1
|
Bhattacharjee S, Gao J, Lu YW, Eisa-Beygi S, Wu H, Li K, Birsner AE, Wong S, Song Y, Shyy JYJ, Cowan DB, Wei W, Aikawa M, Shi J, Chen H. Interplay Between FoxM1 and Dab2 Promotes Endothelial Cell Responses in Diabetic Wound Healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579019. [PMID: 39253510 PMCID: PMC11383039 DOI: 10.1101/2024.02.07.579019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Diabetes mellitus can cause impaired and delayed wound healing, leading to lower extremity amputations; however, the mechanisms underlying the regulation of vascular endothelial growth factor (VEGF)-dependent angiogenesis remain uncertain and could reveal new therapeutic targets. In our study, the molecular underpinnings of endothelial dysfunction in diabetes were investigated, focusing on the roles of Disabled-2 (Dab2) and Forkhead Box M1 (FoxM1) in VEGF receptor 2 (VEGFR2) signaling and endothelial cell (EC) function. Bulk RNA-sequencing analysis identified significant downregulation of Dab2 in high concentrations glucose treated primary mouse skin ECs, simulating hyperglycemic conditions in diabetes mellitus. In diabetic mice with a genetic EC deficiency of Dab2 angiogenesis was reduced in vivo and in vitro when compared with wild-type mice. Restoration of Dab2 expression by injected mRNA-containing lipid nanoparticles rescued impaired angiogenesis and wound healing in diabetic mice. At the same time, FoxM1 was downregulated in skin ECs subjected to high glucose conditions as determined by RNA-sequencing analysis. FoxM1 was found to bind to the Dab2 promoter, regulating its expression and influencing VEGFR2 signaling. The FoxM1 inhibitor FDI-6 reduced Dab2 expression and phosphorylation of VEGFR2. These findings indicate that restoring Dab2 expression through targeted therapies can enhance angiogenesis and wound repair in diabetes. To explore this therapeutic potential, we tested LyP-1-conjugated lipid nanoparticles (LNPs) containing Dab2 or control mRNAs to target ECs and found the former significantly improved wound healing and angiogenesis in diabetic mice. This study provides evidence of the crucial roles of Dab2 and FoxM1 in diabetic endothelial dysfunction and establishes targeted delivery as a promising treatment for diabetic vascular complications.
Collapse
Affiliation(s)
- Sudarshan Bhattacharjee
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Jianing Gao
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Yao Wei Lu
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn Li
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Amy E. Birsner
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Scott Wong
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Yudong Song
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John Y-J. Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Douglas B. Cowan
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Fu H, Siggs OM, Knight LS, Staffieri SE, Ruddle JB, Birsner AE, Collantes ER, Craig JE, Wiggs JL, D’Amato RJ. Thrombospondin 1 missense alleles induce extracellular matrix protein aggregation and TM dysfunction in congenital glaucoma. J Clin Invest 2022; 132:e156967. [PMID: 36453543 PMCID: PMC9711877 DOI: 10.1172/jci156967] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
Glaucoma is a highly heritable disease that is a leading cause of blindness worldwide. Here, we identified heterozygous thrombospondin 1 (THBS1) missense alleles altering p.Arg1034, a highly evolutionarily conserved amino acid, in 3 unrelated and ethnically diverse families affected by congenital glaucoma, a severe form of glaucoma affecting children. Thbs1R1034C-mutant mice had elevated intraocular pressure (IOP), reduced ocular fluid outflow, and retinal ganglion cell loss. Histology revealed an abundant, abnormal extracellular accumulation of THBS1 with abnormal morphology of juxtacanalicular trabecular meshwork (TM), an ocular tissue critical for aqueous fluid outflow. Functional characterization showed that the THBS1 missense alleles found in affected individuals destabilized the THBS1 C-terminus, causing protein misfolding and extracellular aggregation. Analysis using a range of amino acid substitutions at position R1034 showed that the extent of aggregation was correlated with the change in protein-folding free energy caused by variations in amino acid structure. Extracellular matrix (ECM) proteins, especially fibronectin, which bind to THBS1, also accumulated within THBS1 deposits. These results show that missense variants altering THBS1 p.Arg1034 can cause elevated IOP through a mechanism involving impaired TM fluid outflow in association with accumulation of aggregated THBS1 in the ECM of juxtacanalicular meshwork with altered morphology.
Collapse
Affiliation(s)
- Haojie Fu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Owen M. Siggs
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Lachlan S.W. Knight
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Sandra E. Staffieri
- Centre for Eye Research Australia (CERA), Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Department of Ophthalmology, University of Melbourne, Department of Surgery, Parkville, Victoria, Australia
- Department of Ophthalmology, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Jonathan B. Ruddle
- Department of Ophthalmology, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Amy E. Birsner
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | | | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Janey L. Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Robert J. D’Amato
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Meçe O, Houbaert D, Sassano ML, Durré T, Maes H, Schaaf M, More S, Ganne M, García-Caballero M, Borri M, Verhoeven J, Agrawal M, Jacobs K, Bergers G, Blacher S, Ghesquière B, Dewerchin M, Swinnen JV, Vinckier S, Soengas MS, Carmeliet P, Noël A, Agostinis P. Lipid droplet degradation by autophagy connects mitochondria metabolism to Prox1-driven expression of lymphatic genes and lymphangiogenesis. Nat Commun 2022; 13:2760. [PMID: 35589749 PMCID: PMC9120506 DOI: 10.1038/s41467-022-30490-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/29/2022] [Indexed: 12/29/2022] Open
Abstract
Autophagy has vasculoprotective roles, but whether and how it regulates lymphatic endothelial cells (LEC) homeostasis and lymphangiogenesis is unknown. Here, we show that genetic deficiency of autophagy in LEC impairs responses to VEGF-C and injury-driven corneal lymphangiogenesis. Autophagy loss in LEC compromises the expression of main effectors of LEC identity, like VEGFR3, affects mitochondrial dynamics and causes an accumulation of lipid droplets (LDs) in vitro and in vivo. When lipophagy is impaired, mitochondrial ATP production, fatty acid oxidation, acetyl-CoA/CoA ratio and expression of lymphangiogenic PROX1 target genes are dwindled. Enforcing mitochondria fusion by silencing dynamin-related-protein 1 (DRP1) in autophagy-deficient LEC fails to restore LDs turnover and lymphatic gene expression, whereas supplementing the fatty acid precursor acetate rescues VEGFR3 levels and signaling, and lymphangiogenesis in LEC-Atg5-/- mice. Our findings reveal that lipophagy in LEC by supporting FAO, preserves a mitochondrial-PROX1 gene expression circuit that safeguards LEC responsiveness to lymphangiogenic mediators and lymphangiogenesis.
Collapse
Affiliation(s)
- Odeta Meçe
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,VIB Center for Cancer Biology Research, 3000, Leuven, Belgium
| | - Diede Houbaert
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,VIB Center for Cancer Biology Research, 3000, Leuven, Belgium
| | - Maria-Livia Sassano
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,VIB Center for Cancer Biology Research, 3000, Leuven, Belgium
| | - Tania Durré
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
| | - Hannelore Maes
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Marco Schaaf
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,VIB Center for Cancer Biology Research, 3000, Leuven, Belgium
| | - Sanket More
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,VIB Center for Cancer Biology Research, 3000, Leuven, Belgium
| | - Maarten Ganne
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,VIB Center for Cancer Biology Research, 3000, Leuven, Belgium
| | - Melissa García-Caballero
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Mila Borri
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Jelle Verhoeven
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,VIB Center for Cancer Biology Research, 3000, Leuven, Belgium
| | - Madhur Agrawal
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,VIB Center for Cancer Biology Research, 3000, Leuven, Belgium
| | - Kathryn Jacobs
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Laboratory for Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory for Tumor Microenvironment and Therapeutic Resistance VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory for Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory for Tumor Microenvironment and Therapeutic Resistance VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
| | - Bart Ghesquière
- Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Johan V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium. .,VIB Center for Cancer Biology Research, 3000, Leuven, Belgium.
| |
Collapse
|
4
|
Soltani M. Capillary network formation and structure in a modified discrete mathematical model of angiogenesis. Biomed Phys Eng Express 2021; 8. [PMID: 34883475 DOI: 10.1088/2057-1976/ac4175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023]
Abstract
Angiogenesis, as part of cancer development, involves hierarchical complicated events and processes. Multiple studies have revealed the significance of the formation and structure of tumor-induced capillary networks. In this study, a discrete mathematical model of angiogenesis is studied and modified to capture the realistic physics of capillary network formation. Modifications are performed on the mathematical foundations of an existing discrete model of angiogenesis. The main modifications are the imposition of the matrix density effect, implementation of realistic boundary and initial conditions, and improvement of the method of governing equations based on physical observation. Results show that endothelial cells accelerate angiogenesis and capillary formation as they migrate toward the tumor and clearly exhibit the physical concept of haptotactic movement. On the other hand, consideration of blood flow-induced stress leads to a dynamic adaptive vascular network of capillaries which intelligibly reflects the brush border effect . The present modified model of capillary network formation is based on the physical rationale that defines a clear mathematical and physical interpretation of angiogenesis, which is likely to be used in cancer development modeling and anti-angiogenic therapies.
Collapse
Affiliation(s)
- M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.,Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada.,Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Ontario, Canada.,Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Tehran Province, Iran
| |
Collapse
|
5
|
Kinoshita T, Tomita H, Okada H, Niwa A, Hyodo F, Kanayama T, Matsuo M, Imaizumi Y, Kuroda T, Hatano Y, Miyai M, Egashira Y, Enomoto Y, Nakayama N, Sugie S, Matsumoto K, Yamaguchi Y, Matsuo M, Hara H, Iwama T, Hara A. Endothelial cell-specific reduction of heparan sulfate suppresses glioma growth in mice. Discov Oncol 2021; 12:50. [PMID: 34790962 PMCID: PMC8585801 DOI: 10.1007/s12672-021-00444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/26/2021] [Indexed: 11/03/2022] Open
Abstract
PURPOSE Heparan sulfate (HS) is one of the factors that has been suggested to be associated with angiogenesis and invasion of glioblastoma (GBM), an aggressive and fast-growing brain tumor. However, it remains unclear how HS of endothelial cells is involved in angiogenesis in glioblastoma and its prognosis. Thus, we investigated the effect of endothelial cell HS on GBM development. METHODS We generated endothelial cell-specific knockout of Ext1, a gene encoding a glycosyltransferase and essential for HS synthesis, and murine GL261 glioblastoma cells were orthotopically transplanted. Two weeks after transplantation, we examined the tumor progression and underlying mechanisms. RESULTS The endothelial cell-specific Ext1 knockout (Ext1 CKO ) mice exhibited reduced HS expression specifically in the vascular endothelium of the brain capillaries compared with the control wild-type (WT) mice. GBM growth was significantly suppressed in Ext1 CKO mice compared with that in WT mice. After GBM transplantation, the survival rate was significantly higher in Ext1 CKO mice than in WT mice. We investigated how the effect of fibroblast growth factor 2 (FGF2), which is known as an angiogenesis-promoting factor, differs between Ext1 CKO and WT mice by using an in vivo Matrigel assay and demonstrated that endothelial cell-specific HS reduction attenuated the effect of FGF2 on angiogenesis. CONCLUSIONS HS reduction in the vascular endothelium of the brain suppressed GBM growth and neovascularization in mice. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12672-021-00444-3.
Collapse
Affiliation(s)
- Takamasa Kinoshita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Fuminori Hyodo
- Department of Radiology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Tomohiro Kanayama
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Mikiko Matsuo
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Yuko Imaizumi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Takahiro Kuroda
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Masafumi Miyai
- Department of Neurosurgery, Ogaki Tokusyukai Hospital, Ogaki, Gifu 503-0015 Japan
| | - Yusuke Egashira
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Noriyuki Nakayama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Shigeyuki Sugie
- Department of Pathology, Asahi University Hospital, Gifu, 500-8523 Japan
| | - Kazu Matsumoto
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Yu Yamaguchi
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, San Diego, CA USA
| | - Masayuki Matsuo
- Department of Radiology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, 501-1196 Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| |
Collapse
|
6
|
Nakamura Y. Multiple Therapeutic Applications of RBM-007, an Anti-FGF2 Aptamer. Cells 2021; 10:cells10071617. [PMID: 34203430 PMCID: PMC8305614 DOI: 10.3390/cells10071617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a pivotal role in angiogenesis, but is not the only player with an angiogenic function. Fibroblast growth factor-2 (FGF2), which was discovered before VEGF, is also an angiogenic growth factor. It has been shown that FGF2 plays positive pathophysiological roles in tissue remodeling, bone health, and regeneration, such as the repair of neuronal damage, skin wound healing, joint protection, and the control of hypertension. Targeting FGF2 as a therapeutic tool in disease treatment through clinically useful inhibitors has not been developed until recently. An isolated inhibitory RNA aptamer against FGF2, named RBM-007, has followed an extensive preclinical study, with two clinical trials in phase 2 and phase 1, respectively, underway to assess the therapeutic impact in age-related macular degeneration (wet AMD) and achondroplasia (ACH), respectively. Moreover, showing broad therapeutic potential, preclinical evidence supports the use of RBM-007 in the treatment of lung cancer and cancer pain.
Collapse
Affiliation(s)
- Yoshikazu Nakamura
- Division of RNA Medical Science, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan;
- RIBOMIC Inc., Tokyo 108-0071, Japan
| |
Collapse
|
7
|
Lopes SV, Collins MN, Reis RL, Oliveira JM, Silva-Correia J. Vascularization Approaches in Tissue Engineering: Recent Developments on Evaluation Tests and Modulation. ACS APPLIED BIO MATERIALS 2021; 4:2941-2956. [DOI: 10.1021/acsabm.1c00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Soraia V. Lopes
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maurice N. Collins
- Bernal Institute, School of Engineering, University of Limerick, Limerick V94 T9PX, Ireland
| | - Rui L. Reis
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
8
|
Corneal neovascularization is inhibited with nucleolin-binding aptamer, AS1411. Exp Eye Res 2020; 193:107977. [PMID: 32081668 DOI: 10.1016/j.exer.2020.107977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/21/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
Corneal neovascularization (CNV) is a common sight-threatening pathology that can be induced by a variety of inflammatory and angiogenic stimuli. Current CNV treatments include anti-inflammatory drugs and antibody-based inhibitors of vascular endothelial growth factor (VEGF). However, these are not always effective and novel therapeutic approaches are needed. Previous work has indicated a role for nucleolin (NCL) in VEGF-mediated neoangiogenesis in a suture-induced CNV model. The major goal for this current study is to test the effect of AS1411, a NCL-binding DNA aptamer that has reached human clinical trials, on neovascularization in a murine model of VEGF-mediated CNV. Our results show that topical administration of AS1411 can significantly inhibit corneal neovascularization in this model. Mechanistic studies indicate that AS1411 reduces the VEGF-stimulated proliferation, migration, and tube formation of primary cells obtained from human limbus stroma (HLSC). AS1411 treatment also significantly reduced VEGF-stimulated induction of miR-21 and miR-221 in HLSC, suggesting a role for these pro-angiogenic miRNAs in mediating the effects of AS1411 in this system. In sum, this new research further supports a role for NCL in the molecular etiology of CNV and identifies AS1411 as a potential anti-angiogenic CNV treatment that works by a novel mechanism of action.
Collapse
|
9
|
Matsuda Y, Nonaka Y, Futakawa S, Imai H, Akita K, Nishihata T, Fujiwara M, Ali Y, Bhisitkul RB, Nakamura Y. Anti-Angiogenic and Anti-Scarring Dual Action of an Anti-Fibroblast Growth Factor 2 Aptamer in Animal Models of Retinal Disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:819-828. [PMID: 31454678 PMCID: PMC6716068 DOI: 10.1016/j.omtn.2019.07.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/25/2019] [Accepted: 07/24/2019] [Indexed: 12/03/2022]
Abstract
Currently approved therapies for age-related macular degeneration (AMD) are inhibitors against vascular endothelial growth factor (VEGF), which is a major contributor to the pathogenesis of neovascular AMD (nAMD). Intravitreal injections of anti-VEGF drugs have shown dramatic visual benefits for AMD patients. However, a significant portion of AMD patients exhibit an incomplete response to therapy and, over the extended management course, can lose vision, with the formation of submacular fibrosis as one risk factor. We investigated a novel target for AMD treatments, fibroblast growth factor 2 (FGF2), which has been implicated in the pathophysiology of both angiogenesis and fibrosis in a variety of tissue and organ systems. The anti-FGF2 aptamer, RBM-007, was examined for treatment of nAMD in animal models. In in vivo studies conducted in mice and rats, RBM-007 was able to inhibit FGF2-induced angiogenesis, laser-induced choroidal neovascularization (CNV), and CNV with fibrosis. Pharmacokinetic studies of RBM-007 in the rabbit vitreous revealed high and relatively long-lasting profiles that are superior to other approved anti-VEGF drugs. The anti-angiogenic and anti-scarring dual action of RBM-007 holds promise as an additive or alternative therapy to anti-VEGF treatments for nAMD.
Collapse
Affiliation(s)
- Yusaku Matsuda
- RIBOMIC, Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Yosuke Nonaka
- RIBOMIC, Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Satoshi Futakawa
- RIBOMIC, Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Hirotaka Imai
- RIBOMIC, Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Kazumasa Akita
- RIBOMIC, Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | | | | | - Yusuf Ali
- RIBOMIC, Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Robert B Bhisitkul
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Yoshikazu Nakamura
- RIBOMIC, Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan; Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
10
|
Lin T, Zhang X, Lu Y, Gong L. TGFBIp mediates lymphatic sprouting in corneal lymphangiogenesis. J Cell Mol Med 2019; 23:7602-7616. [PMID: 31456353 PMCID: PMC6815832 DOI: 10.1111/jcmm.14633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/14/2019] [Accepted: 07/28/2019] [Indexed: 02/06/2023] Open
Abstract
Corneal lymphangiogenesis plays a key role in diverse pathological conditions of the eye. Here, we demonstrate that a versatile extracellular matrix protein, transforming growth factor-β induced protein (TGFBIp), promotes lymphatic sprouting in corneal lymphangiogenesis. TGFBIp is highly up-regulated in inflamed mouse corneas. Immunolocalization of TGFBIp is detected in infiltrating macrophages in inflamed mouse corneas. Subconjunctival injection of liposomal clodronate can significantly reduce macrophage infiltration in inflamed mouse cornea, and decrease the expression of TGFBIp and areas of corneal lymphangiogenesis and angiogenesis after corneal suture placement. In brief, these results indicate that the up-regulation of TGFBIp in sutured cornea correlates with macrophage infiltration. Although TGFBIp alone cannot significantly stimulate corneal lymph vessel ingrowth in vivo, it can enhance the effect of vascular endothelial growth factor-C in promoting corneal lymphangiogenesis. The in vitro results show that TGFBIp promotes migration, tube formation and adhesion of human lymphatic endothelial cells (HLECs), but it has no effect on HLECs' proliferation. We also find that the in vitro effect of TGFBIp is mediated by the integrin α5β1-FAK pathway. Additionally, integrin α5β1 blockade can significantly inhibit lymphatic sprouting induced by TGFBIp. Taken together, these findings reveal a new molecular mechanism of lymphangiogenesis in which the TGFBIp-integrin pathways plays a pivotal role in lymphatic sprouting.
Collapse
Affiliation(s)
- Tong Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China.,Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Xiaozhao Zhang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China.,Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yang Lu
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China.,Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China.,Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Xie F, Zhang X, Luo W, Ge H, Sun D, Liu P. Notch Signaling Pathway Is Involved in bFGF-Induced Corneal Lymphangiogenesis and Hemangiogenesis. J Ophthalmol 2019; 2019:9613923. [PMID: 31531237 PMCID: PMC6721487 DOI: 10.1155/2019/9613923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/14/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Notch/Dll4 involvement in cornea neovascularization (CRNV) and lymphangiogenesis is unclear. This study aimed to explore the role of notch signaling in basic fibroblast growth factor- (bFGF-) induced corneal lymphangiogenesis and hemangiogenesis. METHODS Corneal stroma of C57BL/6 mice was implanted with bFGF- or phosphate-buffered saline- (PBS-) soaked pellets. Corneal lymphangiogenesis and neovascularization were evaluated by immunofluorescence. Vascular endothelial growth factor-A (VEGF-A), Delta-like ligand 4 (Dll4), and Notch1 mRNA and protein expression were examined on days 1, 3, 7, and 14 by real-time polymerase chain reaction and western blot. Corneal cells were treated with ranibizumab, dexamethasone, and γ-secretase inhibitor (GSI). Microspheres were used to evaluate corneal hemangiogenesis in vivo. RESULTS Corneal hemangiogenesis reached its peak on day 7 after bFGF implantation, and corneal lymphangiogenesis was significantly higher on day 7 and 14, compared with PBS. mRNA and protein expression of VEGF-A, Dll4, and Notch1 were higher in bFGF-induced animal models compared with controls. Corneal hemangiogenesis and lymphangiogenesis decreased after 7 days of ranibizumab or dexamethasone treatment. After adding GSI for 24 h in bFGF-induced cells, the expression of Notch1 and Dll4 were downregulated compared with that in the control group whereas the expression level of VEGF-A was upregulated. Fluorescent particle number was higher in the GSI group. Ranibizumab and dexamethasone decreased the fluorescence signal. CONCLUSION The notch signaling pathway plays a role in regulating VEGF expression, affecting corneal lymphangiogenesis and hemangiogenesis in mice. The molecular imaging probe technique can visualize the changes in the VEGF-A expression level of corneal limbus hemangiogenesis.
Collapse
Affiliation(s)
- Fang Xie
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xue Zhang
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenting Luo
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyan Ge
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dawei Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ping Liu
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquière B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018; 21:425-532. [PMID: 29766399 PMCID: PMC6237663 DOI: 10.1007/s10456-018-9613-x] [Citation(s) in RCA: 419] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
Collapse
Affiliation(s)
- Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland.
- Translational Research Center in Oncohaematology, University of Geneva, Geneva, Switzerland.
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Elizabeth Allen
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
| | - Andrey Anisimov
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Alfred C Aplin
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Hellmut G Augustin
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - R Hugh F Bender
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Andreas Bikfalvi
- Angiogenesis and Tumor Microenvironment Laboratory (INSERM U1029), University Bordeaux, Pessac, France
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Barbara C Böck
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Peter C Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Federico Bussolino
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute-FPO-IRCCS, 10060, Candiolo, Italy
| | - Bertan Cakir
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anca M Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ondine Cleaver
- Department of Molecular Biology, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George Coukos
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine and Dalton Cardiovascular Center, Columbia, MO, USA
| | - Michele De Palma
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Emily Couric Cancer Center, The University of Virginia, Charlottesville, VA, USA
| | - Neil P Dufton
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute, Leuven, Belgium
| | | | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London, UK
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, Metabolomics Expertise Center, KU Leuven, Leuven, Belgium
| | - Yan Gong
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adrian L Harris
- Molecular Oncology Laboratories, Oxford University Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Nan W Hultgren
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | | | - Melita Irving
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Robert S Kerbel
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hynda K Kleinmann
- The George Washington University School of Medicine, Washington, DC, USA
| | - Pieter Koolwijk
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Elisabeth Kuczynski
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Juan M Melero-Martin
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roberto F Nicosia
- Department of Pathology, University of Washington, Seattle, WA, USA
- Pathology and Laboratory Medicine Service, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Agnes Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Jussi Nurro
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tatiana V Petrova
- Department of oncology UNIL-CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund, Sweden
| | - Roberto Pili
- Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| | - Jeffrey W Pollard
- Medical Research Council Centre for Reproductive Health, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Mark J Post
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Department Surgery, LUMC, Leiden, The Netherlands
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine, National Council of Scientific and Technical Investigations (CONICET), Buenos Aires, Argentina
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
- National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Curzio Ruegg
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre and The Sir Peter MacCallum, Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jimmy Stalin
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Amber N Stratman
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Maureen Van de Velde
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Victor W M van Hinsbergh
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Peter B Vermeulen
- HistoGeneX, Antwerp, Belgium
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus & University of Antwerp, Antwerp, Belgium
| | - Johannes Waltenberger
- Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hong Xin
- University of California, San Diego, La Jolla, CA, USA
| | - Bahar Yetkin-Arik
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Seppo Yla-Herttuala
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Grogan JA, Connor AJ, Pitt-Francis JM, Maini PK, Byrne HM. The importance of geometry in the corneal micropocket angiogenesis assay. PLoS Comput Biol 2018; 14:e1006049. [PMID: 29522527 PMCID: PMC5862519 DOI: 10.1371/journal.pcbi.1006049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/21/2018] [Accepted: 02/22/2018] [Indexed: 11/19/2022] Open
Abstract
The corneal micropocket angiogenesis assay is an experimental protocol for studying vessel network formation, or neovascularization, in vivo. The assay is attractive due to the ease with which the developing vessel network can be observed in the same animal over time. Measurements from the assay have been used in combination with mathematical modeling to gain insights into the mechanisms of angiogenesis. While previous modeling studies have adopted planar domains to represent the assay, the hemispherical shape of the cornea and asymmetric positioning of the angiogenic source can be seen to affect vascular patterning in experimental images. As such, we aim to better understand: i) how the geometry of the assay influences vessel network formation and ii) how to relate observations from planar domains to those in the hemispherical cornea. To do so, we develop a three-dimensional, off-lattice mathematical model of neovascularization in the cornea, using a spatially resolved representation of the assay for the first time. Relative to the detailed model, we predict that the adoption of planar geometries has a noticeable impact on vascular patterning, leading to increased vessel 'merging', or anastomosis, in particular when circular geometries are adopted. Significant differences in the dynamics of diffusible aniogenesis simulators are also predicted between different domains. In terms of comparing predictions across domains, the 'distance of the vascular front to the limbus' metric is found to have low sensitivity to domain choice, while metrics such as densities of tip cells and vessels and 'vascularized fraction' are sensitive to domain choice. Given the widespread adoption and attractive simplicity of planar tissue domains, both in silico and in vitro, the differences identified in the present study should prove useful in relating the results of previous and future theoretical studies of neovascularization to in vivo observations in the cornea.
Collapse
Affiliation(s)
- James A. Grogan
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Anthony J. Connor
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Joe M. Pitt-Francis
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Philip K. Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Helen M. Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Dynamic, heterogeneous endothelial Tie2 expression and capillary blood flow during microvascular remodeling. Sci Rep 2017; 7:9049. [PMID: 28831080 PMCID: PMC5567377 DOI: 10.1038/s41598-017-08982-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Microvascular endothelial cell heterogeneity and its relationship to hemodynamics remains poorly understood due to a lack of sufficient methods to examine these parameters in vivo at high resolution throughout an angiogenic network. The availability of surrogate markers for functional vascular proteins, such as green fluorescent protein, enables expression in individual cells to be followed over time using confocal microscopy, while photoacoustic microscopy enables dynamic measurement of blood flow across the network with capillary-level resolution. We combined these two non-invasive imaging modalities in order to spatially and temporally analyze biochemical and biomechanical drivers of angiogenesis in murine corneal neovessels. By stimulating corneal angiogenesis with an alkali burn in Tie2-GFP fluorescent-reporter mice, we evaluated how onset of blood flow and surgically-altered blood flow affects Tie2-GFP expression. Our study establishes a novel platform for analyzing heterogeneous blood flow and fluorescent reporter protein expression across a dynamic microvascular network in an adult mammal.
Collapse
|
15
|
Khajavi M, Zhou Y, Birsner AE, Bazinet L, Rosa Di Sant A, Schiffer AJ, Rogers MS, Krishnaji ST, Hu B, Nguyen V, Zon L, D’Amato RJ. Identification of Padi2 as a novel angiogenesis-regulating gene by genome association studies in mice. PLoS Genet 2017; 13:e1006848. [PMID: 28617813 PMCID: PMC5491319 DOI: 10.1371/journal.pgen.1006848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/29/2017] [Accepted: 06/01/2017] [Indexed: 11/18/2022] Open
Abstract
Recent findings indicate that growth factor-driven angiogenesis is markedly influenced by genetic variation. This variation in angiogenic responsiveness may alter the susceptibility to a number of angiogenesis-dependent diseases. Here, we utilized the genetic diversity available in common inbred mouse strains to identify the loci and candidate genes responsible for differences in angiogenic response. The corneal micropocket neovascularization assay was performed on 42 different inbred mouse strains using basic fibroblast growth factor (bFGF) pellets. We performed a genome-wide association study utilizing efficient mixed-model association (EMMA) mapping using the induced vessel area from all strains. Our analysis yielded five loci with genome-wide significance on chromosomes 4, 8, 11, 15 and 16. We further refined the mapping on chromosome 4 within a haplotype block containing multiple candidate genes. These genes were evaluated by expression analysis in corneas of various inbred strains and in vitro functional assays in human microvascular endothelial cells (HMVECs). Of these, we found the expression of peptidyl arginine deiminase type II (Padi2), known to be involved in metabolic pathways, to have a strong correlation with a haplotype shared by multiple high angiogenic strains. In addition, inhibition of Padi2 demonstrated a dosage-dependent effect in HMVECs. To investigate its role in vivo, we knocked down Padi2 in transgenic kdrl:zsGreen zebrafish embryos using morpholinos. These embryos had disrupted vessel formation compared to control siblings. The impaired vascular pattern was partially rescued by human PADI2 mRNA, providing evidence for the specificity of the morphant phenotype. Taken together, our study is the first to indicate the potential role of Padi2 as an angiogenesis-regulating gene. The characterization of Padi2 and other genes in associated pathways may provide new understanding of angiogenesis regulation and novel targets for diagnosis and treatment of a wide variety of angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Mehrdad Khajavi
- The Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yi Zhou
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy E. Birsner
- The Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lauren Bazinet
- The Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amanda Rosa Di Sant
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alex J. Schiffer
- The Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael S. Rogers
- The Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Subrahmanian Tarakkad Krishnaji
- The Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bella Hu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vy Nguyen
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Leonard Zon
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Robert J. D’Amato
- The Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
LeBlanc ME, Wang W, Chen X, Ji Y, Shakya A, Shen C, Zhang C, Gonzalez V, Brewer M, Ma JX, Wen R, Zhang F, Li W. The regulatory role of hepatoma-derived growth factor as an angiogenic factor in the eye. Mol Vis 2016; 22:374-86. [PMID: 27122967 PMCID: PMC4842004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 04/21/2016] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Hepatoma-derived growth factor (HDGF) is a mitogen that promotes endothelial proliferation and neuronal survival. Using a unique technology of ligandomics, we recently identified HDGF as a retinal endothelial binding protein. The purpose of this study is to examine the role of HDGF in regulating ocular vasculature and the expression of HDGF in the retina. METHODS HDGF expression in the retinal was analyzed with western blot and immunohistochemistry. Angiogenic activity was investigated in human retinal microvascular endothelial cells (HRMVECs) with in vitro endothelial proliferation, migration, and permeability assays. In vivo angiogenic activity was quantified with a corneal pocket assay. The Evans blue assay and western blot using anti-mouse albumin were performed to detect the capacity of HDGF to induce retinal vascular leakage. RESULTS Immunohistochemistry revealed that HDGF is expressed in the retina with a distinct pattern. HDGF was detected in retinal ganglion cells and the inner nuclear layer but not in the inner plexiform layer, suggesting that HDGF is expressed in the nucleus, but not in the cytoplasm, of retinal neurons. In contrast to family member HDGF-related protein 3 (HRP-3) that has no expression in photoreceptors, HDGF is also present in the outer nuclear layer and the inner and outer segments of photoreceptors. This suggests that HDGF is expressed in the nucleus as well as the cytoplasm of photoreceptors. In vitro functional assays showed that HDGF induced the proliferation, migration, and permeability of HRMVECs. Corneal pocket assay indicated that HDGF directly stimulated angiogenesis in vivo. Intravitreal injection of HDGF significantly induced retinal vascular leakage. CONCLUSIONS These results suggest that HDGF is an angiogenic factor that regulates retinal vasculature in physiologic and pathological conditions. Identification of HDGF by ligandomics and its independent characterization in this study also support the validity of this new technology for systematic identification of cellular ligands, including angiogenic factors.
Collapse
Affiliation(s)
- Michelle E. LeBlanc
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL
| | - Weiwen Wang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL
| | - Xiuping Chen
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL,Department of Ophthalmology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yanli Ji
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL,Department of Ophthalmology, 2nd People’s Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Akhalesh Shakya
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL
| | - Chen Shen
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL
| | - Chenming Zhang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL,Department of Ophthalmology, Jinan 2nd People’s Hospital, Jinan, China
| | - Vivianne Gonzalez
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL
| | - Megan Brewer
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL
| | - Jian-xing Ma
- Department of Physiology, the University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Rong Wen
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL
| | - Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami, School of Medicine
| | - Wei Li
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL,Vascular Biology Institute, University of Miami School of Medicine, Miami, FL
| |
Collapse
|