1
|
Jiménez-Pérez A, Fernández-Fariña S, Pedrido R, García-Tojal J. Desulfurization of thiosemicarbazones: the role of metal ions and biological implications. J Biol Inorg Chem 2024; 29:3-31. [PMID: 38148423 DOI: 10.1007/s00775-023-02037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/26/2023] [Indexed: 12/28/2023]
Abstract
Thiosemicarbazones are biologically active substances whose structural formula is formed by an azomethine, an hydrazine, and a thioamide fragments, to generate a R2C=N-NR-C(=S)-NR2 backbone. These compounds often act as ligands to generate highly stable metal-organic complexes. In certain experimental conditions, however, thiosemicarbazones undergo reactions leading to the cleavage of the chain. Sometimes, the breakage involves desulfurization processes. The present work summarizes the different chemical factors that influence the desulfurization reactions of thiosemicarbazones, such as pH, the presence of oxidant reactants or the establishment of redox processes as those electrochemically induced, the effects of the solvent, the temperature, and the electromagnetic radiation. Many of these reactions require coordination of thiosemicarbazones to metal ions, even those present in the intracellular environment. The nature of the products generated in these reactions, their detection in vivo and in vitro, together with the relevance for the biological activity of these compounds, mainly as antineoplastic agents, is discussed.
Collapse
Affiliation(s)
- Alondra Jiménez-Pérez
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Sandra Fernández-Fariña
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Javier García-Tojal
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain.
| |
Collapse
|
2
|
Chang H, Hu X, Tang X, Tian S, Li Y, Lv X, Shang L. A Mitochondria-Targeted Fluorescent Probe for Monitoring NADPH Overproduction during Influenza Virus Infection. ACS Sens 2023; 8:829-838. [PMID: 36689687 DOI: 10.1021/acssensors.2c02458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an important cofactor in the progress of antioxidant synthesis and biosynthesis, and an abnormal NADPH level has been observed in many viral infection processes. However, efficient tools to monitor NADPH in living cells after viral infection have not been reported. In this work, we present a fluorescent probe, NAFP4, that could detect NADPH ex vivo with a low detection limit of 3.66 nM and image mitochondrial NADPH level changes in living cells. The probe exhibits excellent cell permeability, rapid reactivity, and high selectivity with minimal cytotoxicity. Using NAFP4, we reveal that the NADPH is overproduced in the host cells infected by influenza virus, which was caused by an elevated level of G6PDH during the virus infection. Moreover, there was positive association between the G6PDH level and virus replication. With the proposed probe NAFP4, our study highlights that the virus infection would influence the host metabolism in NADPH production and also suggests that G6PDH is expected to be a promising target for antiviral therapy.
Collapse
Affiliation(s)
- Hao Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xiao Hu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xiaomei Tang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Shiwei Tian
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Yidan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Xing Lv
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| | - Luqing Shang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China.,Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
| |
Collapse
|
3
|
Yu Y, Zhang Z, Walpole GFW, Yu Y. Kinetics of phagosome maturation is coupled to their intracellular motility. Commun Biol 2022; 5:1014. [PMID: 36163370 PMCID: PMC9512794 DOI: 10.1038/s42003-022-03988-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Immune cells degrade internalized pathogens in phagosomes through sequential biochemical changes. The degradation must be fast enough for effective infection control. The presumption is that each phagosome degrades cargos autonomously with a distinct but stochastic kinetic rate. However, here we show that the degradation kinetics of individual phagosomes is not stochastic but coupled to their intracellular motility. By engineering RotSensors that are optically anisotropic, magnetic responsive, and fluorogenic in response to degradation activities in phagosomes, we monitored cargo degradation kinetics in single phagosomes simultaneously with their translational and rotational dynamics. We show that phagosomes that move faster centripetally are more likely to encounter and fuse with lysosomes, thereby acidifying faster and degrading cargos more efficiently. The degradation rates increase nearly linearly with the translational and rotational velocities of phagosomes. Our results indicate that the centripetal motion of phagosomes functions as a clock for controlling the progression of cargo degradation.
Collapse
Affiliation(s)
- Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Glenn F W Walpole
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA.
| |
Collapse
|
4
|
Koda K, Keller S, Kojima R, Kamiya M, Urano Y. Measuring the pH of Acidic Vesicles in Live Cells with an Optimized Fluorescence Lifetime Imaging Probe. Anal Chem 2022; 94:11264-11271. [PMID: 35913787 DOI: 10.1021/acs.analchem.2c01840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acidification of intracellular vesicles, such as endosomes and lysosomes, is a key pathway for regulating the function of internal proteins. Most conventional methods of measuring pH are not satisfactory for quantifying the pH inside these vesicles. Here, we investigated the molecular requirements for a fluorescence probe to measure the intravesicular acidic pH in living cells by means of fluorescence lifetime imaging microscopy (FLIM). The developed probe, m-DiMeNAF488, exhibits a pH-dependent equilibrium between highly fluorescent and moderately fluorescent forms, which has distinct and detectable fluorescence lifetimes of 4.36 and 0.58 ns, respectively. The pKa(τ) value of m-DiMeNAF488 was determined to be 4.58, which would be favorable for evaluating the pH in the acidic vesicles. We were able to monitor the pH changes in phagosomes during phagocytosis by means of FLIM using m-DiMeNAF488. This probe is expected to be a useful tool for investigating acidic pH-regulated biological phenomena.
Collapse
Affiliation(s)
| | | | - Ryosuke Kojima
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mako Kamiya
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yasuteru Urano
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
5
|
Pihán P, Lisbona F, Borgonovo J, Edwards-Jorquera S, Nunes-Hasler P, Castillo K, Kepp O, Urra H, Saarnio S, Vihinen H, Carreras-Sureda A, Forveille S, Sauvat A, De Giorgis D, Pupo A, Rodríguez DA, Quarato G, Sagredo A, Lourido F, Letai A, Latorre R, Kroemer G, Demaurex N, Jokitalo E, Concha ML, Glavic Á, Green DR, Hetz C. Control of lysosomal-mediated cell death by the pH-dependent calcium channel RECS1. SCIENCE ADVANCES 2021; 7:eabe5469. [PMID: 34767445 PMCID: PMC8589314 DOI: 10.1126/sciadv.abe5469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/24/2021] [Indexed: 05/27/2023]
Abstract
Programmed cell death is regulated by the balance between activating and inhibitory signals. Here, we have identified RECS1 (responsive to centrifugal force and shear stress 1) [also known as TMBIM1 (transmembrane BAX inhibitor motif containing 1)] as a proapoptotic member of the TMBIM family. In contrast to other proteins of the TMBIM family, RECS1 expression induces cell death through the canonical mitochondrial apoptosis pathway. Unbiased screening indicated that RECS1 sensitizes cells to lysosomal perturbations. RECS1 localizes to lysosomes, where it regulates their acidification and calcium content, triggering lysosomal membrane permeabilization. Structural modeling and electrophysiological studies indicated that RECS1 is a pH-regulated calcium channel, an activity that is essential to trigger cell death. RECS1 also sensitizes whole animals to stress in vivo in Drosophila melanogaster and zebrafish models. Our results unveil an unanticipated function for RECS1 as a proapoptotic component of the TMBIM family that ignites cell death programs at lysosomes.
Collapse
Affiliation(s)
- Philippe Pihán
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Fernanda Lisbona
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Center for Genome Regulation, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Janina Borgonovo
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Integrative Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | | | - Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Hery Urra
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Suvi Saarnio
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Amado Carreras-Sureda
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sabrina Forveille
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Allan Sauvat
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Daniela De Giorgis
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Amaury Pupo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Diego A. Rodríguez
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Giovanni Quarato
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Alfredo Sagredo
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Fernanda Lourido
- Center for Genome Regulation, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building, Room DA-520, Boston, MA 02215-02115, USA
- Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institutet, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Centro de Investigación de Estudios Avanzados, Universidad Católica del Maule, Talca, Chile
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Miguel L. Concha
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Integrative Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Álvaro Glavic
- Center for Genome Regulation, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
6
|
Yu Q, Ding F, Shen J, He X. A newly nitrobenzoxadiazole (NBD)-fused reversible fluorescence probe for pH monitoring and application in bioimaging. Talanta 2021; 228:122218. [DOI: 10.1016/j.talanta.2021.122218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/31/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
|
7
|
Naik SK, Pattanaik K, Eich J, Sparr V, Hauptmann M, Kalsdorf B, Reiling N, Liedtke W, Kuebler WM, Schaible UE, Sonawane A. Differential Roles of the Calcium Ion Channel TRPV4 in Host Responses to Mycobacterium tuberculosis Early and Late in Infection. iScience 2020; 23:101206. [PMID: 32535021 PMCID: PMC7300151 DOI: 10.1016/j.isci.2020.101206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/19/2020] [Accepted: 05/25/2020] [Indexed: 12/05/2022] Open
Abstract
Mycobacterium tuberculosis subverts host immunity to proliferate within host tissues. Non-selective transient receptor potential (TRP) ion channels are involved in host responses and altered upon bacterial infections. Altered expression and localization of TRPV4 in macrophages upon virulent M. tuberculosis infection together with differential distribution of TRPV4 in human tuberculosis (TB) granulomas indicate a role of TRPV4 in TB. Compared with wild-type mice, Trpv4-deficient littermates showed transiently higher mycobacterial burden and reduced proinflammatory responses. In the absence of TRPV4, activation failed to render macrophages capable of controlling mycobacteria. Surprisingly, Trpv4-deficient mice were superior to wild-type ones in controlling M. tuberculosis infection in the chronic phase. Thus, Trpv4 is important in host responses to mycobacteria, although with opposite functions early versus late in infection. Ameliorated chronic infection in the absence of Trpv4 and its expression in human TB lesions indicate TRPV4 as putative target for host-directed therapy. Mtb down-modulates TRPV4 expression in macrophages Trpv4−/− macrophages cannot be activated to drive phagosome maturation and NO production Trpv4-deficient mice are more resistant to Mtb TRPV4-positive macrophages in the periphery of human granuloma but not at the center
Collapse
Affiliation(s)
- Sumanta Kumar Naik
- School of Biotechnology, KIIT University, Odisha 751024, India; Program Area Infections, Department of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel 23845, Germany
| | | | - Jacqueline Eich
- Program Area Infections, Department of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel 23845, Germany
| | - Vivien Sparr
- Program Area Infections, Department of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel 23845, Germany
| | - Matthias Hauptmann
- Program Area Infections, Department of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel 23845, Germany
| | - Barbara Kalsdorf
- Program Area Infections, Department of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel 23845, Germany
| | - Norbert Reiling
- Program Area Infections, Department of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel 23845, Germany
| | - Wolfgang Liedtke
- Duke University Center for Translational Neuroscience, Durham, NC 27710, USA
| | | | - Ulrich E Schaible
- Program Area Infections, Department of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel 23845, Germany.
| | - Avinash Sonawane
- School of Biotechnology, KIIT University, Odisha 751024, India; Discipline of Biosciences & Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India.
| |
Collapse
|
8
|
Ashraf S, Hassan Said A, Hartmann R, Assmann M, Feliu N, Lenz P, Parak WJ. Quantitative Particle Uptake by Cells as Analyzed by Different Methods. Angew Chem Int Ed Engl 2020; 59:5438-5453. [PMID: 31657113 PMCID: PMC7155048 DOI: 10.1002/anie.201906303] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/21/2019] [Indexed: 12/21/2022]
Abstract
There is a large number of two-dimensional static in vitro studies about the uptake of colloidal nano- and microparticles, which has been published in the last decade. In this Minireview, different methods used for such studies are summarized and critically discussed. Supplementary experimental data allow for a direct comparison of the different techniques. Emphasis is given on how quantitative parameters can be extracted from studies in which different experimental techniques have been used, with the goal of allowing better comparison.
Collapse
Affiliation(s)
- Sumaira Ashraf
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
- Institute of Industrial BiotechnologyGovernment College University LahorePunjab54000Pakistan
| | - Alaa Hassan Said
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
- Electronics and Nano Devices lab (END)Department of PhysicsFaculty of SciencesSouth Valley University83523QenaEgypt
| | - Raimo Hartmann
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
| | - Marcus‐Alexander Assmann
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
- Fraunhofer Institute for High-Speed DynamicsErnst Mach Institute79104FreiburgGermany
| | - Neus Feliu
- Fachbereich Physik und Chemie, CHyNUniversität Hamburg20146HamburgGermany
| | - Peter Lenz
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
| | - Wolfgang J. Parak
- Fachbereich Physik und Chemie, CHyNUniversität Hamburg20146HamburgGermany
- Institute of Nano Biomedicine and EngineeringKey Laboratory for Thin Film and Microfabrication Technology of the Ministry of EducationDepartment of Instrument Science and EngineeringSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
9
|
Sedlyarov V, Eichner R, Girardi E, Essletzbichler P, Goldmann U, Nunes-Hasler P, Srndic I, Moskovskich A, Heinz LX, Kartnig F, Bigenzahn JW, Rebsamen M, Kovarik P, Demaurex N, Superti-Furga G. The Bicarbonate Transporter SLC4A7 Plays a Key Role in Macrophage Phagosome Acidification. Cell Host Microbe 2018; 23:766-774.e5. [PMID: 29779931 PMCID: PMC6002608 DOI: 10.1016/j.chom.2018.04.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/14/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022]
Abstract
Macrophages represent the first line of immune defense against pathogens, and phagosome acidification is a necessary step in pathogen clearance. Here, we identified the bicarbonate transporter SLC4A7, which is strongly induced upon macrophage differentiation, as critical for phagosome acidification. Loss of SLC4A7 reduced acidification of phagocytosed beads or bacteria and impaired the intracellular microbicidal capacity in human macrophage cell lines. The phenotype was rescued by wild-type SLC4A7, but not by SLC4A7 mutants, affecting transport capacity or cell surface localization. Loss of SLC4A7 resulted in increased cytoplasmic acidification during phagocytosis, suggesting that SLC4A7-mediated, bicarbonate-driven maintenance of cytoplasmic pH is necessary for phagosome acidification. Altogether, we identify SLC4A7 and bicarbonate-driven cytoplasmic pH homeostasis as an important element of phagocytosis and the associated microbicidal functions in macrophages.
Collapse
Affiliation(s)
- Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Ruth Eichner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Patrick Essletzbichler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Ismet Srndic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Anna Moskovskich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Felix Kartnig
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Johannes W Bigenzahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Manuele Rebsamen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
10
|
Fu MS, Coelho C, De Leon-Rodriguez CM, Rossi DCP, Camacho E, Jung EH, Kulkarni M, Casadevall A. Cryptococcus neoformans urease affects the outcome of intracellular pathogenesis by modulating phagolysosomal pH. PLoS Pathog 2018; 14:e1007144. [PMID: 29906292 PMCID: PMC6021110 DOI: 10.1371/journal.ppat.1007144] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/27/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023] Open
Abstract
Cryptococcus neoformans is a facultative intracellular pathogen and its interaction with macrophages is a key event determining the outcome of infection. Urease is a major virulence factor in C. neoformans but its role during macrophage interaction has not been characterized. Consequently, we analyzed the effect of urease on fungal-macrophage interaction using wild-type, urease-deficient and urease-complemented strains of C. neoformans. The frequency of non-lytic exocytosis events was reduced in the absence of urease. Urease-positive C. neoformans manifested reduced and delayed intracellular replication with fewer macrophages displaying phagolysosomal membrane permeabilization. The production of urease was associated with increased phagolysosomal pH, which in turn reduced growth of urease-positive C. neoformans inside macrophages. Interestingly, the ure1 mutant strain grew slower in fungal growth medium which was buffered to neutral pH (pH 7.4). Mice inoculated with macrophages carrying urease-deficient C. neoformans had lower fungal burden in the brain than mice infected with macrophages carrying wild-type strain. In contrast, the absence of urease did not affect survival of yeast when interacting with amoebae. Because of the inability of the urease deletion mutant to grow on urea as a sole nitrogen source, we hypothesize urease plays a nutritional role involved in nitrogen acquisition in the environment. Taken together, our data demonstrate that urease affects fitness within the mammalian phagosome, promoting non-lytic exocytosis while delaying intracellular replication and thus reducing phagolysosomal membrane damage, events that could facilitate cryptococcal dissemination when transported inside macrophages. This system provides an example where an enzyme involved in nutrient acquisition modulates virulence during mammalian infection.
Collapse
Affiliation(s)
- Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Carlos M. De Leon-Rodriguez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Diego C. P. Rossi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Eric H. Jung
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Madhura Kulkarni
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
11
|
Nunes-Hasler P, Maschalidi S, Lippens C, Castelbou C, Bouvet S, Guido D, Bermont F, Bassoy EY, Page N, Merkler D, Hugues S, Martinvalet D, Manoury B, Demaurex N. STIM1 promotes migration, phagosomal maturation and antigen cross-presentation in dendritic cells. Nat Commun 2017; 8:1852. [PMID: 29176619 PMCID: PMC5701258 DOI: 10.1038/s41467-017-01600-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/02/2017] [Indexed: 12/31/2022] Open
Abstract
Antigen cross-presentation by dendritic cells (DC) stimulates cytotoxic T cell activation to promote immunity to intracellular pathogens, viruses and cancer. Phagocytosed antigens generate potent T cell responses, but the signalling and trafficking pathways regulating their cross-presentation are unclear. Here, we show that ablation of the store-operated-Ca2+-entry regulator STIM1 in mouse myeloid cells impairs cross-presentation and DC migration in vivo and in vitro. Stim1 ablation reduces Ca2+ signals, cross-presentation, and chemotaxis in mouse bone-marrow-derived DCs without altering cell differentiation, maturation or phagocytic capacity. Phagosomal pH homoeostasis and ROS production are unaffected by STIM1 deficiency, but phagosomal proteolysis and leucyl aminopeptidase activity, IRAP recruitment, as well as fusion of phagosomes with endosomes and lysosomes are all impaired. These data suggest that STIM1-dependent Ca2+ signalling promotes the delivery of endolysosomal enzymes to phagosomes to enable efficient cross-presentation. STIM proteins sense Ca2+ depletion in the ER and activate store-operated Ca2+-entry (SOCE) in response, a process associated with dendritic cell functions. Here the authors show STIM1 is the major isoform controlling SOCE in mouse dendritic cells and provide a mechanism for its requirement in antigen cross-presentation.
Collapse
Affiliation(s)
- Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland.
| | - Sophia Maschalidi
- Laboratory of Normal and Pathological Homeostasis of the Immune System, INSERM UMR1163, Paris, 75015, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine Paris Descartes, Paris, 75015, France
| | - Carla Lippens
- Department of Pathology and Immunology, University of Geneva, Geneva, 1211, Switzerland
| | - Cyril Castelbou
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Samuel Bouvet
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Daniele Guido
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Flavien Bermont
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Esen Y Bassoy
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, Geneva, 1211, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, 1211, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, 1211, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, University of Geneva, Geneva, 1211, Switzerland
| | - Denis Martinvalet
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| | - Bénédicte Manoury
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine Paris Descartes, Paris, 75015, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, Paris, 75014, France.,Centre National de la Recherche Scientifique, Unité 8253, Paris, 75014, France
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, 1211, Switzerland
| |
Collapse
|
12
|
Maschalidi S, Nunes-Hasler P, Nascimento CR, Sallent I, Lannoy V, Garfa-Traore M, Cagnard N, Sepulveda FE, Vargas P, Lennon-Duménil AM, van Endert P, Capiod T, Demaurex N, Darrasse-Jèze G, Manoury B. UNC93B1 interacts with the calcium sensor STIM1 for efficient antigen cross-presentation in dendritic cells. Nat Commun 2017; 8:1640. [PMID: 29158474 PMCID: PMC5696382 DOI: 10.1038/s41467-017-01601-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/02/2017] [Indexed: 11/25/2022] Open
Abstract
Dendritic cells (DC) have the unique ability to present exogenous antigens via the major histocompatibility complex class I pathway to stimulate naive CD8+ T cells. In DCs with a non-functional mutation in Unc93b1 (3d mutation), endosomal acidification, phagosomal maturation, antigen degradation, antigen export to the cytosol and the function of the store-operated-Ca2+-entry regulator STIM1 are impaired. These defects result in compromised antigen cross-presentation and anti-tumor responses in 3d-mutated mice. Here, we show that UNC93B1 interacts with the calcium sensor STIM1 in the endoplasmic reticulum, a critical step for STIM1 oligomerization and activation. Expression of a constitutively active STIM1 mutant, which no longer binds UNC93B1, restores antigen degradation and cross-presentation in 3d-mutated DCs. Furthermore, ablation of STIM1 in mouse and human cells leads to a decrease in cross-presentation. Our data indicate that the UNC93B1 and STIM1 cooperation is important for calcium flux and antigen cross-presentation in DCs. STIM proteins sense Ca2+ depletion in the ER and activate store-operated Ca2+ entry in response, a process associated with dendritic cell (DC) functions. Here, the authors show that optimal antigen cross-presentation in DCs requires the association of the chaperone molecule UNC93B1 with STIM1.
Collapse
Affiliation(s)
- Sophia Maschalidi
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Imagine Institute, 75015, Paris, France.,Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France
| | - Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, CH-1211, Geneva, Switzerland
| | - Clarissa R Nascimento
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Ignacio Sallent
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Valérie Lannoy
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Meriem Garfa-Traore
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Cell Imaging and Bioinformatic Platform, INSERM US24 Structure Federative de Recherche Necker, 75015, Paris, France
| | - Nicolas Cagnard
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Cell Imaging and Bioinformatic Platform, INSERM US24 Structure Federative de Recherche Necker, 75015, Paris, France
| | - Fernando E Sepulveda
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Imagine Institute, 75015, Paris, France.,Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France
| | - Pablo Vargas
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France.,Institut Pierre-Gilles de Genes, PSL Research University, 75005, Paris, France
| | - Ana-Maria Lennon-Duménil
- Institut National de la Santé et de la Recherché Médicale, Unité 932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Peter van Endert
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Thierry Capiod
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, CH-1211, Geneva, Switzerland
| | - Guillaume Darrasse-Jèze
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France.,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France
| | - Bénédicte Manoury
- Faculté de médecine Paris Descartes, Université Paris Descartes, 75015, Paris, France. .,Institut National de la Santé et de la Recherche Médicale, Unité 1151, 75015, Paris, France. .,Centre National de la Recherche Scientifique, UMR 8253, 75015, Paris, France.
| |
Collapse
|
13
|
Foote JR, Levine AP, Behe P, Duchen MR, Segal AW. Imaging the Neutrophil Phagosome and Cytoplasm Using a Ratiometric pH Indicator. J Vis Exp 2017. [PMID: 28448042 PMCID: PMC5564471 DOI: 10.3791/55107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neutrophils are crucial to host innate defense and, consequently, constitute an important area of medical research. The phagosome, the intracellular compartment where the killing and digestion of engulfed particles take place, is the main arena for neutrophil pathogen killing that requires tight regulation. Phagosomal pH is one aspect that is carefully controlled, in turn regulating antimicrobial protease activity. Many fluorescent pH-sensitive dyes have been used to visualize the phagosomal environment. S-1 has several advantages over other pH-sensitive dyes, including its dual emission spectra, its resistance to photo-bleaching, and its high pKa. Using this method, we have demonstrated that the neutrophil phagosome is unusually alkaline in comparison to other phagocytes. By using different biochemical conjugations of the dye, the phagosome can be delineated from the cytoplasm so that changes in the size and shape of the phagosome can be assessed. This allows for further monitoring of ionic movement.
Collapse
Affiliation(s)
- Juliet R Foote
- Centre for Molecular Medicine, Division of Medicine, University College London
| | - Adam P Levine
- Centre for Molecular Medicine, Division of Medicine, University College London
| | - Philippe Behe
- Centre for Molecular Medicine, Division of Medicine, University College London
| | | | - Anthony W Segal
- Centre for Molecular Medicine, Division of Medicine, University College London;
| |
Collapse
|