1
|
Bullen CK, Singh AK, Krug S, Lun S, Thakur P, Srikrishna G, Bishai WR. MDA5 RNA-sensing pathway activation by Mycobacterium tuberculosis promotes innate immune subversion and pathogen survival. JCI Insight 2023; 8:e166242. [PMID: 37725440 PMCID: PMC10619499 DOI: 10.1172/jci.insight.166242] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Host cytosolic sensing of Mycobacterium tuberculosis (M. tuberculosis) RNA by the RIG-I-like receptor (RLR) family perturbs innate immune control within macrophages; however, a distinct role of MDA5, a member of the RLR family, in M. tuberculosis pathogenesis has yet to be fully elucidated. To further define the role of MDA5 in M. tuberculosis pathogenesis, we evaluated M. tuberculosis intracellular growth and innate immune responses in WT and Mda5-/- macrophages. Transfection of M. tuberculosis RNA strongly induced proinflammatory cytokine production in WT macrophages, which was abrogated in Mda5-/- macrophages. M. tuberculosis infection in macrophages induced MDA5 protein expression, accompanied by an increase in MDA5 activation as assessed by multimer formation. IFN-γ-primed Mda5-/- macrophages effectively contained intracellular M. tuberculosis proliferation to a markedly greater degree than WT macrophages. Further comparisons of WT versus Mda5-/- macrophages revealed that during M. tuberculosis infection MDA5 contributed to IL-1β production and inflammasome activation and that loss of MDA5 led to a substantial increase in autophagy. In the mouse TB model, loss of MDA5 conferred host survival benefits with a concomitant reduction in M. tuberculosis bacillary burden. These data reveal that loss of MDA5 is host protective during M. tuberculosis infection in vitro and in vivo, suggesting that M. tuberculosis exploits MDA5 to subvert immune containment.
Collapse
|
2
|
Caliskaner Ozturk B, Vardaloglu I, Ongel Harbiyeli D, Gungordu N, Senkardesler G, Aliyeva N, Ismayilova A, Can G, Balkan II, Gemicioglu B, Borekci S. Association between presence of Bacillus Calmette-Guerin vaccine scar and coronavirus disease 2019. Medicine (Baltimore) 2022; 101:e32185. [PMID: 36482635 PMCID: PMC9726327 DOI: 10.1097/md.0000000000032185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacillus Calmette-Guerin vaccine is administered for protection against tuberculosis and may also have beneficial effects against some viral respiratory tract infections. In this study, it was aimed to investigate the relationship between Bacillus Calmette-Guerin vaccination which is confirmed by BCG scar, and the frequency and course of Coronavirus disease 2019 (COVID-19). Among 490 patients, 400 patients who accepted to participate in the study were included. After the consent of patients, age, gender, body mass index, comorbidities, smoking, history, and the progress of COVID-19 of these patients were investigated; the presence and number of Bacillus Calmette-Guerin scars were recorded by a physician. Data from groups with and without COVID-19 history were compared. There was no relation between presence and number of the BCG scar and COVID-19 related hospitalization and intensive care unit admission. When groups with and without COVID-19 history compared, no statistically significant difference was found with the presence and number of Bacillus Calmette-Guerin scars (P > 0,05). No association was found between the presence or number of BCG scars and the frequency and course of COVID-19 in individuals with Bacillus Calmette-Guerin vaccination history confirmed by the presence of Bacillus Calmette-Guerin vaccine scars. Currently, the most important protection against COVID-19 is the COVID-19 vaccine.
Collapse
Affiliation(s)
- Buket Caliskaner Ozturk
- Cerrahpasa Faculty of Medicine, Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Istanbul, Turkey
- * Correspondence: Buket Caliskaner Ozturk, Cerrahpasa Medical Faculty, Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Istanbul 34303, Turkey (e-mail: )
| | - Ilgim Vardaloglu
- Cerrahpasa Faculty of Medicine, Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Deniz Ongel Harbiyeli
- Cerrahpasa Faculty of Medicine, Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nejdiye Gungordu
- Cerrahpasa Faculty of Medicine, Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gizem Senkardesler
- Cerrahpasa Faculty of Medicine, Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nigar Aliyeva
- Cerrahpasa Faculty of Medicine, Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Aytan Ismayilova
- Cerrahpasa Faculty of Medicine, Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gunay Can
- Cerrahpasa Faculty of Medicine, Department of Public Health, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ilker Inanc Balkan
- Cerrahpasa Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bilun Gemicioglu
- Cerrahpasa Faculty of Medicine, Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sermin Borekci
- Cerrahpasa Faculty of Medicine, Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
3
|
Zheng ZQ, Wang SY, Xu ZS, Fu YZ, Wang YY. SARS-CoV-2 nucleocapsid protein impairs stress granule formation to promote viral replication. Cell Discov 2021; 7:38. [PMID: 34035218 PMCID: PMC8147577 DOI: 10.1038/s41421-021-00275-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 02/05/2023] Open
Abstract
The newly emerging coronavirus SARS-CoV-2 causes severe lung disease and substantial mortality. How the virus evades host defense for efficient replication is not fully understood. In this report, we found that the SARS-CoV-2 nucleocapsid protein (NP) impaired stress granule (SG) formation induced by viral RNA. SARS-CoV-2 NP associated with the protein kinase PKR after dsRNA stimulation. SARS-CoV-2 NP did not affect dsRNA-induced PKR oligomerization, but impaired dsRNA-induced PKR phosphorylation (a hallmark of its activation) as well as SG formation. SARS-CoV-2 NP also targeted the SG-nucleating protein G3BP1 and impaired G3BP1-mediated SG formation. Deficiency of PKR or G3BP1 impaired dsRNA-triggered SG formation and increased SARS-CoV-2 replication. The NP of SARS-CoV also targeted both PKR and G3BP1 to impair dsRNA-induced SG formation, whereas the NP of MERS-CoV targeted PKR, but not G3BP1 for the impairment. Our findings suggest that SARS-CoV-2 NP promotes viral replication by impairing formation of antiviral SGs, and reveal a conserved mechanism on evasion of host antiviral responses by highly pathogenic human betacoronaviruses.
Collapse
Affiliation(s)
- Zhou-Qin Zheng
- grid.439104.b0000 0004 1798 1925Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Su-Yun Wang
- grid.439104.b0000 0004 1798 1925Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei China
| | - Zhi-Sheng Xu
- grid.439104.b0000 0004 1798 1925Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei China
| | - Yu-Zhi Fu
- grid.439104.b0000 0004 1798 1925Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei China
| | - Yan-Yi Wang
- grid.439104.b0000 0004 1798 1925Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Sun B, Zeng H, Liang J, Zhang L, Hu H, Wang Q, Meng W, Li C, Ye F, Wang C, Zhu J. NSUN5 Facilitates Viral RNA Recognition by RIG-I Receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:3408-3418. [PMID: 33177158 DOI: 10.4049/jimmunol.1901455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 10/14/2020] [Indexed: 11/19/2022]
Abstract
The RIG-I receptor induces the innate antiviral responses upon sensing RNA viruses. The mechanisms through which RIG-I optimizes the strength of the downstream signaling remain incompletely understood. In this study, we identified that NSUN5 could potentiate the RIG-I innate signaling pathway. Deficiency of NSUN5 enhanced RNA virus proliferation and inhibited the induction of the downstream antiviral genes. Consistently, NSUN5-deficient mice were more susceptible to RNA virus infection than their wild-type littermates. Mechanistically, NSUN5 bound directly to both viral RNA and RIG-I, synergizing the recognition of dsRNA by RIG-I. Collectively, to our knowledge, this study characterized NSUN5 as a novel RIG-I coreceptor, playing a vital role in restricting RNA virus infection.
Collapse
Affiliation(s)
- Boyue Sun
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Haoyang Zeng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaqian Liang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Lele Zhang
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; and
| | - Haiyang Hu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Quanyi Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Meng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Chenhui Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Fuqiang Ye
- Department of Disease Control and Prevention, Center for Disease Control and Prevention of Eastern Theater Command, Nanjing 210002, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China;
| | - Juanjuan Zhu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China;
| |
Collapse
|
5
|
Jung S, von Thülen T, Yang I, Laukemper V, Rupf B, Janga H, Panagiotidis GD, Schoen A, Nicolai M, Schulte LN, Obermann HL, Weber F, Kaufmann A, Bauer S. A ribosomal RNA fragment with 2',3'-cyclic phosphate and GTP-binding activity acts as RIG-I ligand. Nucleic Acids Res 2020; 48:10397-10412. [PMID: 32946572 PMCID: PMC7544222 DOI: 10.1093/nar/gkaa739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
The RNA helicase RIG-I plays a key role in sensing pathogen-derived RNA. Double-stranded RNA structures bearing 5'-tri- or diphosphates are commonly referred to as activating RIG-I ligands. However, endogenous RNA fragments generated during viral infection via RNase L also activate RIG-I. Of note, RNase-digested RNA fragments bear a 5'-hydroxyl group and a 2',3'-cyclic phosphate. How endogenous RNA fragments activate RIG-I despite the lack of 5'-phosphorylation has not been elucidated. Here we describe an endogenous RIG-I ligand (eRL) that is derived from the internal transcribed spacer 2 region (ITS2) of the 45S ribosomal RNA after partial RNase A digestion in vitro, RNase A protein transfection or RNase L activation. The immunostimulatory property of the eRL is dependent on 2',3'-cyclic phosphate and its sequence is characterized by a G-quadruplex containing sequence motif mediating guanosine-5'-triphosphate (GTP) binding. In summary, RNase generated self-RNA fragments with 2',3'-cyclic phosphate function as nucleotide-5'-triphosphate binding aptamers activating RIG-I.
Collapse
Affiliation(s)
- Stephanie Jung
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Tina von Thülen
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Ines Yang
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule Hannover, Carl Neuberg Straße 1, 30625 Hannover, Germany
| | - Viktoria Laukemper
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Benjamin Rupf
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Harshavardhan Janga
- Institut für Lungenforschung/iLung, Philipps-Universität Marburg, BMFZ, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Georgios-Dimitrios Panagiotidis
- Institut für Virologie, Fachbereich Veterinärmedizin (FB10), Justus-Liebig-Universität Gießen, Schubertstr. 81, 35392 Gießen, Germany
| | - Andreas Schoen
- Institut für Virologie, Fachbereich Veterinärmedizin (FB10), Justus-Liebig-Universität Gießen, Schubertstr. 81, 35392 Gießen, Germany
| | - Marina Nicolai
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Leon N Schulte
- Institut für Lungenforschung/iLung, Philipps-Universität Marburg, BMFZ, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
- Deutsches Zentrum für Lungenforschung (DZL), 35392 Gießen, Germany
| | - Hannah-Lena Obermann
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Friedemann Weber
- Institut für Virologie, Fachbereich Veterinärmedizin (FB10), Justus-Liebig-Universität Gießen, Schubertstr. 81, 35392 Gießen, Germany
| | - Andreas Kaufmann
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Stefan Bauer
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| |
Collapse
|
6
|
The secRNome of Listeria monocytogenes Harbors Small Noncoding RNAs That Are Potent Inducers of Beta Interferon. mBio 2019; 10:mBio.01223-19. [PMID: 31594810 PMCID: PMC6786865 DOI: 10.1128/mbio.01223-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interferons are potent and broadly acting cytokines that stimulate cellular responses to nucleic acids of unusual structures or locations. While protective when induced following viral infections, the induction of interferons is detrimental to the host during L. monocytogenes infection. Here, we identify specific sRNAs, secreted by the bacterium, with the capacity to induce type I IFN. Further analysis of the most potent sRNA, rli32, links the ability to induce RIG-I-dependent induction of the type I IFN response to the intracellular growth properties of the bacterium. Our findings emphasize the significance of released RNA for Listeria infection and shed light on a compartmental strategy used by an intracellular pathogen to modulate host responses to its advantage. Cellular sensing of bacterial RNA is increasingly recognized as a determinant of host-pathogen interactions. The intracellular pathogen Listeria monocytogenes induces high levels of type I interferons (alpha/beta interferons [IFN-α/β]) to create a growth-permissive microenvironment during infection. We previously demonstrated that RNAs secreted by L. monocytogenes (comprising the secRNome) are potent inducers of IFN-β. We determined the composition and diversity of the members of the secRNome and found that they are uniquely enriched for noncoding small RNAs (sRNAs). Testing of individual sRNAs for their ability to induce IFN revealed several sRNAs with this property. We examined ril32, an intracellularly expressed sRNA that is highly conserved for the species L. monocytogenes and that was the most potent inducer of IFN-β expression of all the sRNAs tested in this study, in more detail. The rli32-induced IFN-β response is RIG-I (retinoic acid inducible gene I) dependent, and cells primed with rli32 inhibit influenza virus replication. We determined the rli32 motif required for IFN induction. rli32 overproduction promotes intracellular bacterial growth, and a mutant lacking rli32 is restricted for intracellular growth in macrophages. rli32-overproducing bacteria are resistant to H2O2 and exhibit both increased catalase activity and changes in the cell envelope. Comparative transcriptome sequencing (RNA-Seq) analysis indicated that ril32 regulates expression of the lhrC locus, previously shown to be involved in cell envelope stress. Inhibition of IFN-β signaling by ruxolitinib reduced rli32-dependent intracellular bacterial growth, indicating a link between induction of the interferon system and bacterial physiology. rli32 is, to the best of our knowledge, the first secreted individual bacterial sRNA known to trigger the induction of the type I IFN response.
Collapse
|
7
|
Soonthornvacharin S, Rodriguez-Frandsen A, Zhou Y, Galvez F, Huffmaster NJ, Tripathi S, Balasubramaniam VRMT, Inoue A, de Castro E, Moulton H, Stein DA, Sánchez-Aparicio MT, De Jesus PD, Nguyen Q, König R, Krogan NJ, García-Sastre A, Yoh SM, Chanda SK. Systems-based analysis of RIG-I-dependent signalling identifies KHSRP as an inhibitor of RIG-I receptor activation. Nat Microbiol 2017; 2:17022. [PMID: 28248290 PMCID: PMC5338947 DOI: 10.1038/nmicrobiol.2017.22] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/23/2017] [Indexed: 01/05/2023]
Abstract
Retinoic acid-inducible gene I (RIG-I) receptor recognizes 5'-triphosphorylated RNA and triggers a signalling cascade that results in the induction of type-I interferon (IFN)-dependent responses. Its precise regulation represents a pivotal balance between antiviral defences and autoimmunity. To elucidate the cellular cofactors that regulate RIG-I signalling, we performed two global RNA interference analyses to identify both positive and negative regulatory nodes operating on the signalling pathway during virus infection. These factors were integrated with experimentally and computationally derived interactome data to build a RIG-I protein interaction network. Our analysis revealed diverse cellular processes, including the unfolded protein response, Wnt signalling and RNA metabolism, as critical cellular components governing innate responses to non-self RNA species. Importantly, we identified K-Homology Splicing Regulatory Protein (KHSRP) as a negative regulator of this pathway. We find that KHSRP associates with the regulatory domain of RIG-I to maintain the receptor in an inactive state and attenuate its sensing of viral RNA (vRNA). Consistent with increased RIG-I antiviral signalling in the absence of KHSRP, viral replication is reduced when KHSRP expression is knocked down both in vitro and in vivo. Taken together, these data indicate that KHSRP functions as a checkpoint regulator of the innate immune response to pathogen challenge.
Collapse
Affiliation(s)
- Stephen Soonthornvacharin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ariel Rodriguez-Frandsen
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| | - Yingyao Zhou
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Felipe Galvez
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| | - Nicholas J Huffmaster
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
| | - Vinod R M T Balasubramaniam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
| | - Atsushi Inoue
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Elisa de Castro
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
| | - Hong Moulton
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, 450 SW 30th Street, Oregon 97331, USA
| | - David A Stein
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, 450 SW 30th Street, Oregon 97331, USA
| | - María Teresa Sánchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
| | - Paul D De Jesus
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| | - Quy Nguyen
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| | - Renate König
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- Host-Pathogen-Interactions, Paul-Ehrlich-Institute, German Center for Infection Research (DZIF), Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, 1700 4th Street, Byers Hall 308D, Box 2530, San Francisco, California 94158, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
| | - Sunnie M Yoh
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| |
Collapse
|
8
|
RNAs Containing Modified Nucleotides Fail To Trigger RIG-I Conformational Changes for Innate Immune Signaling. mBio 2016; 7:mBio.00833-16. [PMID: 27651356 PMCID: PMC5030355 DOI: 10.1128/mbio.00833-16] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Invading pathogen nucleic acids are recognized and bound by cytoplasmic (retinoic acid-inducible gene I [RIG-I]-like) and membrane-bound (Toll-like) pattern recognition receptors to activate innate immune signaling. Modified nucleotides, when present in RNA molecules, diminish the magnitude of these signaling responses. However, mechanisms explaining the blunted signaling have not been elucidated. In this study, we used several independent biological assays, including inhibition of virus replication, RIG-I:RNA binding assays, and limited trypsin digestion of RIG-I:RNA complexes, to begin to understand how RNAs containing modified nucleotides avoid or suppress innate immune signaling. The experiments were based on a model innate immune activating RNA molecule, the polyU/UC RNA domain of hepatitis C virus, which was transcribed in vitro with canonical nucleotides or with one of eight modified nucleotides. The approach revealed signature assay responses associated with individual modified nucleotides or classes of modified nucleotides. For example, while both N-6-methyladenosine (m6A) and pseudouridine nucleotides correlate with diminished signaling, RNA containing m6A modifications bound RIG-I poorly, while RNA containing pseudouridine bound RIG-I with high affinity but failed to trigger the canonical RIG-I conformational changes associated with robust signaling. These data advance understanding of RNA-mediated innate immune signaling, with additional relevance for applying nucleotide modifications to RNA therapeutics. The innate immune system provides the first response to virus infections and must distinguish between host and pathogen nucleic acids to mount a protective immune response without activating autoimmune responses. While the presence of nucleotide modifications in RNA is known to correlate with diminished innate immune signaling, the underlying mechanisms have not been explored. The data reported here are important for defining mechanistic details to explain signaling suppression by RNAs containing modified nucleotides. The results suggest that RNAs containing modified nucleotides interrupt signaling at early steps of the RIG-I-like innate immune activation pathway and also that nucleotide modifications with similar chemical structures can be organized into classes that suppress or evade innate immune signaling steps. These data contribute to defining the molecular basis for innate immune signaling suppression by RNAs containing modified nucleotides. The results have important implications for designing therapeutic RNAs that evade innate immune detection.
Collapse
|
9
|
Weber M, Sediri H, Felgenhauer U, Binzen I, Bänfer S, Jacob R, Brunotte L, García-Sastre A, Schmid-Burgk JL, Schmidt T, Hornung V, Kochs G, Schwemmle M, Klenk HD, Weber F. Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I. Cell Host Microbe 2015; 17:309-319. [PMID: 25704008 PMCID: PMC4359673 DOI: 10.1016/j.chom.2015.01.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/24/2014] [Accepted: 01/05/2015] [Indexed: 12/16/2022]
Abstract
The cytoplasmic RNA helicase RIG-I mediates innate sensing of RNA viruses. The genomes of influenza A virus (FLUAV) are encapsidated by the nucleoprotein and associated with RNA polymerase, posing potential barriers to RIG-I sensing. We show that RIG-I recognizes the 5'-triphosphorylated dsRNA on FLUAV nucleocapsids but that polymorphisms at position 627 of the viral polymerase subunit PB2 modulate RIG-I sensing. Compared to mammalian-adapted PB2-627K, avian FLUAV nucleocapsids possessing PB2-627E are prone to increased RIG-I recognition, and RIG-I-deficiency partially restores PB2-627E virus infection of mammalian cells. Heightened RIG-I sensing of PB2-627E nucleocapsids correlates with previously established lower affinity of 627E-containing PB2 for nucleoprotein and is increased by further nucleocapsid instability. The effect of RIG-I on PB2-627E nucleocapsids is independent of antiviral signaling, suggesting that RIG-I-nucleocapsid binding alone can inhibit infection. These results indicate that RIG-I is a direct avian FLUAV restriction factor and highlight nucleocapsid disruption as an antiviral strategy.
Collapse
Affiliation(s)
- Michaela Weber
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Hanna Sediri
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Ulrike Felgenhauer
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Ina Binzen
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Sebastian Bänfer
- Department of Cell Biology and Cell Pathology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Linda Brunotte
- Institute for Virology, University Medical Center, D-79008 Freiburg, Germany
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan L Schmid-Burgk
- Institute of Molecular Medicine, University Hospital, University of Bonn, D-53127 Bonn, Germany
| | - Tobias Schmidt
- Institute of Molecular Medicine, University Hospital, University of Bonn, D-53127 Bonn, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital, University of Bonn, D-53127 Bonn, Germany
| | - Georg Kochs
- Institute for Virology, University Medical Center, D-79008 Freiburg, Germany
| | - Martin Schwemmle
- Institute for Virology, University Medical Center, D-79008 Freiburg, Germany
| | - Hans-Dieter Klenk
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Friedemann Weber
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany.
| |
Collapse
|
10
|
Liedmann S, Hrincius ER, Guy C, Anhlan D, Dierkes R, Carter R, Wu G, Staeheli P, Green DR, Wolff T, McCullers JA, Ludwig S, Ehrhardt C. Viral suppressors of the RIG-I-mediated interferon response are pre-packaged in influenza virions. Nat Commun 2014; 5:5645. [PMID: 25487526 PMCID: PMC4268707 DOI: 10.1038/ncomms6645] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 10/23/2014] [Indexed: 12/16/2022] Open
Abstract
The type I interferon (IFN) response represents the first line of defence to invading pathogens. Internalized viral ribonucleoproteins (vRNPs) of negative-strand RNA viruses induce an early IFN response by interacting with retinoic acid inducible gene I (RIG-I) and its recruitment to mitochondria. Here we employ three-dimensional stochastic optical reconstruction microscopy (STORM) to visualize incoming influenza A virus (IAV) vRNPs as helical-like structures associated with mitochondria. Unexpectedly, an early IFN induction in response to vRNPs is not detected. A distinct amino-acid motif in the viral polymerases, PB1/PA, suppresses early IFN induction. Mutation of this motif leads to reduced pathogenicity in vivo, whereas restoration increases it. Evolutionary dynamics in these sequences suggest that completion of the motif, combined with viral reassortment can contribute to pandemic risks. In summary, inhibition of the immediate anti-viral response is 'pre-packaged' in IAV in the sequences of vRNP-associated polymerase proteins.
Collapse
Affiliation(s)
- Swantje Liedmann
- Institute of Molecular Virology (IMV), Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Von-Esmarch-Street 56, D-48149 Muenster, Germany
| | - Eike R. Hrincius
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678, USA
| | - Darisuren Anhlan
- Institute of Molecular Virology (IMV), Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Von-Esmarch-Street 56, D-48149 Muenster, Germany
| | - Rüdiger Dierkes
- Institute of Molecular Virology (IMV), Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Von-Esmarch-Street 56, D-48149 Muenster, Germany
| | - Robert Carter
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678, USA
| | - Gang Wu
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678, USA
| | - Peter Staeheli
- Institute of Virology, University Medical Center Freiburg, Hermann-Herder-Street 11, D-79104 Freiburg, Germany
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678, USA
| | - Thorsten Wolff
- Division of Influenza and Other Respiratory Viruses, Seestraβe 10, Robert Koch-Institut, D-13353 Berlin, Germany
| | - Jonathan A. McCullers
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678, USA
- Department of Pediatrics, University of Tennessee Health Sciences Center, 50 N. Dunlap, Memphis, Tennessee 38103, USA
| | - Stephan Ludwig
- Institute of Molecular Virology (IMV), Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Von-Esmarch-Street 56, D-48149 Muenster, Germany
- Cluster of Excellence Cells in Motion, University of Muenster, Muenster, Germany
| | - Christina Ehrhardt
- Institute of Molecular Virology (IMV), Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Von-Esmarch-Street 56, D-48149 Muenster, Germany
- Cluster of Excellence Cells in Motion, University of Muenster, Muenster, Germany
| |
Collapse
|