1
|
Borgini M, Zamperini C, Poggialini F, Ferrante L, Summa V, Botta M, Fabio RD. Synthesis and Antiproliferative Activity of Nitric Oxide-Donor Largazole Prodrugs. ACS Med Chem Lett 2020; 11:846-851. [PMID: 32435394 PMCID: PMC7236235 DOI: 10.1021/acsmedchemlett.9b00643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
The marine natural product Largazole is the most potent Class I HDAC inhibitor identified to date. Since its discovery, many research groups have been attracted by the structural complexity and the peculiar anticancer activity, due to its capability to discriminate between tumor cells and normal cells. Herein, we discuss the synthesis and the in vitro biological profile of hybrid analogues of Largazole, as dual HDAC inhibitor and nitric oxide (NO) donors, potentially useful as anticancer agents. In particular, the metabolic stability of the modified thioester moiety of Largazole, bearing the NO-donor function/s, the in vitro release of NO, and the antiproliferative activity in tumor cell lines are presented.
Collapse
Affiliation(s)
- Matteo Borgini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Claudio Zamperini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Lead
Discovery Siena S.r.l., Castelnuovo Berardenga, 53019 Siena, Italy
| | - Federica Poggialini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | | | - Vincenzo Summa
- IRBM
Science Park, Via Pontina Km 30.600, 00070 Pomezia, Italy
| | - Maurizio Botta
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Lead
Discovery Siena S.r.l., Castelnuovo Berardenga, 53019 Siena, Italy
- Biotechnology
College of Science and Technology, Temple
University, BioLife Science
Building, Suite 333, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Romano Di Fabio
- Promidis, Via Olgettina 60, 20132 Milano, Italy
- IRBM
Science Park, Via Pontina Km 30.600, 00070 Pomezia, Italy
| |
Collapse
|
2
|
Martinez XU, Di Raimondo C, Abdulla FR, Zain J, Rosen ST, Querfeld C. Leukaemic variants of cutaneous T-cell lymphoma: Erythrodermic mycosis fungoides and Sézary syndrome. Best Pract Res Clin Haematol 2019; 32:239-252. [PMID: 31585624 PMCID: PMC9056079 DOI: 10.1016/j.beha.2019.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/22/2023]
Abstract
Mycosis fungoides (MF) and Sézary syndrome (SS) are the most common types of cutaneous lymphoma, accounting for approximately 60% of cutaneous T-cell lymphomas. Diagnosis requires correlation of clinical, histologic, and molecular features. A multitude of factors have been linked to the aetiopathogenesis, however, none have been definitively proven. Erythrodermic MF (E-MF) and SS share overlapping clinical features, such as erythroderma, but are differentiated on the degree of malignant blood involvement. While related, they are considered to be two distinct entities originating from different memory T cell subsets. Differential expression of PD-1 and KIR3DL2 may represent a tool for distinguishing MF and SS, as well as a means of monitoring treatment response. Treatment of E-MF/SS is guided by disease burden, patients' ages and comorbidities, and effect on quality of life. Current treatment options include biologic, targeted, immunologic, and investigational therapies that can provide long term response with minimal side effects. Currently, allogeneic stem cell transplantation is the only potential curative treatment.
Collapse
Affiliation(s)
| | - Cosimo Di Raimondo
- City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA; Policlinico Tor Vergata, Viale Oxford 81, 00133, Rome, Italy.
| | - Farah R Abdulla
- City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| | - Jasmine Zain
- City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| | - Steven T Rosen
- City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA; Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA, 91010, United States.
| | - Christiane Querfeld
- City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA; Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA, 91010, United States.
| |
Collapse
|
3
|
Tsang M, Gantchev J, Netchiporouk E, Moreau L, Ghazawi FM, Glassman S, Sasseville D, Litvinov IV. A study of meiomitosis and novel pathways of genomic instability in cutaneous T-cell lymphomas (CTCL). Oncotarget 2018; 9:37647-37661. [PMID: 30701021 PMCID: PMC6340880 DOI: 10.18632/oncotarget.26479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Genomic instability is a hallmark of cancer and an enabling factor for genetic alterations that drive cancer development and progression. The clashing of mitosis and aberrantly expressed meiosis machineries, which may contribute to genomic instability, has been coined cancer “meiomitosis”. LINE-1 retrotransposition, a process active in germ cells, acts outside of the meiotic machinery to create DNA double strand breaks (DNA DSBs) and has played an important role in the evolution of the human genome. We have previously demonstrated that in CTCL several cancer testis/meiotic genes are expressed. Furthermore, this cancer exhibits extensive and ongoing chromosomal/microsatellite instability. In this study we analyzed immortalized patient-derived cells and primary CTCL patient samples using RT-PCR, western blotting and confocal microscopy and found that proteins critically involved in meiosis and LINE-1 retrotransposition are expressed and are associated with chromosomal instability and DNA DSB formation. Using cell cycle synchronization, we show G1/S phase-transition-specific expression of meiosis proteins. Using the Alu retrotransposition assay, we demonstrate the functional activity of LINE-1 retrotransposon in CTCL. Histone acetyltransferase inhibition results in downregulation of the ectopic germ cell programs and concomitant decrease in DNA DSBs foci formation. Notably, LINE-1 and meiosis genes were expressed across a panel of other solid tumor cell lines. Taken together, our results indicate that malignant cells in culture undergo “cancer meiomitosis” rather than the classic mitosis division. The ectopic expression of meiosis genes and reactivation of LINE-1 may be contributing to genomic instability and represent novel targets for immunotherapy in this and other cancers.
Collapse
Affiliation(s)
- Matthew Tsang
- Division of Dermatology, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada
| | - Jennifer Gantchev
- Division of Dermatology, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Elena Netchiporouk
- Division of Dermatology, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Linda Moreau
- Division of Dermatology, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Feras M Ghazawi
- Division of Dermatology, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada
| | - Steven Glassman
- Division of Dermatology, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada
| | - Denis Sasseville
- Division of Dermatology, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Ivan V Litvinov
- Division of Dermatology, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada.,Division of Dermatology, McGill University, Montréal, Québec H4A 3J1, Canada
| |
Collapse
|
4
|
Hanel W, Briski R, Ross CW, Anderson TF, Kaminski MS, Hristov AC, Wilcox RA. A retrospective comparative outcome analysis following systemic therapy in Mycosis fungoides and Sezary syndrome. Am J Hematol 2016; 91:E491-E495. [PMID: 27649045 DOI: 10.1002/ajh.24564] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/27/2016] [Accepted: 09/17/2016] [Indexed: 12/24/2022]
Abstract
Cutaneous T-cell lymphomas (CTCL), with few exceptions, remain incurable and treatment is largely palliative. We performed a retrospective analysis of systemic treatment outcomes of patients diagnosed with MF/SS. We identified 223 patients with MF/SS evaluated at a single institution from 1997 to 2013. Disease stage at diagnosis, time of treatment, and treatments received were retrospectively analyzed using our CTCL database. The primary endpoint was time to next treatment (TTNT). Treatment outcomes were analyzed using Kaplan-Meier method and comparisons among groups were made using log-rank analysis. A superior TTNT was associated with retinoid or interferon therapies when compared with HDAC inhibitors or systemic chemotherapy. Retinoids and interferon were associated with superior TTNT in both limited-stage and advanced stage disease. Extracorporeal photophoresis (ECP) had a superior TTNT in Sezary Syndrome. HDAC inhibitors and chemotherapy were associated with inferior TTNT in both limited stage disease and advanced stage disease. With the exception of interferon, retinoids, or ECP, durable responses are rarely achieved with systemic therapies in MF/SS patients, particularly those with advanced-stage disease. Therefore, clinical trial participation with novel agents should be encouraged. Am. J. Hematol. 91:E491-E495, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Walter Hanel
- Department of Internal MedicineUniversity of Michigan Comprehensive Cancer CenterAnn Arbor Michigan
| | - Robert Briski
- Department of Internal Medicine, Division of Hematology/OncologyUniversity of Michigan Comprehensive Cancer CenterAnn Arbor Michigan
| | - Charles W. Ross
- Department of PathologyUniversity of Michigan Comprehensive Cancer CenterAnn Arbor Michigan
| | - Thomas F. Anderson
- Department of DermatologyUniversity of Michigan Comprehensive Cancer CenterAnn Arbor Michigan
| | - Mark S. Kaminski
- Department of Internal Medicine, Division of Hematology/OncologyUniversity of Michigan Comprehensive Cancer CenterAnn Arbor Michigan
| | - Alexandra C. Hristov
- Department of Dermatology and PathologyUniversity of Michigan Comprehensive Cancer CenterAnn Arbor Michigan
| | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology/OncologyUniversity of Michigan Comprehensive Cancer CenterAnn Arbor Michigan
| |
Collapse
|
5
|
Pidugu VR, Yarla NS, Pedada SR, Kalle AM, Satya AK. Design and synthesis of novel HDAC8 inhibitory 2,5-disubstituted-1,3,4-oxadiazoles containing glycine and alanine hybrids with anti cancer activity. Bioorg Med Chem 2016; 24:5611-5617. [PMID: 27665180 DOI: 10.1016/j.bmc.2016.09.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 12/27/2022]
Abstract
Oxadiazole is a heterocyclic compound containing an oxygen atom and two nitrogen atoms in a five-membered ring. Of the four oxadiazoles known, 1,3,4-oxadiazole has become an important structural motif for the development of new drugs and the compounds containing 1,3,4-oxadiazole cores have a broad spectrum of biological activity. Herein, we describe the design, synthesis and biological evaluation of a series of novel 2,5-disubstituted 1,3,4-oxadiazoles (10a-10j) as class I histone deacetylase (HDAC) inhibitors. The compounds were designed and evaluated for HDAC8 selectivity using in silico docking software (Glide) and the top 10 compounds with high dock score and obeying Lipinski's rule were synthesized organically. Further the biological HDAC inhibitory and selectivity assays and anti-proliferative assays were carried out. In in silico and in vitro studies, all compounds (10a-10j) showed significant HDAC inhibition and exhibited HDAC8 selectivity. Among all tested compounds, 10b showed substantial HDAC8 inhibitory activity and better anticancer activity which is comparable to the positive control, a FDA approved drug, vorinostat (SAHA). Structural activity relation is discussed with various substitutions in the benzene ring connected on 1,3,4-oxadizole and glycine/alanine. The study warranted further investigations to develop HDAC8-selective inhibitory molecule as a drug for neoplastic diseases. Novel 1,3,4-oxadizole substituted with glycine/alanine showed HDAC8 inhibition.
Collapse
Affiliation(s)
- Vijaya Rao Pidugu
- GVK Biosciences Private Limited, IDA Mallapur, Hyderabad, Telangana 500076, India; Department of Biotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh 522510, India.
| | - Nagendra Sastry Yarla
- Department of Biochemistry/Bioinformatics, Institute of Science, GITAM University, Vishakhapatnam, Andhra Pradesh 530045, India
| | | | - Arunasree M Kalle
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - A Krishna Satya
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh 522510, India.
| |
Collapse
|
6
|
Zumla A, Rao M, Dodoo E, Maeurer M. Potential of immunomodulatory agents as adjunct host-directed therapies for multidrug-resistant tuberculosis. BMC Med 2016; 14:89. [PMID: 27301245 PMCID: PMC4908783 DOI: 10.1186/s12916-016-0635-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/02/2016] [Indexed: 01/15/2023] Open
Abstract
Treatment of multidrug-resistant tuberculosis (MDR-TB) is extremely challenging due to the virulence of the etiologic strains of Mycobacterium tuberculosis (M. tb), the aberrant host immune responses and the diminishing treatment options with TB drugs. New treatment regimens incorporating therapeutics targeting both M. tb and host factors are urgently needed to improve the clinical management outcomes of MDR-TB. Host-directed therapies (HDT) could avert destructive tuberculous lung pathology, facilitate eradication of M. tb, improve survival and prevent long-term functional disability. In this review we (1) discuss the use of HDT for cancer and other infections, drawing parallels and the precedent they set for MDR-TB treatment, (2) highlight preclinical studies of pharmacological agents commonly used in clinical practice which have HDT potential, and (3) outline developments in cellular therapy to promote clinically beneficial immunomodulation to improve treatment outcomes in patients with pulmonary MDR-TB. The use of HDTs as adjuncts to MDR-TB therapy requires urgent evaluation.
Collapse
Affiliation(s)
- Alimuddin Zumla
- Division of Infection and Immunity, University College London, and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Martin Rao
- F79, Therapeutic Immunology (TIM) division, Department of Laboratory Medicine (LABMED), Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden
| | - Ernest Dodoo
- F79, Therapeutic Immunology (TIM) division, Department of Laboratory Medicine (LABMED), Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden
| | - Markus Maeurer
- F79, Therapeutic Immunology (TIM) division, Department of Laboratory Medicine (LABMED), Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden. .,Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
7
|
Lillico R, Sobral MG, Stesco N, Lakowski TM. HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases. J Proteomics 2016; 133:125-133. [PMID: 26721445 DOI: 10.1016/j.jprot.2015.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/23/2015] [Accepted: 12/15/2015] [Indexed: 01/19/2023]
|
8
|
Netchiporouk E, Litvinov IV, Moreau L, Gilbert M, Sasseville D, Duvic M. Deregulation in STAT signaling is important for cutaneous T-cell lymphoma (CTCL) pathogenesis and cancer progression. Cell Cycle 2015; 13:3331-5. [PMID: 25485578 DOI: 10.4161/15384101.2014.965061] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Deregulation of STAT signaling has been implicated in the pathogenesis for a variety of cancers, including CTCL. Constitutive activation of STAT5 and STAT3 was observed in early and late stages of CTCL, respectively. In early stages, IL-2, IL-7 and IL-15 signaling via JAK1 and JAK3 kinases is believed to be responsible for activating STAT5, while in advanced stages development of IL-21 autocrine signaling is thought to be important for STAT3 activation. Recent molecular evidence further suggests that upregulation of STAT5 in early disease stages results in increased expression of oncogenic miR-155 microRNA that subsequently targets STAT4 expression on mRNA level. STAT4 signaling is known to be critical for T helper (Th) 1 phenotype differentiation and its loss results in a switch from Th1 to Th2 phenotype in malignant T cells. During this switch the expression of STAT6 is often upregulated in CTCL. In advanced stages, activation of STAT3 and STAT5 may become completely cytokine-independent and be driven only via constitutively active JAK1 and JAK3 kinases. Further research into the molecular pathogenesis of JAK/STAT signaling in this cancer may enable us to develop effective therapies for our patients.
Collapse
Affiliation(s)
- Elena Netchiporouk
- a Division of Dermatology ; McGill University Health Centre ; Montréal , QC Canada
| | | | | | | | | | | |
Collapse
|
9
|
Characteristics of Adult T-Cell Leukemia/Lymphoma Patients with Long Survival: Prognostic Significance of Skin Lesions and Possible Beneficial Role of Valproic Acid. LEUKEMIA RESEARCH AND TREATMENT 2015. [PMID: 26199759 PMCID: PMC4496652 DOI: 10.1155/2015/476805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We describe the clinical and biological features of ten patients with a survival superior to ten years (long survival), out of 175 patients diagnosed with Adult T-cell Leukemia/Lymphoma (ATL) in Martinique (1983–2013). There were 5 lymphoma and 5 chronic subtypes. Five of them (3 chronic, 2 lymphoma) had been treated with valproic acid (VA) for neurological disorders developed before or after ATL diagnosis, suggesting a beneficial role for VA as a histone deacetylase inhibitor (HDI) in ATL treatment. Total duration of uninterrupted VA treatment ranged from 8 to 37 years. Overall, the 175 incident ATL cases presented with a median survival of 5.43 months. The five VA-treated (VA+) patients presented with longer survival compared to VA treatment-free patients (VA−). For chronic subtypes, survival periods were of 213 months for 3 VA+ patients and of 33 months for 11 VA− patients (p = 0.023). For lymphoma subtypes, survival periods were of 144 months for 2 VA+ patients versus 6 months for 49 VA− patients (p = 0.0046). ATL cases with skin lesions, particularly lymphoma subtypes, had a longer survival (13.96 months) compared to those without skin lesions (6.06 months, p = 0.002). Eight out of the 10 patients presenting with long survival had skin lesions.
Collapse
|
10
|
Thaler F, Mercurio C. Towards selective inhibition of histone deacetylase isoforms: what has been achieved, where we are and what will be next. ChemMedChem 2014; 9:523-6. [PMID: 24730063 DOI: 10.1002/cmdc.201300413] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Histone deacetylases (HDACs) are widely studied targets for the treatment of cancer and other diseases. Up to now, over twenty HDAC inhibitors have entered clinical studies and two of them have already reached the market, namely the hydroxamic acid derivative SAHA (vorinostat, Zolinza) and the cyclic depsipeptide FK228 (romidepsin, Istodax) that have been approved for the treatment of cutaneous T-cell lymphoma (CTCL). A common aspect of the first HDAC inhibitors is the absence of any particular selectivity towards specific isozymes. Some of molecules resulted to be “pan”-HDAC inhibitors, while others are class I selective. In the meantime, the knowledge of HDAC biology has continuously progressed. Key advances in the structural biology of various isozymes, reliable molecular homology models as well as suitable biological assays have provided new tools for drug discovery activities. This Minireview aims at surveying these recent developments as well as the design, synthesis and biological characterization of isoform-selective derivatives.
Collapse
|
11
|
Litvinov IV, Cordeiro B, Huang Y, Zargham H, Pehr K, Doré MA, Gilbert M, Zhou Y, Kupper TS, Sasseville D. Ectopic expression of cancer-testis antigens in cutaneous T-cell lymphoma patients. Clin Cancer Res 2014; 20:3799-808. [PMID: 24850846 DOI: 10.1158/1078-0432.ccr-14-0307] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE The pathogenesis of cutaneous T-cell lymphoma (CTCL) remains only partially understood. A number of recent studies attempted to identify novel diagnostic markers and future therapeutic targets. One group of antigens, cancer-testis (CT) antigens, normally present solely in testicular germ cells, can be ectopically expressed in a variety of cancers. Currently, only a few studies attempted to investigate the expression of CT antigens in CTCL. EXPERIMENTAL DESIGN In the present work, we test the expression of CT genes in a cohort of patients with CTCL, normal skin samples, skin from benign inflammatory dermatoses, and in patient-derived CTCL cells. We correlate such expression with the p53 status and explore molecular mechanisms behind their ectopic expression in these cells. RESULTS Our findings demonstrate that SYCP1, SYCP3, REC8, SPO11, and GTSF1 genes are heterogeneously expressed in patients with CTCL and patient-derived cell lines, whereas cTAGE1 (cutaneous T-cell lymphoma-associated antigen 1) was found to be robustly expressed in both. Mutated p53 status did not appear to be a requirement for the ectopic expression of CT antigens. While T-cell stimulation resulted in a significant upregulation of STAT3 and JUNB expression, it did not significantly alter the expression of CT antigens. Treatment of CTCL cells in vitro with vorinostat or romidepsin histone deacetylase inhibitors resulted in a significant dose-dependent upregulation of mRNA but not protein. Further expression analysis demonstrated that SYCP1, cTAGE1, and GTSF1 were expressed in CTCL, but not in normal skin or benign inflammatory dermatoses. CONCLUSIONS A number of CT genes are ectopically expressed in patients with CTCL and can be used as biomarkers or novel targets for immunotherapy.
Collapse
MESH Headings
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- DNA-Binding Proteins
- Gene Expression/drug effects
- Histone Deacetylase Inhibitors/pharmacology
- Humans
- Intracellular Signaling Peptides and Proteins
- Lymphoma, T-Cell, Cutaneous/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mutation
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proteins/genetics
- Proteins/metabolism
- Skin Neoplasms/metabolism
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Ivan V Litvinov
- Authors' Affiliations: Division of Dermatology, McGill University Health Centre, Montréal;
| | - Brendan Cordeiro
- Authors' Affiliations: Division of Dermatology, McGill University Health Centre, Montréal
| | - Yuanshen Huang
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Hanieh Zargham
- Authors' Affiliations: Division of Dermatology, McGill University Health Centre, Montréal
| | - Kevin Pehr
- Authors' Affiliations: Division of Dermatology, McGill University Health Centre, Montréal
| | | | | | - Youwen Zhou
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Thomas S Kupper
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts
| | - Denis Sasseville
- Authors' Affiliations: Division of Dermatology, McGill University Health Centre, Montréal;
| |
Collapse
|
12
|
Schotes C, Ostrovskyi D, Senger J, Schmidtkunz K, Jung M, Breit B. Total synthesis of (18S)- and (18R)-homolargazole by rhodium-catalyzed hydrocarboxylation. Chemistry 2014; 20:2164-8. [PMID: 24478039 DOI: 10.1002/chem.201303300] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Indexed: 11/05/2022]
Abstract
Homolargazole derivatives, in which the macrocycle of natural largazole is extended by one methylene group, were prepared by the recently developed rhodium-catalyzed hydrocarboxylation reaction onto allenes. This strategy gives access to both the (18S)- and (18R)-stereoisomers in high stereoselectivity under ligand control.
Collapse
Affiliation(s)
- Christoph Schotes
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg i. Bg. (Germany), Fax: (+49) 761-203-8715
| | | | | | | | | | | |
Collapse
|
13
|
Litvinov IV, Cordeiro B, Fredholm S, Ødum N, Zargham H, Huang Y, Zhou Y, Pehr K, Kupper TS, Woetmann A, Sasseville D. Analysis of STAT4 expression in cutaneous T-cell lymphoma (CTCL) patients and patient-derived cell lines. Cell Cycle 2014; 13:2975-82. [PMID: 25486484 PMCID: PMC4614388 DOI: 10.4161/15384101.2014.947759] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 01/01/2023] Open
Abstract
Deregulation of STAT signaling has been implicated in the pathogenesis for a variety of cancers, including CTCL. Recent reports indicate that loss of STAT4 expression is an important prognostic marker for CTCL progression and is associated with the acquisition of T helper 2 cell phenotype by malignant cells. However, little is known about the molecular mechanism behind the downregulation of STAT4 in this cancer. In the current work we test the expression of STAT4 and STAT6 via RT-PCR and/or Western Blot in CTCL lesional skin samples and in immortalized patient-derived cell lines. In these malignant cell lines we correlate the expression of STAT4 and STAT6 with the T helper (Th) phenotype markers and test the effect of Histone Deacetylase (HDAC) inhibitors and siRNA-mediated knock down of miR-155 on STAT4 expression. Our findings demonstrate that STAT4 expression correlates with Th1 phenotype, while STAT6 is associated with the Th2 phenotype. Our results further document that STAT4 and STAT6 genes are inversely regulated in CTCL. Treatment with HDAC inhibitors upregulates STAT4 expression, while at the same time decreases STAT6 expression in MyLa cells. Also, siRNA-mediated knock down of miR-155 leads to upregulation in STAT4 expression in MyLa cells. In summary, our results suggest that loss of STAT4 expression and associated switch to Th2 phenotype during Mycosis Fungoides progression may be driven via aberrant histone acetylation and/or upregulation of oncogenic miR-155 microRNA.
Collapse
MESH Headings
- Cell Line, Tumor
- Depsipeptides/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Knockdown Techniques
- Healthy Volunteers
- Histone Deacetylase Inhibitors/pharmacology
- Humans
- Hydroxamic Acids/pharmacology
- Inflammation/pathology
- Lymphoma, T-Cell, Cutaneous/immunology
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- STAT4 Transcription Factor/genetics
- STAT4 Transcription Factor/metabolism
- STAT6 Transcription Factor/genetics
- STAT6 Transcription Factor/metabolism
- Skin/pathology
- Skin Diseases/pathology
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- Up-Regulation/drug effects
- Vorinostat
Collapse
Affiliation(s)
- Ivan V Litvinov
- Division of Dermatology; McGill University Health Centre; Montréal, QC Canada
- These authors have contributed equally to this work
| | - Brendan Cordeiro
- Division of Dermatology; McGill University Health Centre; Montréal, QC Canada
- These authors have contributed equally to this work
| | - Simon Fredholm
- Department of International Health; Immunology and Microbiology; University of Copenhagen; Copenhagen, Denmark
- These authors have contributed equally to this work
| | - Niels Ødum
- Department of International Health; Immunology and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Hanieh Zargham
- Division of Dermatology; McGill University Health Centre; Montréal, QC Canada
| | - Yuanshen Huang
- Department of Dermatology and Skin Science; University of British Columbia; Vancouver, BC Canada
| | - Youwen Zhou
- Department of Dermatology and Skin Science; University of British Columbia; Vancouver, BC Canada
| | - Kevin Pehr
- Division of Dermatology; McGill University Health Centre; Montréal, QC Canada
| | - Thomas S Kupper
- Harvard Skin Disease Research Center; Department of Dermatology; Brigham and Women's Hospital; Harvard University; Boston, MA USA
| | - Anders Woetmann
- Department of International Health; Immunology and Microbiology; University of Copenhagen; Copenhagen, Denmark
| | - Denis Sasseville
- Division of Dermatology; McGill University Health Centre; Montréal, QC Canada
| |
Collapse
|
14
|
Guo SQ, Zhang YZ. Histone deacetylase inhibition: an important mechanism in the treatment of lymphoma. Cancer Biol Med 2013; 9:85-9. [PMID: 23691460 PMCID: PMC3643654 DOI: 10.3969/j.issn.2095-3941.2012.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/13/2012] [Indexed: 12/16/2022] Open
Abstract
Lymphomas encompass a group of malignancies that originate in the lymph nodes or other lymphoid tissues. Epigenetic modification, especially by histone deacetylase (HDACs), plays a key role during the occurrence and development of lymphomas. Consequently, HDAC inhibitors (HDACIs), a class of gene expression-modulating drugs, have emerged as promising mechanism-based agents for the treatment of lymphomas. This review presents the rationale of HDAC inhibition, describes the epigenetic-based mechanisms of action of HDACIs, discusses their clinical efficiency, and summarizes the current and future developments in this field.
Collapse
Affiliation(s)
- Shan-Qi Guo
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin 300060, China
| | | |
Collapse
|
15
|
Amagata T, Xiao J, Chen YP, Holsopple N, Oliver AG, Gokey T, Guliaev AB, Minoura K. Creation of an HDAC-based yeast screening method for evaluation of marine-derived actinomycetes: discovery of streptosetin A. JOURNAL OF NATURAL PRODUCTS 2012; 75:2193-2199. [PMID: 23167691 PMCID: PMC3532527 DOI: 10.1021/np300640g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A histone deacetylase (HDAC)-based yeast assay employing a URA3 reporter gene was applied as a primary screen to evaluate a marine-derived actinomycete extract library and identify human class III HDAC (SIRT) inhibitors. On the basis of the bioassay-guided purification, a new compound designated as streptosetin A (1) was obtained from one of the active strains identified through the yeast assay. The gross structure of the new compound was elucidated from the 1D and 2D NMR data. The absolute stereostructure of 1 was determined based on X-ray crystal structure analysis and simulation of ECD spectra using time-dependent density functional theory calculations. This compound showed weak inhibitory activity against yeast Sir2p and human SIRT1 and SIRT2.
Collapse
Affiliation(s)
- Taro Amagata
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Current and Emerging Therapeutics for Cutaneous T-Cell Lymphoma: Histone Deacetylase Inhibitors. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/290685] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cutaneous T-cell lymphoma is a term that encompasses a spectrum of non-Hodgkin’s T-cell lymphomas with primary manifestations in the skin. It describes a heterogeneous group of neoplasms that are characterised by an accumulation of malignant T cells of the CD4 phenotype that have the propensity to home and accumulate in the skin, lymph nodes, and peripheral blood. The two most common variants of cutaneous T-cell lymphoma include mycosis fungoides and the leukemic variant, the Sézary syndrome. While numerous treatments are available for cutaneous T-cell lymphoma and have shown to have success in those with patch and plaque lesions, for those patients with tumour stage or lymph node involvement there is a significant decline in response. The relatively new therapeutic option with the use of histone deacetylase inhibitors is being advanced in the hope of decreasing morbidity and mortality associated with the disease. Histone deacetylase inhibitors have been shown to induce changes in gene expression, affecting cell cycle regulation, differentiation, and apoptosis. The aim of this paper is to discuss CTCL in the context of advances in CTCL treatment, specifically with HDAC inhibitors.
Collapse
|
17
|
Abstract
The cyclic depsipeptide largazole from a cyanobacterium of the genus Symploca is a marine natural product with a novel chemical scaffold and potently inhibits class I histone deacetylases (HDACs). Largazole possesses highly differential growth-inhibitory activity, preferentially targeting transformed over non-transformed cells. The intriguing structure and biological activity of largazole have attracted strong interest from the synthetic chemistry community to establish synthetic routes to largazole and to investigate its potential as a cancer therapeutic. This Highlight surveys recent advances in this area with a focus on the discovery, synthesis, target identification, structure-activity relationships, HDAC8-largazole thiol crystal structure, and biological studies, including in vivo anticancer and osteogenic activities.
Collapse
Affiliation(s)
- Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
18
|
Dell'Aversana C, Lepore I, Altucci L. HDAC modulation and cell death in the clinic. Exp Cell Res 2012; 318:1229-44. [PMID: 22336671 DOI: 10.1016/j.yexcr.2012.01.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 01/29/2023]
Abstract
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) are two opposing classes of enzymes, which finely regulate the balance of histone acetylation affecting chromatin packaging and gene expression. Imbalanced acetylation has been associated with carcinogenesis and cancer progression. In contrast to genetic mutations, epigenetic changes are potentially reversible. This implies that epigenetic alterations are amenable to pharmacological interventions. Accordingly, some epigenetic-based drugs (epidrugs) have been approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for cancer treatment. Here, we focus on the biological features of HDAC inhibitors (HDACis), analyzing the mechanism(s) of action and their current use in clinical practice.
Collapse
|
19
|
Nevels M, Nitzsche A, Paulus C. How to control an infectious bead string: nucleosome-based regulation and targeting of herpesvirus chromatin. Rev Med Virol 2011; 21:154-80. [PMID: 21538665 DOI: 10.1002/rmv.690] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herpesvirus infections of humans can cause a broad variety of symptoms ranging from mild afflictions to life-threatening disease. During infection, the large double-stranded DNA genomes of all herpesviruses are transcribed, replicated and encapsidated in the host cell nucleus, where DNA is typically structured and manoeuvred through nucleosomes. Nucleosomes individually assemble DNA around core histone octamers to form 'beads-on-a-string' chromatin fibres. Herpesviruses have responded to the advantages and challenges of chromatin formation in biologically unique ways. Although herpesvirus DNA is devoid of histones within nucleocapsids, nuclear viral genomes most likely form irregularly arranged or unstable nucleosomes during productive infection, and regular nucleosomal arrays resembling host cell chromatin in latently infected cells. Besides variations in nucleosome density, herpesvirus chromatin 'bead strings' undergo dynamic changes in histone composition and modification during the different stages of productive replication, latent infection and reactivation from latency, raising the likely possibility that epigenetic processes may dictate, at least in part, the outcome of infection and ensuing pathogenesis. Here, we summarise and discuss several new and important aspects regarding the nucleosome-based mechanisms that regulate herpesvirus chromatin structure and function in infected cells. Special emphasis is given to processes of histone deposition, histone variant exchange and covalent histone modification in relation to the transcription from the viral genome during productive and latent infections by human cytomegalovirus and herpes simplex virus type 1. We also present an overview on emerging histone-directed antiviral strategies that may be developed into 'epigenetic therapies' to improve current prevention and treatment options targeting herpesvirus infection and disease.
Collapse
Affiliation(s)
- Michael Nevels
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Germany.
| | | | | |
Collapse
|
20
|
Peidis P, Papadakis AI, Rajesh K, Koromilas AE. HDAC pharmacological inhibition promotes cell death through the eIF2α kinases PKR and GCN2. Aging (Albany NY) 2011; 2:669-77. [PMID: 21076179 PMCID: PMC2993797 DOI: 10.18632/aging.100216] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Histone deacetylase inhibitors (HDACi) comprise a family of chemotherapeutic agents used in the clinic to treat cutaneous T-cell lymphoma and tested for the therapy of other malignancies. Previous reports have shown that eIF2α phosphorylation is induced upon treatment with HDACi. However the kinase responsible for this phosphorylation or the biological significance of this finding is not yet established. Herein, we show that eIF2α phosphorylation is not attributed to a specific eIF2α kinase, but rather different eIF2α kinases contribute to its upregulation in response to the HDACi, vorinostat. More importantly our data indicate that eIF2α phosphorylation acts in a cytoprotective manner, whereas the eIF2α kinases PKR and GCN2 promote vorinostat-induced apoptosis. These results reveal a dual nature for eIF2α kinases with potential implications in the treatment with histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Philippos Peidis
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
21
|
Targeting Huntington's disease through histone deacetylases. Clin Epigenetics 2011; 2:257-77. [PMID: 22704341 PMCID: PMC3365382 DOI: 10.1007/s13148-011-0025-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 02/06/2011] [Indexed: 12/23/2022] Open
Abstract
Huntington’s disease (HD) is a debilitating neurodegenerative condition with significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with this condition remain limited. Aberrant post-translational modification (PTM) of proteins is emerging as an important element in the pathogenesis of HD. These PTMs include acetylation, phosphorylation, methylation, sumoylation and ubiquitination. Several families of proteins are involved with the regulation of these PTMs. In this review, I discuss the current evidence linking aberrant PTMs and/or aberrant regulation of the cellular machinery regulating these PTMs to HD pathogenesis. Finally, I discuss the evidence suggesting that pharmacologically targeting one of these protein families the histone deacetylases may be of potential therapeutic benefit in the treatment of HD.
Collapse
|
22
|
Choi E, Lee C, Park JE, Seo JJ, Cho M, Kang JS, Kim HM, Park SK, Lee K, Han G. Structure and property based design, synthesis and biological evaluation of γ-lactam based HDAC inhibitors. Bioorg Med Chem Lett 2011; 21:1218-21. [DOI: 10.1016/j.bmcl.2010.12.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/07/2010] [Accepted: 12/16/2010] [Indexed: 01/04/2023]
|