1
|
Gabizon AA, Gabizon-Peretz S, Modaresahmadi S, La-Beck NM. Thirty years from FDA approval of pegylated liposomal doxorubicin (Doxil/Caelyx): an updated analysis and future perspective. BMJ ONCOLOGY 2025; 4:e000573. [PMID: 39885941 PMCID: PMC11751825 DOI: 10.1136/bmjonc-2024-000573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025]
Abstract
In 2025, it will be 30 years since the initial clinical approval of pegylated liposomal doxorubicin (PLD) by the Food and Drug Administration. PLD predated the field of nanomedicine and became a model nanomedicine setting key pharmacological principles (prolonged circulation, slow drug release and the enhanced permeability and retention (EPR) effect) for clinical application of other nano-drugs in cancer therapy. The impressive reduction of cardiotoxicity conferred by PLD is the most valuable clinical asset. While PLD has gained a strong foothold in relapsed ovarian cancer and metastatic breast cancer, it has not been extensively tested in primary (neoadjuvant) and adjuvant therapy and has not fulfilled the expectations from the results in animal models efficacy-wise. This discrepancy may be due to the large dose gap between mice and humans and the apparent variability of the EPR effect in human cancer. PLD is a complex product and we are still in a learning curve regarding a number of factors such as its interaction with the complement system and its immune modulatory properties, as well as its integration in multimodality therapy that may potentiate its value and role in cancer therapy.
Collapse
Affiliation(s)
- Alberto A Gabizon
- The Leah and Jakub Susskind Nano-Oncology Research Laboratory, Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
- Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Shira Gabizon-Peretz
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Central, Israel
- Tel Aviv University, Faculty of Medicine, Tel Aviv, Israel
| | - Shadan Modaresahmadi
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H Hodge School of Pharmacy, Abilene, Texas, USA
| | - Ninh M La-Beck
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H Hodge School of Pharmacy, Abilene, Texas, USA
| |
Collapse
|
2
|
Dagher D, Elmansi H, Nasr JJ, El-Enany N. Investigation of green synchronous spectrofluorimetric approach for facile sensitive estimation of two co-administered anti-cancer drugs; curcumin and doxorubicin in their laboratory-prepared mixtures, human plasma, and urine. BMC Chem 2024; 18:164. [PMID: 39252071 PMCID: PMC11385172 DOI: 10.1186/s13065-024-01272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Recently, phytochemicals play an important role in cancer management. Curcumin (CUR), a natural phytochemical, has been co-administered with widespread chemotherapeutic agents such as doxorubicin (DOX) due to its excellent antitumor activity and the ability to lower the adverse reactions and drug resistance cells associated with DOX use. The present study aims to determine DOX and CUR utilizing a label-free, selective, sensitive, and precise synchronous spectrofluorimetric method. The obvious overlap between the emission spectra of DOX and CUR prevents simultaneous estimation of both analytes by conventional spectrofluorimetry. To solve such a problem, synchronous spectrofluorimetric measurements were recorded at Δλ = 20 nm, utilizing ethanol as a diluting solvent. Curcumin was recorded at 442.5 nm, whereas DOX was estimated at 571.5 nm, each at the zero-crossing point of the other one. The developed method exhibited linearity over a concentration range of 0.04-0.40 μg/mL for CUR and 0.05-0.50 μg/mL for DOX, respectively. The values of limit of detection (LOD) were 0.009 and 0.012 µg/mL, while the values of limit of quantitation (LOQ) were 0.028 and 0.037 µg/mL for CUR and DOX, respectively. The adopted approach was carefully validated according to the guidelines of ICH Q2R1. The method was utilized to estimate CUR and DOX in laboratory-prepared mixtures and human biological matrices. It showed a high percentage of recoveries with minimal RSD values. Additionally, three different tools were utilized to evaluate the greenness of the proposed approach.
Collapse
Affiliation(s)
- Diaa Dagher
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Heba Elmansi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Jenny Jeehan Nasr
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura National University, Gamasa, 7723730, Egypt
| | - Nahed El-Enany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Mansoura University, New Mansoura, 7723730, Egypt
| |
Collapse
|
3
|
Wang J, Zhang X, Xing J, Gao L, Lu H. Nanomedicines in diagnosis and treatment of prostate cancers: an updated review. Front Bioeng Biotechnol 2024; 12:1444201. [PMID: 39318666 PMCID: PMC11420853 DOI: 10.3389/fbioe.2024.1444201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/26/2024] Open
Abstract
Prostate cancer (PC) is the third most common male cancer in the world, which occurs due to various mutations leading to the loss of chromatin structure. There are multiple treatments for this type of cancer, of which chemotherapy is one of the most important. Sometimes, a combination of different treatments, such as chemotherapy, radiotherapy, and surgery, are used to prevent tumor recurrence. Among other treatments, androgen deprivation therapy (ADT) can be mentioned, which has had promising results. One of the drawbacks of chemotherapy and ADT treatments is that they are not targeted to the tumor tissue. For this reason, their use can cause extensive side effects. Treatments based on nanomaterials, known as nanomedicine, have attracted much attention today. Nanoparticles (NPs) are one of the main branches of nanomedicine, and they can be made of different materials such as polymer, metal, and carbon, each of which has distinct characteristics. In addition to NPs, nanovesicles (NVs) also have therapeutic applications in PC. In treating PC, synthetic NVs (liposomes, micelles, and nanobubbles) or produced from cells (exosomes) can be used. In addition to the role that NPs and NVs have in treating PC, due to being targeted, they can be used to diagnose PC and check the treatment process. Knowing the characteristics of nanomedicine-based treatments can help design new treatments and improve researchers' understanding of tumor biology and its rapid diagnosis. In this study, we will discuss conventional and nanomedicine-based treatments. The results of these studies show that the use of NPs and NVs in combination with conventional treatments has higher efficacy in tumor treatment than the individual use of each of them.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Oncology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Xuan Zhang
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Jiazhen Xing
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Lijian Gao
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Hua Lu
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| |
Collapse
|
4
|
Deshmukh R, Sethi P, Singh B, Shiekmydeen J, Salave S, Patel RJ, Ali N, Rashid S, Elossaily GM, Kumar A. Recent Review on Biological Barriers and Host-Material Interfaces in Precision Drug Delivery: Advancement in Biomaterial Engineering for Better Treatment Therapies. Pharmaceutics 2024; 16:1076. [PMID: 39204421 PMCID: PMC11360117 DOI: 10.3390/pharmaceutics16081076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Preclinical and clinical studies have demonstrated that precision therapy has a broad variety of treatment applications, making it an interesting research topic with exciting potential in numerous sectors. However, major obstacles, such as inefficient and unsafe delivery systems and severe side effects, have impeded the widespread use of precision medicine. The purpose of drug delivery systems (DDSs) is to regulate the time and place of drug release and action. They aid in enhancing the equilibrium between medicinal efficacy on target and hazardous side effects off target. One promising approach is biomaterial-assisted biotherapy, which takes advantage of biomaterials' special capabilities, such as high biocompatibility and bioactive characteristics. When administered via different routes, drug molecules deal with biological barriers; DDSs help them overcome these hurdles. With their adaptable features and ample packing capacity, biomaterial-based delivery systems allow for the targeted, localised, and prolonged release of medications. Additionally, they are being investigated more and more for the purpose of controlling the interface between the host tissue and implanted biomedical materials. This review discusses innovative nanoparticle designs for precision and non-personalised applications to improve precision therapies. We prioritised nanoparticle design trends that address heterogeneous delivery barriers, because we believe intelligent nanoparticle design can improve patient outcomes by enabling precision designs and improving general delivery efficacy. We additionally reviewed the most recent literature on biomaterials used in biotherapy and vaccine development, covering drug delivery, stem cell therapy, gene therapy, and other similar fields; we have also addressed the difficulties and future potential of biomaterial-assisted biotherapies.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula 244236, India;
| | - Bhupendra Singh
- School of Pharmacy, Graphic Era Hill University, Dehradun 248002, India;
- Department of Pharmacy, S.N. Medical College, Agra 282002, India
| | | | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India;
| | - Ravish J. Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Anand 388421, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | - Arun Kumar
- School of Pharmacy, Sharda University, Greater Noida 201310, India
| |
Collapse
|
5
|
Ding T, Wang Y, Meng Y, Wu E, Shao Q, Lin S, Yu Y, Qian J, He Q, Zhang J, Wang J, Kohane DS, Zhan C. Reciprocal Interaction with Neutrophils Facilitates Cutaneous Accumulation of Liposomes. ACS NANO 2024; 18:18769-18784. [PMID: 38950189 DOI: 10.1021/acsnano.4c06638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Liposomes are versatile drug delivery systems in clinical use for cancer and many other diseases. Unfortunately, PEGylated liposomal doxorubicin (sLip/DOX) exhibits serious dose-limiting cutaneous toxicities, which are closely related to the extravascular accumulation of sLip/DOX in the dermis. No clinical interventions have been proposed for cutaneous toxicities due to the elusive transport pathways. Herein, we showed that the reciprocal interaction between liposomes and neutrophils played pivotal roles in liposome extravasation into the dermis. Neutrophils captured liposomes via the complement receptor 3 (CD11b/CD18) recognizing the fragment of complement component C3 (iC3b) deposited on the liposomal surface. Uptake of liposomes also activated neutrophils to induce CD11b upregulation and enhanced the ability of neutrophils to migrate outside the capillaries. Furthermore, inhibition of complement activation either by CRIg-L-FH (a C3b/iC3b targeted complement inhibitor) or blocking the phosphate negative charge in mPEG-DSPE could significantly reduce liposome uptake by neutrophils and alleviate the cutaneous accumulation of liposomes. These results validated the liposome extravasation pathway mediated by neutrophils and provided potential solutions to the devastating cutaneous toxicities occurring during sLip/DOX treatment.
Collapse
Affiliation(s)
- Tianhao Ding
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Yang Wang
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanchun Meng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
| | - Ercan Wu
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Qianwen Shao
- School of Pharmacy & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 201203, P. R. China
| | - Shiqi Lin
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Yifei Yu
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Jun Qian
- School of Pharmacy & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 201203, P. R. China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai 200032, P. R. China
- School of Pharmacy & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 201203, P. R. China
- Shanghai Engineering Research Center for Synthetic Immunology, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
6
|
Kimura T, Okada K, Morohashi Y, Kato Y, Mori M, Kato H, Matsumoto T, Shimoyama S. Quantification of Unencapsulated Drug in Target Tissues Demonstrates Pharmacological Properties and Therapeutic Effects of Liposomal Topotecan (FF-10850). Pharm Res 2024; 41:795-806. [PMID: 38536615 PMCID: PMC11024016 DOI: 10.1007/s11095-023-03652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/27/2023] [Indexed: 04/18/2024]
Abstract
PURPOSE Quantifying unencapsulated drug concentrations in tissues is crucial for understanding the mechanisms underlying the efficacy and safety of liposomal drugs; however, the methodology for this has not been fully established. Herein, we aimed to investigate the enhanced therapeutic potential of a pegylated liposomal formulation of topotecan (FF-10850) by analyzing the concentrations of the unencapsulated drug in target tissues, to guide the improvement of its dosing regimen. METHODS We developed a method for measuring unencapsulated topotecan concentrations in tumor and bone marrow interstitial fluid (BM-ISF) and applied this method to pharmacokinetic assessments. The ratios of the area under the concentration-time curves (AUCs) between tumor and BM-ISF were calculated for total and unencapsulated topotecan. DNA damage and antitumor effects of FF-10850 or non-liposomal topotecan (TPT) were evaluated in an ES-2 mice xenograft model. RESULTS FF-10850 exhibited a much larger AUC ratio between tumor and BM-ISF for unencapsulated topotecan (2.96), but not for total topotecan (0.752), than TPT (0.833). FF-10850 promoted milder DNA damage in the bone marrow than TPT; however, FF-10850 and TPT elicited comparable DNA damage in the tumor. These findings highlight the greater tumor exposure to unencapsulated topotecan and lower bone marrow exposure to FF-10850 than TPT. The dosing regimen was successfully improved based on the kinetics of unencapsulated topotecan and DNA damage. CONCLUSIONS Tissue pharmacokinetics of unencapsulated topotecan elucidated the favorable pharmacological properties of FF-10850. Evaluation of tissue exposure to an unencapsulated drug with appropriate pharmacodynamic markers can be valuable in optimizing liposomal drugs and dosing regimens.
Collapse
Affiliation(s)
- Toshifumi Kimura
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-Machi, Ashigarakami-Gun, Kanagawa, 258-8577, Japan.
| | - Ken Okada
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-Machi, Ashigarakami-Gun, Kanagawa, 258-8577, Japan
| | - Yasushi Morohashi
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-Machi, Ashigarakami-Gun, Kanagawa, 258-8577, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Mikinaga Mori
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-Machi, Ashigarakami-Gun, Kanagawa, 258-8577, Japan
| | - Hiroshi Kato
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-Machi, Ashigarakami-Gun, Kanagawa, 258-8577, Japan
| | - Takeshi Matsumoto
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-Machi, Ashigarakami-Gun, Kanagawa, 258-8577, Japan
| | - Susumu Shimoyama
- FUJIFILM Pharmaceuticals U.S.A., Inc, One Broadway, Cambridge, MA, 02142, USA
| |
Collapse
|
7
|
Manhas P, Cokca C, Sharma R, Peneva K, Wangoo N, Sharma D, Sharma RK. Chitosan functionalized doxorubicin loaded poly(methacrylamide) based copolymeric nanoparticles for enhanced cellular internalization and in vitro anticancer evaluation. Int J Biol Macromol 2024; 259:129242. [PMID: 38199540 DOI: 10.1016/j.ijbiomac.2024.129242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/03/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Doxorubicin (Dox), a chemotherapeutic agent, encounters challenges such as a short half-life, dose-dependent toxicity, and low solubility. In this context, the present study involved the fabrication of N-(2-hydroxypropyl)methacrylamide (HPMA) and N-(3-aminopropyl)methacrylamide (APMA) bearing P(HPMA-s-APMA) copolymeric nanoparticles (P(HPMA-s-APMA) NPs) and their investigation for efficient delivery of Dox. Furthermore, the synthesized nanoparticles (NPs) were coated with chitosan (Cht) to generate positively charged nanoformulations. The prepared formulations were evaluated for particle size, morphology, surface charge analysis, percentage encapsulation efficiency (EE%), and drug release studies. The anticancer activity of Cht-P(HPMA-s-APMA)-Dox NPs was assessed in the HeLa cancer cell line. The prepared P(HPMA-s-APMA)-Dox NPs exhibited an average particle size of 240-250 nm. Chitosan decorated P(HPMA-s-APMA)-Dox NPs displayed a significant increase in particle size, and the zeta potential shifted from negative to positive. The EE% for Cht-P(HPMA-s-APMA)-Dox NPs was calculated to be 68.06 %. The drug release studies revealed a rapid release of drug from Cht-P(HPMA-s-APMA)-Dox NPs at pH 4.8 than pH 7.4, demonstrating the pH-responsiveness of nanoformulation. Furthermore, the cell viability assay and internalization studies revealed that Cht-P(HPMA-s-APMA)-Dox NPs had a high cytotoxic response and significant cellular uptake. Hence, the Cht-P(HPMA-s-APMA)-Dox NPs appeared to be a suitable nanocarrier for effective, and safe chemotherapy.
Collapse
Affiliation(s)
- Priya Manhas
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Ceren Cokca
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany; Jena Center of Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Rohit Sharma
- Centre for Stem Cell and Tissue Engineering, Panjab University, Chandigarh 160014, India
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany; Jena Center of Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering & Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh 160014, India
| | - Deepika Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Rohit K Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India.
| |
Collapse
|
8
|
Titus A, Cheema HA, Shafiee A, Seighali N, Shahid A, Bhanushali KB, Kumar A, Khan SU, Khadke S, Thavendiranathan P, Hundley WG, Scherrer-Crosbie M, Nohria A, Neilan TG, Dani SS, Nasir K, Ganatra S. Statins for Attenuating Cardiotoxicity in Patients Receiving Anthracyclines: A Systematic Review and Meta-Analysis. Curr Probl Cardiol 2023; 48:101885. [PMID: 37336312 DOI: 10.1016/j.cpcardiol.2023.101885] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Anthracycline chemotherapy causes cardiotoxicity, and the evidence regarding the benefit of concomitant statin use in reducing it remains uncertain. We conducted a meta-analysis of studies using statins and anthracyclines by searching PubMed, Embase, the Cochrane Library, and ClinicalTrials.gov from inception until April 10, 2023. Our analysis included 3 observational studies and 4 RCTs, including the STOP-CA trial released in ACC23. Statin prescription significantly reduced cardiotoxicity in cancer patients receiving anthracycline chemotherapy (OR 0.46, 95% CI: 0.33-0.63; I2: 0%). However, no significant difference was observed in the decline of left ventricular ejection fraction (LVEF) from baseline (MD 4.15, 95% CI: -0.69 to 8.99, I2: 97%). These findings demonstrate the protective effect of concomitant statin prescription.
Collapse
Affiliation(s)
- Anoop Titus
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, MA
| | | | - Arman Shafiee
- Clinical Research Development Unit, Alborz University of Medical Sciences, Karaj, Iran; Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Niloofar Seighali
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Abia Shahid
- Department of Cardiology, King Edward Medical University, Lahore, Pakistan
| | - Karan B Bhanushali
- Department of Internal Medicine, Roger Williams Medical Center, Providence, RI
| | - Ashish Kumar
- Department of Internal Medicine, Cleveland Clinic, Akron General, OH
| | - Safi U Khan
- Division of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston, TX
| | - Sumanth Khadke
- Department of Cardiovascular Medicine, Cardio-Oncology Program, Landsman Heart and Vasculature Center, Lahey Hospital & Medical Center, Burlington, MA
| | - Paaladinesh Thavendiranathan
- Department of Medicine, Division of Cardiology, Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - W Gregory Hundley
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA
| | | | - Anju Nohria
- Cardiovascular Division, Department of Internal Medicine, Cardio-Oncology Program, Brigham and Women's Hospital, Boston, MA
| | - Tomas G Neilan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Cardio-oncology Program, Harvard Medical School, Boston, MA
| | - Sourbha S Dani
- Department of Cardiovascular Medicine, Cardio-Oncology Program, Landsman Heart and Vasculature Center, Lahey Hospital & Medical Center, Burlington, MA
| | - Khurram Nasir
- Division of Cardiovascular Prevention & Wellness, Houston Methodist Hospital, Houston, TX
| | - Sarju Ganatra
- Department of Cardiovascular Medicine, Cardio-Oncology Program, Landsman Heart and Vasculature Center, Lahey Hospital & Medical Center, Burlington, MA.
| |
Collapse
|
9
|
Bittner B, Sánchez-Félix M, Lee D, Koynov A, Horvath J, Schumacher F, Matoori S. Drug delivery breakthrough technologies - A perspective on clinical and societal impact. J Control Release 2023; 360:335-343. [PMID: 37364797 DOI: 10.1016/j.jconrel.2023.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The way a drug molecule is administered has always had a profound impact on people requiring medical interventions - from vaccine development to cancer therapeutics. In the Controlled Release Society Fall Symposium 2022, a trans-institutional group of scientists from industry, academia, and non-governmental organizations discussed what a breakthrough in the field of drug delivery constitutes. On the basis of these discussions, we classified drug delivery breakthrough technologies into three categories. In category 1, drug delivery systems enable treatment for new molecular entities per se, for instance by overcoming biological barriers. In category 2, drug delivery systems optimize efficacy and/or safety of an existing drug, for instance by directing distribution to their target tissue, by replacing toxic excipients, or by changing the dosing reqimen. In category 3, drug delivery systems improve global access by fostering use in low-resource settings, for instance by facilitating drug administration outside of a controlled health care institutional setting. We recognize that certain breakthroughs can be classified in more than one category. It was concluded that in order to create a true breakthrough technology, multidisciplinary collaboration is mandated to move from pure technical inventions to true innovations addressing key current and emerging unmet health care needs.
Collapse
Affiliation(s)
- Beate Bittner
- Global Product Strategy, Product Optimization, Grenzacher Strasse 124, 4070 Basel, Switzerland.
| | - Manuel Sánchez-Félix
- Novartis Institutes for BioMedical Research, 700 Main Street, Cambridge, MA 02139, USA
| | - Dennis Lee
- Bill & Melinda Gates Foundation, Seattle, WA 98119, United States
| | - Athanas Koynov
- Pharmaceutical Sciences, Merck & Co., Inc., Rahway, NJ 07033, United States
| | - Joshua Horvath
- Device and Packaging Development, Genentech, Inc., South San Francisco, CA, United States
| | - Felix Schumacher
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Simon Matoori
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
10
|
Zhu D, Yan H, Zhou Y, Nack LM, Liu J, Parak WJ. Design of Disintegrable Nanoassemblies to Release Multiple Small-Sized Nanoparticles. Adv Drug Deliv Rev 2023; 197:114854. [PMID: 37119865 DOI: 10.1016/j.addr.2023.114854] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
The therapeutic and diagnostic effects of nanoparticles depend on the efficiency of their delivery to targeted tissues, such as tumors. The size of nanoparticles, among other characteristics, plays a crucial role in determining their tissue penetration and retention. Small nanoparticles may penetrate deeper into tumor parenchyma but are poorly retained, whereas large ones are distributed around tumor blood vessels. Thus, compared to smaller individual nanoparticles, assemblies of such nanoparticles due to their larger size are favorable for prolonged blood circulation and enhanced tumor accumulation. Upon reaching the targeted tissues, nanoassemblies may dissociate at the target region and release the smaller nanoparticles, which is beneficial for their distribution at the target site and ultimate clearance. The recent emerging strategy that combines small nanoparticles into larger, biodegradable nanoassemblies has been demonstrated by several groups. This review summarizes a variety of chemical and structural designs for constructing stimuli-responsive disintegrable nanoassemblies as well as their different disassembly routes. These nanoassemblies have been applied as demonstrators in the fields of cancer therapy, antibacterial infection, ischemic stroke recovery, bioimaging, and diagnostics. Finally, we summarize stimuli-responsive mechanisms and their corresponding nanomedicine designing strategies, and discuss potential challenges and barriers towards clinical translation.
Collapse
Affiliation(s)
- Dingcheng Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, 311121, China; Fachbereich Physik, Universität Hamburg, Hamburg, Germany.
| | - Huijie Yan
- Fachbereich Physik, Universität Hamburg, Hamburg, Germany
| | - Yaofeng Zhou
- Fachbereich Physik, Universität Hamburg, Hamburg, Germany
| | - Leroy M Nack
- Fachbereich Physik, Universität Hamburg, Hamburg, Germany
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, 311121, China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | | |
Collapse
|
11
|
Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev 2023; 197:114828. [PMID: 37075952 DOI: 10.1016/j.addr.2023.114828] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Adam Frtús
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
12
|
Recent advances and futuristic potentials of nano-tailored doxorubicin for prostate cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Li Y, Qi L, Wang Y, Li Y, Lei C, Zhang Y, Cheng X, Liu J, Bai H, Zhao X, Lv S, Xiong B, Liu J, Shi Y, Zhou H, Li H, Liu L, Jiang H, Ouyang W, Li X, Li Y, Wang X. A multicenter randomized trials to compare the bioequivalence and safety of a generic doxorubicin hydrochloride liposome injection with Caelyx ® in advanced breast cancer. Front Oncol 2022; 12:1070001. [PMID: 36605440 PMCID: PMC9810385 DOI: 10.3389/fonc.2022.1070001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose To compare the pharmacokinetic (PK) bioequivalence (BE) and safety of a generic pegylated liposomal doxorubicin (PLD) formulation with the reference product Caelyx®. Methods A multicenter, single-dose, open-label, randomized, two-way crossover study was conducted in patients with breast cancer. For each period, the patients were administered with the test or the reference PLD intravenously at a dose of 50 mg/m2. Cmax, AUC0-t and AUC0-∞ for free, and encapsulated doxorubicin (doxorubicin) and partial AUC (AUC0-48h, AUC48h-t) for encapsulated doxorubicin were evaluated in 17 blood samples taken predose, and increasing time intervals over the following 14 days in each period. A washout period of 28-35 days was observed before crossing over. Results 48 patients were enrolled and randomised, of which 44 were included and analysed in bioequivalence set (BES). The 90% confidence intervals (CIs) of the geometric mean ratio (GMR) of Cmax, AUC0-t and AUC0-∞ for free doxorubicin and encapsulated doxorubicin all fall within the bioequivalent range of 80% to 125%. The 90% CIs of GMR of partial AUC (AUC0-48h, AUC48h-t) for encapsulated doxorubicin also fall within the bioequivalent range. 48 patients were all included in the safety set (SS). The incidence of treatment-emergent adverse events (TEAEs) related to T and R was 95.8% (46/48) and 97.8% (45/46) respectively. The highest incidence of TEAEs was various laboratory abnormalities. 2 patients withdrew due to T-drug-related AEs. Only one patient experienced serious adverse events and no death occurred in this study. There were no significant differences between the safety profiles of the generic formulation and Caelyx®. Conclusions Bioequivalence between the test and the reference products was established for free and encapsulated doxorubicin. Clinical trial registration http://www.chinadrugtrials.org.cn, identifier [CTR20210375].
Collapse
Affiliation(s)
- Yinjuan Li
- Department of Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lu Qi
- Department of Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yu Wang
- Department of Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yan Li
- Department of Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chunpu Lei
- Department of Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yingjuan Zhang
- Department of Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaoqiang Cheng
- Department of Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ju Liu
- Department of Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - HaiHong Bai
- Department of Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xia Zhao
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shuzhen Lv
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Bingjun Xiong
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Juan Liu
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yehui Shi
- Department of Phase I Clinical Trial, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Huan Zhou
- National Institute of Drug Clinical Trial, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hongtao Li
- Oncology Department, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Lihong Liu
- Pharmacy Department, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hongchuan Jiang
- Department of Breast Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Weiwei Ouyang
- Oncology Department, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaowen Li
- Clinical Medical Center General Manager Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Yanping Li
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China,*Correspondence: Xinghe Wang, ; Yanping Li,
| | - Xinghe Wang
- Department of Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China,*Correspondence: Xinghe Wang, ; Yanping Li,
| |
Collapse
|
14
|
Adham SA, Szewczuk MR, Mraiche F, Petricoin E. Editorial: Recent advancements in neoadjuvant chemotherapy for specific breast cancer subtypes. Front Oncol 2022; 12:1100427. [PMID: 36582793 PMCID: PMC9793895 DOI: 10.3389/fonc.2022.1100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sirin A. Adham
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman,*Correspondence: Sirin A. Adham, ;
| | - Myron R. Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Emanuel Petricoin
- Institute for Biomedical Innovation, George Mason University, Manassas, VA, United States
| |
Collapse
|
15
|
Han X, Alu A, Liu H, Shi Y, Wei X, Cai L, Wei Y. Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioact Mater 2022; 17:29-48. [PMID: 35386442 PMCID: PMC8958282 DOI: 10.1016/j.bioactmat.2022.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Biotherapy has recently become a hotspot research topic with encouraging prospects in various fields due to a wide range of treatments applications, as demonstrated in preclinical and clinical studies. However, the broad applications of biotherapy have been limited by critical challenges, including the lack of safe and efficient delivery systems and serious side effects. Due to the unique potentials of biomaterials, such as good biocompatibility and bioactive properties, biomaterial-assisted biotherapy has been demonstrated to be an attractive strategy. The biomaterial-based delivery systems possess sufficient packaging capacity and versatile functions, enabling a sustained and localized release of drugs at the target sites. Furthermore, the biomaterials can provide a niche with specific extracellular conditions for the proliferation, differentiation, attachment, and migration of stem cells, leading to tissue regeneration. In this review, the state-of-the-art studies on the applications of biomaterials in biotherapy, including drug delivery, vaccine development, gene therapy, and stem cell therapy, have been summarized. The challenges and an outlook of biomaterial-assisted biotherapies have also been discussed.
Collapse
Affiliation(s)
- Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Cardiolipin for Enhanced Cellular Uptake and Cytotoxicity of Thermosensitive Liposome-Encapsulated Daunorubicin toward Breast Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms231911763. [PMID: 36233061 PMCID: PMC9569717 DOI: 10.3390/ijms231911763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Daunorubicin (DNR) and cardiolipin (CL) were co-delivered using thermosensitive liposomes (TSLs). 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-myristoyl-2-stearoyl-sn-glycero-3-phosphocholine (MSPC), cholesterol, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] or DSPE-mPEG (2000) and CL were used in the formulation of liposomes at a molar ratio of 57:40:30:3:20, respectively. CL forms raft-like microdomains that may relocate and change lipid organization of the outer and inner mitochondrial membranes. Such transbilayer lipid movement eventually leads to membrane permeabilization. TSLs were prepared by thin-film hydration (drug:lipid ratio 1:5) where DNR was encapsulated within the aqueous core of the liposomes and CL acted as a component of the lipid bilayer. The liposomes exhibited high drug encapsulation efficiency (>90%), small size (~115 nm), narrow size distribution (polydispersity index ~0.12), and a rapid release profile under the influence of mild hyperthermia. The liposomes also exhibited ~4-fold higher cytotoxicity against MDA-MB-231 cells compared to DNR or liposomes similar to DaunoXome® (p < 0.001). This study provides a basis for developing a co-delivery system of DNR and CL encapsulated in liposomes for treatment of breast cancer.
Collapse
|
17
|
S PS, Nagarkar RV, Puligundla KC, N LK, Boya RR, Patel AB, Goyal L, Thoke A, Patel JG, Mehta AO, Patel GN, Khan MA, Ahmad I. Bioequivalence of a hybrid pegylated liposomal doxorubicin hydrochloride injection and Caelyx®: A single-dose, randomized, multicenter, open-label, two-period crossover study in patients with advanced ovarian cancer. Eur J Pharm Sci 2022; 176:106248. [PMID: 35777616 DOI: 10.1016/j.ejps.2022.106248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To evaluate the bioequivalence of a hybrid pegylated liposomal doxorubicin (PLD) hydrochloride injection with reference product Caelyx®. METHODS This multicenter, open-label, balanced, randomized, two-treatment, two-period, two-sequence, single-dose, crossover, bioequivalence study was conducted in female patients aged ≥18 years and ≤75 years with ovarian cancer, whose disease progressed or recurred after platinum-based chemotherapy, and who were scheduled to start PLD therapy. Patients were intravenously infused drugs over 1 h at 50 mg/m2 dose two hours after breakfast on the first day of the chemotherapy cycle in period-I and crossed over to the other arm in period-II (day 29). Pharmacokinetic (PK) analyses were performed using two separate, validated liquid chromatography-mass spectrometry methods for encapsulated and unencapsulated doxorubicin. RESULTS Both the test and reference formulations were well-tolerated and safe. The pharmacokinetic analysis for both encapsulated and unencapsulated doxorubicin was conducted in 50 patients and PK parameters were found to be comparable between test and reference products. The geometric mean ratios (90% confidence interval) of hybrid PLD/Caelyx® were; maximum measured plasma concentration (Cmax): 91.94-97.28%, area under the plasma concentration versus time from time 0 to t (AUC0-t): 95.19-103.67%, AUC from time 0 to ∞ (AUC0-∞): 95.13-103.66% for encapsulated doxorubicin and for unencapsulated doxorubicin Cmax: 92.08-116.46%, AUC0-t: 91.91-108.28%, AUC0-∞: 93.45-110.05%. CONCLUSION The PLD formulation was found to be bioequivalent to Caelyx®.
Collapse
Affiliation(s)
- Prakash S S
- Department of General Surgery, MMC and RI, K.R. Hospital, Mysore, Karnataka, India
| | | | | | - Lokesh K N
- Oncolgy Department, Shetty's Hospital, Bommanahalli, Bangalore, Karnataka, India
| | - Rakesh Reddy Boya
- Mahatma Gandhi Cancer Hospital & Research Institute, Visakhapatnam, Andhra Pradesh, India
| | | | - Lovenish Goyal
- Aadhar Health Institute, Tosham Road, Hisar, Haryana, India
| | - Aniket Thoke
- Sanjeevani CBCC USA Cancer Hospital, Raipur, Chhattisgarh, India
| | | | | | | | - Mujtaba A Khan
- Intas Pharmaceuticals Limited, Ahmedabad, Gujarat, India
| | - Imran Ahmad
- Jina Pharmaceuticals Inc., Libertyville, IL, USA.
| |
Collapse
|
18
|
Abrahams C, Woudberg NJ, Lecour S. Anthracycline-induced cardiotoxicity: targeting high-density lipoproteins to limit the damage? Lipids Health Dis 2022; 21:85. [PMID: 36050733 PMCID: PMC9434835 DOI: 10.1186/s12944-022-01694-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/02/2022] [Indexed: 12/30/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic frequently used against a wide range of cancers, including breast cancer. Although the drug is effective as a treatment against cancer, many patients develop heart failure (HF) months to years following their last treatment with DOX. The challenge in preventing DOX-induced cardiotoxicity is that symptoms present after damage has already occurred in the myocardium. Therefore, early biomarkers to assess DOX-induced cardiotoxicity are urgently needed. A better understanding of the mechanisms involved in the toxicity is important as this may facilitate the development of novel early biomarkers or therapeutic approaches. In this review, we discuss the role of high-density lipoprotein (HDL) particles and its components as possible key players in the early development of DOX-induced cardiotoxicity. HDL particles exist in different subclasses which vary in composition and biological functionality. Multiple cardiovascular risk factors are associated with a change in HDL subclasses, resulting in modifications of their composition and physiological functions. There is growing evidence in the literature suggesting that cancer affects HDL subclasses and that healthy HDL particles enriched with sphingosine-1-phosphate (S1P) and apolipoprotein A1 (ApoA1) protect against DOX-induced cardiotoxicity. Here, we therefore discuss associations and relationships between HDL, DOX and cancer and discuss whether assessing HDL subclass/composition/function may be considered as a possible early biomarker to detect DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Carmelita Abrahams
- Cardioprotection Group, Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa
| | - Nicholas J Woudberg
- Cardioprotection Group, Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa
| | - Sandrine Lecour
- Cardioprotection Group, Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa.
| |
Collapse
|
19
|
Miguel RDA, Hirata AS, Jimenez PC, Lopes LB, Costa-Lotufo LV. Beyond Formulation: Contributions of Nanotechnology for Translation of Anticancer Natural Products into New Drugs. Pharmaceutics 2022; 14:1722. [PMID: 36015347 PMCID: PMC9415580 DOI: 10.3390/pharmaceutics14081722] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
Nature is the largest pharmacy in the world. Doxorubicin (DOX) and paclitaxel (PTX) are two examples of natural-product-derived drugs employed as first-line treatment of various cancer types due to their broad mechanisms of action. These drugs are marketed as conventional and nanotechnology-based formulations, which is quite curious since the research and development (R&D) course of nanoformulations are even more expensive and prone to failure than the conventional ones. Nonetheless, nanosystems are cost-effective and represent both novel and safer dosage forms with fewer side effects due to modification of pharmacokinetic properties and tissue targeting. In addition, nanotechnology-based drugs can contribute to dose modulation, reversion of multidrug resistance, and protection from degradation and early clearance; can influence the mechanism of action; and can enable drug administration by alternative routes and co-encapsulation of multiple active agents for combined chemotherapy. In this review, we discuss the contribution of nanotechnology as an enabling technology taking the clinical use of DOX and PTX as examples. We also present other nanoformulations approved for clinical practice containing different anticancer natural-product-derived drugs.
Collapse
Affiliation(s)
- Rodrigo dos A. Miguel
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Amanda S. Hirata
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Paula C. Jimenez
- Institute of the Sea, Federal University of Sao Paulo, Santos 11070-100, Brazil
| | - Luciana B. Lopes
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Leticia V. Costa-Lotufo
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
20
|
Park S, Park H, Park C, Yun WS, Hwang S, Yoon HY, Kwon IC, Kim K, Key J. Improved survival rate and minimal side effects of doxorubicin for lung metastasis using engineered discoidal polymeric particles. Biomater Sci 2022; 10:4335-4344. [PMID: 35775589 DOI: 10.1039/d2bm00718e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Despite advances in cancer therapy, the discovery of effective cancer treatments remains challenging. In this study, a simple method was developed to increase the efficiency of doxorubicin (DOX) delivery in a lung metastasis model. This method comprises a simple configuration to increase the delivery efficiency via precise engineering of the size, shape, loading content, and biodegradability of the drug delivery system. This system had a 3 μm discoidal shape and exerted approximately 90% burst release of the drug within the first 24 h. There was no cytotoxicity of the drug carrier up to a concentration of 1 mg ml-1, and DOX from the carrier was delivered into the cancer cells, exhibiting an anticancer effect comparable to that of the free drug. The ex vivo results revealed a strong correlation between the location of cancer cells in the lung and the location of DOX delivered by this drug delivery system. These drug carriers were confirmed to intensively deliver DOX to cancer cells in the lung, with minimal off-target effects. These findings indicate that this delivery system can be a new approach to improving the survival rate and reducing the side effects caused by anticancer drugs without the use of targeting ligands and polyethylene glycol.
Collapse
Affiliation(s)
- Sanghyo Park
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Hyungkyu Park
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Chaewon Park
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Wan Su Yun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.,Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Soonjae Hwang
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea.,Department of Biomedical Laboratory Science, Yonsei University, Wonju 26493, Republic of Korea
| | - Hong Yeol Yoon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.,Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ick Chan Kwon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.,Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.,Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| |
Collapse
|
21
|
Liu J, Li L, Zhang B, Xu ZP. MnO2-shelled Doxorubicin/Curcumin nanoformulation for enhanced colorectal cancer chemo-immunotherapy. J Colloid Interface Sci 2022; 617:315-325. [DOI: 10.1016/j.jcis.2022.02.132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 02/09/2023]
|
22
|
Liu D, Cohen J, Turkman N. PEG 2000-DBCO surface coating increases intracellular uptake of liposomes by breast cancer xenografts. Sci Rep 2022; 12:10564. [PMID: 35732704 PMCID: PMC9218082 DOI: 10.1038/s41598-022-14947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022] Open
Abstract
Given our interest in the utility of liposomes for molecular imaging and theranostics, we investigated how coating the outer layer of the liposome affects internalization by breast cancer cell lines in vitro and in breast tumor tissues in vivo. Indeed, we discovered that a remarkably high liposomal uptake can be achieved by DBCO (dibenzocyclooctyne) soft coating. Our data demonstrates that decorating the terminal lipid with a DBCO moiety at a specific density induces increased tumor uptake in vivo (tumor uptake ~ 50%) compared to conventional undecorated liposome (tumor uptake ~ 20%). In this study, we report improved visualization of breast cancer cells in vivo using a 4T1 orthotopic breast cancer model and primary breast tumor xenograft models MDA-MB-231 and MDA-MB-436. L-PEG2000-DBCO coated liposomes demonstrate increased accumulation in breast cancer cells independent of tumor size, type, position, receptor expression, as well as the condition of the host mice. We expect these findings to have a major positive impact on the practical utility of liposomes in image-guided applications and precision medicine theranostics.
Collapse
Affiliation(s)
- Daxing Liu
- Stony Brook Cancer Center, Stony Brook, Long Island, USA.,Department of Radiology and Cancer Center, Renaissance School of Medicine, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Jules Cohen
- Stony Brook Cancer Center, Stony Brook, Long Island, USA.,Division of Hematology/Oncology, Department of Medicine, School of Medicine, Stony Brook University, Long Island, NY, USA
| | - Nashaat Turkman
- Stony Brook Cancer Center, Stony Brook, Long Island, USA. .,Department of Radiology and Cancer Center, Renaissance School of Medicine, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA.
| |
Collapse
|
23
|
Vascular bursts-mediated tumor accumulation and deep penetration of spherical nucleic acids for synergistic radio-immunotherapy. JOURNAL OF CONTROLLED RELEASE : OFFICIAL JOURNAL OF THE CONTROLLED RELEASE SOCIETY 2022; 348:1050-1065. [PMID: 35750133 DOI: 10.1016/j.jconrel.2022.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
Abstract
While nanomedicines have attracted great interests for tumor therapy, their targeting and intra-tumoral penetrating efficiencies have been questioned. Here, we report a two-step low-dose radiotherapy (RT) strategy to realize significant accumulation and deep penetration of spherical nucleic acids (SNAs)-based nanomedicine for synergistic radio-immunotherapy. The first step RT was employed to recruit large amounts of macrophages into tumor. The tumor infiltrated macrophages not only served as nanoparticles drug depots, but also elicited dynamic bursts extravasation to enhance nanoparticles accumulation. We optimized the spatiotemporal combination of RT and SNAs administration for higher level of SNAs delivery, and the delivered SNAs promote M2-to-M1 phenotype switch of macrophages to increase phagocytosis of nanoparticles by 6-fold, resulting in positive feedback with even higher accumulation and intra-tumor penetration of SNAs. Through vascular bursts and macrophage repolarization, as high as 25-fold enhancement of nanoparticles accumulation was achieved as compared to passive targeting of nanoparticles, and the nanoparticles were eventually distributed throughout the tumor tissue with efficient deep penetration. Finally, SNAs in tumor simultaneously sensitized the second dose of RT and remodeled tumor immune microenvironment, resulting in a synergistic anticancer therapy in combination of anti-PD-L1 antibody (αPD-L1) with no noticeable side effects caused by either RT or αPD-L1.
Collapse
|
24
|
Oros-Pantoja R, Córdoba-Adaya JC, Torres-García E, Morales-Avila E, Aranda-Lara L, Santillán-Benítez JG, Sánchez-Holguín M, Hernández-Herrera NO, Otero G, Isaac-Olivé K. Preclinical evaluation of early multi-organ toxicity induced by liposomal doxorubicin using 67Ga-citrate. Nanotoxicology 2022; 16:247-264. [DOI: 10.1080/17435390.2022.2071180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Julio César Córdoba-Adaya
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Eugenio Torres-García
- Laboratorio de Dosimetría y Simulación Monte Carlo, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Enrique Morales-Avila
- Laboratorio de Investigación en Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Liliana Aranda-Lara
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Jonnathan G Santillán-Benítez
- Laboratorio de Investigación en Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | | | - Gloria Otero
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Keila Isaac-Olivé
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
25
|
Design and optimization of PEGylated silver nanoparticles for efficient delivery of doxorubicin to cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Rasool M, Malik A, Waquar S, Arooj M, Zahid S, Asif M, Shaheen S, Hussain A, Ullah H, Gan SH. New challenges in the use of nanomedicine in cancer therapy. Bioengineered 2022; 13:759-773. [PMID: 34856849 PMCID: PMC8805951 DOI: 10.1080/21655979.2021.2012907] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/27/2021] [Indexed: 11/02/2022] Open
Abstract
Nanomedicines are applied as alternative treatments for anticancer agents. For the treatment of cancer, due to the small size in nanometers (nm), specific site targeting can be achieved with the use of nanomedicines, increasing their bioavailability and conferring fewer toxic side effects. Additionally, the use of minute amounts of drugs can lead to cost savings. In addition, nanotechnology is effectively applied in the preparation of such drugs as they are in nm sizes, considered one of the earliest cutoff values for the production of products utilized in nanotechnology. Early concepts described gold nanoshells as one of the successful therapies for cancer and associated diseases where the benefits of nanomedicine include effective active or passive targeting. Common medicines are degraded at a higher rate, whereas the degradation of macromolecules is time-consuming. All of the discussed properties are responsible for executing the physiological behaviors occurring at the following scale, depending on the geometry. Finally, large nanomaterials based on organic, lipid, inorganic, protein, and synthetic polymers have also been utilized to develop novel cancer cures.
Collapse
Affiliation(s)
- Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Sulayman Waquar
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Mahwish Arooj
- University College of Medicine and Dentistry (UCMD), Lahore, Pakistan
| | - Sara Zahid
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Muhammad Asif
- Department of Biotechnology and ORIC, BUITEMS, Quetta, Pakistan
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Sumaira Shaheen
- Centre for Research in Molecular Medicine (CRiMM), The University of Lahore, Lahore, Pakistan
| | - Abrar Hussain
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Hamid Ullah
- Department of Chemistry, BUITEMS, Quetta, Pakistan
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
27
|
Tereshkina YA, Torkhovskaya TI, Tikhonova EG, Kostryukova LV, Sanzhakov MA, Korotkevich EI, Khudoklinova YY, Orlova NA, Kolesanova EF. Nanoliposomes as drug delivery systems: safety concerns. J Drug Target 2021; 30:313-325. [PMID: 34668814 DOI: 10.1080/1061186x.2021.1992630] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The review highlights the safety issues of drug delivery systems based on liposomes. Due to their small sizes (about 80-120 nm, sometimes even smaller), phospholipid nanoparticles interact intensively with living systems during parenteral administration. This interaction significantly affects both their transport role and safety; therefore, special attention is paid to these issues. The review summarises the data on the basic factors affecting the safety of nanoliposomes: composition, size, surface charge, stability, the release of an incorporated drug, penetration into tissues, interaction with the complement system. Attention is paid to the authors' own research of unique phospholipid nanoparticles with a diameter of 20-30 nm. The influence of technological processes of nanoliposome production on their properties is considered. The article also discusses the modern safety assessment criteria contained in the preliminary regulatory documents of the manufacturing countries for new nanoliposome-based drugs being developed or used in the clinic.
Collapse
Affiliation(s)
- Yu A Tereshkina
- Laboratory of Phospholipid Nanoparticles and Transport Systems, Institute of Biomedical Chemistry, Moscow, Russia
| | - T I Torkhovskaya
- Laboratory of Phospholipid Nanoparticles and Transport Systems, Institute of Biomedical Chemistry, Moscow, Russia
| | - E G Tikhonova
- Laboratory of Phospholipid Nanoparticles and Transport Systems, Institute of Biomedical Chemistry, Moscow, Russia
| | - L V Kostryukova
- Laboratory of Phospholipid Nanoparticles and Transport Systems, Institute of Biomedical Chemistry, Moscow, Russia
| | - M A Sanzhakov
- Laboratory of Phospholipid Nanoparticles and Transport Systems, Institute of Biomedical Chemistry, Moscow, Russia
| | - E I Korotkevich
- Laboratory of Phospholipid Nanoparticles and Transport Systems, Institute of Biomedical Chemistry, Moscow, Russia
| | - Yu Yu Khudoklinova
- Laboratory of Phospholipid Nanoparticles and Transport Systems, Institute of Biomedical Chemistry, Moscow, Russia
| | - N A Orlova
- Laboratory of Phospholipid Nanoparticles and Transport Systems, Institute of Biomedical Chemistry, Moscow, Russia
| | - E F Kolesanova
- Laboratory of Peptide Engineering, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
28
|
Yokoe I, Omata D, Unga J, Suzuki R, Maruyama K, Okamoto Y, Osaki T. Lipid bubbles combined with low-intensity ultrasound enhance the intratumoral accumulation and antitumor effect of pegylated liposomal doxorubicin in vivo. Drug Deliv 2021; 28:530-541. [PMID: 33685314 PMCID: PMC7946004 DOI: 10.1080/10717544.2021.1895907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Pegylated liposomal doxorubicin (PLD) is a representative nanomedicine that has improved tumor selectivity and safety profile. However, the therapeutic superiority of PLD over conventional doxorubicin has been reported to be insignificant in clinical medicine. Combination treatment with microbubbles and ultrasound (US) is a promising strategy for enhancing the antitumor effects of chemotherapeutics by improving drug delivery. Recently, several preclinical studies have shown the drug delivery potential of lipid bubbles (LBs), newly developed monolayer microbubbles, in combination with low-intensity US (LIUS). This study aimed to elucidate whether the combined use of LBs and LIUS enhanced the intratumoral accumulation and antitumor effect of PLD in syngeneic mouse tumor models. Contrast-enhanced US imaging using LBs showed a significant decrease in contrast enhancement after LIUS, indicating that LIUS exposure induced the destruction of LBs in the tumor tissue. A quantitative evaluation revealed that the combined use of LBs and LIUS improved the intratumoral accumulation of PLD. Furthermore, tumor growth was inhibited by combined treatment with PLD, LBs, and LIUS. Therefore, the combined use of LBs and LIUS enhanced the antitumor effect of PLD by increasing its accumulation in the tumor tissue. In conclusion, the present study provides important evidence that the combination of LBs and LIUS is an effective method for enhancing the intratumoral delivery and antitumor effect of PLD in vivo.
Collapse
Affiliation(s)
- Inoru Yokoe
- Faculty of Agriculture, Joint Department of Veterinary Clinical Medicine, Tottori University, Tottori, Japan
| | - Daiki Omata
- Faculty of Pharma-Science, Laboratory of Drug and Gene Delivery Research, Teikyo University, Tokyo, Japan
| | - Johan Unga
- Faculty of Pharma-Science, Laboratory of Drug and Gene Delivery Research, Teikyo University, Tokyo, Japan
| | - Ryo Suzuki
- Faculty of Pharma-Science, Laboratory of Drug and Gene Delivery Research, Teikyo University, Tokyo, Japan
| | - Kazuo Maruyama
- Faculty of Pharma-Science, Laboratory of Theranostics, Teikyo University, Tokyo, Japan
| | - Yoshiharu Okamoto
- Faculty of Agriculture, Joint Department of Veterinary Clinical Medicine, Tottori University, Tottori, Japan
| | - Tomohiro Osaki
- Faculty of Agriculture, Joint Department of Veterinary Clinical Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
29
|
Therapeutic Apheresis, Circulating PLD, and Mucocutaneous Toxicity: Our Clinical Experience through Four Years. Pharmaceutics 2020; 12:pharmaceutics12100940. [PMID: 33008072 PMCID: PMC7600532 DOI: 10.3390/pharmaceutics12100940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer treatment has been greatly improved by the combined use of targeted therapies and novel biotechnological methods. Regarding the former, pegylated liposomal doxorubicin (PLD) has a preferential accumulation within cancer tumors, thus having lower toxicity on healthy cells. PLD has been implemented in the targeted treatment of sarcoma, ovarian, breast, and lung cancer. In comparison with conventional doxorubicin, PLD has lower cardiotoxicity and hematotoxicity; however, PLD can induce mucositis and palmo-plantar erythrodysesthesia (PPE, hand-foot syndrome), which limits its use. Therapeutical apheresis is a clinically proven solution against early PLD toxicity without hindering the efficacy of the treatment. The present review summarizes the pharmacokinetics and pharmacodynamics of PLD and the beneficial effects of extracorporeal apheresis on the incidence of PPE during chemoradiotherapy in cancer patients.
Collapse
|
30
|
Wilhelm J, Wang Z, Sumer BD, Gao J. Exploiting nanoscale cooperativity for precision medicine. Adv Drug Deliv Rev 2020; 158:63-72. [PMID: 32882321 DOI: 10.1016/j.addr.2020.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022]
Abstract
Precise spatiotemporal control of molecular transport is vital to functional physiological systems. Nature evolved to apply macromolecular cooperativity to achieve precision over systemic delivery of important molecules. In drug delivery, conventional nanocarriers employ inert materials and rely on passive accumulation for tissue targeting and diffusion for drug release. Early clinical studies show these nanodrugs have not delivered the anticipated impact on therapy. Inspired by nature, we propose a design principle that incorporates nanoscale cooperativity and phase transition to sense and amplify physiological signals to improve the therapeutic outcome. Using ultra-pH-sensitive (UPS) nanoparticles as an example, we demonstrate how all-or-nothing protonation cooperativity during micelle assembly/disassembly can be exploited to increase dose accumulation and achieve rapid drug release in acidic microenvironments. In a separate study, we show the effectiveness of a single polymer composition to accomplish cytosolic delivery of tumor antigens with activation of stimulator of interferon genes (STING) in lymph node-resident dendritic cells for cancer immunotherapy. Molecular cooperativity is a hallmark of nanobiology that offers a valuable strategy to functionalize nanomedicine systems to achieve precision medicine.
Collapse
Affiliation(s)
- Jonathan Wilhelm
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Zhaohui Wang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Baran D Sumer
- Department of Otolaryngology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Jinming Gao
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA.; Department of Otolaryngology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA..
| |
Collapse
|
31
|
Liu X, Tang I, Wainberg ZA, Meng H. Safety Considerations of Cancer Nanomedicine-A Key Step toward Translation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000673. [PMID: 32406992 PMCID: PMC7486239 DOI: 10.1002/smll.202000673] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 05/15/2023]
Abstract
The rate of translational effort of nanomedicine requires strategic planning of nanosafety research in order to enable clinical trials and safe use of nanomedicine in patients. Herein, the experiences that have emerged based on the safety data of classic liposomal formulations in the space of oncology are discussed, along with a description of the new challenges that need to be addressed according to the rapid expansion of nanomedicine platform beyond liposomes. It is valuable to consider the combined use of predictive toxicological assessment supported by deliberate investigation on aspects such as absorption, distribution, metabolism, and excretion (ADME) and toxicokinetic profiles, the risk that may be introduced during nanomanufacture, unique nanomaterials properties, and nonobvious nanosafety endpoints, for example. These efforts will allow the generation of investigational new drug-enabling safety data that can be incorporated into a rational infrastructure for regulatory decision-making. Since the safety assessment relates to nanomaterials, the investigation should cover the important physicochemical properties of the material that may lead to hazards when the nanomedicine product is utilized in humans.
Collapse
Affiliation(s)
- Xiangsheng Liu
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, 90095 CA, USA
| | - Ivanna Tang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Zev A. Wainberg
- Division of Hematology Oncology, Department of Medicine, University of California, Los Angeles, 90095 CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 90095 CA, USA
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, 90095 CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 90095 CA, USA
| |
Collapse
|
32
|
Gabizon A, Szebeni J. Complement Activation: A Potential Threat on the Safety of Poly(ethylene glycol)-Coated Nanomedicines. ACS NANO 2020; 14:7682-7688. [PMID: 32643376 DOI: 10.1021/acsnano.0c03648] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this issue of ACS Nano, Chen et al. provide in vitro and in vivo evidence for monoclonal anti-poly(ethylene glycol) (anti-PEG) antibody-triggered, complement terminal complex-mediated damage to PEGylated liposomal doxorubicin, entailing the release of the encapsulated drug from the vesicles. These results reveal a new dimension of the potential damage of anti-PEG antibody-mediated complement activation on PEGylated nanomedicines in addition to previous observations on infusion hypersensitivity reactions and the accelerated blood clearance effect. The possibility of a destructive attack of the complement system on the liposome drug carrier may have safety implications in patients displaying high levels of preformed anti-PEG antibodies. In this Perspective, we summarize the experimental and clinical data highlighting the relationships among the above adverse immune phenomena and the options available for reducing the risk of immune damage caused by PEGylated nanomedicines.
Collapse
Affiliation(s)
- Alberto Gabizon
- Nano-oncology Research Center, Shaare Zedek Medical Center and The Hebrew University-Faculty of Medicine, Jerusalem 9103102, Israel
- Lipomedix Pharmaceuticals Ltd., Jerusalem 9139102, Israel
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest 1089, Hungary
- Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc 3515, Hungary
- SeroScience Ltd., Budapest 1125, Hungary
| |
Collapse
|
33
|
Hossen MN, Wang L, Chinthalapally HR, Robertson JD, Fung KM, Wilhelm S, Bieniasz M, Bhattacharya R, Mukherjee P. Switching the intracellular pathway and enhancing the therapeutic efficacy of small interfering RNA by auroliposome. SCIENCE ADVANCES 2020; 6:eaba5379. [PMID: 32743073 PMCID: PMC7375829 DOI: 10.1126/sciadv.aba5379] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/09/2020] [Indexed: 05/04/2023]
Abstract
Gene silencing using small-interfering RNA (siRNA) is a viable therapeutic approach; however, the lack of effective delivery systems limits its clinical translation. Herein, we doped conventional siRNA-liposomal formulations with gold nanoparticles to create "auroliposomes," which significantly enhanced gene silencing. We targeted MICU1, a novel glycolytic switch in ovarian cancer, and delivered MICU1-siRNA using three delivery systems-commercial transfection agents, conventional liposomes, and auroliposomes. Low-dose siRNA via transfection or conventional liposomes was ineffective for MICU1 silencing; however, in auroliposomes, the same dose gave >85% gene silencing. Efficacy was evident from both in vitro growth assays of ovarian cancer cells and in vivo tumor growth in human ovarian cell line-and patient-derived xenograft models. Incorporation of gold nanoparticles shifted intracellular uptake pathways such that liposomes avoided degradation within lysosomes. Auroliposomes were nontoxic to vital organs. Therefore, auroliposomes represent a novel siRNA delivery system with superior efficacy for multiple therapeutic applications.
Collapse
Affiliation(s)
- Md. Nazir Hossen
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Lin Wang
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Harisha R. Chinthalapally
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Joe D. Robertson
- Department of Chemistry and University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA
| | - Kar-Ming Fung
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73072, USA
| | - Magdalena Bieniasz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
34
|
Bisso S, Leroux JC. Nanopharmaceuticals: A focus on their clinical translatability. Int J Pharm 2020; 578:119098. [DOI: 10.1016/j.ijpharm.2020.119098] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
|
35
|
Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Biomaterials 2020; 240:119902. [PMID: 32105817 DOI: 10.1016/j.biomaterials.2020.119902] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022]
Abstract
Nanotechnology-based drug delivery platforms have been explored for cancer treatments and resulted in several nanomedicines in clinical uses and many in clinical trials. However, current nanomedicines have not met the expected clinical therapeutic efficacy. Thus, improving therapeutic efficacy is the foremost pressing task of nanomedicine research. An effective nanomedicine must overcome biological barriers to go through at least five steps to deliver an effective drug into the cytosol of all the cancer cells in a tumor. Of these barriers, nanomedicine extravasation into and infiltration throughout the tumor are the two main unsolved blockages. Up to now, almost all the nanomedicines are designed to rely on the high permeability of tumor blood vessels to extravasate into tumor interstitium, i.e., the enhanced permeability and retention (EPR) effect or so-called "passive tumor accumulation"; however, the EPR features are not so characteristic in human tumors as in the animal tumor models. Following extravasation, the large size nanomedicines are almost motionless in the densely packed tumor microenvironment, making them restricted in the periphery of tumor blood vessels rather than infiltrating in the tumors and thus inaccessible to the distal but highly malignant cells. Recently, we demonstrated using nanocarriers to induce transcytosis of endothelial and cancer cells to enable nanomedicines to actively extravasate into and infiltrate in solid tumors, which led to radically increased anticancer activity. In this perspective, we make a brief discussion about how active transcytosis can be employed to overcome the difficulties, as mentioned above, and solve the inherent extravasation and infiltration dilemmas of nanomedicines.
Collapse
|
36
|
Ferro-Flores G. Targeted Nanomedicines: In the Right Route Towards Improved Therapies. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394715666181224144500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guillermina Ferro-Flores
- Laboratorio Nacional de Investigacion y Desarrollo de Radiofarmacos CONACytT Instituto Nacional de Investigaciones Nucleares La Marquesa, 52750, Mexico
| |
Collapse
|
37
|
Nogueira J, Soares SF, Amorim CO, Amaral JS, Silva C, Martel F, Trindade T, Daniel-da-Silva AL. Magnetic Driven Nanocarriers for pH-Responsive Doxorubicin Release in Cancer Therapy. Molecules 2020; 25:E333. [PMID: 31947577 PMCID: PMC7024164 DOI: 10.3390/molecules25020333] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Doxorubicin is one of the most widely used anti-cancer drugs, but side effects and selectivity problems create a demand for alternative drug delivery systems. Herein we describe a hybrid magnetic nanomaterial as a pH-dependent doxorubicin release carrier. This nanocarrier comprises magnetic iron oxide cores with a diameter of 10 nm, enveloped in a hybrid material made of siliceous shells and ĸ-carrageenan. The hybrid shells possess high drug loading capacity and a favorable drug release profile, while the iron oxide cores allows easy manipulation via an external magnetic field. The pH responsiveness was assessed in phosphate buffers at pH levels equivalent to those of blood (pH 7.4) and tumor microenvironment (pH 4.2 and 5). The nanoparticles have a loading capacity of up to 12.3 wt.% and a release profile of 80% in 5 h at acidic pH versus 25% at blood pH. In vitro drug delivery tests on human breast cancer and non-cancer cellular cultures have shown that, compared to the free drug, the loaded nanocarriers have comparable antiproliferative effect but a less intense cytotoxic effect, especially in the non-cancer cell line. The results show a clear potential for these new hybrid nanomaterials as alternative drug carriers for doxorubicin.
Collapse
Affiliation(s)
- João Nogueira
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.N.); (S.F.S.); (T.T.)
| | - Sofia F. Soares
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.N.); (S.F.S.); (T.T.)
| | - Carlos O. Amorim
- CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (C.O.A.); (J.S.A.)
| | - João S. Amaral
- CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (C.O.A.); (J.S.A.)
| | - Cláudia Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (C.S.); (F.M.)
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (C.S.); (F.M.)
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Tito Trindade
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.N.); (S.F.S.); (T.T.)
| | - Ana L. Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.N.); (S.F.S.); (T.T.)
| |
Collapse
|
38
|
Tong S, Zhu H, Bao G. Magnetic Iron Oxide Nanoparticles for Disease Detection and Therapy. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2019; 31:86-99. [PMID: 32831620 PMCID: PMC7441585 DOI: 10.1016/j.mattod.2019.06.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetic iron oxide nanoparticles (MIONs) are among the first generation of nanomaterials that have advanced to clinic use. A broad range of biomedical techniques has been developed by combining the versatile nanomagnetism of MIONs with various forms of applied magnetic fields. MIONs can generate imaging contrast and provide mechanical/thermal energy in vivo in response to an external magnetic field, a special feature that distinguishes MIONs from other nanomaterials. These properties offer unique opportunities for nanomaterials engineering in biomedical research and clinical interventions. The past few decades have witnessed the evolution of the applications of MIONs from conventional drug delivery and hyperthermia to the regulation of molecular and cellular processes in the body. Here we review the most recent development in this field, including clinical studies of MIONs and the emerging techniques that may contribute to future innovation in medicine.
Collapse
Affiliation(s)
- Sheng Tong
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| | - Haibao Zhu
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| |
Collapse
|
39
|
Salvioni L, Rizzuto MA, Bertolini JA, Pandolfi L, Colombo M, Prosperi D. Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope. Cancers (Basel) 2019; 11:E1855. [PMID: 31769416 PMCID: PMC6966668 DOI: 10.3390/cancers11121855] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Starting with the enhanced permeability and retention (EPR) effect discovery, nanomedicine has gained a crucial role in cancer treatment. The advances in the field have led to the approval of nanodrugs with improved safety profile and still inspire the ongoing investigations. However, several restrictions, such as high manufacturing costs, technical challenges, and effectiveness below expectations, raised skeptical opinions within the scientific community about the clinical relevance of nanomedicine. In this review, we aim to give an overall vision of the current hurdles encountered by nanotherapeutics along with their design, development, and translation, and we offer a prospective view on possible strategies to overcome such limitations.
Collapse
Affiliation(s)
- Lucia Salvioni
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Maria Antonietta Rizzuto
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Jessica Armida Bertolini
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Laura Pandolfi
- Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Miriam Colombo
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Davide Prosperi
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
- Nanomedicine Laboratory, ICS Maugeri, via S. Maugeri 10, 27100 Pavia, Italy
| |
Collapse
|
40
|
Sesarman A, Muntean D, Abrudan B, Tefas L, Sylvester B, Licarete E, Rauca V, Luput L, Patras L, Banciu M, Vlase L, Porfire A. Improved pharmacokinetics and reduced side effects of doxorubicin therapy by liposomal co-encapsulation with curcumin. J Liposome Res 2019; 31:1-10. [PMID: 31631726 DOI: 10.1080/08982104.2019.1682604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The goal of the current study was to investigate the pharmacokinetic profile, tissue distribution and adverse effects of long-circulating liposomes (LCL) with curcumin (CURC) and doxorubicin (DOX), in order to provide further evidence for previously demonstrated enhanced antitumor efficacy in colon cancer models. The pharmacokinetic studies were carried out in healthy rats, following the i.v. injection of a single dose of LCL-CURC-DOX (1 mg/kg DOX). For the tissue distribution study, DOX concentration in tumours, heart and liver were measured after the administration of two i.v. doses of LCL-CURC-DOX (2.5 mg/kg DOX and 5 mg/kg CURC) to Balb/c mice bearing C26 colon tumours. Markers of murine cardiac and hepatic oxidative status were determined to provide additional insights into the benefit of co-encapsulating CURC and DOX in LCL over DOX-induced adverse effects in these organs. The current study demonstrated that the liposomal association of CURC and DOX effectively improved the pharmacokinetics and biodistribution of DOX, limiting its side effects, via CURC-dependent antioxidant effects.
Collapse
Affiliation(s)
- Alina Sesarman
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dana Muntean
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bianca Abrudan
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lucia Tefas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bianca Sylvester
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Valentin Rauca
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Lavinia Luput
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Laura Patras
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
41
|
Wang Z, Winkler N, Qian B, Groß W, Mehrabi A, Ryschich E. Endothelial capture using antibodies and nanoparticles in human tissues: Antigen identification and liver segment imaging. Acta Biomater 2019; 97:474-489. [PMID: 31398471 DOI: 10.1016/j.actbio.2019.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/22/2019] [Accepted: 08/02/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The unique phenomenon of endothelial antibody capture (endocapt) leads to site-specific accumulation of antibodies on the endothelium after its locoregional injection. The potential of this phenomenon has already been demonstrated in animal models. In the present study, the translational potential of several human endothelium-specific antibodies for their use in the endocapt-based approach was analysed. METHODS The binding of different endothelium-surface specific monoclonal antibody clones was analysed in human tissue and in endothelial cells using image-based immunofluorescence and the determination of half-maximal effective concentration (EC50). The potential of endocapt-based locoregional application of antibodies or antibody-coated liposomes was analysed ex vivo using isolated mouse liver perfusion and in vivo using superselective injection in tumour models. RESULTS Eight out of ten antibody clones were assigned to the group of "fast binding antibodies". Different antibody clones showed various binding kinetics to the same endothelial marker whereas the binding kinetics of single antibody clones was independent from the tissue type. Anti-CD49e, anti-CD31, anti-CD34 and anti-CD102 antibodies showed the lowest EC50 of antibody binding concentration and constant results in EC50 determination of antibody binding to cells and human tissue. Experimental studies using anti-mouse CD49e antibody and coated immunoliposomes confirmed their effective capture by endothelial cells in vitro and in vivo by which fluorescent liver segment labelling was achieved. CONCLUSIONS Our findings identify the high potential of several human antibody clones, especially anti-CD49e, -CD31, -CD34 and -CD102, for endocapt technology. We also propose important translational implications of these antibodies for image-guided liver surgery and for use of nanoparticles/immunoliposomes. Toxicological studies are indispensable for further translational development of new antibodies for endocapt. STATEMENT OF SIGNIFICANCE The phenomenon of endothelial antibody capture (endocapt) leads to site-specific accumulation of antibodies on the endothelium after its locoregional injection. This phenomenon broadly prevents systemic circulation of the antibody or antibody-drug conjugates. In the present study, our findings identify several human antibody clones promising for endothelial capture technology. This study provided the experimental demonstration of liver segment labelling ex vivo using isolated mouse liver perfusion and in vivo using superselective injection in tumor models. In addition, this study proposed the important translational implications of selected antibodies for image-guided liver surgery and for use of nanoparticles/immunoliposomes.
Collapse
|
42
|
Yongvongsoontorn N, Chung JE, Gao SJ, Bae KH, Yamashita A, Tan MH, Ying JY, Kurisawa M. Carrier-Enhanced Anticancer Efficacy of Sunitinib-Loaded Green Tea-Based Micellar Nanocomplex beyond Tumor-Targeted Delivery. ACS NANO 2019; 13:7591-7602. [PMID: 31262169 DOI: 10.1021/acsnano.9b00467] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although a few nanomedicines have been approved for clinical use in cancer treatment, that recognizes improved patient safety through targeted delivery, their improved efficacy over conventional drugs has remained marginal. One of the typical drawbacks of nanocarriers for cancer therapy is a low drug-loading capacity that leads to insufficient efficacy and requires an increase in dosage and/or frequency of administration, which in turn increases carrier toxicity. In contrast, elevating drug-loading would cause the risk of nanocarrier instability, resulting in low efficacy and off-target toxicity. This intractable drug-to-carrier ratio has imposed constraints on the design and development of nanocarriers. However, if the nanocarrier has intrinsic therapeutic effects, the efficacy would be synergistically augmented with less concern for the drug-to-carrier ratio. Sunitinib-loaded micellar nanocomplex (SU-MNC) was formed using poly(ethylene glycol)-conjugated epigallocatechin-3-O-gallate (PEG-EGCG) as such a carrier. SU-MNC specifically inhibited the vascular endothelial growth factor-induced proliferation of endothelial cells, exhibiting minimal cytotoxicity to normal renal cells. SU-MNC showed enhanced anticancer effects and less toxicity than SU administered orally/intravenously on human renal cell carcinoma-xenografted mice, demonstrating more efficient effects on anti-angiogenesis, apoptosis induction, and proliferation inhibition against tumors. In comparison, a conventional nanocarrier, SU-loaded polymeric micelle (SU-PM) comprised of PEG-b-poly(lactic acid) (PEG-PLA) copolymer, only reduced toxicity with no elevated efficacy, despite comparable drug-loading and tumor-targeting efficiency to SU-MNC. Improved efficacy of SU-MNC was ascribed to the carrier-drug synergies with the high-performance carrier of PEG-EGCG besides tumor-targeted delivery.
Collapse
Affiliation(s)
| | - Joo Eun Chung
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos, #07-01 , Singapore 138669
| | - Shu Jun Gao
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos, #07-01 , Singapore 138669
| | - Ki Hyun Bae
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos, #07-01 , Singapore 138669
| | - Atsushi Yamashita
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos, #07-01 , Singapore 138669
| | - Min-Han Tan
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos, #07-01 , Singapore 138669
| | - Jackie Y Ying
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos, #07-01 , Singapore 138669
| | - Motoichi Kurisawa
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos, #07-01 , Singapore 138669
| |
Collapse
|
43
|
Laterre PF, Colin G, Dequin PF, Dugernier T, Boulain T, Azeredo da Silveira S, Lajaunias F, Perez A, François B. CAL02, a novel antitoxin liposomal agent, in severe pneumococcal pneumonia: a first-in-human, double-blind, placebo-controlled, randomised trial. THE LANCET. INFECTIOUS DISEASES 2019; 19:620-630. [PMID: 31056427 DOI: 10.1016/s1473-3099(18)30805-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Severe community-acquired pneumonia caused by Streptococcus pneumoniae is associated with high morbidity and mortality rates. CAL02, a novel antitoxin agent with an unprecedented mode of action, consists of liposomes that capture bacterial toxins known to dysregulate inflammation, cause organ damage, and impede immune defence. We aimed to assess the safety of CAL02 as an add-on therapy to antibiotics. METHODS This randomised, double-blind, multicentre, placebo-controlled trial was done in ten intensive care units (ICUs) in France and Belgium (but only six units enrolled patients), in patients with severe community-acquired pneumococcal pneumonia who required ICU admission and had been identified as being infected with S pneumoniae. We randomly assigned participants in two stages-the first stage randomly assigned six patients (1:1) to either low-dose CAL02 or placebo, and the second stage randomly assigned 18 patients (14:4) to either high-dose CAL02 or placebo, and stratified in four blocks (4:1, 4:1, 3:1, and 3:1), in addition to standard of care. Block randomisation was done with a computer-generated random number list. Participants, investigators, other site study personnel, the sponsor, and the sponsor's designees involved in study management and monitoring were masked to the randomisation list and treatment assignment. Patients were treated with low-dose (4 mg/kg) or high-dose (16 mg/kg) CAL02 or placebo (saline), in addition to standard antibiotic therapy. Two intravenous doses of study treatment were infused, with a 24 h interval, at a concentration of 10 mg/mL, stepwise, over a maximum of 2 h on days 1 and 2. The primary objective of the study was to assess the safety and tolerability of low-dose and high-dose CAL02 in patients with severe community-acquired pneumonia treated with standard antibiotic therapy, and the primary analysis was done on the safety population (all patients who received at least one dose of the study treatment). Efficacy was a secondary outcome. This trial is registered with ClinicalTrials.gov, number NCT02583373. FINDINGS Between March 21, 2016, and Jan 13, 2018, we screened 280 patients with community-acquired pneumonia. 19 patients were enrolled and randomly assigned, resulting in 13 patients in the CAL02 groups (three assigned to low-dose CAL02 and ten assigned to high-dose CAL02) and six in the placebo group. One patient randomly assigned to placebo was allocated to the wrong treatment group and received high-dose CAL02 instead of placebo. Thus, 14 patients received CAL02 (three received low-dose CAL02 and 11 received high-dose CAL02) and five patients received placebo, constituting the safety population. At baseline, the mean APACHE II score for the total study population was 21·5 (SD 4·9; 95% CI 19·3-23·7) and 11 (58%) of 19 patients had septic shock. Adverse events occurred in 12 (86%) of 14 patients in the CAL02 treatment groups combined and all five (100%) patients in the placebo group. Serious adverse events occurred in four (29%) of 14 patients in the CAL02 treatment groups combined and two (40%) of five patients in the placebo group. One non-serious adverse event (mild increase in triglycerides) in a patient in the high-dose CAL02 group was reported as related to study drug. However, analysis of the changes in triglyceride levels in the CAL02 groups compared with the placebo group revealed no correlation with administration of CAL02. No adverse events were linked to local tolerability events. All patients, apart from one who died in the low CAL02 group (death not related to the study drug) achieved clinical cure at the test of cure visit between days 15 and 22. The sequential organ failure assessment score decreased by mean 65·0% (95% CI 50·7-79·4) in the combined CAL02 groups compared with 29·2% (12·8-45·5) in the placebo group between baseline and day 8. INTERPRETATION The nature of adverse events was consistent with the profile of the study population and CAL02 showed a promising safety profile and tolerability. However, the difference between high-dose and low-dose CAL02 could not be assessed in this study. Efficacy was in line with the expected benefits of neutralising toxins. The results of this study support further clinical development of CAL02 and provide a solid basis for a larger clinical study. FUNDING Combioxin.
Collapse
Affiliation(s)
- Pierre-François Laterre
- Intensive Care Unit, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCL), Brussels, Belgium.
| | - Gwenhael Colin
- Medical-Surgical Intensive Care Unit, District Hospital Center, La Roche-sur-Yon, France
| | | | | | - Thierry Boulain
- Service de Médecine Intensive Réanimation, Hôpital La Source, Centre Hospitalier Régional d'Orléans, Orléans, France
| | | | | | | | - Bruno François
- Medical-Surgical Intensive Care Unit, University Hospital Limoges Dupuytren Hospital, Limoges, France; Inserm CIC-1435, University Hospital Limoges Dupuytren Hospital, Limoges, France; Inserm UMR 1092, Faculté de Médecine, Université de Limoges, Limoges, France
| |
Collapse
|
44
|
Abstract
Nanotechnology offers new solutions for the development of cancer therapeutics that display improved efficacy and safety. Although several nanotherapeutics have received clinical approval, the most promising nanotechnology applications for patients still lie ahead. Nanoparticles display unique transport, biological, optical, magnetic, electronic, and thermal properties that are not apparent on the molecular or macroscale, and can be utilized for therapeutic purposes. These characteristics arise because nanoparticles are in the same size range as the wavelength of light and display large surface area to volume ratios. The large size of nanoparticles compared to conventional chemotherapeutic agents or biological macromolecule drugs also enables incorporation of several supportive components in addition to active pharmaceutical ingredients. These components can facilitate solubilization, protection from degradation, sustained release, immunoevasion, tissue penetration, imaging, targeting, and triggered activation. Nanoparticles are also processed differently in the body compared to conventional drugs. Specifically, nanoparticles display unique hemodynamic properties and biodistribution profiles. Notably, the interactions that occur at the bio-nano interface can be exploited for improved drug delivery. This review discusses successful clinically approved cancer nanodrugs as well as promising candidates in the pipeline. These nanotherapeutics are categorized according to whether they predominantly exploit multifunctionality, unique electromagnetic properties, or distinct transport characteristics in the body. Moreover, future directions in nanomedicine such as companion diagnostics, strategies for modifying the microenvironment, spatiotemporal nanoparticle transitions, and the use of extracellular vesicles for drug delivery are also explored.
Collapse
Affiliation(s)
- Joy Wolfram
- Department of Transplantation/Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, Florida 32224, USA
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Department of Medicine, Weill Cornell Medicine, Weill Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
45
|
Wöll S, Dickgiesser S, Rasche N, Schiller S, Scherließ R. Sortagged anti-EGFR immunoliposomes exhibit increased cytotoxicity on target cells. Eur J Pharm Biopharm 2019; 136:203-212. [DOI: 10.1016/j.ejpb.2019.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
|
46
|
Yao M, Ma X, Zhang X, Shi L, Liu T, Liang X, Zhao H, Li X, Li L, Gao H, Jia B, Wang F. Lectin-Mediated pH-Sensitive Doxorubicin Prodrug for Pre-Targeted Chemotherapy of Colorectal Cancer with Enhanced Efficacy and Reduced Side Effects. Am J Cancer Res 2019; 9:747-760. [PMID: 30809306 PMCID: PMC6376480 DOI: 10.7150/thno.29989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023] Open
Abstract
Doxorubicin (DOX) has been clinically used as a broad-spectrum chemotherapeutic agent for decades, but its clinical application is hindered by the lack of tumour specificity, severe cardiotoxicity and haematotoxicity. Pre-targeted strategies are highly tumour-specific, therapeutic approaches. Herein, a novel pre-targeted system was constructed, aiming to enhance anticancer efficacy of DOX and maximally reduce its side effects. Methods: The DOX prodrug (bDOX) was first synthesized by conjugating DOX with mini-PEGylated (mPEGylated) biotin through a pH-sensitive bond. During the pre-targeted treatment, avidin was first administrated. After an optimized interval, bDOX was second administrated. The nontoxic prodrug bDOX was eventually transformed into the toxic anticancer form (DOX) by a pH-triggered cleavage specifically in tumour cells. The drug efficacy and side effect of the two-step, pre-targeted treatment were fully compared with free DOX in vitro and in vivo. Results: The prodrug bDOX was quite stable under neutral conditions and nearly nontoxic, but was immediately transformed into the toxic anticancer form (DOX) under acidic conditions. Compared to free DOX, the pre-targeted bDOX exhibited a higher cellular uptake by human colorectal tumour cells (LS180 and HT-29 cells). In vivo evaluation performed on LS180 xenograft animal model demonstrated that the pre-targeted bDOX achieved a much more significant tumour inhibition than free DOX. The largely decreased, unwanted bystander toxicity was demonstrated by changes in body weight, cardiomyocyte apoptosis, blood routine examination and splenic pathological changes. Conclusion: The high therapeutic efficacy, together with the minimal side effects, of this easily synthesized, pre-targeted system exhibited immense potentiality for the clinical application of DOX delivery.
Collapse
|
47
|
Zheng H, Li J, Wang M, Luo X, Qiu Q, Hu L, Li C, Song Y, Deng Y. Exhausting tumor associated macrophages with sialic acid-polyethyleneimine-cholesterol modified liposomal doxorubicin for enhancing sarcoma chemotherapy. Int J Pharm 2019; 558:187-200. [PMID: 30654062 DOI: 10.1016/j.ijpharm.2019.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/13/2018] [Accepted: 01/01/2019] [Indexed: 02/03/2023]
Abstract
To overstep the dilemma of chemical drug degradation within powerful lysosomes of tumor associated macrophages (TAMs), a sialic acid-polyethylenimine-cholesterol (SA-PEI-CH) modified liposomal doxorubicin (DOX-SPCL) was designed with both TAMs targeting and smart lysosomal trafficking. The modified liposome DOX-SPCL performed particle size as 103.2 ± 3.1 nm and zeta potential as -4.5 ± 0.9 mV with encapsulation efficiency as 95.8 ± 0.5%. In in vitro cell experiments, compared with conventional liposomal doxorubicin (DOX-CL) and PEGylated liposomal doxorubicin (DOX-PL), DOX-SPCL showed a selective binding on TAMs and a mere lysosomal concentration. In pharmacokinetic study, DOX-SPCL effectively impeded/delayed the disposition of mononuclear phagocyte system (MPS) with a value of AUC0-t as 796.03 ± 66.93 mg L-1 h. In S180 sarcomas bearing mice, DOX-SPCL showed the greatest tumor inhibition rate (92.7% ± 3.6%) compared with DOX-CL (46.4% ± 2.0%) or DOX-PL (58.8% ± 7.6%). The <0.5% positive region of TAMs in tumor section indicated a super TAMs exhaustion for DOX-SPCL treatment. Conclusively, DOX-SPCL was supposed as a safe and effective liposomal preparation for clinical sarcoma treatment via TAMs targeting/deletion delivery strategy.
Collapse
Affiliation(s)
- Huangliang Zheng
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Jiaqi Li
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Mengjing Wang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Xiang Luo
- College of Chemistry and Chemical Engineering, Shaoxing University, No. 508 Huancheng West Road, Shaoxing, Zhejiang 312000, China
| | - Qiujun Qiu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Ling Hu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Cong Li
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Yanzhi Song
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Yihui Deng
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
48
|
Cheong A, McGrath S, Cutts S. Anthracyclines. WIKIJOURNAL OF MEDICINE 2018. [DOI: 10.15347/wjm/2018.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Mignani S, Rodrigues J, Tomas H, Roy R, Shi X, Majoral JP. Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis. Adv Drug Deliv Rev 2018; 136-137:73-81. [PMID: 29155170 DOI: 10.1016/j.addr.2017.11.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 02/08/2023]
Abstract
Nanomedicine, which is an application of nanotechnologies in healthcare is developed to improve the treatments and lives of patients suffering from a range of disorders and to increase the successes of drug candidates. Within the nanotechnology universe, the remarkable unique and tunable properties of dendrimers have made them promising tools for diverse biomedical applications such as drug delivery, gene therapy and diagnostic. Up-to-date, very few dendrimers has yet gained regulatory approval for systemic administration, why? In this critical review, we briefly focus on the list of desired basic dendrimer requirements for decision-making purpose by the scientists (go/no-go decision), in early development stages, to become clinical candidates, and to move towards Investigational New Drugs (IND) application submission. In addition, the successful translation between research and clinic should be performed by the implementation of a simple roadmap to jump the 'valley of death' successfully.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Helena Tomas
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - René Roy
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec H3J 1S6, Canada
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP, 44099, 31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex, France.
| |
Collapse
|
50
|
Franco YL, Vaidya TR, Ait-Oudhia S. Anticancer and cardio-protective effects of liposomal doxorubicin in the treatment of breast cancer. BREAST CANCER-TARGETS AND THERAPY 2018; 10:131-141. [PMID: 30237735 PMCID: PMC6138971 DOI: 10.2147/bctt.s170239] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Breast cancer (BC) is a highly prevalent disease, accounting for the second highest number of cancer-related mortalities worldwide. The anthracycline doxorubicin (DOX), isolated from Streptomyces peucetius var. caesius, is a potent chemotherapeutic drug that is successfully used to treat various forms of liquid and solid tumors and is currently approved to treat BC. DOX exerts its effects by intercalation into DNA and inhibition of topoisomerases I and II, causing damage to DNA and the formation of reactive oxygen species (ROS), resulting in the activation of caspases, which ultimately leads to apoptosis. Unfortunately, DOX also can cause cardiotoxicity, with patients only allowed a cumulative lifetime dose of 550 mg/m2. Efforts to decrease cardiotoxicity and to increase the blood circulation time of DOX led to the US Food and Drug Administration (FDA) approval of a PEGylated liposomal formulation (L-DOX), Doxil® (known internationally as Caelyx®). Both exhibit better cardiovascular safety profiles; however, they are not currently FDA approved for the treatment of metastatic BC. Here, we provide detailed insights into the mechanism of action of L-DOX and its most common side effects and highlight results of its use in clinical trials for the treatment of BC as single agent and in combination with other commonly used chemotherapeutics.
Collapse
Affiliation(s)
- Yesenia L Franco
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA,
| | - Tanaya R Vaidya
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA,
| | - Sihem Ait-Oudhia
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA,
| |
Collapse
|