improves natural product synthesis more than traditional codon optimization across cell-free and cellular environments. More importantly, the choice of coding sequences and promoters impact protein expression synergistically, which should be considered for future efforts to use CFE for high-yield protein expression. The promoter strategy when applied to RppA was not completely correlated with that observed with GFP, indicating that different promoter strategies should be applied for different proteins. In vivo experiments suggest that there is correlation, but not complete alignment between expressing in cell free and in vivo. Refactoring promoters and/or coding sequences via CFE can be a valuable strategy to rapidly screen for catalytically functional production of enzymes from BCGs, which advances CFE as a tool for natural product research.
Collapse
Affiliation(s)
- Tien T Sword
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Jaime Lorenzo N Dinglasan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Ghaeath S K Abbas
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, USA
- School of Chemistry, University of Sydney, Sydney, NSW, Australia
| | - J William Barker
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Madeline E Spradley
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Elijah R Greene
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Damian S Gooden
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Scott J Emrich
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN, USA
- Department of Electrical Engineering and Computer Science, University of Tennessee-Knoxville, Knoxville, TN, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Michael A Gilchrist
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN, USA.
| | - Constance B Bailey
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, USA.
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN, USA.
- School of Chemistry, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Gehlbach EM, Robinson AO, Engelhart AE, Adamala KP. Sequential gentle hydration increases encapsulation in model protocells. DISCOVER LIFE 2024; 54:2. [PMID: 38765272 PMCID: PMC11099956 DOI: 10.1007/s11084-024-09645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Small, spherical vesicles are a widely used chassis for the formation of model protocells and investigating the beginning of compartmentalized evolution. Various methods exist for their preparation, with one of the most common approaches being gentle hydration, where thin layers of lipids are hydrated with aqueous solutions and gently agitated to form vesicles. An important benefit to gentle hydration is that the method produces vesicles without introducing any organic contaminants, such as mineral oil, into the lipid bilayer. However, compared to other methods of liposome formation, gentle hydration is much less efficient at encapsulating aqueous cargo. Improving the encapsulation efficiency of gentle hydration would be of broad use for medicine, biotechnology, and protocell research. Here, we describe a method of sequentially hydrating lipid thin films to increase encapsulation efficiency. We demonstrate that sequential gentle hydration significantly improves encapsulation of water-soluble cargo compared to the traditional method, and that this improved efficiency is dependent on buffer composition. Similarly, we also demonstrate how this method can be used to increase concentrations of oleic acid, a fatty acid commonly used in origins of life research, to improve the formation of vesicles in aqueous buffer.
Collapse
Affiliation(s)
- Emma M. Gehlbach
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN USA
| | - Abbey O. Robinson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN USA
| | - Aaron E. Engelhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN USA
| | - Katarzyna P. Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
11
|
Morini L, Sakai A, Vibhute MA, Koch Z, Voss M, Schoenmakers LLJ, Huck WTS. Leveraging Active Learning to Establish Efficient In Vitro Transcription and Translation from Bacterial Chromosomal DNA. ACS OMEGA 2024; 9:19227-19235. [PMID: 38708277 PMCID: PMC11064174 DOI: 10.1021/acsomega.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Gene expression is a fundamental aspect in the construction of a minimal synthetic cell, and the use of chromosomes will be crucial for the integration and regulation of complex modules. Expression from chromosomes in vitro transcription and translation (IVTT) systems presents limitations, as their large size and low concentration make them far less suitable for standard IVTT reactions. Here, we addressed these challenges by optimizing lysate-based IVTT systems at low template concentrations. We then applied an active learning tool to adapt IVTT to chromosomes as template DNA. Further insights into the dynamic data set led us to adjust the previous protocol for chromosome isolation and revealed unforeseen trends pointing at limiting transcription kinetics in our system. The resulting IVTT conditions allowed a high template DNA efficiency for the chromosomes. In conclusion, our system shows a protein-to-chromosome ratio that moves closer to in vivo biology and represents an advancement toward chromosome-based synthetic cells.
Collapse
Affiliation(s)
- Leonardo Morini
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Andrei Sakai
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Mahesh A. Vibhute
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Zef Koch
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
- HAN
University of Applied Sciences, Nijmegen 6503GL, The Netherlands
| | - Margo Voss
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Ludo L. J. Schoenmakers
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
- Konrad
Lorenz Institute for Evolution and Cognition Research, Klosterneuburg 3400, Austria
| | - Wilhelm T. S. Huck
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
12
|
Sánchez-Costa M, Urigoitia A, Comino N, Arnaiz B, Khatami N, Ruiz-Hernandez R, Diamanti E, Abarrategi A, López-Gallego F. In-Hydrogel Cell-Free Protein Expression System as Biocompatible and Implantable Biomaterial. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15993-16002. [PMID: 38509001 DOI: 10.1021/acsami.4c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Biomaterials capable of delivering therapeutic proteins are relevant in biomedicine, yet their manufacturing relies on centralized manufacturing chains that pose challenges to their remote implementation at the point of care. This study explores the viability of confined cell-free protein synthesis within porous hydrogels as biomaterials that dynamically produce and deliver proteins to in vitro and in vivo biological microenvironments. These functional biomaterials have the potential to be assembled as implants at the point of care. To this aim, we first entrap cell-free extracts (CFEs) from Escherichia coli containing the transcription-translation machinery, together with plasmid DNA encoding the super folded green fluorescence protein (sGFP) as a model protein, into hydrogels using various preparation methods. Agarose hydrogels result in the most suitable biomaterials to confine the protein synthesis system, demonstrating efficient sGFP production and diffusion from the core to the surface of the hydrogel. Freeze-drying (FD) of agarose hydrogels still allows for the synthesis and diffusion of sGFP, yielding a more attractive biomaterial for its reconstitution and implementation at the point of care. FD-agarose hydrogels are biocompatible in vitro, allowing for the colonization of cell microenvironments along with cell proliferation. Implantation assays of this biomaterial in a preclinical mouse model proved the feasibility of this protein synthesis approach in an in vivo context and indicated that the physical properties of the biomaterials influence their immune responses. This work introduces a promising avenue for biomaterial fabrication, enabling the in vivo synthesis and targeted delivery of proteins and opening new paths for advanced protein therapeutic approaches based on biocompatible biomaterials.
Collapse
Affiliation(s)
| | - Ane Urigoitia
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
| | - Natalia Comino
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
| | - Blanca Arnaiz
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
| | - Neda Khatami
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
- Polymat, University of Basque Country UPV/EHU, Donostia/San Sebastián 20018, Gipuzkoa, Spain
| | | | - Eleftheria Diamanti
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
| | - Ander Abarrategi
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| | - Fernando López-Gallego
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| |
Collapse
|
13
|
Levrier A, Karpathakis I, Nash B, Bowden SD, Lindner AB, Noireaux V. PHEIGES: all-cell-free phage synthesis and selection from engineered genomes. Nat Commun 2024; 15:2223. [PMID: 38472230 PMCID: PMC10933291 DOI: 10.1038/s41467-024-46585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Bacteriophages constitute an invaluable biological reservoir for biotechnology and medicine. The ability to exploit such vast resources is hampered by the lack of methods to rapidly engineer, assemble, package genomes, and select phages. Cell-free transcription-translation (TXTL) offers experimental settings to address such a limitation. Here, we describe PHage Engineering by In vitro Gene Expression and Selection (PHEIGES) using T7 phage genome and Escherichia coli TXTL. Phage genomes are assembled in vitro from PCR-amplified fragments and directly expressed in batch TXTL reactions to produce up to 1011 PFU/ml engineered phages within one day. We further demonstrate a significant genotype-phenotype linkage of phage assembly in bulk TXTL. This enables rapid selection of phages with altered rough lipopolysaccharides specificity from phage genomes incorporating tail fiber mutant libraries. We establish the scalability of PHEIGES by one pot assembly of such mutants with fluorescent gene integration and 10% length-reduced genome.
Collapse
Affiliation(s)
- Antoine Levrier
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
- Université Paris Cité, INSERM U1284, Center for Research and Interdisciplinarity, F-75006, Paris, France
| | - Ioannis Karpathakis
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
- Facultatea de Biotehnologii, USAMV Bucuresti, Sector 1, Cod 011464, Bucureşti, Romania
| | - Bruce Nash
- DNA Learning Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Steven D Bowden
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Ariel B Lindner
- Université Paris Cité, INSERM U1284, Center for Research and Interdisciplinarity, F-75006, Paris, France.
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
14
|
Meyerowitz JT, Larsson EM, Murray RM. Development of Cell-Free Transcription-Translation Systems in Three Soil Pseudomonads. ACS Synth Biol 2024; 13:530-537. [PMID: 38319019 DOI: 10.1021/acssynbio.3c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In vitro transcription-translation (TX-TL) can enable faster engineering of biological systems. This speed-up can be significant, especially in difficult-to-transform chassis. This work shows the successful development of TX-TL systems using three soil-derived wild-type Pseudomonads known to promote plant growth: Pseudomonas synxantha, Pseudomonas chlororaphis, and Pseudomonas aureofaciens. All three species demonstrated multiple sonication, runoff, and salt conditions producing detectable protein synthesis. One of these new TX-TL systems, P. synxantha, demonstrated a maximum protein yield of 2.5 μM at 125 proteins per DNA template, a maximum protein synthesis rate of 20 nM/min, and a range of DNA concentrations with a linear correspondence with the resulting protein synthesis. A set of different constitutive promoters driving mNeonGreen expression were tested in TX-TL and integrated into the genome, showing similar normalized strengths for in vivo and in vitro fluorescence. This correspondence between the TX-TL-derived promoter strength and the in vivo promoter strength indicates that these lysate-based cell-free systems can be used to characterize and engineer biological parts without genomic integration, enabling a faster design-build-test cycle.
Collapse
Affiliation(s)
- Joseph T Meyerowitz
- Division of Biology and Biological Engineering, California Institute of Technology 1200 E. California Blvd, MC 138-78, Pasadena, California 91125, United States
| | - Elin M Larsson
- Division of Biology and Biological Engineering, California Institute of Technology 1200 E. California Blvd, MC 138-78, Pasadena, California 91125, United States
| | - Richard M Murray
- Division of Biology and Biological Engineering, California Institute of Technology 1200 E. California Blvd, MC 138-78, Pasadena, California 91125, United States
| |
Collapse
|
15
|
Levrier A, Bowden S, Nash B, Lindner A, Noireaux V. Cell-Free Synthesis and Quantitation of Bacteriophages. Methods Mol Biol 2024; 2760:447-461. [PMID: 38468103 DOI: 10.1007/978-1-0716-3658-9_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Cell-free transcription-translation (TXTL) enables achieving an ever-growing number of applications, ranging from the rapid characterization of DNA parts to the production of biologics. As TXTL systems gain in versatility and efficacy, larger DNAs can be expressed in vitro extending the scope of cell-free biomanufacturing to new territories. The demonstration that complex entities such as infectious bacteriophages can be synthesized from their genomes in TXTL reactions opens new opportunities, especially for biomedical applications. Over the last century, phages have been instrumental in the discovery of many ground-breaking biotechnologies including CRISPR. The primary function of phages is to infect bacteria. In that capacity, phages are considered an alternative approach to tackling current societal problems such as the rise of antibiotic-resistant microbes. TXTL provides alternative means to produce phages and with several advantages over in vivo synthesis methods. In this chapter, we describe the basic procedures to purify phage genomes, cell-free synthesize phages, and quantitate them using an all-E. coli TXTL system.
Collapse
Affiliation(s)
- Antoine Levrier
- Center for Research and Interdisciplinarity (CRI), Université de Paris, INSERM U1284, Paris, France
- Physics and Nanotechnology, University of Minnesota, Minneapolis, MN, USA
| | - Steven Bowden
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA
| | - Bruce Nash
- Cold Spring Harbor Laboratory, DNA Learning Center, Cold Spring Harbor, NY, USA
| | - Ariel Lindner
- Center for Research and Interdisciplinarity (CRI), Université de Paris, INSERM U1284, Paris, France
| | - Vincent Noireaux
- Physics and Nanotechnology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Chengan K, Hind C, Stanley M, Wand ME, Nagappa LK, Howland K, Hanson T, Martín-Escolano R, Tsaousis AD, Bengoechea JA, Mark Sutton J, Smales CM, Moore SJ. A cell-free strategy for host-specific profiling of intracellular antibiotic sensitivity and resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:16. [PMID: 39843793 PMCID: PMC11721408 DOI: 10.1038/s44259-023-00018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2025]
Abstract
Antimicrobial resistance (AMR) is a pandemic spread across multiple infectious disease-causing microbes. To provide a host-specific tool to study antibiotic susceptibility and resistance, here we develop Klebsiella pneumoniae cell-free gene expression (CFE) systems from laboratory and clinical isolates. Using proteomics, we identify relative differences and unique proteins for these new CFE systems in comparison to an Escherichia coli MG1655 CFE model. Then we profile antimicrobial susceptibility in parallel with whole cells to quantify CFE antibiotic potency. Finally, we apply this native CFE tool to study AMR variants at a proof-of-concept level. Definably we show that RpoB H526L confers a 58-fold increase in CFE resistance to rifampicin-a genotype observed in rifampicin-resistant Mycobacterium tuberculosis clinical isolates. Overall, we provide a cell-free synthetic biology strategy for the profiling of antibiotic sensitivity and resistance from K. pneumoniae. While initial extract processing requires Biosafety Level 2, the CFE system is non-living, suitable for long-term storage and study in a Biosafety Level 1 lab. We anticipate the K. pneumoniae CFE bioassay is advantageous for host-specific antimicrobial testing, the characterisation of intracellular AMR variants and potentially structure-activity relationship studies.
Collapse
Affiliation(s)
- Kameshwari Chengan
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, CT7 2NJ, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Charlotte Hind
- Technology Development Group, Research and Evaluation, UK Health Security Agency, Salisbury, SP4 0JG, United Kingdom
| | - Maria Stanley
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, CT7 2NJ, United Kingdom
| | - Matthew E Wand
- Technology Development Group, Research and Evaluation, UK Health Security Agency, Salisbury, SP4 0JG, United Kingdom
| | - Lakshmeesha K Nagappa
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, CT7 2NJ, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Kevin Howland
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, CT7 2NJ, United Kingdom
| | - Tanith Hanson
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, CT7 2NJ, United Kingdom
| | - Rubén Martín-Escolano
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, CT7 2NJ, United Kingdom
| | - Anastasios D Tsaousis
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, CT7 2NJ, United Kingdom
| | - José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - J Mark Sutton
- Technology Development Group, Research and Evaluation, UK Health Security Agency, Salisbury, SP4 0JG, United Kingdom
| | - Christopher M Smales
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, CT7 2NJ, United Kingdom
- National Institute for Bioprocessing Research and Training, Blackrock Co, Dublin, Ireland
| | - Simon J Moore
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom.
| |
Collapse
|
17
|
Sword TT, Dinglasan JLN, Abbas GS, William Barker J, Spradley ME, Greene ER, Gooden DS, Emrich SJ, Gilchrist MA, Doktycz MJ, Bailey CB. Profiling Expression Strategies for a Type III Polyketide Synthase in a Lysate-Based, Cell-free System. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569483. [PMID: 38077034 PMCID: PMC10705458 DOI: 10.1101/2023.11.30.569483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Some of the most metabolically diverse species of bacteria (e.g., Actinobacteria) have higher GC content in their DNA, differ substantially in codon usage, and have distinct protein folding environments compared to tractable expression hosts like Escherichia coli. Consequentially, expressing biosynthetic gene clusters (BGCs) from these bacteria in E. coli frequently results in a myriad of unpredictable issues with protein expression and folding, delaying the biochemical characterization of new natural products. Current strategies to achieve soluble, active expression of these enzymes in tractable hosts, such as BGC refactoring, can be a lengthy trial-and-error process. Cell-free expression (CFE) has emerged as 1) a valuable expression platform for enzymes that are challenging to synthesize in vivo, and as 2) a testbed for rapid prototyping that can improve cellular expression. Here, we use a type III polyketide synthase from Streptomyces griseus, RppA, which catalyzes the formation of the red pigment flaviolin, as a reporter to investigate BGC refactoring techniques. We synergistically tune promoter and codon usage to improve flaviolin production from cell-free expressed RppA. We then assess the utility of cell-free systems for prototyping these refactoring tactics prior to their implementation in cells. Overall, codon harmonization improves natural product synthesis more than traditional codon optimization across cell-free and cellular environments. Refactoring promoters and/or coding sequences via CFE can be a valuable strategy to rapidly screen for catalytically functional production of enzymes from BCGs. By showing the coordinators between CFE versus in vivo expression, this work advances CFE as a tool for natural product research.
Collapse
Affiliation(s)
- Tien T. Sword
- Department of Chemistry, University of Tennessee-Knoxville (Knoxville, TN USA)
| | - Jaime Lorenzo N. Dinglasan
- Biosciences Division, Oak Ridge National Laboratory (Oak Ridge, TN USA)
- Graduate School of Genome Science & Technology, University of Tennessee-Knoxville Knoxville (Knoxville, TN USA)
| | - Ghaeath S.K. Abbas
- Department of Chemistry, University of Tennessee-Knoxville (Knoxville, TN USA)
- University of Sydney, School of Chemistry (Sydney, NSW, Australia)
| | - J. William Barker
- Department of Chemistry, University of Tennessee-Knoxville (Knoxville, TN USA)
| | - Madeline E. Spradley
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee-Knoxville (Knoxville, TN USA)
| | - Elijah R. Greene
- Department of Chemistry, University of Tennessee-Knoxville (Knoxville, TN USA)
| | - Damian S. Gooden
- Department of Chemistry, University of Tennessee-Knoxville (Knoxville, TN USA)
| | - Scott J. Emrich
- Graduate School of Genome Science & Technology, University of Tennessee-Knoxville Knoxville (Knoxville, TN USA)
- Department of Electrical Engineering and Computer Science, University of Tennessee-Knoxville (Knoxville, TN USA)
- Department of Ecology & Evolutionary Biology, University of Tennessee-Knoxville (Knoxville, TN USA)
| | - Michael A. Gilchrist
- Graduate School of Genome Science & Technology, University of Tennessee-Knoxville Knoxville (Knoxville, TN USA)
- Department of Ecology & Evolutionary Biology, University of Tennessee-Knoxville (Knoxville, TN USA)
| | - Mitchel J. Doktycz
- Biosciences Division, Oak Ridge National Laboratory (Oak Ridge, TN USA)
- Graduate School of Genome Science & Technology, University of Tennessee-Knoxville Knoxville (Knoxville, TN USA)
| | - Constance B. Bailey
- Department of Chemistry, University of Tennessee-Knoxville (Knoxville, TN USA)
- Graduate School of Genome Science & Technology, University of Tennessee-Knoxville Knoxville (Knoxville, TN USA)
- University of Sydney, School of Chemistry (Sydney, NSW, Australia)
| |
Collapse
|
18
|
Rolf J, Handke J, Burzinski F, Lütz S, Rosenthal K. Amino acid balancing for the prediction and evaluation of protein concentrations in cell-free protein synthesis systems. Biotechnol Prog 2023; 39:e3373. [PMID: 37408088 DOI: 10.1002/btpr.3373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Cell-free protein synthesis (CFPS) systems are an attractive method to complement the usual cell-based synthesis of proteins, especially for screening approaches. The literature describes a wide variety of CFPS systems, but their performance is difficult to compare since the reaction components are often used at different concentrations. Therefore, we have developed a calculation tool based on amino acid balancing to evaluate the performance of CFPS by determining the fractional yield as the ratio between theoretically achievable and experimentally achieved protein molar concentration. This tool was applied to a series of experiments from our lab and to various systems described in the literature to identify systems that synthesize proteins very efficiently and those that still have potential for higher yields. The well-established Escherichia coli system showed a high efficiency in the utilization of amino acids, but interestingly, less considered systems, such as those based on Vibrio natriegens or Leishmania tarentolae, also showed exceptional fractional yields of over 70% and 90%, respectively, implying very efficient conversions of amino acids. The methods and tools described here can quickly identify when a system has reached its maximum or has limitations. We believe that this approach will facilitate the evaluation and optimization of existing CFPS systems and provides the basis for the systematic development of new CFPS systems.
Collapse
Affiliation(s)
- Jascha Rolf
- Department of Biochemical and Chemical Engineering, Chair for Bioprocess Engineering, TU Dortmund University, Dortmund, Germany
| | - Julian Handke
- Department of Biochemical and Chemical Engineering, Chair for Bioprocess Engineering, TU Dortmund University, Dortmund, Germany
| | - Frank Burzinski
- Department of Biochemical and Chemical Engineering, Chair for Bioprocess Engineering, TU Dortmund University, Dortmund, Germany
| | - Stephan Lütz
- Department of Biochemical and Chemical Engineering, Chair for Bioprocess Engineering, TU Dortmund University, Dortmund, Germany
| | | |
Collapse
|
19
|
Piorino F, Styczynski MP. Complex Dependence of Escherichia coli-based Cell-Free Expression on Sonication Energy During Lysis. ACS Synth Biol 2023; 12:3131-3136. [PMID: 37725792 PMCID: PMC10594866 DOI: 10.1021/acssynbio.3c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 09/21/2023]
Abstract
Cell lysis─by sonication or bead beating, for example─is a key step in preparing extracts for cell-free expression systems. To create high protein-production capacity extracts, standard practice is to lyse cells sufficiently to thoroughly disrupt the membrane and thus extract expression machinery but without degrading that machinery. Here, we investigate the impact of different sonication energy inputs on the protein-production capacity of Escherichia coli extracts. While the existence of operator-specific optimal sonication energy inputs is widely known, our findings show that the sonication energy input that yields maximal protein output from a given expression template may depend on plasmid concentration, transcriptional and translational features (e.g., promoter), and other expression vector components (e.g., origin of replication). These results indicate that sonication protocols cannot be standardized to a single optimum, suggest strategies for improving protein yields, and more broadly highlight the need for better metrics and protocols for characterizing cell extracts.
Collapse
Affiliation(s)
- Fernanda Piorino
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Mark P. Styczynski
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
20
|
Gehlbach EM, Robinson AO, Engelhart AE, Adamala KP. Sequential gentle hydration increases encapsulation in model protocells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562404. [PMID: 37873423 PMCID: PMC10592796 DOI: 10.1101/2023.10.15.562404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Small, spherical vesicles are a widely used chassis for the formation of model protocells and investigating the beginning of compartmentalized evolution. Various methods exist for their preparation, with one of the most common approaches being gentle hydration, where thin layers of lipids are hydrated with aqueous solutions and gently agitated to form vesicles. An important benefit to gentle hydration is that the method produces vesicles without introducing any organic contaminants, such as mineral oil, into the lipid bilayer. However, compared to other methods of liposome formation, gentle hydration is much less efficient at encapsulating aqueous cargo. Improving the encapsulation efficiency of gentle hydration would be of broad use for medicine, biotechnology, and protocell research. Here, we describe a method of sequentially hydrating lipid thin films to increase encapsulation efficiency. We demonstrate that sequential gentle hydration significantly improves encapsulation of water-soluble cargo compared to the traditional method, and that this improved efficiency is dependent on buffer composition. Similarly, we also demonstrate how this method can be used to increase concentrations of oleic acid, a fatty acid commonly used in origins of life research, to improve the formation of vesicles in aqueous buffer.
Collapse
Affiliation(s)
- Emma M. Gehlbach
- University of Minnesota Department of Genetics, Cell Biology and Development, Minneapolis, MN, USA
| | - Abbey O. Robinson
- University of Minnesota Department of Genetics, Cell Biology and Development, Minneapolis, MN, USA
| | - Aaron E. Engelhart
- University of Minnesota Department of Genetics, Cell Biology and Development, Minneapolis, MN, USA
| | - Katarzyna P. Adamala
- University of Minnesota Department of Genetics, Cell Biology and Development, Minneapolis, MN, USA
| |
Collapse
|
21
|
Fábrega MJ, Knödlseder N, Nevot G, Sanvicente M, Toloza L, Santos-Moreno J, Güell M. Establishing a Cell-Free Transcription-Translation Platform for Cutibacterium acnes to Prototype Engineered Metabolic and Synthetic Biology. ACS Biomater Sci Eng 2023; 9:5101-5110. [PMID: 34971313 PMCID: PMC10498419 DOI: 10.1021/acsbiomaterials.1c00894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In the past few years, new bacterial-cell-free transcription-translation systems have emerged as potent and quick platforms for protein production as well as for prototyping of DNA regulatory elements, genetic circuits, and metabolic pathways. The Gram-positive commensal Cutibacterium acnes is one of the most abundant bacteria present in the human skin microbiome. However, it has recently been reported that some C. acnes phylotypes can be associated with common inflammatory skin conditions, such as acne vulgaris, whereas others seem to play a protective role, acting as possible "skin probiotics". This fact has made C. acnes become a bacterial model of interest for the cosmetic industry. In the present study we report for the first time the development and optimization of a C. acnes-based cell-free system (CFS) that is able to produce 85 μg/mL firefly luciferase. We highlight the importance of harvesting the bacterial pellet in mid log phase and maintaining CFS reactions at 30 °C and physiological pH to obtain the optimal yield. Additionally, a C. acnes promoter library was engineered to compare coupled in vitro TX-TL activities, and a temperature biosensor was tested, demonstrating the wide range of applications of this toolkit in the synthetic biology field.
Collapse
Affiliation(s)
- María-José Fábrega
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| | - Nastassia Knödlseder
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| | - Guillermo Nevot
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| | - Marta Sanvicente
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| | - Lorena Toloza
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| | - Javier Santos-Moreno
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| | - Marc Güell
- Department of Experimental
and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, 00803 Barcelona, Spain
| |
Collapse
|
22
|
Brooks R, Morici L, Sandoval N. Cell Free Bacteriophage Synthesis from Engineered Strains Improves Yield. ACS Synth Biol 2023; 12:2418-2431. [PMID: 37548960 PMCID: PMC10443043 DOI: 10.1021/acssynbio.3c00239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 08/08/2023]
Abstract
Phage therapy to treat life-threatening drug-resistant infections has been hampered by technical challenges in phage production. Cell-free bacteriophage synthesis (CFBS) can overcome the limitations of standard phage production methods by manufacturing phage virions in vitro. CFBS mimics intracellular phage assembly using transcription/translation machinery (TXTL) harvested from bacterial lysates and combined with reagents to synthesize proteins encoded by a phage genomic DNA template. These systems may enable rapid phage production and engineering to accelerate phages from bench-to-bedside. TXTL harvested from wild type or commonly used bacterial strains was not optimized for bacteriophage production. Here, we demonstrate that TXTL from genetically modified E. coli BL21 can be used to enhance phage T7 yields in vitro by CFBS. Expression of 18 E. coli BL21 genes was manipulated by inducible CRISPR interference (CRISPRi) mediated by nuclease deficient Cas12a from F. novicida (dFnCas12a) to identify genes implicated in T7 propagation as positive or negative effectors. Genes shown to have a significant effect were overexpressed (positive effectors) or repressed (negative effectors) to modify the genetic background of TXTL harvested for CFBS. Phage T7 CFBS yields were improved by up to 10-fold in vitro through overexpression of translation initiation factor IF-3 (infC) and small RNAs OxyS and CyaR and by repression of RecC subunit exonuclease RecBCD. Continued improvement of CFBS will mitigate phage manufacturing bottlenecks and lower hurdles to widespread adoption of phage therapy.
Collapse
Affiliation(s)
- Rani Brooks
- Interdisciplinary
Bioinnovation PhD Program, Tulane University, New Orleans, Louisiana 70118-5665, United
States
| | - Lisa Morici
- Department
of Microbiology and Immunology, Tulane University
School of Medicine, New Orleans, Louisiana 70112, United States
| | - Nicholas Sandoval
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
23
|
Sakai A, Jonker AJ, Nelissen FHT, Kalb EM, van Sluijs B, Heus HA, Adamala KP, Glass JI, Huck WTS. Cell-Free Expression System Derived from a Near-Minimal Synthetic Bacterium. ACS Synth Biol 2023; 12:1616-1623. [PMID: 37278603 PMCID: PMC10278164 DOI: 10.1021/acssynbio.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Indexed: 06/07/2023]
Abstract
Cell-free expression (CFE) systems are fundamental to reconstituting metabolic pathways in vitro toward the construction of a synthetic cell. Although an Escherichia coli-based CFE system is well-established, simpler model organisms are necessary to understand the principles behind life-like behavior. Here, we report the successful creation of a CFE system derived from JCVI-syn3A (Syn3A), the minimal synthetic bacterium. Previously, high ribonuclease activity in Syn3A lysates impeded the establishment of functional CFE systems. Now, we describe how an unusual cell lysis method (nitrogen decompression) yielded Syn3A lysates with reduced ribonuclease activity that supported in vitro expression. To improve the protein yields in the Syn3A CFE system, we optimized the Syn3A CFE reaction mixture using an active machine learning tool. The optimized reaction mixture improved the CFE 3.2-fold compared to the preoptimized condition. This is the first report of a functional CFE system derived from a minimal synthetic bacterium, enabling further advances in bottom-up synthetic biology.
Collapse
Affiliation(s)
- Andrei Sakai
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Aafke J. Jonker
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Frank H. T. Nelissen
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Evan M. Kalb
- Department
of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bob van Sluijs
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Hans A. Heus
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Katarzyna P. Adamala
- Department
of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John I. Glass
- Synthetic
Biology & Bioenergy, J. Craig Venter
Institute, La Jolla, California 92037, United States
| | - Wilhelm T. S. Huck
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| |
Collapse
|
24
|
Wagner L, Jules M, Borkowski O. What remains from living cells in bacterial lysate-based cell-free systems. Comput Struct Biotechnol J 2023; 21:3173-3182. [PMID: 37333859 PMCID: PMC10275740 DOI: 10.1016/j.csbj.2023.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Because they mimic cells while offering an accessible and controllable environment, lysate-based cell-free systems (CFS) have emerged as valuable biotechnology tools for synthetic biology. Historically used to uncover fundamental mechanisms of life, CFS are nowadays used for a multitude of purposes, including protein production and prototyping of synthetic circuits. Despite the conservation of fundamental functions in CFS like transcription and translation, RNAs and certain membrane-embedded or membrane-bound proteins of the host cell are lost when preparing the lysate. As a result, CFS largely lack some essential properties of living cells, such as the ability to adapt to changing conditions, to maintain homeostasis and spatial organization. Regardless of the application, shedding light on the black-box of the bacterial lysate is necessary to fully exploit the potential of CFS. Most measurements of the activity of synthetic circuits in CFS and in vivo show significant correlations because these only require processes that are preserved in CFS, like transcription and translation. However, prototyping circuits of higher complexity that require functions that are lost in CFS (cell adaptation, homeostasis, spatial organization) will not show such a good correlation with in vivo conditions. Both for prototyping circuits of higher complexity and for building artificial cells, the cell-free community has developed devices to reconstruct cellular functions. This mini-review compares bacterial CFS to living cells, focusing on functional and cellular process differences and the latest developments in restoring lost functions through complementation of the lysate or device engineering.
Collapse
|
25
|
Yue K, Chen J, Li Y, Kai L. Advancing synthetic biology through cell-free protein synthesis. Comput Struct Biotechnol J 2023; 21:2899-2908. [PMID: 37216017 PMCID: PMC10196276 DOI: 10.1016/j.csbj.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
The rapid development of synthetic biology has enabled the production of compounds with revolutionary improvements in biotechnology. DNA manipulation tools have expedited the engineering of cellular systems for this purpose. Nonetheless, the inherent constraints of cellular systems persist, imposing an upper limit on mass and energy conversion efficiencies. Cell-free protein synthesis (CFPS) has demonstrated its potential to overcome these inherent constraints and has been instrumental in the further advancement of synthetic biology. Via the removal of the cell membranes and redundant parts of cells, CFPS has provided flexibility in directly dissecting and manipulating the Central Dogma with rapid feedback. This mini-review summarizes recent achievements of the CFPS technique and its application to a wide range of synthetic biology projects, such as minimal cell assembly, metabolic engineering, and recombinant protein production for therapeutics, as well as biosensor development for in vitro diagnostics. In addition, current challenges and future perspectives in developing a generalized cell-free synthetic biology are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Junyu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| |
Collapse
|
26
|
Kelwick RJR, Webb AJ, Heliot A, Segura CT, Freemont PS. Opportunities to accelerate extracellular vesicle research with cell-free synthetic biology. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e90. [PMID: 38938277 PMCID: PMC11080881 DOI: 10.1002/jex2.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/03/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are lipid-membrane nanoparticles that are shed or secreted by many different cell types. The EV research community has rapidly expanded in recent years and is leading efforts to deepen our understanding of EV biological functions in human physiology and pathology. These insights are also providing a foundation on which future EV-based diagnostics and therapeutics are poised to positively impact human health. However, current limitations in our understanding of EV heterogeneity, cargo loading mechanisms and the nascent development of EV metrology are all areas that have been identified as important scientific challenges. The field of synthetic biology is also contending with the challenge of understanding biological complexity as it seeks to combine multidisciplinary scientific knowledge with engineering principles, to build useful and robust biotechnologies in a responsible manner. Within this context, cell-free systems have emerged as a powerful suite of in vitro biotechnologies that can be employed to interrogate fundamental biological mechanisms, including the study of aspects of EV biogenesis, or to act as a platform technology for medical biosensors and therapeutic biomanufacturing. Cell-free gene expression (CFE) systems also enable in vitro protein production, including membrane proteins, and could conceivably be exploited to rationally engineer, or manufacture, EVs loaded with bespoke molecular cargoes for use in foundational or translational EV research. Our pilot data herein, also demonstrates the feasibility of cell-free EV engineering. In this perspective, we discuss the opportunities and challenges for accelerating EV research and healthcare applications with cell-free synthetic biology.
Collapse
Affiliation(s)
- Richard J. R. Kelwick
- Section of Structural and Synthetic BiologyDepartment of Infectious DiseaseImperial College LondonLondonUK
| | - Alexander J. Webb
- Section of Structural and Synthetic BiologyDepartment of Infectious DiseaseImperial College LondonLondonUK
| | - Amelie Heliot
- Section of Structural and Synthetic BiologyDepartment of Infectious DiseaseImperial College LondonLondonUK
| | | | - Paul S. Freemont
- Section of Structural and Synthetic BiologyDepartment of Infectious DiseaseImperial College LondonLondonUK
- The London BiofoundryImperial College Translation & Innovation HubLondonUK
- UK Dementia Research Institute Care Research and Technology CentreImperial College London, Hammersmith CampusLondonUK
| |
Collapse
|
27
|
Vezeau GE, Gadila LR, Salis HM. Automated design of protein-binding riboswitches for sensing human biomarkers in a cell-free expression system. Nat Commun 2023; 14:2416. [PMID: 37105971 PMCID: PMC10140043 DOI: 10.1038/s41467-023-38098-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cell-free genetically encoded biosensors have been developed to detect small molecules and nucleic acids, but they have yet to be reliably engineered to detect proteins. Here we develop an automated platform to convert protein-binding RNA aptamers into riboswitch sensors that operate within low-cost cell-free assays. We demonstrate the platform by engineering 35 protein-sensing riboswitches for human monomeric C-reactive protein, human interleukin-32γ, and phage MS2 coat protein. The riboswitch sensors regulate output expression levels by up to 16-fold with input protein concentrations within the human serum range. We identify two distinct mechanisms governing riboswitch-mediated regulation of translation rates and leverage computational analysis to refine the protein-binding aptamer regions, improving design accuracy. Overall, we expand the cell-free sensor toolbox and demonstrate how computational design is used to develop protein-sensing riboswitches with future applications as low-cost medical diagnostics.
Collapse
Affiliation(s)
- Grace E Vezeau
- Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lipika R Gadila
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Howard M Salis
- Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
- Huck Institute Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
28
|
Bailoni E, Partipilo M, Coenradij J, Grundel DAJ, Slotboom DJ, Poolman B. Minimal Out-of-Equilibrium Metabolism for Synthetic Cells: A Membrane Perspective. ACS Synth Biol 2023; 12:922-946. [PMID: 37027340 PMCID: PMC10127287 DOI: 10.1021/acssynbio.3c00062] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 04/08/2023]
Abstract
Life-like systems need to maintain a basal metabolism, which includes importing a variety of building blocks required for macromolecule synthesis, exporting dead-end products, and recycling cofactors and metabolic intermediates, while maintaining steady internal physical and chemical conditions (physicochemical homeostasis). A compartment, such as a unilamellar vesicle, functionalized with membrane-embedded transport proteins and metabolic enzymes encapsulated in the lumen meets these requirements. Here, we identify four modules designed for a minimal metabolism in a synthetic cell with a lipid bilayer boundary: energy provision and conversion, physicochemical homeostasis, metabolite transport, and membrane expansion. We review design strategies that can be used to fulfill these functions with a focus on the lipid and membrane protein composition of a cell. We compare our bottom-up design with the equivalent essential modules of JCVI-syn3a, a top-down genome-minimized living cell with a size comparable to that of large unilamellar vesicles. Finally, we discuss the bottlenecks related to the insertion of a complex mixture of membrane proteins into lipid bilayers and provide a semiquantitative estimate of the relative surface area and lipid-to-protein mass ratios (i.e., the minimal number of membrane proteins) that are required for the construction of a synthetic cell.
Collapse
Affiliation(s)
- Eleonora Bailoni
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Michele Partipilo
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Jelmer Coenradij
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Douwe A. J. Grundel
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Dirk J. Slotboom
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Bert Poolman
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
29
|
Deich C, Gaut NJ, Sato W, Engelhart AE, Adamala KP. New Aequorea Fluorescent Proteins for Cell-Free Bioengineering. ACS Synth Biol 2023; 12:1371-1376. [PMID: 37018763 DOI: 10.1021/acssynbio.3c00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Recently, a new subset of fluorescent proteins has been identified from the Aequorea species of jellyfish. These fluorescent proteins were characterized in vivo; however, there has not been validation of these proteins within cell-free systems. Cell-free systems and technology development is a rapidly expanding field, encompassing foundational research, synthetic cells, bioengineering, biomanufacturing, and drug development. Cell-free systems rely heavily on fluorescent proteins as reporters. Here we characterize and validate this new set of Aequorea proteins for use in a variety of cell-free and synthetic cell expression platforms.
Collapse
Affiliation(s)
- Christopher Deich
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nathaniel J Gaut
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wakana Sato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Aaron E Engelhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
30
|
Ho G, Kubušová V, Irabien C, Li V, Weinstein A, Chawla S, Yeung D, Mershin A, Zolotovsky K, Mogas-Soldevila L. Multiscale design of cell-free biologically active architectural structures. Front Bioeng Biotechnol 2023; 11:1125156. [PMID: 37064226 PMCID: PMC10100494 DOI: 10.3389/fbioe.2023.1125156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
Cell-free protein expression systems are here combined with 3D-printed structures to study the challenges and opportunities as biofabrication enters the spaces of architecture and design. Harnessing large-scale additive manufacturing of biological materials, we examined the addition of cell-free protein expression systems ("TXTL" i.e., biological transcription-translation machinery without the use of living cells) to printed structures. This allowed us to consider programmable, living-like, responsive systems for product design and indoor architectural applications. This emergent, pluripotent technology offers exciting potential in support of health, resource optimization, and reduction of energy use in the built environment, setting a new path to interactivity with mechanical, optical, and (bio) chemical properties throughout structures. We propose a roadmap towards creating healthier, functional and more durable systems by deploying a multiscale platform containing biologically-active components encapsulated within biopolymer lattices operating at three design scales: (i) supporting cell-free protein expression in a biopolymer matrix (microscale), (ii) varying material properties of porosity and strength within two-dimensional lattices to support biological and structural functions (mesoscale), and (iii) obtaining folded indoor surfaces that are structurally sound at the meter scale and biologically active (we label that regime macroscale). We embedded commercially available cell-free protein expression systems within silk fibroin and sodium alginate biopolymer matrices and used green fluorescent protein as the reporter to confirm their compatibility. We demonstrate mechanical attachment of freeze-dried bioactive pellets into printed foldable fibrous biopolymer lattices showing the first steps towards modular multiscale fabrication of large structures with biologically active zones. Our results discuss challenges to experimental setup affecting expression levels and show the potential of robust cell-free protein-expressing biosites within custom-printed structures at scales relevant to everyday consumer products and human habitats.
Collapse
Affiliation(s)
- G. Ho
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - V. Kubušová
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
- Department of Architecture and Design, Slovak University of Technology, Bratislava, Slovakia
| | - C. Irabien
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
| | - V. Li
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
| | - A. Weinstein
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
| | - Sh. Chawla
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
| | - D. Yeung
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
| | - A. Mershin
- Label Free Research Group, Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - K. Zolotovsky
- Spatial Dynamics Program, Division of Experimental and Foundational Studies, Rhode Island School of Design, Providence, RI, United States
| | - L. Mogas-Soldevila
- Department of Graduate Architecture, DumoLab Research, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
31
|
Cash B, Gaut NJ, Deich C, Johnson LL, Engelhart AE, Adamala KP. Parasites, Infections, and Inoculation in Synthetic Minimal Cells. ACS OMEGA 2023; 8:7045-7056. [PMID: 36844541 PMCID: PMC9948217 DOI: 10.1021/acsomega.2c07911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Synthetic minimal cells provide a controllable and engineerable model for biological processes. While much simpler than any live natural cell, synthetic cells offer a chassis for investigating the chemical foundations of key biological processes. Herein, we show a synthetic cell system with host cells, interacting with parasites and undergoing infections of varying severity. We demonstrate how the host can be engineered to resist infection, we investigate the metabolic cost of carrying resistance, and we show an inoculation that immunizes the host against pathogens. Our work expands the synthetic cell engineering toolbox by demonstrating host-pathogen interactions and mechanisms for acquiring immunity. This brings synthetic cell systems one step closer to providing a comprehensive model of complex, natural life.
Collapse
|
32
|
Pandey A, Rodriguez ML, Poole W, Murray RM. Characterization of Integrase and Excisionase Activity in a Cell-Free Protein Expression System Using a Modeling and Analysis Pipeline. ACS Synth Biol 2023; 12:511-523. [PMID: 36715625 DOI: 10.1021/acssynbio.2c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We present a full-stack modeling, analysis, and parameter identification pipeline to guide the modeling and design of biological systems starting from specifications to circuit implementations and parametrizations. We demonstrate this pipeline by characterizing the integrase and excisionase activity in a cell-free protein expression system. We build on existing Python tools─BioCRNpyler, AutoReduce, and Bioscrape─to create this pipeline. For enzyme-mediated DNA recombination in a cell-free system, we create detailed chemical reaction network models from simple high-level descriptions of the biological circuits and their context using BioCRNpyler. We use Bioscrape to show that the output of the detailed model is sensitive to many parameters. However, parameter identification is infeasible for this high-dimensional model; hence, we use AutoReduce to automatically obtain reduced models that have fewer parameters. This results in a hierarchy of reduced models under different assumptions to finally arrive at a minimal ODE model for each circuit. Then, we run sensitivity analysis-guided Bayesian inference using Bioscrape for each circuit to identify the model parameters. This process allows us to quantify integrase and excisionase activity in cell extracts enabling complex-circuit designs that depend on accurate control over protein expression levels through DNA recombination. The automated pipeline presented in this paper opens up a new approach to complex circuit design, modeling, reduction, and parametrization.
Collapse
Affiliation(s)
- Ayush Pandey
- Control and Dynamical Systems, California Institute of Technology, Pasadena, California91125, United States
| | - Makena L Rodriguez
- Biology and Biological Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - William Poole
- Altos Laboratories, Redwood City, California94065, United States
| | - Richard M Murray
- Control and Dynamical Systems, California Institute of Technology, Pasadena, California91125, United States.,Biology and Biological Engineering, California Institute of Technology, Pasadena, California91125, United States
| |
Collapse
|
33
|
Deich C, Cash B, Sato W, Sharon J, Aufdembrink L, Gaut NJ, Heili J, Stokes K, Engelhart AE, Adamala KP. T7Max transcription system. J Biol Eng 2023; 17:4. [PMID: 36691081 PMCID: PMC9872363 DOI: 10.1186/s13036-023-00323-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Efficient cell-free protein expression from linear DNA templates has remained a challenge primarily due to template degradation. In addition, the yields of transcription in cell-free systems lag behind transcriptional efficiency of live cells. Most commonly used in vitro translation systems utilize T7 RNA polymerase, which is also the enzyme included in many commercial kits. RESULTS Here we present characterization of a variant of T7 RNA polymerase promoter that acts to significantly increase the yields of gene expression within in vitro systems. We have demonstrated that T7Max increases the yield of translation in many types of commonly used in vitro protein expression systems. We also demonstrated increased protein expression yields from linear templates, allowing the use of T7Max driven expression from linear templates. CONCLUSIONS The modified promoter, termed T7Max, recruits standard T7 RNA polymerase, so no protein engineering is needed to take advantage of this method. This technique could be used with any T7 RNA polymerase- based in vitro protein expression system.
Collapse
Affiliation(s)
- Christopher Deich
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Brock Cash
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Wakana Sato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Judee Sharon
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Lauren Aufdembrink
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Nathaniel J Gaut
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Joseph Heili
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Kaitlin Stokes
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Aaron E Engelhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
34
|
Piorino F, Styczynski MP. Harnessing Escherichia coli's Native Machinery for Detection of Vitamin C (Ascorbate) Deficiency. ACS Synth Biol 2022; 11:3592-3600. [PMID: 36300901 PMCID: PMC9807260 DOI: 10.1021/acssynbio.2c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vitamin C (l-ascorbate) deficiency is a global public health issue most prevalent in resource-limited regions, creating a need for an inexpensive detection platform. Here, we describe efforts to engineer whole-cell and cell-free ascorbate biosensors. Both sensors used the protein UlaR, which binds to a metabolite of ascorbate and regulates transcription. The whole-cell sensor could detect lower, physiologically relevant concentrations of ascorbate, which we attributed to intact functionality of a phosphotransferase system (PTS) that transports ascorbate across the cell membrane and phosphorylates it to form UlaR's ligand. We used multiple strategies to enhance cell-free PTS functionality (which has received little previous attention), improving the cell-free sensor's performance, but the whole-cell sensor remained more sensitive. These efforts demonstrated an advantage of whole-cell sensors for detection of molecules─like ascorbate─transformed by a PTS, but also proof of principle for cell-free sensors requiring membrane-bound components like the PTS. In addition, the cell-free sensor was functional in plasma, setting the stage for future implementation of ascorbate sensors for clinically relevant biofluids in field-deployable formats.
Collapse
Affiliation(s)
- Fernanda Piorino
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Mark P. Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
35
|
Jäkel AC, Aufinger L, Simmel FC. Steady-State Operation of a Cell-Free Genetic Band-Detection Circuit. ACS Synth Biol 2022; 11:3273-3284. [PMID: 36095299 DOI: 10.1021/acssynbio.2c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pattern formation processes play a decisive role during embryogenesis and involve the precise spatial and temporal orchestration of intricate gene regulatory processes. Synthetic gene circuits modeled after their biological counterparts can be used to investigate such processes under well-controlled conditions and may, in the future, be utilized for autonomous position determination in synthetic biological materials. Here, we investigated a three-node feed-forward gene regulatory circuit in vitro that generates three distinct fluorescent outputs in response to varying concentrations of a single externally supplied morphogen. The circuit acts as a band detector for the morphogen concentration and, in a spatial context, could serve as a stripe-forming gene circuit. We simulated the behavior of the genetic circuit in the presence of a morphogen gradient using a system of ordinary differential equations and determined optimal parameters for stripe-pattern formation using an evolutionary algorithm. To analyze the subcircuits of the system, we conducted cell-free characterization experiments and finally tested the whole genetic circuit in nanoliter-scale microfluidic flow reactors that provided a continuous supply of cell extract and metabolites and allowed removal of degradation products. To make use of the widely employed promoters PLlacO-1 and PLtetO-1 in our design, we removed LacI from our bacterial cell extract by genome engineering Escherichia coli using a pORTMAGE workflow. Our results show that the band-detector works as designed when operated out of equilibrium within the flow reactors. On the other hand, subcircuits of the system and the whole circuit fail to generate the desired gene expression response when operated in a closed reactor. Our work thus underlines the importance of out-of-equilibrium operation of complex gene circuits, which cannot settle to a steady-state expression pattern within the finite lifetime of a cell-free expression system.
Collapse
Affiliation(s)
- Anna C Jäkel
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Garching D-85748, Germany
| | - Lukas Aufinger
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Garching D-85748, Germany
| | - Friedrich C Simmel
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Garching D-85748, Germany
| |
Collapse
|
36
|
Liyanagedera SBW, Williams J, Wheatley JP, Biketova AY, Hasan M, Sagona AP, Purdy KJ, Puxty RJ, Feher T, Kulkarni V. SpyPhage: A Cell-Free TXTL Platform for Rapid Engineering of Targeted Phage Therapies. ACS Synth Biol 2022; 11:3330-3342. [PMID: 36194543 DOI: 10.1021/acssynbio.2c00244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The past decade has seen the emergence of multidrug resistant pathogens as a leading cause of death worldwide, reigniting interest in the field of phage therapy. Modern advances in the genetic engineering of bacteriophages have enabled several useful results including host range alterations, constitutive lytic growth, and control over phage replication. However, the slow licensing process of genetically modified organisms clearly inhibits the rapid therapeutic application of novel engineered variants necessary to fight mutant pathogens that emerge throughout the course of a pandemic. As a solution to this problem, we propose the SpyPhage system where a "scaffold" bacteriophage is engineered to incorporate a SpyTag moiety on its capsid head to enable rapid postsynthetic modification of their surfaces with SpyCatcher-fused therapeutic proteins. As a proof of concept, through CRISPR/Cas-facilitated phage engineering and whole genome assembly, we targeted a SpyTag capsid fusion to K1F, a phage targeting the pathogenic strain Escherichia coli K1. We demonstrate for the first time the cell-free assembly and decoration of the phage surface with two alternative fusion proteins, SpyCatcher-mCherry-EGF and SpyCatcher-mCherry-Rck, both of which facilitate the endocytotic uptake of the phages by a urinary bladder epithelial cell line. Overall, our work presents a cell-free phage production pipeline for the generation of multiple phenotypically distinct phages with a single underlying "scaffold" genotype. These phages could become the basis of next-generation phage therapies where the knowledge-based engineering of numerous phage variants would be quickly achievable without the use of live bacteria or the need to repeatedly license novel genetic alterations.
Collapse
Affiliation(s)
| | - Joshua Williams
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Joseph P Wheatley
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alona Yu Biketova
- Institute of Biochemistry, Eötvös Lóránd Research Network, Szeged Biological Research Centre, Szeged 6726, Hungary.,Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3AE, United Kingdom
| | - Muhammad Hasan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Antonia P Sagona
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Kevin J Purdy
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Richard J Puxty
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Tamas Feher
- Institute of Biochemistry, Eötvös Lóránd Research Network, Szeged Biological Research Centre, Szeged 6726, Hungary
| | | |
Collapse
|
37
|
Nagappa LK, Sato W, Alam F, Chengan K, Smales CM, Von Der Haar T, Polizzi KM, Adamala KP, Moore SJ. A ubiquitous amino acid source for prokaryotic and eukaryotic cell-free transcription-translation systems. Front Bioeng Biotechnol 2022; 10:992708. [PMID: 36185432 PMCID: PMC9524191 DOI: 10.3389/fbioe.2022.992708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
Cell-free gene expression (CFE) systems are an attractive tool for engineering within synthetic biology and for industrial production of high-value recombinant proteins. CFE reactions require a cell extract, energy system, amino acids, and DNA, to catalyse mRNA transcription and protein synthesis. To provide an amino acid source, CFE systems typically use a commercial standard, which is often proprietary. Herein we show that a range of common microbiology rich media (i.e., tryptone, peptone, yeast extract and casamino acids) unexpectedly provide an effective and low-cost amino acid source. We show that this approach is generalisable, by comparing batch variability and protein production in the following range of CFE systems: Escherichia coli (Rosetta™ 2 (DE3), BL21(DE3)), Streptomyces venezuelae and Pichia pastoris. In all CFE systems, we show equivalent or increased protein synthesis capacity upon replacement of the commercial amino acid source. In conclusion, we suggest rich microbiology media provides a new amino acid source for CFE systems with potential broad use in synthetic biology and industrial biotechnology applications.
Collapse
Affiliation(s)
| | - Wakana Sato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Farzana Alam
- Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | | | | | | | - Karen M Polizzi
- Centre for Synthetic Biology, Imperial College London, London, United Kingdom
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Simon J Moore
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
38
|
Ranji Charna A, Des Soye BJ, Ntai I, Kelleher NL, Jewett MC. An efficient cell-free protein synthesis platform for producing proteins with pyrrolysine-based noncanonical amino acids. Biotechnol J 2022; 17:e2200096. [PMID: 35569121 PMCID: PMC9452482 DOI: 10.1002/biot.202200096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/08/2022]
Abstract
Incorporation of noncanonical amino acids (ncAAs) into proteins opens new opportunities in biotechnology and synthetic biology. Pyrrolysine (Pyl)-based ncAAs are some of the most predominantly used, but expression systems suffer from low yields. Here, we report a highly efficient cell-free protein synthesis (CFPS) platform for site-specific incorporation of Pyl-based ncAAs into proteins using amber suppression. This platform is based on cellular extracts derived from genomically recoded Escherichia coli lacking release factor 1 and enhanced through deletion of endonuclease A. To enable ncAA incorporation, orthogonal translation system (OTS) components (i.e., the orthogonal transfer RNA [tRNA] and orthogonal aminoacyl tRNA synthetase) were coexpressed in the source strain prior to lysis and the orthogonal tRNACUA Pyl that decodes the amber codon was further enriched in the CFPS reaction via co-synthesis with the product. Using this platform, we demonstrate production of up to 442 ± 23 µg/mL modified superfolder green fluorescent protein (sfGFP) containing a single Pyl-based ncAA at high (>95%) suppression efficiency, as well as sfGFP variants harboring multiple, identical ncAAs. Our CFPS platform can be used for the synthesis of modified proteins containing multiple precisely positioned, genetically encoded Pyl-based ncAAs. We anticipate that it will facilitate more general use of CFPS in synthetic biology.
Collapse
Affiliation(s)
- Arnaz Ranji Charna
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Benjamin J Des Soye
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Ioanni Ntai
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Neil L Kelleher
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
39
|
Rhea KA, McDonald ND, Cole SD, Noireaux V, Lux MW, Buckley PE. Variability in cell-free expression reactions can impact qualitative genetic circuit characterization. Synth Biol (Oxf) 2022; 7:ysac011. [PMID: 35966404 PMCID: PMC9365049 DOI: 10.1093/synbio/ysac011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/24/2022] [Accepted: 08/01/2022] [Indexed: 09/21/2023] Open
Abstract
Cell-free expression systems provide a suite of tools that are used in applications from sensing to biomanufacturing. One of these applications is genetic circuit prototyping, where the lack of cloning is required and a high degree of control over reaction components and conditions enables rapid testing of design candidates. Many studies have shown utility in the approach for characterizing genetic regulation elements, simple genetic circuit motifs, protein variants or metabolic pathways. However, variability in cell-free expression systems is a known challenge, whether between individuals, laboratories, instruments, or batches of materials. While the issue of variability has begun to be quantified and explored, little effort has been put into understanding the implications of this variability. For genetic circuit prototyping, it is unclear when and how significantly variability in reaction activity will impact qualitative assessments of genetic components, e.g. relative activity between promoters. Here, we explore this question by assessing DNA titrations of seven genetic circuits of increasing complexity using reaction conditions that ostensibly follow the same protocol but vary by person, instrument and material batch. Although the raw activities vary widely between the conditions, by normalizing within each circuit across conditions, reasonably consistent qualitative performance emerges for the simpler circuits. For the most complex case involving expression of three proteins, we observe a departure from this qualitative consistency, offering a provisional cautionary line where normal variability may disrupt reliable reuse of prototyping results. Our results also suggest that a previously described closed loop controller circuit may help to mitigate such variability, encouraging further work to design systems that are robust to variability. Graphical Abstract.
Collapse
Affiliation(s)
- Katherine A Rhea
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, USA
| | - Nathan D McDonald
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, USA
| | - Stephanie D Cole
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, USA
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Matthew W Lux
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, USA
| | - Patricia E Buckley
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, USA
| |
Collapse
|
40
|
Soudier P, Zúñiga A, Duigou T, Voyvodic PL, Bazi-Kabbaj K, Kushwaha M, Vendrell JA, Solassol J, Bonnet J, Faulon JL. PeroxiHUB: A Modular Cell-Free Biosensing Platform Using H 2O 2 as Signal Integrator. ACS Synth Biol 2022; 11:2578-2588. [PMID: 35913043 DOI: 10.1021/acssynbio.2c00138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell-free systems have great potential for delivering robust, inexpensive, and field-deployable biosensors. Many cell-free biosensors rely on transcription factors responding to small molecules, but their discovery and implementation still remain challenging. Here we report the engineering of PeroxiHUB, an optimized H2O2-centered sensing platform supporting cell-free detection of different metabolites. H2O2 is a central metabolite and a byproduct of numerous enzymatic reactions. PeroxiHUB uses enzymatic transducers to convert metabolites of interest into H2O2, enabling rapid reprogramming of sensor specificity using alternative transducers. We first screen several transcription factors and optimize OxyR for the transcriptional response to H2O2 in a cell-free system, highlighting the need for preincubation steps to obtain suitable signal-to-noise ratios. We then demonstrate modular detection of metabolites of clinical interest─lactate, sarcosine, and choline─using different transducers mined via a custom retrosynthesis workflow publicly available on the SynBioCAD Galaxy portal. We find that expressing the transducer during the preincubation step is crucial for optimal sensor operation. We then show that different reporters can be connected to PeroxiHUB, providing high adaptability for various applications. Finally, we demonstrate that a peroxiHUB lactate biosensor can detect endogenous levels of this metabolite in clinical samples. Given the wide range of enzymatic reactions producing H2O2, the PeroxiHUB platform will support cell-free detection of a large number of metabolites in a modular and scalable fashion.
Collapse
Affiliation(s)
- Paul Soudier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France.,Université de Montpellier, INSERM, CNRS, Centre de Biologie Structurale, 34090 Montpellier, France
| | - Ana Zúñiga
- Université de Montpellier, INSERM, CNRS, Centre de Biologie Structurale, 34090 Montpellier, France
| | - Thomas Duigou
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France
| | - Peter L Voyvodic
- Université de Montpellier, INSERM, CNRS, Centre de Biologie Structurale, 34090 Montpellier, France
| | - Kenza Bazi-Kabbaj
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France
| | - Manish Kushwaha
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France
| | - Julie A Vendrell
- Laboratoire de Biologie des Tumeurs Solides, Département de Pathologie et Oncobiologie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
| | - Jerome Solassol
- Laboratoire de Biologie des Tumeurs Solides, Département de Pathologie et Oncobiologie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France.,IRCM, INSERM, Univ Montpellier, ICM, 34298 Montpellier, France
| | - Jerome Bonnet
- Université de Montpellier, INSERM, CNRS, Centre de Biologie Structurale, 34090 Montpellier, France
| | - Jean-Loup Faulon
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France
| |
Collapse
|
41
|
Expanding luciferase reporter systems for cell-free protein expression. Sci Rep 2022; 12:11489. [PMID: 35798760 PMCID: PMC9263134 DOI: 10.1038/s41598-022-15624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
Luciferases are often used as a sensitive, versatile reporter in cell-free transcription-translation (TXTL) systems, for research and practical applications such as engineering genetic parts, validating genetic circuits, and biosensor outputs. Currently, only two luciferases (Firefly and Renilla) are commonly used without substrate cross-talk. Here we demonstrate the expansion of the cell-free luciferase reporter system, with two orthogonal luciferase reporters: N. nambi luciferase (Luz) and LuxAB. These luciferases do not have cross-reactivity with the Firefly and Renilla substrates. We also demonstrate a substrate regeneration pathway for one of the new luciferases, enabling long-term time courses of protein expression monitoring in the cell-free system. Furthermore, we reduced the number of genes required in TXTL expression, by engineering a cell extract containing part of the luciferase enzymes. Our findings lead to an expanded platform with multiple orthogonal luminescence translation readouts for in vitro protein expression.
Collapse
|
42
|
A microfluidic optimal experimental design platform for forward design of cell-free genetic networks. Nat Commun 2022; 13:3626. [PMID: 35750678 PMCID: PMC9232554 DOI: 10.1038/s41467-022-31306-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/14/2022] [Indexed: 12/20/2022] Open
Abstract
Cell-free protein synthesis has been widely used as a “breadboard” for design of synthetic genetic networks. However, due to a severe lack of modularity, forward engineering of genetic networks remains challenging. Here, we demonstrate how a combination of optimal experimental design and microfluidics allows us to devise dynamic cell-free gene expression experiments providing maximum information content for subsequent non-linear model identification. Importantly, we reveal that applying this methodology to a library of genetic circuits, that share common elements, further increases the information content of the data resulting in higher accuracy of model parameters. To show modularity of model parameters, we design a pulse decoder and bistable switch, and predict their behaviour both qualitatively and quantitatively. Finally, we update the parameter database and indicate that network topology affects parameter estimation accuracy. Utilizing our methodology provides us with more accurate model parameters, a necessity for forward engineering of complex genetic networks. Characterization of cell-free genetic networks is inherently difficult. Here the authors use optimal experimental design and microfluidics to improve characterization, demonstrating modularity and predictability of parts in applied test cases.
Collapse
|
43
|
Soudier P, Rodriguez Pinzon D, Reif-Trauttmansdorff T, Hijazi H, Cherrière M, Goncalves Pereira C, Blaise D, Pispisa M, Saint-Julien A, Hamlet W, Nguevo M, Gomes E, Belkhelfa S, Niarakis A, Kushwaha M, Grigoras I. Toehold switch based biosensors for sensing the highly trafficked rosewood Dalbergia maritima. Synth Syst Biotechnol 2022; 7:791-801. [PMID: 35415278 PMCID: PMC8976095 DOI: 10.1016/j.synbio.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 01/05/2023] Open
Abstract
Nucleic acid sensing is a 3 decades old but still challenging area of application for different biological sub-domains, from pathogen detection to single cell transcriptomics analysis. The many applications of nucleic acid detection and identification are mostly carried out by PCR techniques, sequencing, and their derivatives used at large scale. However, these methods’ limitations on speed, cost, complexity and specificity have motivated the development of innovative detection methods among which nucleic acid biosensing technologies seem promising. Toehold switches are a particular class of RNA sensing devices relying on a conformational switch of secondary structure induced by the pairing of the detected trigger RNA with a de novo designed synthetic sensing mRNA molecule. Here we describe a streamlined methodology enabling the development of such a sensor for the RNA-mediated detection of an endangered plant species in a cell-free reaction system. We applied this methodology to help identify the rosewood Dalbergia maritima, a highly trafficked wood, whose protection is limited by the capacity of the authorities to distinguish protected logs from other unprotected but related species. The streamlined pipeline presented in this work is a versatile framework enabling cheap and rapid development of new sensors for custom RNA detection.
Collapse
|
44
|
Sakai A, Deich CR, Nelissen FHT, Jonker AJ, Bittencourt DMDC, Kempes CP, Wise KS, Heus HA, Huck WTS, Adamala KP, Glass JI. Traditional Protocols and Optimization Methods Lead to Absent Expression in a Mycoplasma Cell-Free Gene Expression Platform. Synth Biol (Oxf) 2022; 7:ysac008. [PMID: 35774105 PMCID: PMC9239315 DOI: 10.1093/synbio/ysac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
Cell-free expression (CFE) systems are one of the main platforms for building synthetic cells. A major drawback is the orthogonality of cell-free systems across species. To generate a CFE system compatible with recently established minimal cell constructs, we attempted to optimize a Mycoplasma bacterium-based CFE system using lysates of the genome-minimized cell JCVI-syn3A (Syn3A) and its close phylogenetic relative Mycoplasma capricolum (Mcap). To produce mycoplasma-derived crude lysates, we systematically tested methods commonly used for bacteria, based on the S30 protocol of Escherichia coli. Unexpectedly, after numerous attempts to optimize lysate production methods or composition of feeding buffer, none of the Mcap or Syn3A lysates supported cell-free gene expression. Only modest levels of in vitro transcription of RNA aptamers were observed. While our experimental systems were intended to perform transcription and translation, our assays focused on RNA. Further investigations identified persistently high ribonuclease (RNase) activity in all lysates, despite removal of recognizable nucleases from the respective genomes and attempts to inhibit nuclease activities in assorted CFE preparations. An alternative method using digitonin to permeabilize the mycoplasma cell membrane produced a lysate with diminished RNase activity yet still was unable to support cell-free gene expression. We found that intact mycoplasma cells poisoned E. coli cell-free extracts by degrading ribosomal RNAs, indicating that the mycoplasma cells, even the minimal cell, have a surface-associated RNase activity. However, it is not clear which gene encodes the RNase. This work summarizes attempts to produce mycoplasma-based CFE and serves as a cautionary tale for researchers entering this field.
Graphical Abstract
Collapse
Affiliation(s)
- Andrei Sakai
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Christopher R Deich
- Department of Genetics, Cell Biology and Development, University of Minnesota, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Frank H T Nelissen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Aafke J Jonker
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Daniela M de C Bittencourt
- The J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA
- Embrapa Genetic Resources and Biotechnology/National Institute of Science and Technology - Synthetic Biology, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Brasília, DF, 70770-917, Brazil, Norte (final), Brasília, DF, 70770-917, Brazil
| | | | - Kim S Wise
- The J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA
| | - Hans A Heus
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - John I Glass
- The J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA
| |
Collapse
|
45
|
Yang J, Wang C, Lu Y. A Temperature-Controlled Cell-Free Expression System by Dynamic Repressor. ACS Synth Biol 2022; 11:1408-1416. [PMID: 35319196 DOI: 10.1021/acssynbio.1c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cell-free protein synthesis (CFPS) system is a typical protein production platform in the field of synthetic biology. However, there are limitations in controlling protein synthesis in the CFPS system. Compared with the traditional method of adding chemicals, temperature is an ideal control switch to achieve precise spatiotemporal control with few side effects. Hence, the design of a temperature-controlled cell-free protein synthesis (tcCFPS) system based on E. coli was carried out with the repressor cI protein in this study. The corresponding tcCFPS achieved a 143-fold dynamic protein expression level at 37 °C than that at 30 °C. Besides, the artificial cell controlled by temperature was constructed to expand the applications of tcCFPS. This study provides a new effective method for active protein synthesis in a cell-free system and a potential means of drug synthesis and delivery.
Collapse
Affiliation(s)
- Junzhu Yang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Chen Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
van der Linden AJ, Pieters PA, Bartelds MW, Nathalia BL, Yin P, Huck WTS, Kim J, de Greef TFA. DNA Input Classification by a Riboregulator-Based Cell-Free Perceptron. ACS Synth Biol 2022; 11:1510-1520. [PMID: 35381174 PMCID: PMC9016768 DOI: 10.1021/acssynbio.1c00596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability to recognize molecular patterns is essential for the continued survival of biological organisms, allowing them to sense and respond to their immediate environment. The design of synthetic gene-based classifiers has been explored previously; however, prior strategies have focused primarily on DNA strand-displacement reactions. Here, we present a synthetic in vitro transcription and translation (TXTL)-based perceptron consisting of a weighted sum operation (WSO) coupled to a downstream thresholding function. We demonstrate the application of toehold switch riboregulators to construct a TXTL-based WSO circuit that converts DNA inputs into a GFP output, the concentration of which correlates to the input pattern and the corresponding weights. We exploit the modular nature of the WSO circuit by changing the output protein to the Escherichia coli σ28-factor, facilitating the coupling of the WSO output to a downstream reporter network. The subsequent introduction of a σ28 inhibitor enabled thresholding of the WSO output such that the expression of the downstream reporter protein occurs only when the produced σ28 exceeds this threshold. In this manner, we demonstrate a genetically implemented perceptron capable of binary classification, i.e., the expression of a single output protein only when the desired minimum number of inputs is exceeded.
Collapse
Affiliation(s)
- Ardjan J. van der Linden
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Pascal A. Pieters
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Mart W. Bartelds
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Bryan L. Nathalia
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Wilhelm T. S. Huck
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Tom F. A. de Greef
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
47
|
Dupin A, Aufinger L, Styazhkin I, Rothfischer F, Kaufmann BK, Schwarz S, Galensowske N, Clausen-Schaumann H, Simmel FC. Synthetic cell-based materials extract positional information from morphogen gradients. SCIENCE ADVANCES 2022; 8:eabl9228. [PMID: 35394842 PMCID: PMC8993112 DOI: 10.1126/sciadv.abl9228] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/17/2022] [Indexed: 05/19/2023]
Abstract
Biomaterials composed of synthetic cells have the potential to adapt and differentiate guided by physicochemical environmental cues. Inspired by biological systems in development, which extract positional information (PI) from morphogen gradients in the presence of uncertainties, we here investigate how well synthetic cells can determine their position within a multicellular structure. To calculate PI, we created and analyzed a large number of synthetic cellular assemblies composed of emulsion droplets connected via lipid bilayer membranes. These droplets contained cell-free feedback gene circuits that responded to gradients of a genetic inducer acting as a morphogen. PI is found to be limited by gene expression noise and affected by the temporal evolution of the morphogen gradient and the cell-free expression system itself. The generation of PI can be rationalized by computational modeling of the system. We scale our approach using three-dimensional printing and demonstrate morphogen-based differentiation in larger tissue-like assemblies.
Collapse
Affiliation(s)
- Aurore Dupin
- Physics Department (E14), TU Munich, 85748 Garching, Germany
| | - Lukas Aufinger
- Physics Department (E14), TU Munich, 85748 Garching, Germany
| | - Igor Styazhkin
- Physics Department (E14), TU Munich, 85748 Garching, Germany
| | | | - Benedikt K. Kaufmann
- Center for NanoScience (CeNS), Schellingstraße 4, 80799 Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, Lothstrasse 34, 80335 Munich, Germany
- Heinz-Nixdorf-Chair of Biomedical Electronics, TranslaTUM, TU Munich, 81675 Munich, Germany
| | - Sascha Schwarz
- Center for NanoScience (CeNS), Schellingstraße 4, 80799 Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, Lothstrasse 34, 80335 Munich, Germany
| | | | - Hauke Clausen-Schaumann
- Center for NanoScience (CeNS), Schellingstraße 4, 80799 Munich, Germany
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, Lothstrasse 34, 80335 Munich, Germany
| | - Friedrich C. Simmel
- Physics Department (E14), TU Munich, 85748 Garching, Germany
- Corresponding author.
| |
Collapse
|
48
|
Sato W, Sharon J, Deich C, Gaut N, Cash B, Engelhart AE, Adamala KP. Akaby-Cell-free protein expression system for linear templates. PLoS One 2022; 17:e0266272. [PMID: 35390057 PMCID: PMC8989226 DOI: 10.1371/journal.pone.0266272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/17/2022] [Indexed: 12/01/2022] Open
Abstract
Cell-free protein expression is increasingly becoming popular for biotechnology, biomedical and research applications. Among cell-free systems, the most popular one is based on Escherichia coli (E. coli). Endogenous nucleases in E. coli cell-free transcription-translation (TXTL) degrade the free ends of DNA, resulting in inefficient protein expression from linear DNA templates. RecBCD is a nuclease complex that plays a major role in nuclease activity in E. coli, with the RecB subunit possessing the actual nuclease activity. We created a RecB knockout of an E. coli strain optimized for cell-free expression. We named this new strain Akaby. We demonstrated that Akaby TXTL successfully reduced linear DNA degradations, rescuing the protein expression efficiency from the linear DNA templates. The practicality of Akaby for TXTL is an efficient, simple alternative for linear template expression in cell-free reactions. We also use this work as a model protocol for modifying the TXTL source E. coli strain, enabling the creation of TXTL systems with other custom modifications.
Collapse
Affiliation(s)
- Wakana Sato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| | - Judee Sharon
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| | - Christopher Deich
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| | - Nathaniel Gaut
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| | - Brock Cash
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| | - Aaron E. Engelhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| | - Katarzyna P. Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
49
|
Zibulski DL, Schlichting N, Kabisch J. HyperXpress: Rapid Single Vessel DNA Assembly and Protein Production in Microliterscale. Front Bioeng Biotechnol 2022; 10:832176. [PMID: 35433646 PMCID: PMC9011061 DOI: 10.3389/fbioe.2022.832176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Rapid prototyping of biological functions has the common aim of generating, screening, and selecting variant libraries as quickly as possible. This approach is now to be extended by the HyperXpress workflow, which connects ligase cycling reaction for DNA assembly, multiply-primed rolling circle amplification for signal amplification, and cell-free protein synthesis to a single vessel reaction in the lower µl scale. After substantial optimization of the method a proof-of-principle demonstrating the high flexibility of HyperXpress for semi-rational protein engineering by expanding, reducing, and replacing β-strands of three different green fluorescent proteins is described. These single-day experiments resulted in six functional, new-to-nature GFP prototypes.
Collapse
Affiliation(s)
| | | | - Johannes Kabisch
- Computer-aided Synthetic Biology, Darmstadt, Germany
- Department of Biotechnology and Food Science, NTNU, Trondheim, Norway
- *Correspondence: Johannes Kabisch,
| |
Collapse
|
50
|
Gaut NJ, Gomez-Garcia J, Heili JM, Cash B, Han Q, Engelhart AE, Adamala KP. Programmable Fusion and Differentiation of Synthetic Minimal Cells. ACS Synth Biol 2022; 11:855-866. [PMID: 35089706 DOI: 10.1021/acssynbio.1c00519] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Synthetic cells can mimic the intricate complexities of live cells, while mitigating the level of noise that is present natural systems; however, many crucial processes still need to be demonstrated in synthetic cells to use them to comprehensively study and engineer biology. Here we demonstrate key functionalities of synthetic cells previously available only to natural life: differentiation and mating. This work presents a toolset for engineering combinatorial genetic circuits in synthetic cells. We demonstrate how progenitor populations can differentiate into new lineages in response to small molecule stimuli or as a result of fusion, and we provide practical demonstration of utility for metabolic engineering. This work provides a tool for bioengineering and for natural pathway studies, as well as paving the way toward the construction of live artificial cells.
Collapse
Affiliation(s)
- Nathaniel J. Gaut
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55407 United States
| | - Jose Gomez-Garcia
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55407 United States
| | - Joseph M. Heili
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55407 United States
| | - Brock Cash
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55407 United States
| | - Qiyuan Han
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55407 United States
| | - Aaron E. Engelhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55407 United States
| | - Katarzyna P. Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55407 United States
| |
Collapse
|