1
|
Hawsawi YM, Khoja B, Aljaylani AO, Jaha R, AlDerbi RM, Alnuman H, Khan MI. Recent progress and applications of single-cell sequencing technology in breast cancer. Front Genet 2024; 15:1417415. [PMID: 39359479 PMCID: PMC11445024 DOI: 10.3389/fgene.2024.1417415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technology enables the precise analysis of individual cell transcripts with high sensitivity and throughput. When integrated with multiomics technologies, scRNA-seq significantly enhances the understanding of cellular diversity, particularly within the tumor microenvironment. Similarly, single-cell DNA sequencing has emerged as a powerful tool in cancer research, offering unparalleled insights into the genetic heterogeneity and evolution of tumors. In the context of breast cancer, this technology holds substantial promise for decoding the intricate genomic landscape that drives disease progression, treatment resistance, and metastasis. By unraveling the complexities of tumor biology at a granular level, single-cell DNA sequencing provides a pathway to advancing our comprehension of breast cancer and improving patient outcomes through personalized therapeutic interventions. As single-cell sequencing technology continues to evolve and integrate into clinical practice, its application is poised to revolutionize the diagnosis, prognosis, and treatment strategies for breast cancer. This review explores the potential of single-cell sequencing technology to deepen our understanding of breast cancer, highlighting key approaches, recent advancements, and the role of the tumor microenvironment in disease plasticity. Additionally, the review discusses the impact of single-cell sequencing in paving the way for the development of personalized therapies.
Collapse
Affiliation(s)
- Yousef M Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Basmah Khoja
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | | | - Raniah Jaha
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Rasha Mohammed AlDerbi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Huda Alnuman
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mohammed I Khan
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Ali A, Manzoor S, Ali T, Asim M, Muhammad G, Ahmad A, Jamaludin MI, Devaraj S, Munawar N. Innovative aspects and applications of single cell technology for different diseases. Am J Cancer Res 2024; 14:4028-4048. [PMID: 39267684 PMCID: PMC11387862 DOI: 10.62347/vufu1836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Recent developments in single-cell technologies have provided valuable insights from cancer genomics to complex microbial communities. Single-cell technologies including the RNA-seq, next-generation sequencing (NGS), epigenomics, genomics, and transcriptomics can be used to uncover the single cell nature and molecular characterization of individual cells. These technologies also reveal the cellular transition states, evolutionary relationships between genes, the complex structure of single-cell populations, cell-to-cell interaction leading to biological discoveries and more reliable than traditional bulk technologies. These technologies are becoming the first choice for the early detection of inflammatory biomarkers affecting the proliferation and progression of tumor cells in the tumor microenvironment and improving the clinical efficacy of patients undergoing immunotherapy. These technologies also hold a central position in the detection of checkpoint inhibitors and thus determining the signaling pathways evoked by tumor invasion. This review addressed the emerging approaches of single cell-based technologies in cancer immunotherapies and different human diseases at cellular and molecular levels and the emerging role of sequencing technologies leading to drug discovery. Advancements in these technologies paved for discovering novel diagnostic markers for better understanding the pathological and biochemical mechanisms also for controlling the rate of different diseases.
Collapse
Affiliation(s)
- Ashiq Ali
- Department of Histology and Embryology, Shantou University Medical College Shantou 515041, Guangdong, China
| | - Saba Manzoor
- Department of Zoology, University of Sialkot Sialkot 51310, Pakistan
| | - Tayyab Ali
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture Faisalabad 38000, Pakistan
| | - Muhammad Asim
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture Faisalabad 38000, Pakistan
| | - Ghulam Muhammad
- Jinnah Burn and Reconstructive Surgery Centre, Jinnah Hospital, Allama Iqbal Medical College Lahore 54000, Pakistan
| | - Aftab Ahmad
- Biochemistry/Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad 38040, Pakistan
| | - Mohamad Ikhwan Jamaludin
- BioInspired Device and Tissue Engineering Research Group (BioInspira), Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia Johor Bahru 81310, Johor, Malaysia
| | - Sutha Devaraj
- Graduate School of Medicine, Perdana University Wisma Chase Perdana, Changkat Semantan, Damansara Heights, Kuala Lumpur 50490, Malaysia
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University Al-Ain 15551, United Arab Emirates
| |
Collapse
|
3
|
Ogo A, Okayama S, Nakatani M, Hashimoto M. CO 2-Laser-Micromachined, Polymer Microchannels with a Degassed PDMS slab for the Automatic Production of Monodispersed Water-in-Oil Droplets. MICROMACHINES 2022; 13:1389. [PMID: 36144013 PMCID: PMC9502940 DOI: 10.3390/mi13091389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
In our recent study, we fabricated a pump/tube-connection-free microchip comprising top and bottom polydimethylsiloxane (PDMS) slabs to produce monodispersed water-in-oil droplets in a fully automated, fluid-manipulation fashion. All microstructures required for droplet production were directly patterned on the surfaces of the two PDMS slabs through CO2-laser micromachining, facilitating the fast fabrication of the droplet-production microchips. In the current extension study, we replaced the bottom PDMS slab, which served as a microfluidic layer in the microchip, with a poly(methyl methacrylate) (PMMA) slab. This modification was based on our idea that the bottom PDMS slab does not contribute to the automatic fluid manipulation and that replacing the bottom PDMS slab with a more affordable and accessible, ready-to-use polymer slab, such as a PMMA, would further facilitate the rapid and low-cost fabrication of the connection-free microchips. Using a new PMMA/PDMS microchip, we produced water-in-oil droplets with high degree of size-uniformity (a coefficient of variation for droplet diameters of <5%) without a decrease in the droplet production rate (~270 droplets/s) as compared with that achieved via the previous PDMS/PDMS microchip (~220 droplets/s).
Collapse
|
4
|
Verma D, Nayak N, Singh A, Singh AK, Garg N. Advancement of Single-Cell Sequencing in Medulloblastoma. Methods Mol Biol 2022; 2423:65-83. [PMID: 34978689 DOI: 10.1007/978-1-0716-1952-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-cell sequencing is a promising attempt to investigate the genomic, transcriptomic, and multiomic level of individual cell in the larger population of cells. The outward evolution of the technique from a manual method to the automation of single-cell sequencing is cogent. Lately, single-cell sequencing is widely used in various fields of science and has applications in neurobiology, immunity, cancer, microbiology, reproduction, and digestion. This chapter introduces the reader to the details of single-cell sequencing, currently used in several small-scale and commercial platforms. The advancement of single-cell sequencing in brain cancer sheds light on questions unanswered so far in the field of oncology.
Collapse
Affiliation(s)
- Deepanshu Verma
- School of Basic Sciences and BioX center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Namyashree Nayak
- School of Basic Sciences and BioX center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Ashuthosh Singh
- School of Basic Sciences and BioX center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Ashutosh Kumar Singh
- School of Basic Sciences and BioX center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
5
|
Kim SC, Haliburton JR, Gartner ZJ, Abate AR. Single-Cell Protein Profiling by Microdroplet Barcoding and Next-Generation Sequencing. Methods Mol Biol 2022; 2386:101-111. [PMID: 34766267 PMCID: PMC9122841 DOI: 10.1007/978-1-0716-1771-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DNA barcoding of individual cells combined with next-generation sequencing enables high-throughput parallel analysis of biomolecules at the single-cell level. Encoding protein identity with DNA barcoding of specific antibody binders achieves sequencing-based protein quantitation by converting protein signals into DNA signals. Here, we describe how to prepare DNA-barcoded antibodies and connect protein identities to cellular identities using droplet microfluidics. This approach allows for multiplex single-cell protein analysis compatible with single-cell transcriptomic and mutational profiling methods.
Collapse
Affiliation(s)
- Samuel C Kim
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Gilead Sciences, Foster City, CA, USA.
| | - John R Haliburton
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Xie H, Appelt JW, Jenkins RW. Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology. Cancers (Basel) 2021; 13:cancers13236052. [PMID: 34885161 PMCID: PMC8656483 DOI: 10.3390/cancers13236052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The clinical success of cancer immunotherapy targeting immune checkpoints (e.g., PD-1, CTLA-4) has ushered in a new era of cancer therapeutics aimed at promoting antitumor immunity in hopes of offering durable clinical responses for patients with advanced, metastatic cancer. This success has also reinvigorated interest in developing tumor model systems that recapitulate key features of antitumor immune responses to complement existing in vivo tumor models. Patient-derived tumor models have emerged in recent years to facilitate study of tumor–immune dynamics. Microfluidic technology has enabled development of microphysiologic systems (MPSs) for the evaluation of the tumor microenvironment, which have shown early promise in studying tumor–immune dynamics. Further development of microfluidic-based “tumor-on-a-chip” MPSs to study tumor–immune interactions may overcome several key challenges currently facing tumor immunology. Abstract Recent advances in cancer immunotherapy have led a paradigm shift in the treatment of multiple malignancies with renewed focus on the host immune system and tumor–immune dynamics. However, intrinsic and acquired resistance to immunotherapy limits patient benefits and wider application. Investigations into the mechanisms of response and resistance to immunotherapy have demonstrated key tumor-intrinsic and tumor-extrinsic factors. Studying complex interactions with multiple cell types is necessary to understand the mechanisms of response and resistance to cancer therapies. The lack of model systems that faithfully recapitulate key features of the tumor microenvironment (TME) remains a challenge for cancer researchers. Here, we review recent advances in TME models focusing on the use of microfluidic technology to study and model the TME, including the application of microfluidic technologies to study tumor–immune dynamics and response to cancer therapeutics. We also discuss the limitations of current systems and suggest future directions to utilize this technology to its highest potential.
Collapse
Affiliation(s)
- Hongyan Xie
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Jackson W. Appelt
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: ; Tel.: +617-726-9372; Fax: +844-542-5959
| |
Collapse
|
7
|
Single-Cell Genomics: Enabling the Functional Elucidation of Infectious Diseases in Multi-Cell Genomes. Pathogens 2021; 10:pathogens10111467. [PMID: 34832622 PMCID: PMC8624509 DOI: 10.3390/pathogens10111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Since the time when detection of gene expression in single cells by microarrays to the Next Generation Sequencing (NGS) enabled Single Cell Genomics (SCG), it has played a pivotal role to understand and elucidate the functional role of cellular heterogeneity. Along this journey to becoming a key player in the capture of the individuality of cells, SCG overcame many milestones, including scale, speed, sensitivity and sample costs (4S). There have been many important experimental and computational innovations in the efficient analysis and interpretation of SCG data. The increasing role of AI in SCG data analysis has further enhanced its applicability in building models for clinical intervention. Furthermore, SCG has been instrumental in the delineation of the role of cellular heterogeneity in specific diseases, including cancer and infectious diseases. The understanding of the role of differential immune responses in driving coronavirus disease-2019 (COVID-19) disease severity and clinical outcomes has been greatly aided by SCG. With many variants of concern (VOC) in sight, it would be of great importance to further understand the immune response specificity vis-a-vis the immune cell repertoire, the identification of novel cell types, and antibody response. Given the potential of SCG to play an integral part in the multi-omics approach to the study of the host-pathogen interaction and its outcomes, our review attempts to highlight its strengths, its implications for infectious disease biology, and its current limitations. We conclude that the application of SCG would be a critical step towards future pandemic preparedness.
Collapse
|
8
|
Crosslinking Strategies for the Microfluidic Production of Microgels. Molecules 2021; 26:molecules26123752. [PMID: 34202959 PMCID: PMC8234156 DOI: 10.3390/molecules26123752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023] Open
Abstract
This article provides a systematic review of the crosslinking strategies used to produce microgel particles in microfluidic chips. Various ionic crosslinking methods for the gelation of charged polymers are discussed, including external gelation via crosslinkers dissolved or dispersed in the oil phase; internal gelation methods using crosslinkers added to the dispersed phase in their non-active forms, such as chelating agents, photo-acid generators, sparingly soluble or slowly hydrolyzing compounds, and methods involving competitive ligand exchange; rapid mixing of polymer and crosslinking streams; and merging polymer and crosslinker droplets. Covalent crosslinking methods using enzymatic oxidation of modified biopolymers, photo-polymerization of crosslinkable monomers or polymers, and thiol-ene “click” reactions are also discussed, as well as methods based on the sol−gel transitions of stimuli responsive polymers triggered by pH or temperature change. In addition to homogeneous microgel particles, the production of structurally heterogeneous particles such as composite hydrogel particles entrapping droplet interface bilayers, core−shell particles, organoids, and Janus particles are also discussed. Microfluidics offers the ability to precisely tune the chemical composition, size, shape, surface morphology, and internal structure of microgels by bringing multiple fluid streams in contact in a highly controlled fashion using versatile channel geometries and flow configurations, and allowing for controlled crosslinking.
Collapse
|
9
|
Finbloom JA, Demaree B, Abate AR, Desai TA. Networks of High Aspect Ratio Particles to Direct Colloidal Assembly Dynamics and Cellular Interactions. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005938. [PMID: 33250685 PMCID: PMC7687842 DOI: 10.1002/adfm.202005938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 05/11/2023]
Abstract
Injectable colloids that self-assemble into three-dimensional networks are promising materials for applications in regenerative engineering, as they create open systems for cellular infiltration, interaction, and activation. However, most injectable colloids have spherical morphologies, which lack the high material-biology contact areas afforded by higher aspect ratio materials. To address this need, injectable high aspect ratio particles (HARPs) were developed that form three-dimensional networks to enhance scaffold assembly dynamics and cellular interactions. HARPs were functionalized for tunable surface charge through layer-by-layer electrostatic assembly. Positively charged Chitosan-HARPs had improved particle suspension dynamics when compared to spherical particles or negatively charged HARPs. Chit-HARPs were used to improve the suspension dynamics and viability of MIN6 cells in three-dimensional networks. When combined with negatively charged gelatin microsphere (GelMS) porogens, Chit-HARPs reduced GelMS sedimentation and increased overall network suspension, due to a combination of HARP network formation and electrostatic interactions. Lastly, HARPs were functionalized with fibroblast growth factor 2 (FGF2) to highlight their use for growth factor delivery. FGF2-HARPs increased fibroblast proliferation through a combination of 3D scaffold assembly and growth factor delivery. Taken together, these studies demonstrate the development and diverse uses of high aspect ratio particles as tunable injectable scaffolds for applications in regenerative engineering.
Collapse
Affiliation(s)
- Joel A Finbloom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco. San Francisco, CA 94158
| | - Benjamin Demaree
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco. San Francisco, CA 94158
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco. San Francisco, CA 94158
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco. San Francisco, CA 94158
| |
Collapse
|
10
|
Clark IC, Delley CL, Sun C, Thakur R, Stott SL, Thaploo S, Li Z, Quintana FJ, Abate AR. Targeted Single-Cell RNA and DNA Sequencing With Fluorescence-Activated Droplet Merger. Anal Chem 2020; 92:14616-14623. [PMID: 33049138 PMCID: PMC8182774 DOI: 10.1021/acs.analchem.0c03059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Analyzing every cell in a diverse sample provides insight into population-level heterogeneity, but abundant cell types dominate the analysis and rarer populations are scarcely represented in the data. To focus on specific cell types, the current paradigm is to physically isolate subsets of interest prior to analysis; however, it remains difficult to isolate and then single-cell sequence such populations because of compounding losses. Here, we describe an alternative approach that selectively merges cells with reagents to achieve enzymatic reactions without having to physically isolate cells. We apply this technique to perform single-cell transcriptome and genome sequencing of specific cell subsets. Our method for analyzing heterogeneous populations obviates the need for pre- or post-enrichment and simplifies single-cell workflows, making it useful for other applications in single-cell biology, combinatorial chemical synthesis, and drug screening.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Cyrille L Delley
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Chen Sun
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Rohan Thakur
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Shannon L Stott
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Shravan Thaploo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
11
|
Gupta S, Witas R, Voigt A, Semenova T, Nguyen CQ. Single-Cell Sequencing of T cell Receptors: A Perspective on the Technological Development and Translational Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:29-50. [PMID: 32949388 DOI: 10.1007/978-981-15-4494-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
T cells recognize peptides bound to major histocompatibility complex (MHC) class I and class II molecules at the cell surface. This recognition is accomplished by the expression of T cell receptors (TCR) which are required to be diverse and adaptable in order to accommodate the various and vast number of antigens presented on the MHCs. Thus, determining TCR repertoires of effector T cells is necessary to understand the immunological process in responding to cancer progression, infection, and autoimmune development. Furthermore, understanding the TCR repertoires will provide a solid framework to predict and test the antigen which is more critical in autoimmunity. However, it has been a technical challenge to sequence the TCRs and provide a conceptual context in correlation to the vast number of TCR repertoires in the immunological system. The exploding field of single-cell sequencing has changed how the repertoires are being investigated and analyzed. In this review, we focus on the biology of TCRs, TCR signaling and its implication in autoimmunity. We discuss important methods in bulk sequencing of many cells. Lastly, we explore the most pertinent platforms in single-cell sequencing and its application in autoimmunity.
Collapse
Affiliation(s)
- Shivai Gupta
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, Gainesville, FL, USA
| | - Richard Witas
- Department of Oral Biology, College of Dentistry, Gainesville, FL, USA
| | - Alexandria Voigt
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, Gainesville, FL, USA
| | - Touyana Semenova
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, Gainesville, FL, USA
| | - Cuong Q Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, Gainesville, FL, USA. .,Department of Oral Biology, College of Dentistry, Gainesville, FL, USA. .,Center of Orphaned Autoimmune Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Langer K, Joensson HN. Rapid Production and Recovery of Cell Spheroids by Automated Droplet Microfluidics. SLAS Technol 2019; 25:111-122. [PMID: 31561747 DOI: 10.1177/2472630319877376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The future of the life sciences is linked to automation and microfluidics. As robots start working side by side with scientists, robotic automation of microfluidics in general, and droplet microfluidics in particular, will significantly extend and accelerate the life sciences. Here, we demonstrate the automation of droplet microfluidics using an inexpensive liquid-handling robot to produce human scaffold-free cell spheroids at high throughput. We use pipette actuation and interface the pipetting tip with a droplet-generating microfluidic device. In this device, we produce highly monodisperse droplets with a diameter coefficient of variation (CV) lower than 2%. By encapsulating cells in these droplets, we produce cell spheroids in droplets and recover them to standard labware containers at a throughput of 85,000 spheroids per microfluidic circuit per hour. The viability of the cells in spheroids remains high throughout the process and decreases by >10% (depending on the cell line used) after a 16 h incubation period in nanoliter droplets and automated recovery. Scaffold-free cell spheroids and 3D tissue constructs recapitulate many aspects of functional human tissue more accurately than 2D or single-cell cultures, but assembly methods for spheroids (e.g., hanging drop microplates) have limited throughput. The increased throughput and decreased cost of our method enable spheroid production at the scale needed for lead discovery drug screening, and approach the cost at which these microtissues could be used as building blocks for organ-scale regenerative medicine.
Collapse
Affiliation(s)
- Krzysztof Langer
- Division of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Haakan N Joensson
- Division of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.,Novo Nordisk Foundation Center for Biosustainability at KTH, Stockholm, Sweden
| |
Collapse
|
13
|
Samy KE, Levy ES, Phong K, Demaree B, Abate AR, Desai TA. Human intestinal spheroids cultured using Sacrificial Micromolding as a model system for studying drug transport. Sci Rep 2019; 9:9936. [PMID: 31289365 PMCID: PMC6616551 DOI: 10.1038/s41598-019-46408-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/25/2019] [Indexed: 12/20/2022] Open
Abstract
In vitro models of the small intestine are crucial tools for the prediction of drug absorption. The Caco-2 monolayer transwell model has been widely employed to assess drug absorption across the intestine. However, it is now well-established that 3D in vitro models capture tissue-specific architecture and interactions with the extracellular matrix and therefore better recapitulate the complex in vivo environment. However, these models need to be characterized for barrier properties and changes in gene expression and transporter function. Here, we report that geometrically controlled self-assembling multicellular intestinal Caco-2 spheroids cultured using Sacrificial Micromolding display reproducible intestinal features and functions that are more representative of the in vivo small intestine than the widely used 2D transwell model. We show that Caco-2 cell maturation and differentiation into the intestinal epithelial phenotype occur faster in spheroids and that they are viable for a longer period of time. Finally, we were able to invert the polarity of the spheroids by culturing them around Matrigel beads allowing superficial access to the apical membrane and making the model more physiological. This robust and reproducible in vitro intestinal model could serve as a valuable system to expedite drug screening as well as to study intestinal transporter function.
Collapse
Affiliation(s)
- Karen E Samy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- UC Berkeley - UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA, USA
| | - Elizabeth S Levy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Kiet Phong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- UC Berkeley - UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA, USA
| | - Benjamin Demaree
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- UC Berkeley - UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
14
|
Tang X, Huang Y, Lei J, Luo H, Zhu X. The single-cell sequencing: new developments and medical applications. Cell Biosci 2019; 9:53. [PMID: 31391919 PMCID: PMC6595701 DOI: 10.1186/s13578-019-0314-y] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Single-cell sequencing technologies can be used to detect the genome, transcriptome and other multi-omics of single cells. They can show the differences and evolutionary relationships of various cells. This review introduces the latest advances in single-cell sequencing technologies and their applications in oncology, microbiology, neurology, reproduction, immunology, digestive and urinary systems, highlighting the important role that single-cell sequencing techniques play in these areas.
Collapse
Affiliation(s)
- Xiaoning Tang
- 1The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023 China.,Guangdong Provincial Zhanjiang Bay Key Laboratory, Zhanjiang, 524023 China
| | - Yongmei Huang
- 1The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023 China.,Guangdong Provincial Zhanjiang Bay Key Laboratory, Zhanjiang, 524023 China
| | - Jinli Lei
- 1The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023 China.,Guangdong Provincial Zhanjiang Bay Key Laboratory, Zhanjiang, 524023 China
| | - Hui Luo
- 1The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023 China.,Guangdong Provincial Zhanjiang Bay Key Laboratory, Zhanjiang, 524023 China
| | - Xiao Zhu
- 1The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023 China.,Guangdong Provincial Zhanjiang Bay Key Laboratory, Zhanjiang, 524023 China
| |
Collapse
|
15
|
Recent Advances in Droplet-based Microfluidic Technologies for Biochemistry and Molecular Biology. MICROMACHINES 2019; 10:mi10060412. [PMID: 31226819 PMCID: PMC6631694 DOI: 10.3390/mi10060412] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
Abstract
Recently, droplet-based microfluidic systems have been widely used in various biochemical and molecular biological assays. Since this platform technique allows manipulation of large amounts of data and also provides absolute accuracy in comparison to conventional bioanalytical approaches, over the last decade a range of basic biochemical and molecular biological operations have been transferred to drop-based microfluidic formats. In this review, we introduce recent advances and examples of droplet-based microfluidic techniques that have been applied in biochemistry and molecular biology research including genomics, proteomics and cellomics. Their advantages and weaknesses in various applications are also comprehensively discussed here. The purpose of this review is to provide a new point of view and current status in droplet-based microfluidics to biochemists and molecular biologists. We hope that this review will accelerate communications between researchers who are working in droplet-based microfluidics, biochemistry and molecular biology.
Collapse
|
16
|
Wechsler ME, Stephenson RE, Murphy AC, Oldenkamp HF, Singh A, Peppas NA. Engineered microscale hydrogels for drug delivery, cell therapy, and sequencing. Biomed Microdevices 2019; 21:31. [PMID: 30904963 DOI: 10.1007/s10544-019-0358-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Engineered microscale hydrogels have emerged as promising therapeutic approaches for the treatment of various diseases. These microgels find wide application in the biomedical field because of the ease of injectability, controlled release of therapeutics, flexible means of synthesis, associated tunability, and can be engineered as stimuli-responsive. While bulk hydrogels of several length-scale dimensions have been used for over two decades in drug delivery applications, their use as microscale carriers of drug and cell-based therapies is relatively new. Herein, we critically summarize the fundamentals of hydrogels based on their equilibrium and dynamics of their molecular structure, as well as solute diffusion as it relates to drug delivery. In addition, examples of common microgel synthesis techniques are provided. The ability to tune microscale hydrogels to obtain controlled release of therapeutics is discussed, along with microgel considerations for cell encapsulation as it relates to the development of cell-based therapies. We conclude with an outlook on the use of microgels for cell sequencing, and the convergence of the use of microscale hydrogels for drug delivery, cell therapy, and cell sequencing based systems.
Collapse
Affiliation(s)
- Marissa E Wechsler
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Regan E Stephenson
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Andrew C Murphy
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Heidi F Oldenkamp
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ankur Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA.
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
17
|
Demaree B, Weisgerber D, Dolatmoradi A, Hatori M, Abate AR. Direct quantification of EGFR variant allele frequency in cell-free DNA using a microfluidic-free digital droplet PCR assay. Methods Cell Biol 2018; 148:119-131. [PMID: 30473066 DOI: 10.1016/bs.mcb.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Analysis of liquid biopsy samples is a promising diagnostic intervention for noninvasive detection and monitoring of cancer genotypes. However, current methods used to assess mutation status are either costly, in the case of next-generation sequencing-based assays, or lacking in sensitivity, in the case of bulk quantitative PCR measurements. Digital droplet PCR (ddPCR) is at once a sensitive and low-cost method for detecting rare cancer mutations and measuring their variant allele frequency. In this chapter, we describe a method for conducting ddPCR assays without microfluidics in a process called "particle-templated emulsification" (PTE). Using hydrogel particles and a standard benchtop vortexer to rapidly emulsify large volumes, the method forgoes the specialized instrumentation required for conventional ddPCR assays and is capable of high experimental throughput. To assess the quantitative performance of the method, we apply PTE ddPCR to analysis of variant allele frequency in EGFR, a commonly mutated gene in lung adenocarcinomas.
Collapse
Affiliation(s)
- Benjamin Demaree
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, United States; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, CA, United States
| | - Daniel Weisgerber
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, United States
| | - Ata Dolatmoradi
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, United States
| | - Makiko Hatori
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, United States
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, CA, United States; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, CA, United States; Chan Zuckerberg Biohub, San Francisco, CA, United States.
| |
Collapse
|