1
|
Liu G, Zeng Y, Li B, Wang X, Jiang L, Guo Y. SOS2 phosphorylates FREE1 to regulate multi-vesicular body trafficking and vacuolar dynamics under salt stress. THE PLANT CELL 2025; 37:koaf012. [PMID: 39792473 PMCID: PMC11887852 DOI: 10.1093/plcell/koaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/15/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Salt stress causes ion toxicity in plant cells and limits plant growth and crop productivity. Sodium ions (Na+) are transported out of the cell and sequestered in the vacuole for detoxification under salt stress. The salt excretion system is controlled by the SALT OVERLY SENSITIVE (SOS) pathway, which consists of the calcium sensors SOS3 and SOS3-LIKE CALCIUM-BINDING PROTEIN 8, the protein kinase SOS2, and the plasma membrane Na+/H+ antiporter SOS1. Although much is known about salt responses in plants at the molecular level, it remains unclear if and how plants respond to salt stress through endomembrane remodelling. In this study, we describe a mechanism of salt tolerance in Arabidopsis (Arabidopsis thaliana) involving the modulation of FREE1 levels, which impacts multivesicular body (MVB) trafficking. Specifically, the ESCRT-I (endosomal sorting complex required for transport-I) component FREE1 (FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1) regulates vacuole fragmentation to enhance salt tolerance. SOS2 phosphorylates FREE1, leading to its degradation and affecting MVB maturation, thereby reducing MVB-vacuole fusion and regulating endomembrane dynamics in response to salt stress. These findings highlight the adaptive role of the plant endomembrane system in coping with salt stress.
Collapse
Affiliation(s)
- Guoyong Liu
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China
| | - Yonglun Zeng
- State Key Laboratory of Plant Diversity and Specialty Crops and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Baiying Li
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
- Center for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, Shatin 999077, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China
| | - Liwen Jiang
- Center for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, Shatin 999077, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Wang L, Liu H, Liu P, Wu G, Shen W, Cui H, Dai Z. Cotyledon peeling method for passion fruit protoplasts: a versatile cell system for transient gene expression in passion fruit (Passiflora edulis). FRONTIERS IN PLANT SCIENCE 2023; 14:1236838. [PMID: 37636087 PMCID: PMC10449601 DOI: 10.3389/fpls.2023.1236838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Passion fruit (Passiflora edulis) is a perennial evergreen vine that grows mainly in tropical and subtropical regions due to its nutritional, medicinal and ornamental values. However, the molecular biology study of passion fruit is extremely hindered by the lack of an easy and efficient method for transformation. The protoplast transformation system plays a vital role in plant regeneration, gene function analysis and genome editing. Here, we present a new method ('Cotyledon Peeling Method') for simple and efficient passion fruit protoplast isolation using cotyledon as the source tissue. A high yield (2.3 × 107 protoplasts per gram of fresh tissues) and viability (76%) of protoplasts were obtained upon incubation in the enzyme solution [1% (w/v) cellulase R10, 0.25% (w/v) macerozyme R10, 0.4 M mannitol, 10 mM CaCl2, 20 mM KCl, 20 mM MES and 0.1% (w/v) BSA, pH 5.7] for 2 hours. In addition, we achieved high transfection efficiency of 83% via the polyethylene glycol (PEG)-mediated transformation with a green fluorescent protein (GFP)-tagged plasmid upon optimization. The crucial factors affecting transformation efficiency were optimized as follows: 3 μg of plasmid DNA, 5 min transfection time, PEG concentration at 40% and protoplast density of 100 × 104 cells/ml. Furthermore, the established protoplast system was successfully applied for subcellular localization analysis of multiple fluorescent organelle markers and protein-protein interaction study. Taken together, we report a simple and efficient passion fruit protoplast isolation and transformation system, and demonstrate its usage in transient gene expression for the first time in passion fruit. The protoplast system would provide essential support for various passion fruit biology studies, including genome editing, gene function analysis and whole plant regeneration.
Collapse
Affiliation(s)
- Linxi Wang
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Haobin Liu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Peilan Liu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Wentao Shen
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Hongguang Cui
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
| | - Zhaoji Dai
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
| |
Collapse
|
3
|
Rigoulot SB, Barco B, Zhang Y, Zhang C, Meier KA, Moore M, Fabish J, Whinna R, Park J, Seaberry EM, Gopalan A, Dong S, Chen Z, Que Q. Automated, High-Throughput Protoplast Transfection for Gene Editing and Transgene Expression Studies. Methods Mol Biol 2023; 2653:129-149. [PMID: 36995624 DOI: 10.1007/978-1-0716-3131-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
In an era of cost-efficient gene synthesis and high-throughput construct assembly, the onus of scientific experimentation is on the rate of in vivo testing for the identification of top performing candidates or designs. Assay platforms that are relevant to the species of interest and in the tissue of choice are highly desirable. A protoplast isolation and transfection method that is compatible with a large repertoire of species and tissues would be the platform of choice. A necessary aspect of this high-throughput screening approach is the need to handle many delicate protoplast samples at the same time, which is a bottleneck for manual operation. Such bottlenecks can be mitigated with the use of automated liquid handlers for the execution of protoplast transfection steps. The method described within this chapter utilizes a 96-well head for simultaneous, high-throughput initiation of transfection. While initially developed and optimized for use with etiolated maize leaf protoplasts, the automated protocol has also been demonstrated to be compatible with other established protoplast systems, such as soybean immature embryo derived protoplast, similarly described within. This chapter also includes instructions for a sample randomization design to reduce the impact of edge effects, which might be present when microplates are used for fluorescence readout following transfection. We also describe a streamlined, expedient, and cost-effective protocol for determining gene editing efficiencies using the T7E1 endonuclease cleavage assay with a publicly available image analysis tool.
Collapse
Affiliation(s)
| | - Brenden Barco
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Yingxiao Zhang
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Chengjin Zhang
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Kerry A Meier
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Matthew Moore
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Jonathan Fabish
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Rachel Whinna
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Jeongmoo Park
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Erin M Seaberry
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Aditya Gopalan
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Shujie Dong
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Zhongying Chen
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Qiudeng Que
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA.
| |
Collapse
|
4
|
Wu J, Zhu M, Liu W, Jahan MS, Gu Q, Shu S, Sun J, Guo S. CsPAO2 Improves Salt Tolerance of Cucumber through the Interaction with CsPSA3 by Affecting Photosynthesis and Polyamine Conversion. Int J Mol Sci 2022; 23:12413. [PMID: 36293280 PMCID: PMC9604536 DOI: 10.3390/ijms232012413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 08/15/2023] Open
Abstract
Polyamine oxidases (PAOs) are key enzymes in polyamine metabolism and are related to the tolerance of plants to abiotic stresses. In this study, overexpression of cucumber (Cucumis sativus L.) PAO2 (CsPAO2) in Arabidopsis resulted in increased activity of the antioxidant enzyme and accelerated conversion from Put to Spd and Spm, while malondialdehyde content (MDA) and electrolyte leakage (EL) was decreased when compared with wild type, leading to enhanced plant growth under salt stress. Photosystem Ⅰ assembly 3 in cucumber (CsPSA3) was revealed as an interacting protein of CsPAO2 by screening yeast two-hybrid library combined with in vitro and in vivo methods. Then, CsPAO2 and CsPSA3 were silenced in cucumber via virus-mediated gene silencing (VIGS) with pV190 as the empty vector. Under salt stress, net photosynthetic rate (Pn) and transpiration rate (Tr) of CsPAO2-silencing plants were lower than pV190-silencing plants, and EL in root was higher than pV190-silencing plants, indicating that CsPAO2-silencing plants suffered more serious salt stress damage. However, photosynthetic parameters of CsPSA3-silencing plants were all higher than those of CsPAO2 and pV190-silencing plants, thereby enhancing the photosynthesis process. Moreover, CsPSA3 silencing reduced the EL in both leaves and roots when compared with CsPAO2-silencing plants, but the EL only in leaves was significantly lower than the other two gene-silencing plants, and conversion from Put to Spd and Spm in leaf was also promoted, suggesting that CsPSA3 interacts with CsPAO2 in leaves to participate in the regulation of salt tolerance through photosynthesis and polyamine conversion.
Collapse
Affiliation(s)
- Jianqiang Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengliang Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weikang Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mohammad Shah Jahan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Qinsheng Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Sheng Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Li Z, Gao J, Wang S, Xie X, Wang Z, Peng Y, Yang X, Pu W, Wang Y, Fan X. Comprehensive analysis of the LHT gene family in tobacco and functional characterization of NtLHT22 involvement in amino acids homeostasis. FRONTIERS IN PLANT SCIENCE 2022; 13:927844. [PMID: 36176688 PMCID: PMC9513474 DOI: 10.3389/fpls.2022.927844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Amino acids are vital nitrogen (N) sources for plant growth, development, and yield. The uptake and translocation of amino acids are mediated by amino acid transporters (AATs). The AATs family including lysine-histidine transporters (LHTs), amino acid permeases (AAPs), and proline transporters (ProTs) subfamilies have been identified in various plants. However, little is known about these genes in tobacco. In this study, we identified 23 LHT genes, the important members of AATs, in the tobacco genome. The gene structure, phylogenetic tree, transmembrane helices, chromosomal distribution, cis-regulatory elements, and expression profiles of NtLHT genes were systematically analyzed. Phylogenetic analysis divided the 23 NtLHT genes into two conserved subgroups. Expression profiles confirmed that the NtLHT genes were differentially expressed in various tissues, indicating their potential roles in tobacco growth and development. Cis-elements analysis of promoters and expression patterns after stress treatments suggested that NtLHT genes probable participate in abiotic stress responses of tobacco. In addition, Knock out and overexpression of NtLHT22 changed the amino acids homeostasis in the transgenic plants, the contents of amino acids were significantly decreased in NtLHT22 overexpression plants than wild-type. The results from this study provide important information for further studies on the molecular functions of the NtLHT genes.
Collapse
Affiliation(s)
- Zhaowu Li
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Junping Gao
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Shuaibin Wang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Zhangying Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Peng
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Xiaonian Yang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Wenxuan Pu
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Yaofu Wang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Optimization of an Efficient Protoplast Transformation System for Transient Expression Analysis Using Leaves of Torenia fournieri. PLANTS 2022; 11:plants11162106. [PMID: 36015409 PMCID: PMC9412307 DOI: 10.3390/plants11162106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
Torenia fournieri (T. fournieri) is one of the most widely used horticultural flowers and is considered a potential model plant for the genetic investigation of ornamental traits. In this study, we optimized an efficient protocol for high efficiency preparation and transformation of T. fournieri protoplast. The transformation rate reached ~75% when a 35S:GFP construct was used for the transformation. Using this system, we characterized the subcellular localization of several TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors (TFs), and found a distinct localization pattern between the CIN and CYC classes of TCP TFs. Furthermore, we also demonstrated the feasibility of the expression of dual luciferase assay system in T. fournieri protoplasts for the measurement of the activity of cis-regulatory elements. Taken together, a well-optimized transient expression system in T. fournieri protoplasts would be crucial for rapid exploration of the gene function or cis-regulatory elements.
Collapse
|
7
|
Luo Z, Zhou Z, Li Y, Tao S, Hu ZR, Yang JS, Cheng X, Hu R, Zhang W. Transcriptome-based gene regulatory network analyses of differential cold tolerance of two tobacco cultivars. BMC PLANT BIOLOGY 2022; 22:369. [PMID: 35879667 PMCID: PMC9316383 DOI: 10.1186/s12870-022-03767-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/20/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Cold is one of the main abiotic stresses that severely affect plant growth and development, and crop productivity as well. Transcriptional changes during cold stress have already been intensively studied in various plant species. However, the gene networks involved in the regulation of differential cold tolerance between tobacco varieties with contrasting cold resistance are quite limited. RESULTS Here, we conducted multiple time-point transcriptomic analyses using Tai tobacco (TT, cold susceptibility) and Yan tobacco (YT, cold resistance) with contrasting cold responses. We identified similar DEGs in both cultivars after comparing with the corresponding control (without cold treatment), which were mainly involved in response to abiotic stimuli, metabolic processes, kinase activities. Through comparison of the two cultivars at each time point, in contrast to TT, YT had higher expression levels of the genes responsible for environmental stresses. By applying Weighted Gene Co-Expression Network Analysis (WGCNA), we identified two main modules: the pink module was similar while the brown module was distinct between the two cultivars. Moreover, we obtained 100 hub genes, including 11 important transcription factors (TFs) potentially involved in cold stress, 3 key TFs in the brown module and 8 key TFs in the pink module. More importantly, according to the genetic regulatory networks (GRNs) between TFs and other genes or TFs by using GENIE3, we identified 3 TFs (ABI3/VP1, ARR-B and WRKY) mainly functioning in differential cold responses between two cultivars, and 3 key TFs (GRAS, AP2-EREBP and C2H2) primarily involved in cold responses. CONCLUSION Collectively, our study provides valuable resources for transcriptome- based gene network studies of cold responses in tobacco. It helps to reveal how key cold responsive TFs or other genes are regulated through network. It also helps to identify the potential key cold responsive genes for the genetic manipulation of tobacco cultivars with enhanced cold tolerance in the future.
Collapse
Affiliation(s)
- Zhenyu Luo
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Zhicheng Zhou
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China
| | - Shentong Tao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Zheng-Rong Hu
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China
| | - Jia-Shuo Yang
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
| | - Risheng Hu
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China.
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
8
|
Schuhmann P, Engstler C, Klöpfer K, Gügel IL, Abbadi A, Dreyer F, Leckband G, Bölter B, Hagn F, Soll J, Carrie C. Two wrongs make a right: heat stress reversion of a male-sterile Brassica napus line. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3531-3551. [PMID: 35226731 PMCID: PMC9162185 DOI: 10.1093/jxb/erac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Male-sterile lines play important roles in plant breeding to obtain hybrid vigour. The male sterility Lembke (MSL) system is a thermosensitive genic male sterility system of Brassica napus and is one of the main systems used in European rapeseed breeding. Interestingly, the MSL system shows high similarity to the 9012AB breeding system from China, including the ability to revert to fertile in high temperature conditions. Here we demonstrate that the MSL system is regulated by the same restorer of fertility gene BnaC9-Tic40 as the 9012AB system, which is related to the translocon at the inner envelope membrane of chloroplasts 40 (TIC40) from Arabidopsis. The male sterility gene of the MSL system was also identified to encode a chloroplast-localized protein which we call BnChimera; this gene shows high sequence similarity to the sterility gene previously described for the 9012AB system. For the first time, a direct protein interaction between BnaC9-Tic40 and the BnChimera could be demonstrated. In addition, we identify the corresponding amino acids that mediate this interaction and suggest how BnaC9-Tic40 acts as the restorer of fertility. Using an RNA-seq approach, the effects of heat treatment on the male fertility restoration of the C545 MSL system line were investigated. These data demonstrate that many pollen developmental pathways are affected by higher temperatures. It is hypothesized that heat stress reverses the male sterility via a combination of slower production of cell wall precursors in plastids and a slower flower development, which ultimately results in fertile pollen. The potential breeding applications of these results are discussed regarding the use of the MSL system in producing thermotolerant fertile plants.
Collapse
Affiliation(s)
- Petra Schuhmann
- Department Biologie I–Botanik, Ludwig-Maximilians-Universität München, Großhadernerstr. 2–4, D-82152 Planegg-Martinsried, Germany
| | - Carina Engstler
- Department Biologie I–Botanik, Ludwig-Maximilians-Universität München, Großhadernerstr. 2–4, D-82152 Planegg-Martinsried, Germany
| | - Kai Klöpfer
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D-85748 Garching, Germany
| | - Irene L Gügel
- Department Biologie I–Botanik, Ludwig-Maximilians-Universität München, Großhadernerstr. 2–4, D-82152 Planegg-Martinsried, Germany
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, D-53175 Bonn, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth-Hof, D-24363 Holtsee, Germany
| | - Felix Dreyer
- NPZ Innovation GmbH, Hohenlieth-Hof, D-24363 Holtsee, Germany
| | - Gunhild Leckband
- Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth-Hof 1, D-24363 Holtsee, Germany
| | - Bettina Bölter
- Department Biologie I–Botanik, Ludwig-Maximilians-Universität München, Großhadernerstr. 2–4, D-82152 Planegg-Martinsried, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D-85748 Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Jürgen Soll
- Department Biologie I–Botanik, Ludwig-Maximilians-Universität München, Großhadernerstr. 2–4, D-82152 Planegg-Martinsried, Germany
- Munich Centre for Integrated Protein Science, CIPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | | |
Collapse
|
9
|
Wang Q, Du W, Zhang S, Yu W, Wang J, Zhang C, Zhang H, Huang F, Cheng H, Yu D. Functional study and elite haplotype identification of soybean phosphate starvation response transcription factors GmPHR14 and GmPHR32. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:29. [PMID: 37309533 PMCID: PMC10248592 DOI: 10.1007/s11032-022-01301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/22/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is one of the important mineral elements required for plant growth and development. However, because of the low mobility in soil, P deficiency has been an important factor limiting soybean production. Here, we identified 14 PHR (phosphate starvation response) genes in soybean genome and verified that two previously unreported GmPHR members, GmPHR14 and GmPHR32, were involved in low-P stress tolerance in soybean. GmPHR14 and GmPHR32 were present in two diverged branches of the phylogenic tree. Both genes were highly expressed in roots and root nodules and were induced by P deficiency. GmPHR14 and GmPHR32 both were expressed in the nucleus. The 211 amino acids in the N terminus of GmPHR32 were found to be required for the transcriptional activity. Overexpressing GmPHR14 or GmPHR32 in soybean hairy roots significantly increased roots and shoots dry weight under low-P condition, and overexpressing GmPHR14 additionally significantly increased roots P concentration under low-P condition. GmPHR14 and GmPHR32 were polymorphic in soybean population and the elite haplotype2 (Hap2) for both genes was preferentially present in improved cultivars and showed significantly higher shoots dry weight under low-P condition than the other two haplotypes. These results suggested GmPHR14 and GmPHR32 both positively regulated low-P responses in soybean, and would shed light on the molecular mechanism of low-P stress tolerance. Furthermore, the identified elite haplotypes would be useful in P-efficient soybean breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01301-z.
Collapse
Affiliation(s)
- Qing Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenkai Du
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shixi Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenqing Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiao Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Cankui Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| | - Hengyou Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 China
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
10
|
Connected function of PRAF/RLD and GNOM in membrane trafficking controls intrinsic cell polarity in plants. Nat Commun 2022; 13:7. [PMID: 35013279 PMCID: PMC8748900 DOI: 10.1038/s41467-021-27748-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cell polarity is a fundamental feature underlying cell morphogenesis and organismal development. In the Arabidopsis stomatal lineage, the polarity protein BASL controls stomatal asymmetric cell division. However, the cellular machinery by which this intrinsic polarity site is established remains unknown. Here, we identify the PRAF/RLD proteins as BASL physical partners and mutating four PRAF members leads to defects in BASL polarization. Members of PRAF proteins are polarized in stomatal lineage cells in a BASL-dependent manner. Developmental defects of the praf mutants phenocopy those of the gnom mutants. GNOM is an activator of the conserved Arf GTPases and plays important roles in membrane trafficking. We further find PRAF physically interacts with GNOM in vitro and in vivo. Thus, we propose that the positive feedback of BASL and PRAF at the plasma membrane and the connected function of PRAF and GNOM in endosomal trafficking establish intrinsic cell polarity in the Arabidopsis stomatal lineage.
Collapse
|
11
|
The E3 Ubiquitin Ligase ATL9 Affects Expression of Defense Related Genes, Cell Death and Callose Deposition in Response to Fungal Infection. Pathogens 2022; 11:pathogens11010068. [PMID: 35056016 PMCID: PMC8778023 DOI: 10.3390/pathogens11010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/20/2022] Open
Abstract
Plants use diverse strategies to defend themselves from biotic stresses in nature, which include the activation of defense gene expression and a variety of signal transduction pathways. Previous studies have shown that protein ubiquitination plays a critical role in plant defense responses, however the details of its function remain unclear. Our previous work has shown that increasing expression levels of ATL9, an E3 ubiquitin ligase in Arabidopsis thaliana, increased resistance to infection by the fungal pathogen, Golovinomyces cichoracearum. In this study, we demonstrate that the defense-related proteins PDF1.2, PCC1 and FBS1 directly interact with ATL9 and are targeted for degradation to the proteasome by ATL9. The expression levels of PDF1.2, PCC1 and FBS1 are decreased in T-DNA insertional mutants of atl9 and T-DNA insertional mutants of pdf1.2, pcc1 and fbs1 are more susceptible to fungal infection. In addition, callose is more heavily deposited at infection sites in the mutants of atl9, fbs1, pcc1 and pdf1.2. Overexpression of ATL9 and of mutants in fbs1, pcc1 and pdf1.2 showed increased levels of cell death during infection. Together these results indicate that ubiquitination, cell death and callose deposition may work together to enhance defense responses to fungal pathogens.
Collapse
|
12
|
Yadala R, Ratnikava M, Lermontova I. Bimolecular Fluorescence Complementation to Test for Protein-Protein Interactions and to Uncover Regulatory Mechanisms During Gametogenesis. Methods Mol Biol 2022; 2484:107-120. [PMID: 35461448 DOI: 10.1007/978-1-0716-2253-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bimolecular fluorescence complementation (BiFC) assay is one of the sensitive techniques that allows to investigate direct protein-protein interactions (PPI) in vivo and visualize the subcellular localization of interacting proteins. It is based on splitting of a fluorescent protein into two nonfluorescent parts accordingly fused to two putative interacting partners. If interaction between studied proteins is possible, nonfluorescent parts come to close proximity resulting in reconstitution of the functional fluorescent protein and giving fluorescence under certain wavelength. BiFC analysis implies transient or stable expression of the proteins of interest and can be used as a method to test or validate the direct PPI in various biological pathways, including the regulation of gametogenesis, which is the main focus of this book. In our protocol we give detailed information for beginners about three main steps of BiFC analysis of centromeric protein interactions. These steps include (1) generation of appropriate expression clones with the help of Gateway cloning technology, (2) infiltration of Nicotiana benthamiana plants by Agrobacteria containing generated constructs, and (3) microscopic analysis of plants under fluorescence microscope. Also, we discuss appropriate negative controls that can be used for evaluation as well as recommendable vector systems, possible artifacts and measures to avoid artifactual interactions for BiFC assay.
Collapse
Affiliation(s)
- Ramakrishna Yadala
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Maryia Ratnikava
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| |
Collapse
|
13
|
Cheng DJ, Xu XJ, Yan ZY, Tettey CK, Fang L, Yang GL, Geng C, Tian YP, Li XD. The chloroplast ribosomal protein large subunit 1 interacts with viral polymerase and promotes virus infection. PLANT PHYSIOLOGY 2021; 187:174-186. [PMID: 34618134 PMCID: PMC8418413 DOI: 10.1093/plphys/kiab249] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/06/2021] [Indexed: 05/18/2023]
Abstract
Chloroplasts play an indispensable role in the arms race between plant viruses and hosts. Chloroplast proteins are often recruited by plant viruses to support viral replication and movement. However, the mechanism by which chloroplast proteins regulate potyvirus infection remains largely unknown. In this study, we observed that Nicotiana benthamiana ribosomal protein large subunit 1 (NbRPL1), a chloroplast ribosomal protein, localized to the chloroplasts via its N-terminal 61 amino acids (transit peptide), and interacted with tobacco vein banding mosaic virus (TVBMV) nuclear inclusion protein b (NIb), an RNA-dependent RNA polymerase. Upon TVBMV infection, NbRPL1 was recruited into the 6K2-induced viral replication complexes in chloroplasts. Silencing of NbRPL1 expression reduced TVBMV replication. NbRPL1 competed with NbBeclin1 to bind NIb, and reduced the NbBeclin1-mediated degradation of NIb. Therefore, our results suggest that NbRPL1 interacts with NIb in the chloroplasts, reduces NbBeclin1-mediated NIb degradation, and enhances TVBMV infection.
Collapse
Affiliation(s)
- De-Jie Cheng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xiao-Jie Xu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Zhi-Yong Yan
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Carlos Kwesi Tettey
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Le Fang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Guang-Ling Yang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Chao Geng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yan-Ping Tian
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xiang-Dong Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
14
|
Zhang R, Guan X, Yang M, Law YS, Voon CP, Yan J, Sun F, Lim BL. Overlapping Functions of the Paralogous Proteins AtPAP2 and AtPAP9 in Arabidopsis thaliana. Int J Mol Sci 2021; 22:7243. [PMID: 34298863 PMCID: PMC8303434 DOI: 10.3390/ijms22147243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2), which is anchored to the outer membranes of chloroplasts and mitochondria, affects carbon metabolism by modulating the import of some preproteins into chloroplasts and mitochondria. AtPAP9 bears a 72% amino acid sequence identity with AtPAP2, and both proteins carry a hydrophobic motif at their C-termini. Here, we show that AtPAP9 is a tail-anchored protein targeted to the outer membrane of chloroplasts. Yeast two-hybrid and bimolecular fluorescence complementation experiments demonstrated that both AtPAP9 and AtPAP2 bind to a small subunit of rubisco 1B (AtSSU1B) and a number of chloroplast proteins. Chloroplast import assays using [35S]-labeled AtSSU1B showed that like AtPAP2, AtPAP9 also plays a role in AtSSU1B import into chloroplasts. Based on these data, we propose that AtPAP9 and AtPAP2 perform overlapping roles in modulating the import of specific proteins into chloroplasts. Most plant genomes contain only one PAP-like sequence encoding a protein with a hydrophobic motif at the C-terminus. The presence of both AtPAP2 and AtPAP9 in the Arabidopsis genome may have arisen from genome duplication in Brassicaceae. Unlike AtPAP2 overexpression lines, the AtPAP9 overexpression lines did not exhibit early-bolting or high-seed-yield phenotypes. Their differential growth phenotypes could be due to the inability of AtPAP9 to be targeted to mitochondria, as the overexpression of AtPAP2 on mitochondria enhances the capacity of mitochondria to consume reducing equivalents.
Collapse
Affiliation(s)
- Renshan Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; (R.Z.); (X.G.); (M.Y.); (Y.-S.L.); (C.P.V.); (J.Y.); (F.S.)
| | - Xiaoqian Guan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; (R.Z.); (X.G.); (M.Y.); (Y.-S.L.); (C.P.V.); (J.Y.); (F.S.)
| | - Meijing Yang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; (R.Z.); (X.G.); (M.Y.); (Y.-S.L.); (C.P.V.); (J.Y.); (F.S.)
| | - Yee-Song Law
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; (R.Z.); (X.G.); (M.Y.); (Y.-S.L.); (C.P.V.); (J.Y.); (F.S.)
| | - Chia Pao Voon
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; (R.Z.); (X.G.); (M.Y.); (Y.-S.L.); (C.P.V.); (J.Y.); (F.S.)
| | - Junran Yan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; (R.Z.); (X.G.); (M.Y.); (Y.-S.L.); (C.P.V.); (J.Y.); (F.S.)
| | - Feng Sun
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; (R.Z.); (X.G.); (M.Y.); (Y.-S.L.); (C.P.V.); (J.Y.); (F.S.)
| | - Boon Leong Lim
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; (R.Z.); (X.G.); (M.Y.); (Y.-S.L.); (C.P.V.); (J.Y.); (F.S.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Hoecker N, Hennecke Y, Schrott S, Marino G, Schmidt SB, Leister D, Schneider A. Gene Replacement in Arabidopsis Reveals Manganese Transport as an Ancient Feature of Human, Plant and Cyanobacterial UPF0016 Proteins. FRONTIERS IN PLANT SCIENCE 2021; 12:697848. [PMID: 34194462 PMCID: PMC8236900 DOI: 10.3389/fpls.2021.697848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/20/2021] [Indexed: 05/08/2023]
Abstract
The protein family 0016 (UPF0016) is conserved through evolution, and the few members characterized share a function in Mn2+ transport. So far, little is known about the history of these proteins in Eukaryotes. In Arabidopsis thaliana five such proteins, comprising four different subcellular localizations including chloroplasts, have been described, whereas non-photosynthetic Eukaryotes have only one. We used a phylogenetic approach to classify the eukaryotic proteins into two subgroups and performed gene-replacement studies to investigate UPF0016 genes of various origins. Replaceability can be scored readily in the Arabidopsis UPF0016 transporter mutant pam71, which exhibits a functional deficiency in photosystem II. The N-terminal region of the Arabidopsis PAM71 was used to direct selected proteins to chloroplast membranes. Transgenic pam71 lines overexpressing the closest plant homolog (CMT1), human TMEM165 or cyanobacterial MNX successfully restored photosystem II efficiency, manganese binding to photosystem II complexes and consequently plant growth rate and biomass production. Thus AtCMT1, HsTMEM165, and SynMNX can operate in the thylakoid membrane and substitute for PAM71 in a non-native environment, indicating that the manganese transport function of UPF0016 proteins is an ancient feature of the family. We propose that the two chloroplast-localized UPF0016 proteins, CMT1 and PAM71, in plants originated from the cyanobacterial endosymbiont that gave rise to the organelle.
Collapse
Affiliation(s)
- Natalie Hoecker
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Yvonne Hennecke
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Simon Schrott
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Giada Marino
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Massenspektrometrie von Biomolekülen an der LMU (MSBioLMU), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Sidsel Birkelund Schmidt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Dario Leister
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Anja Schneider
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
- *Correspondence: Anja Schneider,
| |
Collapse
|
16
|
Du W, Ning L, Liu Y, Zhang S, Yang Y, Wang Q, Chao S, Yang H, Huang F, Cheng H, Yu D. Identification of loci and candidate gene GmSPX-RING1 responsible for phosphorus efficiency in soybean via genome-wide association analysis. BMC Genomics 2020; 21:725. [PMID: 33076835 PMCID: PMC7574279 DOI: 10.1186/s12864-020-07143-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/11/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Phosphorus (P) is an essential element in maintaining high biomass and yield in crops. Soybean [Glycine max (L.) Merr.] requires a large amount of P during growth and development. Improvement of P efficiency and identification of P efficiency genes are important strategies for increasing soybean yield. RESULTS Genome-wide association analysis (GWAS) with NJAU 355 K SoySNP array was performed to identify single nucleotide polymorphisms (SNPs) significantly associated with three shoot P efficiency-related traits of a natural population of 211 cultivated soybeans and relative values of these traits under normal P (+P) condition and P deficiency (-P) condition. A total of 155 SNPs were identified significantly associated with P efficiency-related traits. SNPs that were significantly associated with shoot dry weight formed a SNP cluster on chromosome 11, while SNPs that were significantly associated with shoot P concentration formed a SNP cluster on chromosome 10. Thirteen haplotypes were identified based on 12 SNPs, and Hap9 was considered as the optimal haplotype. Four SNPs (AX-93636685, AX-93636692, AX-93932863, and AX-93932874) located on chromosome 10 were identified to be significantly associated with shoot P concentration under +P condition in two hydroponic experiments. Among these four SNPs, two of them (AX-93636685 and AX-93932874) were also significantly associated with the relative values of shoot P concentration under two P conditions. One SNP AX-93932874 was detected within 5'-untranslated region of Glyma.10 g018800, which contained SPX and RING domains and was named as GmSPX-RING1. Furthermore, the function research of GmSPX-RING1 was carried out in soybean hairy root transformation. Compared with their respective controls, P concentration in GmSPX-RING1 overexpressing transgenic hairy roots was significantly reduced by 32.75% under +P condition; In contrast, P concentration in RNA interference of GmSPX-RING1 transgenic hairy roots was increased by 38.90 and 14.51% under +P and -P conditions, respectively. CONCLUSIONS This study shows that the candidate gene GmSPX-RING1 affects soybean phosphorus efficiency by negatively regulating soybean phosphorus concentration in soybean hairy roots. The SNPs and candidate genes identified should be potential for improvement of P efficiency in future soybean breeding programs.
Collapse
Affiliation(s)
- Wenkai Du
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lihua Ning
- Institute of Crop Germplasm and Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Yongshun Liu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shixi Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuming Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qing Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shengqian Chao
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hui Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
17
|
Hoecker N, Honke A, Frey K, Leister D, Schneider A. Homologous Proteins of the Manganese Transporter PAM71 Are Localized in the Golgi Apparatus and Endoplasmic Reticulum. PLANTS 2020; 9:plants9020239. [PMID: 32069796 PMCID: PMC7076475 DOI: 10.3390/plants9020239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 01/24/2023]
Abstract
Chloroplast manganese transporter 1 (CMT1) and photosynthesis-affected mutant 71 (PAM71) are two membrane proteins that function sequentially to mediate the passage of manganese across the chloroplast envelope and the thylakoid membrane. CMT1 and PAM71 belong to a small five-member protein family in Arabidopsis thaliana. The other three, photosynthesis-affected mutant 71 like 3 (PML3), PML4 and PML5 are not predicted to reside in chloroplast membranes. In this study, the subcellular localization of PML3:GFP, PML4:GFP and PML5:GFP was determined using transient and stable expression assays. PML3:GFP localizes to the Golgi apparatus, whereas PML4:GFP and PML5:GFP are found in the endoplasmic reticulum. We also examined patterns of PML3, PML4 and PML5 promoter activity. Although the precise expression pattern of each promoter was unique, all three genes were expressed in the leaf vasculature and in roots. Greenhouse grown single mutants pml3, pml4, pml5 and the pml4/pml5 double mutant did not exhibit growth defects, however an inspection of the root growth revealed a difference between pml3 and the other genotypes, including wild-type, in 500 µM manganese growth conditions. Strikingly, overexpression of PML3 resulted in a stunted growth phenotype. Putative functions of PML3, PML4 and PML5 are discussed in light of what is known about PAM71 and CMT1.
Collapse
|
18
|
Ma L, Ye J, Yang Y, Lin H, Yue L, Luo J, Long Y, Fu H, Liu X, Zhang Y, Wang Y, Chen L, Kudla J, Wang Y, Han S, Song CP, Guo Y. The SOS2-SCaBP8 Complex Generates and Fine-Tunes an AtANN4-Dependent Calcium Signature under Salt Stress. Dev Cell 2019; 48:697-709.e5. [PMID: 30861376 DOI: 10.1016/j.devcel.2019.02.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 11/19/2018] [Accepted: 02/11/2019] [Indexed: 01/10/2023]
Abstract
Calcium signals act as universal second messengers that trigger many cellular processes in animals and plants, but how specific calcium signals are generated is not well understood. In this study, we determined that AtANN4, a putative calcium-permeable transporter, and its interacting proteins, SCaBP8 and SOS2, generate a calcium signal under salt stress, which initially activates the SOS pathway, a conserved mechanism that modulates ion homeostasis in plants under salt stress. After activation, SCaBP8 promotes the interaction of protein kinase SOS2 with AtANN4, which enhances its phosphorylation by SOS2. This phosphorylation of AtANN4 further increases its interaction with SCaBP8. Both the interaction with and phosphorylation of AtANN4 repress its activity and alter calcium transients and signatures in HEK cells and plants. Our results reveal how downstream targets are required to create a specific calcium signal via a negative feedback regulatory loop, thereby enhancing our understanding of the regulation of calcium signaling.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiamin Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huixin Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lili Yue
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jin Luo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yu Long
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haiqi Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangning Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yulin Zhang
- Laboratory of Cell Secretion and Metabolism, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Liangyi Chen
- Laboratory of Cell Secretion and Metabolism, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Joerg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 4, Münster 48149, Germany
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Chun-Peng Song
- Collaborative Innovation Center of Crop Stress Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, Henan Province 475001, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
19
|
Jiang J, Ma J, Liu B, Wang Y. Combining a Simple Method for DNA/RNA/Protein Co-Purification and Arabidopsis Protoplast Assay to Facilitate Viroid Research. Viruses 2019; 11:v11040324. [PMID: 30987196 PMCID: PMC6521142 DOI: 10.3390/v11040324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Plant–viroid interactions represent a valuable model for delineating structure–function relationships of noncoding RNAs. For various functional studies, it is desirable to minimize sample variations by using DNA, RNA, and proteins co-purified from the same samples. Currently, most of the co-purification protocols rely on TRI Reagent (Trizol as a common representative) and require protein precipitation and dissolving steps, which render difficulties in experimental handling and high-throughput analyses. Here, we established a simple and robust method to minimize the precipitation steps and yield ready-to-use RNA and protein in solutions. This method can be applied to samples in small quantities, such as protoplasts. Given the ease and the robustness of this new method, it will have broad applications in virology and other disciplines in molecular biology.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Junfei Ma
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Bin Liu
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| |
Collapse
|
20
|
Tang Y, Zhang Z, Lei Y, Hu G, Liu J, Hao M, Chen A, Peng Q, Wu J. Cotton WATs Modulate SA Biosynthesis and Local Lignin Deposition Participating in Plant Resistance Against Verticillium dahliae. FRONTIERS IN PLANT SCIENCE 2019; 10:526. [PMID: 31105726 PMCID: PMC6499033 DOI: 10.3389/fpls.2019.00526] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/04/2019] [Indexed: 05/06/2023]
Abstract
Verticillium wilt, caused by Verticillium dahliae, seriously limits cotton production. It is difficult to control this pathogen damage mainly due to the complexity of the molecular mechanism of plant resistance to V. dahliae. Here, we identified three homologous cotton Walls Are Thin (WAT) genes, which were designated as GhWAT1, GhWAT2, and GhWAT3. The GhWATs were predominantly expressed in the roots, internodes, and hypocotyls and induced by infection with V. dahliae and treatment with indole-3-acetic acid (IAA) and salicylic acid (SA). GhWAT1-, GhWAT2-, or GhWAT3-silenced plants showed a comparable phenotype and level of resistance with control plants, but simultaneously silenced three GhWATs (GhWAT123-silenced), inhibited plant growth and increased plant resistance to V. dahliae, indicating that these genes were functionally redundant. In the GhWAT123-silenced plants, the expression of SA related genes was significantly upregulated compared with the control, resulting in an increase of SA level. Moreover, the histochemical analysis showed that xylem development was inhibited in GhWAT123-silenced plants compared with the control. However, lignin deposition increased in the xylem of the GhWAT123-silenced plants compared to the control, and there were higher expression levels of lignin synthesis- and lignifications-related genes in the GhWAT123-silenced plants. Collectively, the results showed that GhWATs in triple-silenced plants acts as negative regulators of plant resistance against V. dahliae. The potential mechanism of the WATs functioning in the plant defence can modulate the SA biosynthesis and lignin deposition in the xylem.
Collapse
Affiliation(s)
- Ye Tang
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhennan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu Lei
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guang Hu
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianfen Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Mengyan Hao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Aimin Chen
- Key Laboratory for the Creation Cotton Varieties in the Northwest, Ministry of Agriculture, Join Hope Seeds Corporation, Ltd., Changji, China
| | - Qingzhong Peng
- Hunan Provincial Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, China
- *Correspondence: Qingzhong Peng, Jiahe Wu,
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Qingzhong Peng, Jiahe Wu,
| |
Collapse
|
21
|
Patil M, Seifert S, Seiler F, Soll J, Schwenkert S. FZL is primarily localized to the inner chloroplast membrane however influences thylakoid maintenance. PLANT MOLECULAR BIOLOGY 2018; 97:421-433. [PMID: 29951988 DOI: 10.1007/s11103-018-0748-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
FZL is primarily localized to the chloroplast inner envelope and not to the thylakoids, but nevertheless affects the maintenance of thylakoid membranes and photosynthetic protein complexes. The fuzzy-onion-like protein (FZL) is a membrane-bound dynamin-like GTPase located in the chloroplast. We have investigated the chloroplast sub-localization of the endogenous FZL protein and found it to be primarily localized to the inner envelope. Moreover, we observed that mature leaves of fzl mutants start to turn pale, especially in the midvein area of the leaves, 11 days after germination. We therefore assessed their photosynthetic performance as well as the accumulation of thylakoid membrane proteins and complexes after the initial appearance of the phenotype. Interestingly, we could observe a significant decrease in amounts of the cytochrome b6f complex in 20-day-old mutants, which was also reflected in an impaired electron transport rate as well as a more oxidized P700 redox state. Analysis of differences in transcriptome datasets obtained before and after onset of the phenotype, revealed large-scale changes in gene expression after the phenotype became visible. In summary, we propose that FZL, despite its localization in the inner chloroplast envelope has an important role in thylakoid maintenance in mature and aging leaves.
Collapse
Affiliation(s)
- Manali Patil
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse. 2-4, 82152, Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Stephanie Seifert
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse. 2-4, 82152, Planegg-Martinsried, Germany
| | - Franka Seiler
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse. 2-4, 82152, Planegg-Martinsried, Germany
| | - Jürgen Soll
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse. 2-4, 82152, Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Serena Schwenkert
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse. 2-4, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
22
|
Zhang F, Xiang L, Yu Q, Zhang H, Zhang T, Zeng J, Geng C, Li L, Fu X, Shen Q, Yang C, Lan X, Chen M, Tang K, Liao Z. ARTEMISININ BIOSYNTHESIS PROMOTING KINASE 1 positively regulates artemisinin biosynthesis through phosphorylating AabZIP1. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1109-1123. [PMID: 29301032 PMCID: PMC6019033 DOI: 10.1093/jxb/erx444] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/23/2017] [Indexed: 05/03/2023]
Abstract
The plant Artemisia annua produces the anti-malarial compound artemisinin. Although the transcriptional regulation of artemisinin biosynthesis has been extensively studied, its post-translational regulatory mechanisms, especially that of protein phosphorylation, remain unknown. Here, we report that an ABA-responsive kinase (AaAPK1), a member of the SnRK2 family, is involved in regulating artemisinin biosynthesis. The physical interaction of AaAPK1 with AabZIP1 was confirmed by multiple assays, including yeast two-hybrid, bimolecular fluorescence complementation, and pull-down. AaAPK1, mainly expressed in flower buds and leaves, could be induced by ABA, drought, and NaCl treatments. Phos-tag mobility shift assays indicated that AaAPK1 phosphorylated both itself and AabZIP1. As a result, the phosphorylated AaAPK1 significantly enhanced the transactivational activity of AabZIP1 on the artemisinin biosynthesis genes. Substituting the Ser37 with Ala37 of AabZIP1 significantly suppressed its phosphorylation, which inhibited the transactivational activity of AabZIP1. Consistent overexpression of AaAPK1 significantly increased the production of artemisinin, as well as the expression levels of the artemisinin biosynthesis genes. Our study opens a window into the regulatory network underlying artemisinin biosynthesis at the post-translational level. Importantly, and for the first time, we provide evidence for why the kinase gene AaAPK1 is a key candidate for the metabolic engineering of artemisinin biosynthesis.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Lien Xiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Qin Yu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Haoxing Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Taixin Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Junlan Zeng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Chen Geng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxian Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Tibet Agricultural and Husbandry College, Nyingchi of Tibet, China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Correspondence: ;
| | - Zhihua Liao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
- Correspondence: ;
| |
Collapse
|
23
|
Wang B, Sumit R, Sahu BB, Ngaki MN, Srivastava SK, Yang Y, Swaminathan S, Bhattacharyya MK. Arabidopsis Novel Glycine-Rich Plasma Membrane PSS1 Protein Enhances Disease Resistance in Transgenic Soybean Plants. PLANT PHYSIOLOGY 2018; 176:865-878. [PMID: 29101280 PMCID: PMC5761755 DOI: 10.1104/pp.16.01982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/21/2017] [Indexed: 05/02/2023]
Abstract
Nonhost resistance is defined as the immunity of a plant species to all nonadapted pathogen species. Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 is nonhost to the oomycete plant pathogen Phytophthora sojae and the fungal plant pathogen Fusarium virguliforme that are pathogenic to soybean (Glycine max). Previously, we reported generating the pss1 mutation in the pen1-1 genetic background as well as genetic mapping and characterization of the Arabidopsis nonhost resistance Phytophthora sojae-susceptible gene locus, PSS1 In this study, we identified six candidate PSS1 genes by comparing single-nucleotide polymorphisms of (1) the bulked DNA sample of seven F2:3 families homozygous for the pss1 allele and (2) the pen1-1 mutant with Columbia-0. Analyses of T-DNA insertion mutants for each of these candidate PSS1 genes identified the At3g59640 gene encoding a glycine-rich protein as the putative PSS1 gene. Later, complementation analysis confirmed the identity of At3g59640 as the PSS1 gene. PSS1 is induced following P. sojae infection as well as expressed in an organ-specific manner. Coexpression analysis of the available transcriptomic data followed by reverse transcriptase-polymerase chain reaction suggested that PSS1 is coregulated with ATG8a (At4g21980), a core gene in autophagy. PSS1 contains a predicted single membrane-spanning domain. Subcellular localization study indicated that it is an integral plasma membrane protein. Sequence analysis suggested that soybean is unlikely to contain a PSS1-like defense function. Following the introduction of PSS1 into the soybean cultivar Williams 82, the transgenic plants exhibited enhanced resistance to F. virguliforme, the pathogen that causes sudden death syndrome.
Collapse
Affiliation(s)
- Bing Wang
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Rishi Sumit
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Binod B Sahu
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | | | | | - Yang Yang
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | | | | |
Collapse
|
24
|
Kang J, Li J, Gao S, Tian C, Zha X. Overexpression of the leucine-rich receptor-like kinase gene LRK2 increases drought tolerance and tiller number in rice. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1175-1185. [PMID: 28182328 PMCID: PMC5552483 DOI: 10.1111/pbi.12707] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 01/29/2017] [Accepted: 01/30/2017] [Indexed: 05/18/2023]
Abstract
Drought represents a key limiting factor of global crop distribution. Receptor-like kinases play major roles in plant development and defence responses against stresses such as drought. In this study, LRK2, which encodes a leucine-rich receptor-like kinase, was cloned and characterized and found to be localized on the plasma membrane in rice. Promoter-GUS analysis revealed strong expression in tiller buds, roots, nodes and anthers. Transgenic plants overexpressing LRK2 exhibited enhanced tolerance to drought stress due to an increased number of lateral roots compared with the wild type at the vegetative stage. Moreover, ectopic expression of LRK2 seedlings resulted in increased tiller development. Yeast two-hybrid screening and bimolecular fluorescence complementation (BiFC) indicated a possible interaction between LRK2 and elongation factor 1 alpha (OsEF1A) in vitro. These results suggest that LRK2 functions as a positive regulator of the drought stress response and tiller development via increased branch development in rice. These findings will aid our understanding of branch regulation in other grasses and support improvements in rice genetics.
Collapse
Affiliation(s)
- Junfang Kang
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Jianmin Li
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Shuang Gao
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Chao Tian
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| | - Xiaojun Zha
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhuaChina
| |
Collapse
|
25
|
Sun Y, Law YS, Cheng S, Lim BL. RNA editing of cytochrome c maturation transcripts is responsive to the energy status of leaf cells in Arabidopsis thaliana. Mitochondrion 2017; 35:23-34. [PMID: 28478183 DOI: 10.1016/j.mito.2017.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
Overexpression of AtPAP2, a phosphatase located on the outer membranes of chloroplasts and mitochondria, leads to higher energy outputs from these organelles. AtPAP2 interacts with seven MORF proteins of the editosome complex. RNA-sequencing analysis showed that the editing degrees of most sites did not differ significantly between OE and WT, except some sites on the transcripts of several cytochrome c maturation (Ccm) genes. Western blotting of 2D BN-PAGE showed that the patterns of CcmFN1 polypeptides were different between the lines. We proposed that AtPAP2 may influence cytochrome c biogenesis by modulating RNA editing through its interaction with MORF proteins.
Collapse
Affiliation(s)
- Yuzhe Sun
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yee-Song Law
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shifeng Cheng
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Boon Leong Lim
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
26
|
Lai B, Du LN, Liu R, Hu B, Su WB, Qin YH, Zhao JT, Wang HC, Hu GB. Two LcbHLH Transcription Factors Interacting with LcMYB1 in Regulating Late Structural Genes of Anthocyanin Biosynthesis in Nicotiana and Litchi chinensis During Anthocyanin Accumulation. FRONTIERS IN PLANT SCIENCE 2016; 7:166. [PMID: 26925082 PMCID: PMC4757707 DOI: 10.3389/fpls.2016.00166] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/31/2016] [Indexed: 05/20/2023]
Abstract
Anthocyanin biosynthesis requires the MYB-bHLH-WD40 protein complex to activate the late biosynthetic genes. LcMYB1 was thought to act as key regulator in anthocyanin biosynthesis of litchi. However, basic helix-loop-helix proteins (bHLHs) as partners have not been identified yet. The present study describes the functional characterization of three litchi bHLH candidate anthocyanin regulators, LcbHLH1, LcbHLH2, and LcbHLH3. Although these three litchi bHLHs phylogenetically clustered with bHLH proteins involved in anthcoyanin biosynthesis in other plant, only LcbHLH1 and LcbHLH3 were found to localize in the nucleus and physically interact with LcMYB1. The transcription levels of all these bHLHs were not coordinated with anthocyanin accumulation in different tissues and during development. However, when co-infiltrated with LcMYB1, both LcbHLH1 and LcbHLH3 enhanced anthocyanin accumulation in tobacco leaves with LcbHLH3 being the best inducer. Significant accumulation of anthocyanins in leaves transformed with the combination of LcMYB1 and LcbHLH3 were noticed, and this was associated with the up-regulation of two tobacco endogenous bHLH regulators, NtAn1a and NtAn1b, and late structural genes, like NtDFR and NtANS. Significant activity of the ANS promoter was observed in transient expression assays either with LcMYB1-LcbHLH1 or LcMYB1-LcbHLH3, while only minute activity was detected after transformation with only LcMYB1. In contrast, no activity was measured after induction with the combination of LcbHLH2 and LcMYB1. Higher DFR expression was also oberseved in paralleling with higher anthocyanins in co-transformed lines. LcbHLH1 and LcbHLH3 are essential partner of LcMYB1 in regulating the anthocyanin production in tobacco and probably also in litchi. The LcMYB1-LcbHLH complex enhanced anthocyanin accumulation may associate with activating the transcription of DFR and ANS.
Collapse
Affiliation(s)
- Biao Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Li-Na Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Rui Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Wen-Bing Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Yong-Hua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Jie-Tang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Hui-Cong Wang
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- *Correspondence: Gui-Bing Hu, ; Hui-Cong Wang,
| | - Gui-Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- *Correspondence: Gui-Bing Hu, ; Hui-Cong Wang,
| |
Collapse
|