1
|
Arya R, Prashar V, Kumar M. Identification and characterization of aurintricarboxylic acid as a potential inhibitor of SARS-CoV-2 PLpro. Int J Biol Macromol 2023; 230:123347. [PMID: 36682650 PMCID: PMC9851725 DOI: 10.1016/j.ijbiomac.2023.123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
As the global health crisis due to evolution of mutations in SARS-CoV-2 continues, it is important to develop several effective antivirals to control the disease. Targeting papain-like protease (PLpro) of SARS-CoV-2 for drug development is a promising strategy due to its dual role in promoting viral replication and dysregulating host immune responses. Here, we screened a library of compounds to find potential inhibitors of PLpro. We find aurintricarboxylic acid (ATA) inhibits PLpro with Ki and IC50 values of 16 μM and 30 μM, respectively. The binding of ATA to PLpro was further characterized using isothermal titration calorimetry, differential scanning fluorimetry, dynamic light scattering and circular dichroism spectrometry. In vitro assays showed the antiviral potential of ATA with IC50 of 50 μM. In vivo efficacy was studied in Syrian hamsters and the results are being discussed.
Collapse
Affiliation(s)
- Rimanshee Arya
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Vishal Prashar
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Mukesh Kumar
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
2
|
Mortada WI, Awad AA, El-Defrawy MM, Khalifa ME. Air-assisted cloud point extraction coupled with inductively coupled plasma optical emission spectroscopy for determination of samarium in environmental samples. ANAL SCI 2022; 38:1489-1495. [DOI: 10.1007/s44211-022-00181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/20/2022] [Indexed: 11/01/2022]
Abstract
AbstractFor the first time, air-assisted cloud point extraction (AACPE) was presented to preconcentrate metal ions. The procedure was conjugated with inductively coupled plasma-optical emission spectroscopy for determination of samarium. In this procedure, samarium ions were complexed with aluminon and extracted into Triton X-114 in the presence of potassium iodide. The mixture was repeatedly sucked and dispersed with a syringe (three times) to create cloud solution. Experimental factors that affect the extraction competence of the AACPE procedure, such as pH, amount of aluminon and Triton X-114, salt addition, number of suction/injection cycles, and centrifugation rate and time, have been investigated and optimized. A linear calibration curve from 0.2 to 200.0 μg L−1 with enrichment factor and detection limit of 102 and 0.06 μg L−1, respectively, was established under the optimum experimental conditions. The approach was used to determine samarium in wastewater and rock samples, with recoveries ranging from 98% to 99%.
Graphical abstract
Collapse
|
3
|
Mathur D, Rogers KE, Díaz SA, Muroski ME, Klein WP, Nag OK, Lee K, Field LD, Delehanty JB, Medintz IL. Determining the Cytosolic Stability of Small DNA Nanostructures In Cellula. NANO LETTERS 2022; 22:5037-5045. [PMID: 35580267 PMCID: PMC9233082 DOI: 10.1021/acs.nanolett.2c00917] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
DNA nanostructures have proven potential in biomedicine. However, their intracellular interactions─especially cytosolic stability─remain mostly unknown and attempts to discern this are confounded by the complexities of endocytic uptake and entrapment. Here, we bypass the endocytic uptake and evaluate the DNA structural stability directly in live cells. Commonly used DNA structures─crosshairs and a tetrahedron─were labeled with a multistep Förster resonance energy transfer dye cascade and microinjected into the cytosol of transformed and primary cells. Energy transfer loss, as monitored by fluorescence microscopy, reported the structure's direct time-resolved breakdown in cellula. The results showed rapid degradation of the DNA crosshair within 20 min, while the tetrahedron remained consistently intact for at least 1 h postinjection. Nuclease assays in conjunction with a current understanding of the tetrahedron's torsional rigidity confirmed its higher stability. Such studies can inform design parameters for future DNA nanostructures where programmable degradation rates may be required.
Collapse
Affiliation(s)
- Divita Mathur
- College of Science, George Mason University, Fairfax, Virginia 22030, United States
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| | - Katherine E Rogers
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| | - Megan E Muroski
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- American Society of Engineering Education, Washington, DC 20036, United States
| | - William P Klein
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- National Research Council, Washington, DC 20001, United States
| | - Okhil K Nag
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| | - Kwahun Lee
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- American Society of Engineering Education, Washington, DC 20036, United States
| | - Lauren D Field
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- National Research Council, Washington, DC 20001, United States
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| |
Collapse
|
4
|
Wei XR, Meng Y, Xu Q, Hu J, Zhang CY. Label-free and homogeneous detection of flap endonuclease 1 by ligation-promoted hyperbranched rolling circle amplification platform. Talanta 2022; 243:123342. [DOI: 10.1016/j.talanta.2022.123342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 01/19/2023]
|
5
|
Mermer A. The Importance of Rhodanine Scaffold in Medicinal Chemistry: A Comprehensive Overview. Mini Rev Med Chem 2021; 21:738-789. [PMID: 33334286 DOI: 10.2174/1389557521666201217144954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
After the clinical use of epalrestat that contains a rhodanine ring, in type II diabetes mellitus and diabetic complications, rhodanin-based compounds have become an important class of heterocyclic in the field of medicinal chemistry. Various modifications to the rhodanine ring have led to a broad spectrum of biological activity of these compounds. Synthesis of rhodanine derivatives, depended on advenced throughput scanning hits, frequently causes potent and selective modulators of targeted enzymes or receptors, which apply their pharmacological activities through different mechanisms of action. Rhodanine-based compounds will likely stay a privileged scaffold in drug discovery because of different probability of chemical modifications of the rhodanine ring. We have, therefore reviewed their biological activities and structure activity relationship.
Collapse
Affiliation(s)
- Arif Mermer
- Department of Biotechnology, Hamidiye Health Science Institute, University of Health Sciences Turkey, 34668, İstanbul, Turkey
| |
Collapse
|
6
|
Ngwe Tun MM, Morita K, Ishikawa T, Urata S. The Antiviral Effect of the Chemical Compounds Targeting DED/EDh Motifs of the Viral Proteins on Lymphocytic Choriomeningitis Virus and SARS-CoV-2. Viruses 2021; 13:1220. [PMID: 34202565 PMCID: PMC8310078 DOI: 10.3390/v13071220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 01/01/2023] Open
Abstract
Arenaviruses and coronaviruses include several human pathogenic viruses, such as Lassa virus, Lymphocytic choriomeningitis virus (LCMV), SARS-CoV, MERS-CoV, and SARS-CoV-2. Although these viruses belong to different virus families, they possess a common motif, the DED/EDh motif, known as an exonuclease (ExoN) motif. In this study, proof-of-concept studies, in which the DED/EDh motif in these viral proteins, NP for arenaviruses, and nsp14 for coronaviruses, could be a drug target, were performed. Docking simulation studies between two structurally different chemical compounds, ATA and PV6R, and the DED/EDh motifs in these viral proteins indicated that these compounds target DED/EDh motifs. The concentration which exhibited modest cell toxicity was used with these compounds to treat LCMV and SARS-CoV-2 infections in two different cell lines, A549 and Vero 76 cells. Both ATA and PV6R inhibited the post-entry step of LCMV and SARS-CoV-2 infection. These studies strongly suggest that DED/EDh motifs in these viral proteins could be a drug target to combat two distinct viral families, arenaviruses and coronaviruses.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine and Leading Program, Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (M.M.N.T.); (K.M.)
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine and Leading Program, Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (M.M.N.T.); (K.M.)
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Shuzo Urata
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
7
|
Refat MS, Bakare SB, Altalhi T, Hassan RF. Au(III), Ta(V), Nb(V), Se(IV) and Te(IV) ions interaction with aurin tricarboxylic acid triammonium salt in methanolic solvent at neutral system: Focusing on the structures, morphology, thermal stability, and biology of the complexes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Fernandes de Oliveira LM, Steindorff M, Darisipudi MN, Mrochen DM, Trübe P, Bröker BM, Brönstrup M, Tegge W, Holtfreter S. Discovery of Staphylococcus aureus Adhesion Inhibitors by Automated Imaging and Their Characterization in a Mouse Model of Persistent Nasal Colonization. Microorganisms 2021; 9:microorganisms9030631. [PMID: 33803564 PMCID: PMC8002927 DOI: 10.3390/microorganisms9030631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 01/26/2023] Open
Abstract
Due to increasing mupirocin resistance, alternatives for Staphylococcus aureus nasal decolonization are urgently needed. Adhesion inhibitors are promising new preventive agents that may be less prone to induce resistance, as they do not interfere with the viability of S. aureus and therefore exert less selection pressure. We identified promising adhesion inhibitors by screening a library of 4208 compounds for their capacity to inhibit S. aureus adhesion to A-549 epithelial cells in vitro in a novel automated, imaging-based assay. The assay quantified DAPI-stained nuclei of the host cell; attached bacteria were stained with an anti-teichoic acid antibody. The most promising candidate, aurintricarboxylic acid (ATA), was evaluated in a novel persistent S. aureus nasal colonization model using a mouse-adapted S. aureus strain. Colonized mice were treated intranasally over 7 days with ATA using a wide dose range (0.5–10%). Mupirocin completely eliminated the bacteria from the nose within three days of treatment. In contrast, even high concentrations of ATA failed to eradicate the bacteria. To conclude, our imaging-based assay and the persistent colonization model provide excellent tools to identify and validate new drug candidates against S. aureus nasal colonization. However, our first tested candidate ATA failed to induce S. aureus decolonization.
Collapse
Affiliation(s)
- Liliane Maria Fernandes de Oliveira
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Marina Steindorff
- Helmholtz Centre for Infection Research, Department of Chemical Biology, 38124 Braunschweig, Germany (M.B.)
| | - Murthy N. Darisipudi
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Daniel M. Mrochen
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Patricia Trübe
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Barbara M. Bröker
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Mark Brönstrup
- Helmholtz Centre for Infection Research, Department of Chemical Biology, 38124 Braunschweig, Germany (M.B.)
| | - Werner Tegge
- Helmholtz Centre for Infection Research, Department of Chemical Biology, 38124 Braunschweig, Germany (M.B.)
- Correspondence: (W.T.); (S.H.)
| | - Silva Holtfreter
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
- Correspondence: (W.T.); (S.H.)
| |
Collapse
|
9
|
Park S, Guo Y, Negre J, Preto J, Smithers CC, Azad AK, Overduin M, Murray AG, Eitzen G. Fgd5 is a Rac1-specific Rho GEF that is selectively inhibited by aurintricarboxylic acid. Small GTPases 2021; 12:147-160. [PMID: 31601145 PMCID: PMC7849785 DOI: 10.1080/21541248.2019.1674765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/14/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
Rho proteins are signalling molecules that control cellular dynamics, movement and morphological changes. They are activated by Rho guanine-nucleotide exchange factors (Rho GEFs) that transduce upstream signals into Rho-mediated activation of downstream processes. Fgd5 is a Rho GEF involved in angiogenesis and its target Rho protein for this process has been linked to Cdc42 activation. Here, we examined the function of purified Fgd5, specifically, which Rho proteins it activates and pinpoint the structural domains required for enzymatic activity. Using a GEF enzyme assay, we found that purified Fgd5 showed preferential activation of Rac1 and direct binding of Rac1 in pull-down and co-immunoprecipitation assays. Structural comparisons showed that the Fgd5 DH domain is highly similar to the Rac1 GEF, TrioN, supporting a role for Fgd5 as a Rac1 GEF. Compounds that bind to purified Fgd5 DH-PH protein were identified by screening a small molecule library via surface plasmon resonance. The effects of eleven ligands were further examined for their ability to inhibit the Fgd5 GEF enzymatic activity and Rac1 interaction. From these studies, we found that the compound aurintricarboxylic acid, and to a lesser extent mitoxantrone dihydrochloride, inhibited both Fgd5 GEF activation of Rac1 and their interaction. Aurintricarboxylic acid had no effect on the activity or binding of the Rac1 GEF, TrioN, thus demonstrating the feasibility of selectively disrupting Rho GEF activators. Abbreviations: a.a.: amino acid; ATA: aurintricarboxylic acid; DH: Dbl homology; DOCK: dictator of cytokinesis; Fgd: faciogenital dysplasia; GEF: guanine-nucleotide exchange factor; GST: glutathione S-transferase; LOPAC: library of pharmacologically active compounds; PH: pleckstrin homology; PDB: protein data bank; s.e.m.: standard error of the mean; SPR: surface plasmon resonance.
Collapse
Affiliation(s)
- Sally Park
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Yitian Guo
- Department of Medicine-Division of Pulmonary Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Judeah Negre
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Jordane Preto
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Cameron C. Smithers
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Abul Kalam Azad
- Department of Medicine, Division of Nephrology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Allan G. Murray
- Department of Medicine, Division of Nephrology, University of Alberta, Edmonton, Alberta, Canada
| | - Gary Eitzen
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine-Division of Pulmonary Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Alonso C, Utrilla-Trigo S, Calvo-Pinilla E, Jiménez-Cabello L, Ortego J, Nogales A. Inhibition of Orbivirus Replication by Aurintricarboxylic Acid. Int J Mol Sci 2020; 21:ijms21197294. [PMID: 33023235 PMCID: PMC7582255 DOI: 10.3390/ijms21197294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Bluetongue virus (BTV) and African horse sickness virus (AHSV) are vector-borne viruses belonging to the Orbivirus genus, which are transmitted between hosts primarily by biting midges of the genus Culicoides. With recent BTV and AHSV outbreaks causing epidemics and important economy losses, there is a pressing need for efficacious drugs to treat and control the spread of these infections. The polyanionic aromatic compound aurintricarboxylic acid (ATA) has been shown to have a broad-spectrum antiviral activity. Here, we evaluated ATA as a potential antiviral compound against Orbivirus infections in both mammalian and insect cells. Notably, ATA was able to prevent the replication of BTV and AHSV in both cell types in a time- and concentration-dependent manner. In addition, we evaluated the effect of ATA in vivo using a mouse model of infection. ATA did not protect mice against a lethal challenge with BTV or AHSV, most probably due to the in vivo effect of ATA on immune system regulation. Overall, these results demonstrate that ATA has inhibitory activity against Orbivirus replication in vitro, but further in vivo analysis will be required before considering it as a potential therapy for future clinical evaluation.
Collapse
|
11
|
Park SJ, Kim J, Kang S, Cha HJ, Shin H, Park J, Jang YS, Woo JS, Won C, Min DH. Discovery of direct-acting antiviral agents with a graphene-based fluorescent nanosensor. SCIENCE ADVANCES 2020; 6:eaaz8201. [PMID: 32523995 PMCID: PMC7259931 DOI: 10.1126/sciadv.aaz8201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/31/2020] [Indexed: 05/04/2023]
Abstract
Direct-acting agents against viral components are considered as the most promising candidates for the successful antiviral therapeutics. To date, no direct-acting drugs exist for the treatment against dengue virus (DV) infection, which can develop into life-threatening diseases. RNA-dependent RNA polymerase (RdRp), an RNA virus-specific enzyme highly conserved among various viral families, has been known as the broad-range antiviral drug target. Here, we developed an RNA-based graphene biosensor system [RNA nano-graphene oxide system (RANGO)] to enable the fluorescence-based quantitative analysis of the RdRp enzyme activity. We used the RANGO system to a high-throughput chemical screening to identify novel direct-acting antiviral drug candidates targeting DV RdRp from the FDA-approved small-molecule library. RANGO accelerated the massive selection of drug candidates. We found that one of the selected hit compounds, montelukast, showed antiviral activity in vitro and in vivo by directly inhibiting replication of DV and thus relieved related symptoms.
Collapse
Affiliation(s)
- Se-Jin Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jungho Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 08826, Republic of Korea
| | - Seounghun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung Jin Cha
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
| | - Hojeong Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jisang Park
- Department of Bioactive Material Sciences and Institute of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences and Institute of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jae-Sung Woo
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Cheolhee Won
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 08826, Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 08826, Republic of Korea
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Becker JC, Tollefson SJ, Weaver D, Williams JV. A medium-throughput screen for inhibitors of human metapneumovirus. Antivir Chem Chemother 2019; 27:2040206619830197. [PMID: 30759993 PMCID: PMC6376503 DOI: 10.1177/2040206619830197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Human metapneumovirus, a paramyxovirus discovered in 2001, is a major cause of lower respiratory infection in adults and children worldwide. There are no licensed vaccines or drugs for human metapneumovirus. We developed a fluorescent, cell-based medium-throughput screening assay for human metapneumovirus that captures inhibitors of all stages of the viral lifecycle except budding of progeny virus particles from the cell membrane. We optimized and validated the assay and performed a successful medium-throughput screening. A number of hits were identified, several of which were confirmed to inhibit viral replication in secondary assays. This assay offers potential to discover new antivirals for human metapneumovirus and related respiratory viruses. Compounds discovered using the medium-throughput screening may also provide useful probes of viral biology.
Collapse
Affiliation(s)
- Jennifer C Becker
- 1 Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sharon J Tollefson
- 2 Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Weaver
- 3 Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John V Williams
- 2 Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA.,4 Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Park JG, Ávila-Pérez G, Madere F, Hilimire TA, Nogales A, Almazán F, Martínez-Sobrido L. Potent Inhibition of Zika Virus Replication by Aurintricarboxylic Acid. Front Microbiol 2019; 10:718. [PMID: 31031722 PMCID: PMC6473159 DOI: 10.3389/fmicb.2019.00718] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 11/14/2022] Open
Abstract
Zika virus (ZIKV) is one of the recently emerging vector-borne viruses in humans and is responsible for severe congenital abnormalities such as microcephaly in the Western Hemisphere. Currently, only a few vaccine candidates and therapeutic drugs are being developed for the treatment of ZIKV infections, and as of yet none are commercially available. The polyanionic aromatic compound aurintricarboxylic acid (ATA) has been shown to have a broad-spectrum antimicrobial and antiviral activity. In this study, we evaluated ATA as a potential antiviral drug against ZIKV replication. The antiviral activity of ATA against ZIKV replication in vitro showed median inhibitory concentrations (IC50) of 13.87 ± 1.09 μM and 33.33 ± 1.13 μM in Vero and A549 cells, respectively; without showing any cytotoxic effect in both cell lines (median cytotoxic concentration (CC50) > 1,000 μM). Moreover, ATA protected both cell types from ZIKV-induced cytopathic effect (CPE) and apoptosis in a time- and concentration-dependent manner. In addition, pre-treatment of Vero cells with ATA for up to 72 h also resulted in effective suppression of ZIKV replication with similar IC50. Importantly, the inhibitory effect of ATA on ZIKV infection was effective against strains of the African and Asian/American lineages, indicating that this inhibitory effect was not strain dependent. Overall, these results demonstrate that ATA has potent inhibitory activity against ZIKV replication and may be considered as a potential anti-ZIKV therapy for future clinical evaluation.
Collapse
Affiliation(s)
- Jun-Gyu Park
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Ginés Ávila-Pérez
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Ferralita Madere
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Thomas A Hilimire
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Aitor Nogales
- Center for Animal Health Research, INIA-CISA, Madrid, Spain
| | - Fernando Almazán
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
14
|
Gunaseelan S, Chu JJH. Identifying novel antiviral targets against enterovirus 71: where are we? Future Virol 2017. [DOI: 10.2217/fvl-2016-0144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human enterovirus 71 (HEV71) has been considered as an essential human pathogen, which causes hand, foot and mouth disease in young children. Several HEV71 outbreaks have been observed in many Asia-Pacific countries for the past two decades with significant fatalities. However, there are no competent vaccines or antivirals against HEV71 infection to date. Thus, it is of critical priority to delve into the search for anti-HEV71 agents. Prior to this, there is a need to gain knowledge about the distinct targets of HEV71 that are available and that have been exploited for antiviral therapy. This review aims to provide a better understanding of HEV71 virology and feature potential antivirals for progressive clinical development with respect to their elucidated mechanistic actions.
Collapse
Affiliation(s)
- Saravanan Gunaseelan
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597 Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597 Singapore
- Institute of Molecular & Cell Biology, Agency for Science, Technology & Research (A*STAR), 61 Biopolis Drive, Proteos #06–05, Singapore 138673
| |
Collapse
|
15
|
Huang KW, Hsu KC, Chu LY, Yang JM, Yuan HS, Hsiao YY. Identification of Inhibitors for the DEDDh Family of Exonucleases and a Unique Inhibition Mechanism by Crystal Structure Analysis of CRN-4 Bound with 2-Morpholin-4-ylethanesulfonate (MES). J Med Chem 2016; 59:8019-29. [PMID: 27529560 DOI: 10.1021/acs.jmedchem.6b00794] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DEDDh family of exonucleases plays essential roles in DNA and RNA metabolism in all kingdoms of life. Several viral and human DEDDh exonucleases can serve as antiviral drug targets due to their critical roles in virus replication. Here using RNase T and CRN-4 as the model systems, we identify potential inhibitors for DEDDh exonucleases. We further show that two of the inhibitors, ATA and PV6R, indeed inhibit the exonuclease activity of the viral protein NP exonuclease of Lassa fever virus in vitro. Moreover, we determine the crystal structure of CRN-4 in complex with MES that reveals a unique inhibition mechanism by inducing the general base His179 to shift out of the active site. Our results not only provide the structural basis for the inhibition mechanism but also suggest potential lead inhibitors for the DEDDh exonucleases that may pave the way for designing nuclease inhibitors for biochemical and biomedical applications.
Collapse
Affiliation(s)
- Kuan-Wei Huang
- Department of Biological Science and Technology, National Chiao Tung University , Hsinchu 30068, Taiwan, ROC.,Institute of Molecular Biology, Academia Sinica , Taipei 11529, Taiwan, ROC
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University , Taipei 11031, Taiwan
| | - Lee-Ya Chu
- Institute of Molecular Biology, Academia Sinica , Taipei 11529, Taiwan, ROC.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica , Nankang, Taipei 11529, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University , 101 Kuang-Fu Road Section 2, Hsinchu 30013, Taiwan
| | - Jinn-Moon Yang
- Department of Biological Science and Technology, National Chiao Tung University , Hsinchu 30068, Taiwan, ROC.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University , Hsinchu, 30050, Taiwan.,Center for Bioinformatics Research, National Chiao Tung University , Hsinchu 30068, Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica , Taipei 11529, Taiwan, ROC
| | - Yu-Yuan Hsiao
- Department of Biological Science and Technology, National Chiao Tung University , Hsinchu 30068, Taiwan, ROC.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University , Hsinchu, 30050, Taiwan.,Institute of Molecular Medicine and Bioengineering, National Chiao Tung University , Hsinchu 30068, Taiwan
| |
Collapse
|
16
|
Fernandes TDA, Manvar D, Domingos JLO, Basu A, Nichols DB, Kaushik-Basu N, Costa PRR. 5-Carba-pterocarpens: A new scaffold with anti-HCV activity. Eur J Med Chem 2016; 112:33-38. [PMID: 26874742 DOI: 10.1016/j.ejmech.2016.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 01/01/2023]
Abstract
The synthesis of a series of 5-carba-pterocarpens derivatives involving the cyclization of α-aryl-α-tetralones is described. Several compounds demonstrated potent activity and selectivity in vitro against HCV replicon reporter cells. The best profile in Huh7/Rep-Feo1b replicon reporter cells was observed with 2h (EC50 = 5.5 μM/SI = 20), while 2e was the most active in Huh7.5-FGR-JC1-Rluc2A replicon reporter cells (EC50 = 1.5 μM/SI = 70). Hydroxy groups at A- and D-rings are essential for anti-HCV activity, and substitutions in the A-ring at positions 3 and 4 resulted in enhanced activity of the compounds.
Collapse
Affiliation(s)
- Talita de A Fernandes
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco H, Ilha da Cidade Universitária, 21941-590 Rio de Janeiro, RJ, Brazil
| | - Dinesh Manvar
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, 185 South Orange Avenue, New Jersey 07103, USA
| | - Jorge L O Domingos
- Departamento de Química Orgânica, Centro de Tecnologia e Ciências, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, Pav. Haroldo Lisboa da Cunha - s 406 - Maracanã, 20550-900 Rio de Janeiro, RJ, Brazil
| | - Amartya Basu
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, 185 South Orange Avenue, New Jersey 07103, USA
| | - Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, 400 South Orange Avenue, New Jersey, 07079, USA
| | - Neerja Kaushik-Basu
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, 185 South Orange Avenue, New Jersey 07103, USA.
| | - Paulo R R Costa
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco H, Ilha da Cidade Universitária, 21941-590 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
17
|
Kok CC. Therapeutic and prevention strategies against human enterovirus 71 infection. World J Virol 2015; 4:78-95. [PMID: 25964873 PMCID: PMC4419123 DOI: 10.5501/wjv.v4.i2.78] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/21/2014] [Accepted: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
Human enterovirus 71 (HEV71) is the cause of hand, foot and mouth disease and associated neurological complications in children under five years of age. There has been an increase in HEV71 epidemic activity throughout the Asia-Pacific region in the past decade, and it is predicted to replace poliovirus as the extant neurotropic enterovirus of highest global public health significance. To date there is no effective antiviral treatment and no vaccine is available to prevent HEV71 infection. The increase in prevalence, virulence and geographic spread of HEV71 infection over the past decade provides increasing incentive for the development of new therapeutic and prevention strategies against this emerging viral infection. The current review focuses on the potential, advantages and disadvantages of these strategies. Since the explosion of outbreaks leading to large epidemics in China, research in natural therapeutic products has identified several groups of compounds with anti-HEV71 activities. Concurrently, the search for effective synthetic antivirals has produced promising results. Other therapeutic strategies including immunotherapy and the use of oligonucleotides have also been explored. A sound prevention strategy is crucial in order to control the spread of HEV71. To this end the ultimate goal is the rapid development, regulatory approval and widespread implementation of a safe and effective vaccine. The various forms of HEV71 vaccine designs are highlighted in this review. Given the rapid progress of research in this area, eradication of the virus is likely to be achieved.
Collapse
|
18
|
Manfroni G, Manvar D, Barreca ML, Kaushik-Basu N, Leyssen P, Paeshuyse J, Cannalire R, Iraci N, Basu A, Chudaev M, Zamperini C, Dreassi E, Sabatini S, Tabarrini O, Neyts J, Cecchetti V. New pyrazolobenzothiazine derivatives as hepatitis C virus NS5B polymerase palm site I inhibitors. J Med Chem 2014; 57:3247-62. [PMID: 24654886 PMCID: PMC4203399 DOI: 10.1021/jm401688h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have previously identified the pyrazolobenzothiazine scaffold as a promising chemotype against hepatitis C virus (HCV) NS5B polymerase, a validated and promising anti-HCV target. Herein we describe the design, synthesis, enzymatic, and cellular characterization of new pyrazolobenzothiazines as anti-HCV inhibitors. The binding site for a representative derivative was mapped to NS5B palm site I employing a mutant counterscreen assay, thus validating our previous in silico predictions. Derivative 2b proved to be the best selective anti-HCV derivative within the new series, exhibiting a IC50 of 7.9 μM against NS5B polymerase and antiviral effect (EC50 = 8.1 μM; EC90 = 23.3 μM) coupled with the absence of any antimetabolic effect (CC50 > 224 μM; SI > 28) in a cell based HCV replicon system assay. Significantly, microscopic analysis showed that, unlike the parent compounds, derivative 2b did not show any significant cell morphological alterations. Furthermore, since most of the pyrazolobenzothiazines tested altered cell morphology, this undesired aspect was further investigated by exploring possible perturbation of lipid metabolism during compound treatment.
Collapse
Affiliation(s)
- Giuseppe Manfroni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia , Via A. Fabretti 48, 06123 Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Therese PJ, Manvar D, Kondepudi S, Battu MB, Sriram D, Basu A, Yogeeswari P, Kaushik-Basu N. Multiple e-pharmacophore modeling, 3D-QSAR, and high-throughput virtual screening of hepatitis C virus NS5B polymerase inhibitors. J Chem Inf Model 2014; 54:539-52. [PMID: 24460140 DOI: 10.1021/ci400644r] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase (RdRP) is a crucial and unique component of the HCV RNA replication machinery and a validated target for drug discovery. Multiple crystal structures of NS5B inhibitor complexes have facilitated the identification of novel compound scaffolds through in silico analysis. With the goal of discovering new NS5B inhibitor leads, HCV NS5B crystal structures bound with inhibitors in the palm and thumb allosteric pockets in combination with ligands with known inhibitory potential were explored for a comparative pharmacophore analyses. The energy-based and 3D-QSAR-based pharmacophore models were validated using enrichment analysis, and the six models thus developed were employed for high-throughput virtual screening and docking to identify nonpeptidic leads. The hits derived at each stage were analyzed for diversity based on the six pharmacophore models, followed by molecular docking and filtering based on their interaction with amino acids in the NS5B allosteric pocket and 3D-QSAR predictions. The resulting 10 hits displaying diverse scaffold were then screened employing biochemical and cell-based NS5B and anti-HCV inhibition assays. Of these, two molecules H-5 and H-6 were the most promising, exhibiting IC50 values of 28.8 and 47.3 μM against NS5B polymerase and anti-HCV inhibition of 96% and 86% at 50 μM, respectively. The identified leads comprised of benzimidazole (H-5) and pyridine (H-6) scaffolds thus constitute prototypical molecules for further optimization and development as NS5B inhibitors.
Collapse
Affiliation(s)
- Patrisha Joseph Therese
- Computer-Aided Drug Design Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani , Hyderabad campus, Jawahar Nagar, Hyderabad-500078, Andhra Pradesh, India
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lou Z, Sun Y, Rao Z. Current progress in antiviral strategies. Trends Pharmacol Sci 2014; 35:86-102. [PMID: 24439476 PMCID: PMC7112804 DOI: 10.1016/j.tips.2013.11.006] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/23/2013] [Accepted: 11/26/2013] [Indexed: 02/07/2023]
Abstract
Antiviral agents function as either viral targets or host factors. Virus-targeting antivirals (VTAs) function through a direct (DVTAs) or an indirect (InDVTAs) method in the viral life cycle. Host-targeting antivirals (HTAs) include reagents that target the host proteins that are involved in the viral life cycle.
The prevalence of chronic viral infectious diseases, such as human immunodeficiency virus (HIV), hepatitis C virus (HCV), and influenza virus; the emergence and re-emergence of new viral infections, such as picornaviruses and coronaviruses; and, particularly, resistance to currently used antiviral drugs have led to increased demand for new antiviral strategies and reagents. Increased understanding of the molecular mechanisms of viral infection has provided great potential for the discovery of new antiviral agents that target viral proteins or host factors. Virus-targeting antivirals can function directly or indirectly to inhibit the biological functions of viral proteins, mostly enzymatic activities, or to block viral replication machinery. Host-targeting antivirals target the host proteins that are involved in the viral life cycle, regulating the function of the immune system or other cellular processes in host cells. Here we review key targets and considerations for the development of both antiviral strategies.
Collapse
Affiliation(s)
- Zhiyong Lou
- Laboratory of Structural Biology and MOE Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Yuna Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101, China
| | - Zihe Rao
- Laboratory of Structural Biology and MOE Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, 100084, China; National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101, China.
| |
Collapse
|
21
|
Manfroni G, Cannalire R, Barreca ML, Kaushik-Basu N, Leyssen P, Winquist J, Iraci N, Manvar D, Paeshuyse J, Guhamazumder R, Basu A, Sabatini S, Tabarrini O, Danielson UH, Neyts J, Cecchetti V. The versatile nature of the 6-aminoquinolone scaffold: identification of submicromolar hepatitis C virus NS5B inhibitors. J Med Chem 2013; 57:1952-63. [PMID: 24131104 DOI: 10.1021/jm401362f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously reported that the 6-aminoquinolone chemotype is a privileged scaffold to obtain antibacterial and antiviral agents. Herein we describe the design, synthesis, and enzymatic and cellular characterization of new 6-aminoquinolone derivatives as potent inhibitors of NS5B polymerase, an attractive and viable therapeutic target to develop safe anti-HCV agents. The 6-amino-7-[4-(2-pyridinyl)-1-piperazinyl]quinolone derivative 8 proved to be the best compound of this series, exhibiting an IC50 value of 0.069 μM against NS5B polymerase and selective antiviral effect (EC50 = 3.03 μM) coupled with the absence of any cytostatic effect (CC50 > 163 μM; SI > 54) in Huh 9-13 cells carrying a HCV genotype 1b, as measured by MTS assay. These results indicate that the 6-aminoquinolone scaffold is worthy of further investigation in the context of NS5B-targeted HCV drug discovery programs.
Collapse
Affiliation(s)
- Giuseppe Manfroni
- Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shadrick WR, Mukherjee S, Hanson AM, Sweeney NL, Frick DN. Aurintricarboxylic acid modulates the affinity of hepatitis C virus NS3 helicase for both nucleic acid and ATP. Biochemistry 2013; 52:6151-9. [PMID: 23947785 DOI: 10.1021/bi4006495] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aurintricarboxylic acid (ATA) is a potent inhibitor of many enzymes needed for cell and virus replication, such as polymerases, helicases, nucleases, and topoisomerases. This study examines how ATA interacts with the helicase encoded by the hepatitis C virus (HCV) and reveals that ATA interferes with both nucleic acid and ATP binding to the enzyme. We show that ATA directly binds HCV helicase to prevent the enzyme from interacting with nucleic acids and to modulate the affinity of HCV helicase for ATP, the fuel for helicase action. Amino acid substitutions in the helicase DNA binding cleft or its ATP binding site alter the ability of ATA to disrupt helicase-DNA interactions. These data, along with molecular modeling results, support the notion that an ATA polymer binds between Arg467 and Glu493 to prevent the helicase from binding either ATP or nucleic acids. We also characterize how ATA affects the kinetics of helicase-catalyzed ATP hydrolysis, and thermodynamic parameters describing the direct interaction between HCV helicase and ATA using microcalorimetry. The thermodynamics of ATA binding to HCV helicase reveal that ATA binding does not mimic nucleic acid binding in that ATA binding is driven by a smaller enthalpy change and an increase in entropy.
Collapse
Affiliation(s)
- William R Shadrick
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee , 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | | | | | | | | |
Collapse
|
23
|
Mohamed TMA, Abou-Leisa R, Baudoin F, Stafford N, Neyses L, Cartwright EJ, Oceandy D. Development and characterization of a novel fluorescent indicator protein PMCA4-GCaMP2 in cardiomyocytes. J Mol Cell Cardiol 2013; 63:57-68. [PMID: 23880607 DOI: 10.1016/j.yjmcc.2013.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/04/2013] [Accepted: 07/11/2013] [Indexed: 11/25/2022]
Abstract
Isoform 4 of the plasma membrane calcium/calmodulin dependent ATPase (PMCA4) has recently emerged as an important regulator of several key pathophysiological processes in the heart, such as contractility and hypertrophy. However, direct monitoring of PMCA4 activity and assessment of calcium dynamics in its vicinity in cardiomyocytes are difficult due to the lack of molecular tools. In this study, we developed novel calcium fluorescent indicators by fusing the GCaMP2 calcium sensor to the N-terminus of PMCA4 to generate the PMCA4-GCaMP2 fusion molecule. We also identified a novel specific inhibitor of PMCA4, which might be useful for studying the role of this molecule in cardiomyocytes and other cell types. Using an adenoviral system we successfully expressed PMCA4-GCaMP2 in both neonatal and adult rat cardiomyocytes. This fusion molecule was correctly targeted to the plasma membrane and co-localised with caveolin-3. It could monitor signal oscillations in electrically stimulated cardiomyocytes. The PMCA4-GCaMP2 generated a higher signal amplitude and faster signal decay rate compared to a mutant inactive PMCA4(mut)GCaMP2 fusion protein, in electrically stimulated neonatal and adult rat cardiomyocytes. A small molecule library screen enabled us to identify a novel selective inhibitor for PMCA4, which we found to reduce signal amplitude of PMCA4-GCaMP2 and prolong the time of signal decay (Tau) to a level comparable with the signal generated by PMCA4(mut)GCaMP2. In addition, PMCA4-GCaMP2 but not the mutant form produced an enhanced signal in response to β-adrenergic stimulation. Together, the PMCA4-GCaMP2 and PMCA4(mut)GCaMP2 demonstrate calcium dynamics in the vicinity of the pump under active or inactive conditions, respectively. In summary, the PMCA4-GCaMP2 together with the novel specific inhibitor provides new means with which to monitor calcium dynamics in the vicinity of a calcium transporter in cardiomyocytes and may become a useful tool to further study the biological functions of PMCA4. In addition, similar approaches could be useful for studying the activity of other calcium transporters during excitation-contraction coupling in the heart.
Collapse
Affiliation(s)
- Tamer M A Mohamed
- Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9PT, UK; Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | | | | | | | | | | |
Collapse
|
24
|
Patel B, Krishnan R, Khadtare N, Gurukumar KR, Basu A, Arora P, Bhatt A, Patel MR, Dana D, Kumar S, Kaushik-Basu N, Talele TT. Design and synthesis of L- and D-phenylalanine derived rhodanines with novel C5-arylidenes as inhibitors of HCV NS5B polymerase. Bioorg Med Chem 2013; 21:3262-71. [PMID: 23598249 PMCID: PMC3651775 DOI: 10.1016/j.bmc.2013.03.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/01/2013] [Accepted: 03/09/2013] [Indexed: 10/27/2022]
Abstract
Hepatitis C virus (HCV) NS5B polymerase is a key target for anti-HCV therapeutics development. Herein, we report the synthesis and in vitro evaluation of anti-NS5B polymerase activity of a molecular hybrid of our previously reported lead compounds 1 (IC50=7.7 μM) and 2 (IC50=10.6 μM) as represented by hybrid compound 27 (IC50=6.7 μM). We have explored the optimal substituents on the terminal phenyl ring of the 3-phenoxybenzylidene moiety in 27, by generating a set of six analogs. This resulted in the identification of compound 34 with an IC50 of 2.6 μM. To probe the role of stereochemistry towards the observed biological activity, we synthesized and evaluated the D-isomers 41 (IC50=19.3 μM) and 45 (IC50=5.4 μM) as enantiomers of the l-isomers 27 and 34, respectively. The binding site of compounds 32 and 34 was mapped to palm pocket-I (PP-I) of NS5B. The docking models of 34 and 45 within the PP-I of NS5B were investigated to envisage the molecular mechanism of inhibition.
Collapse
Affiliation(s)
- Bhargav Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Ramalingam Krishnan
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Nikhil Khadtare
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - K. R. Gurukumar
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Amartya Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Payal Arora
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Aaditya Bhatt
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Maulik R. Patel
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10021, USA
| | - Dibyendu Dana
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, 65–30 Kissena Blvd., Flushing, NY 11367, USA
| | - Sanjai Kumar
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, 65–30 Kissena Blvd., Flushing, NY 11367, USA
| | - Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| |
Collapse
|
25
|
Nichols DB, Leão RAC, Basu A, Chudayeu M, de Moraes PDF, Talele TT, Costa PRR, Kaushik-Basu N. Evaluation of Coumarin and Neoflavone Derivatives as HCV NS5B Polymerase Inhibitors. Chem Biol Drug Des 2013; 81:607-14. [DOI: 10.1111/cbdd.12105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/04/2012] [Accepted: 12/31/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Daniel B. Nichols
- Department of Biochemistry and Molecular Biology; UMDNJ-New Jersey Medical School; 185 South Orange Avenue; Newark; NJ; 07103; USA
| | - Raquel A. C. Leão
- Laboratório de Química Bioorgânica, Núcleo de Pesquisas de Produtos Naturais; Centro de Ciências da Saúde; Bloco H; Universidade Federal do Rio de Janeiro; RJ; 21941-590; Brazil
| | - Amartya Basu
- Department of Biochemistry and Molecular Biology; UMDNJ-New Jersey Medical School; 185 South Orange Avenue; Newark; NJ; 07103; USA
| | - Maksim Chudayeu
- Department of Biochemistry and Molecular Biology; UMDNJ-New Jersey Medical School; 185 South Orange Avenue; Newark; NJ; 07103; USA
| | - Paula de F. de Moraes
- Laboratório de Química Bioorgânica, Núcleo de Pesquisas de Produtos Naturais; Centro de Ciências da Saúde; Bloco H; Universidade Federal do Rio de Janeiro; RJ; 21941-590; Brazil
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences; College of Pharmacy and Health Sciences; St. John's University; Queens; NY; 11439; USA
| | - Paulo R. R. Costa
- Laboratório de Química Bioorgânica, Núcleo de Pesquisas de Produtos Naturais; Centro de Ciências da Saúde; Bloco H; Universidade Federal do Rio de Janeiro; RJ; 21941-590; Brazil
| | - Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology; UMDNJ-New Jersey Medical School; 185 South Orange Avenue; Newark; NJ; 07103; USA
| |
Collapse
|
26
|
Küçükgüzel ŞG, Coşkun İ, Aydın S, Aktay G, Gürsoy Ş, Çevik Ö, Özakpınar ÖB, Özsavcı D, Şener A, Kaushik-Basu N, Basu A, Talele TT. Synthesis and characterization of celecoxib derivatives as possible anti-inflammatory, analgesic, antioxidant, anticancer and anti-HCV agents. Molecules 2013; 18:3595-614. [PMID: 23519201 PMCID: PMC6269910 DOI: 10.3390/molecules18033595] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/12/2013] [Accepted: 03/10/2013] [Indexed: 02/05/2023] Open
Abstract
A series of novel N-(3-substituted aryl/alkyl-4-oxo-1,3-thiazolidin-2-ylidene)-4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamides 2a-e were synthesized by the addition of ethyl a-bromoacetate and anhydrous sodium acetate in dry ethanol to N-(substituted aryl/alkylcarbamothioyl)-4-[5-(4-methylphenyl)-3-(trifluoro-methyl)-1H-pyrazol-1-yl]benzene sulfonamides 1a-e, which were synthesized by the reaction of alkyl/aryl isothiocyanates with celecoxib. The structures of the isolated products were determined by spectral methods and their anti-inflammatory, analgesic, antioxidant, anticancer and anti-HCV NS5B RNA-dependent RNA polymerase (RdRp) activities evaluated. The compounds were also tested for gastric toxicity and selected compound 1a was screened for its anticancer activity against 60 human tumor cell lines. These investigations revealed that compound 1a exhibited anti-inflammatory and analgesic activities and further did not cause tissue damage in liver, kidney, colon and brain compared to untreated controls or celecoxib. Compounds 1c and 1d displayed modest inhibition of HCV NS5B RdRp activity. In conclusion, N-(ethylcarbamothioyl)-4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (1a) may have the potential to be developed into a therapeutic agent.
Collapse
Affiliation(s)
- Ş. Güniz Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668 İstanbul, Turkey; E-Mails: (İ.C.); (S.A.)
| | - İnci Coşkun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668 İstanbul, Turkey; E-Mails: (İ.C.); (S.A.)
| | - Sevil Aydın
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668 İstanbul, Turkey; E-Mails: (İ.C.); (S.A.)
| | - Göknur Aktay
- Department of Pharmacology, Faculty of Pharmacy, Inonu University, 44280 Malatya, Turkey; E-Mails: (G.A.); (Ş.G.)
| | - Şule Gürsoy
- Department of Pharmacology, Faculty of Pharmacy, Inonu University, 44280 Malatya, Turkey; E-Mails: (G.A.); (Ş.G.)
| | - Özge Çevik
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668 İstanbul, Turkey; E-Mails: (Ö.Ç.); (Ö.B.Ö.); (D.Ö.); (A.Ş.)
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, 58140 Sivas, Turkey
| | - Özlem Bingöl Özakpınar
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668 İstanbul, Turkey; E-Mails: (Ö.Ç.); (Ö.B.Ö.); (D.Ö.); (A.Ş.)
| | - Derya Özsavcı
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668 İstanbul, Turkey; E-Mails: (Ö.Ç.); (Ö.B.Ö.); (D.Ö.); (A.Ş.)
| | - Azize Şener
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668 İstanbul, Turkey; E-Mails: (Ö.Ç.); (Ö.B.Ö.); (D.Ö.); (A.Ş.)
| | - Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; E-Mails: (N.K.-B.); (A.B.)
| | - Amartya Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; E-Mails: (N.K.-B.); (A.B.)
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John’s University, Jamaica, NY 11439, USA; E-Mail:
| |
Collapse
|
27
|
Barreca ML, Manfroni G, Leyssen P, Winquist J, Kaushik-Basu N, Paeshuyse J, Krishnan R, Iraci N, Sabatini S, Tabarrini O, Basu A, Danielson UH, Neyts J, Cecchetti V. Structure-based discovery of pyrazolobenzothiazine derivatives as inhibitors of hepatitis C virus replication. J Med Chem 2013; 56:2270-82. [PMID: 23409936 DOI: 10.1021/jm301643a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The NS5B RNA-dependent RNA polymerase is an attractive target for the development of novel and selective inhibitors of hepatitis C virus replication. To identify novel structural hits as anti-HCV agents, we performed structure-based virtual screening of our in-house library followed by rational drug design, organic synthesis, and biological testing. These studies led to the identification of pyrazolobenzothiazine scaffold as a suitable template for obtaining novel anti-HCV agents targeting the NS5B polymerase. The best compound of this series was the meta-fluoro-N-1-phenyl pyrazolobenzothiazine derivative 4a, which exhibited an EC50 = 3.6 μM, EC90 = 25.6 μM, and CC50 > 180 μM in the Huh 9-13 replicon system, thus providing a good starting point for further hit evolution.
Collapse
Affiliation(s)
- Maria Letizia Barreca
- Dipartimento di Chimica e Tecnologia del Farmaco, Sezione di Chimica Farmaceutica II, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Golub AG, Gurukumar KR, Basu A, Bdzhola VG, Bilokin Y, Yarmoluk SM, Lee JC, Talele TT, Nichols DB, Kaushik-Basu N. Discovery of new scaffolds for rational design of HCV NS5B polymerase inhibitors. Eur J Med Chem 2012; 58:258-64. [PMID: 23127989 DOI: 10.1016/j.ejmech.2012.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 02/02/2023]
Abstract
Hepatitis C virus (HCV) NS5B polymerase is a key target for the development of anti-HCV drugs. Here we report on the identification of novel allosteric inhibitors of HCV NS5B through a combination of structure-based virtual screening and in vitro NS5B inhibition assays. One hundred and sixty thousand compounds from the Otava database were virtually screened against the thiazolone inhibitor binding site on NS5B (thumb pocket-2, TP-2), resulting in a sequential down-sizing of the library by 2.7 orders of magnitude to yield 59 NS5B non-nucleoside inhibitor (NNI) candidates. In vitro evaluation of the NS5B inhibitory activity of the 59 selected compounds resulted in a 14% hit rate, yielding 8 novel structural scaffolds. Of these, compound 1 bearing a 4-hydrazinoquinazoline scaffold was the most active (IC(50) = 16.0 μM). The binding site of all 8 NNIs was mapped to TP-2 of NS5B as inferred by a decrease in their inhibition potency against the M423T NS5B mutant, employed as a screen for TP-2 site binders. At 100 μM concentration, none of the eight compounds exhibited any cytotoxicity, and all except compound 8 exhibited between 40 and 60% inhibition of intracellular NS5B polymerase activity in BHK-NS5B-FRLuc reporter cells. These inhibitor scaffolds will form the basis for future optimization and development of more potent NS5B inhibitors.
Collapse
Affiliation(s)
- Andriy G Golub
- Department of Combinatorial Chemistry, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, 150 Zabolotnogo Street, 03143 Kyiv, Ukraine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mukherjee S, Hanson AM, Shadrick WR, Ndjomou J, Sweeney NL, Hernandez JJ, Bartczak D, Li K, Frankowski KJ, Heck JA, Arnold LA, Schoenen FJ, Frick DN. Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays. Nucleic Acids Res 2012; 40:8607-21. [PMID: 22740655 PMCID: PMC3458564 DOI: 10.1093/nar/gks623] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Typical assays used to discover and analyze small molecules that inhibit the hepatitis C virus (HCV) NS3 helicase yield few hits and are often confounded by compound interference. Oligonucleotide binding assays are examined here as an alternative. After comparing fluorescence polarization (FP), homogeneous time-resolved fluorescence (HTRF®; Cisbio) and AlphaScreen® (Perkin Elmer) assays, an FP-based assay was chosen to screen Sigma’s Library of Pharmacologically Active Compounds (LOPAC) for compounds that inhibit NS3-DNA complex formation. Four LOPAC compounds inhibited the FP-based assay: aurintricarboxylic acid (ATA) (IC50 = 1.4 μM), suramin sodium salt (IC50 = 3.6 μM), NF 023 hydrate (IC50 = 6.2 μM) and tyrphostin AG 538 (IC50 = 3.6 μM). All but AG 538 inhibited helicase-catalyzed strand separation, and all but NF 023 inhibited replication of subgenomic HCV replicons. A counterscreen using Escherichia coli single-stranded DNA binding protein (SSB) revealed that none of the new HCV helicase inhibitors were specific for NS3h. However, when the SSB-based assay was used to analyze derivatives of another non-specific helicase inhibitor, the main component of the dye primuline, it revealed that some primuline derivatives (e.g. PubChem CID50930730) are up to 30-fold more specific for HCV NS3h than similarly potent HCV helicase inhibitors.
Collapse
Affiliation(s)
- Sourav Mukherjee
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
dsRNA binding characterization of full length recombinant wild type and mutants Zaire ebolavirus VP35. Antiviral Res 2012; 93:354-63. [PMID: 22289166 PMCID: PMC7114247 DOI: 10.1016/j.antiviral.2012.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/16/2011] [Accepted: 01/15/2012] [Indexed: 12/13/2022]
Abstract
The Ebola viruses (EBOVs) VP35 protein is a multifunctional major virulence factor involved in EBOVs replication and evasion of the host immune system. EBOV VP35 is an essential component of the viral RNA polymerase, it is a key participant of the nucleocapsid assembly and it inhibits the innate immune response by antagonizing RIG-I like receptors through its dsRNA binding function and, hence, by suppressing the host type I interferon (IFN) production. Insights into the VP35 dsRNA recognition have been recently revealed by structural and functional analysis performed on its C-terminus protein. We report the biochemical characterization of the Zaire ebolavirus (ZEBOV) full-length recombinant VP35 (rVP35)–dsRNA binding function. We established a novel in vitro magnetic dsRNA binding pull down assay, determined the rVP35 optimal dsRNA binding parameters, measured the rVP35 equilibrium dissociation constant for heterologous in vitro transcribed dsRNA of different length and short synthetic dsRNA of 8 bp, and validated the assay for compound screening by assessing the inhibitory ability of auryntricarboxylic acid (IC50 value of 50 μg/mL). Furthermore, we compared the dsRNA binding properties of full length wt rVP35 with those of R305A, K309A and R312A rVP35 mutants, which were previously reported to be defective in dsRNA binding-mediated IFN inhibition, showing that the latter have measurably increased Kd values for dsRNA binding and modified migration patterns in mobility shift assays with respect to wt rVP35. Overall, these results provide the first characterization of the full-length wt and mutants VP35–dsRNA binding functions.
Collapse
|
31
|
Nichols DB, Fournet G, Gurukumar KR, Basu A, Lee JC, Sakamoto N, Kozielski F, Musmuca I, Joseph B, Ragno R, Kaushik-Basu N. Inhibition of hepatitis C virus NS5B polymerase by S-trityl-L-cysteine derivatives. Eur J Med Chem 2012; 49:191-9. [PMID: 22280819 DOI: 10.1016/j.ejmech.2012.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 01/28/2023]
Abstract
Structure-based studies led to the identification of a constrained derivative of S-trityl-l-cysteine (STLC) scaffold as a candidate inhibitor of hepatitis C virus (HCV) NS5B polymerase. A panel of STLC derivatives were synthesized and investigated for their activity against HCV NS5B. Three STLC derivatives, 9, F-3070, and F-3065, were identified as modest HCV NS5B inhibitors with IC(50) values between 22.3 and 39.7 μM. F-3070 and F-3065 displayed potent inhibition of intracellular NS5B activity in the BHK-NS5B-FRLuc reporter and also inhibited HCV RNA replication in the Huh7/Rep-Feo1b reporter system. Binding mode investigations suggested that the STLC scaffold can be used to develop new NS5B inhibitors by further chemical modification at one of the trityl phenyl group.
Collapse
Affiliation(s)
- Daniel B Nichols
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Manfroni G, Meschini F, Barreca ML, Leyssen P, Samuele A, Iraci N, Sabatini S, Massari S, Maga G, Neyts J, Cecchetti V. Pyridobenzothiazole derivatives as new chemotype targeting the HCV NS5B polymerase. Bioorg Med Chem 2011; 20:866-76. [PMID: 22197397 DOI: 10.1016/j.bmc.2011.11.061] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 11/25/2011] [Accepted: 11/26/2011] [Indexed: 11/29/2022]
Abstract
Hepatitis C virus (HCV) infection has been recognized as the major cause of liver failure that can lead to hepatocellular carcinoma. Among all the HCV proteins, NS5B polymerase represents a leading target for drug discovery strategies. Herein, we describe our initial research efforts towards the identification of new chemotypes as allosteric NS5B inhibitors. In particular, the design, synthesis, in vitro anti-NS5B and in cellulo anti-HCV evaluation of a series of 1-oxo-1H-pyrido[2,1-b][1,3]benzothiazole-4-carboxylate derivatives are reported. Some of the newly synthesized compounds showed an IC(50) ranging from 11 to 23 μM, and molecular modeling and biochemical studies suggested that the thumb domain could be the target site for this new class of NS5B inhibitors.
Collapse
Affiliation(s)
- Giuseppe Manfroni
- Dipartimento di Chimica e Tecnologia del Farmaco, University of Perugia, 06123 Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bhatt A, Gurukumar KR, Basu A, Patel MR, Kaushik-Basu N, Talele TT. Synthesis and SAR optimization of diketo acid pharmacophore for HCV NS5B polymerase inhibition. Eur J Med Chem 2011; 46:5138-45. [PMID: 21893371 DOI: 10.1016/j.ejmech.2011.08.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
Hepatitis C virus (HCV) NS5B polymerase is a key target for anti-HCV therapeutics development. Here we report the synthesis and biological evaluation of a new series of α,γ-diketo acids (DKAs) as NS5B polymerase inhibitors. We initiated structure-activity relationship (SAR) optimization around the furan moiety of compound 1a [IC(50) = 21.8 μM] to achieve more active NS5B inhibitors. This yielded compound 3a [IC(50) = 8.2 μM] bearing the 5-bromobenzofuran-2-yl moiety, the first promising lead compound of the series. Varying the furan moiety with thiophene, thiazole and indazole moieties resulted in compound 11a [IC(50) = 7.5 μM] bearing 3-methylthiophen-2-yl moiety. Finally replacement of the thiophene ring with a bioisosteric phenyl ring further improved the inhibitory activity as seen in compounds 21a [IC(50) = 5.2 μM] and 24a [IC(50) = 2.4 μM]. Binding mode of compound 24a using glide docking within the active site of NS5B polymerase will form the basis for future SAR optimization.
Collapse
Affiliation(s)
- Aaditya Bhatt
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, NY 11439, USA
| | | | | | | | | | | |
Collapse
|
34
|
Allosteric inhibition of the hepatitis C virus NS5B polymerase: in silico strategies for drug discovery and development. Future Med Chem 2011; 3:1027-55. [DOI: 10.4155/fmc.11.53] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic infection by hepatitis C virus (HCV) often leads to severe liver disease including cirrhosis, hepatocellular carcinoma and liver failure. Despite it being more than 20 years since the identification of HCV, the current standard of care for treating the infection is based on aspecific therapy often associated with severe side effects and low-sustained virological response. Research is ongoing to develop new and better medications, including a broad range of allosteric NS5B polymerase inhibitors. This article reviews traditional computational methodologies and more recently developed in silico strategies aimed at identifying and optimizing non-nucleoside inhibitors targeting allosteric sites of HCV NS5B polymerase. The drug-discovery approaches reviewed could provide take-home lessons for general computer-aided research projects.
Collapse
|
35
|
Peduto A, Massa A, Di Mola A, de Caprariis P, La Colla P, Loddo R, Altamura S, Maga G, Filosa R. 2,3-Dihydro-1,2-Diphenyl-substituted 4H-Pyridinone Derivatives as New Anti Flaviviridae Inhibitors. Chem Biol Drug Des 2011; 77:441-9. [DOI: 10.1111/j.1747-0285.2011.01102.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Smee DF, Hurst BL, Wong MH. Lack of efficacy of aurintricarboxylic acid and ethacrynic acid against vaccinia virus respiratory infections in mice. Antivir Chem Chemother 2010; 20:201-5. [PMID: 20413827 DOI: 10.3851/imp1480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Aurintricarboxylic acid (ATA) and ethacrynic acid (ECA) have been reported to exhibit antiviral activity against vaccinia virus infections in cell culture by inhibiting early and late gene transcription, respectively. The purpose of this work was to determine if these inhibitors would effectively treat vaccinia virus infections in mice, which has not previously been studied. METHODS ECA was investigated by cell culture plaque reduction assay for the inhibition of cowpox and vaccinia virus infections to clarify issues regarding its potency and selectivity. Mice infected intranasally with vaccinia virus were treated by intraperitoneal route twice daily for 5 days with ATA (10 and 30 mg/kg/day) and ECA (15 and 30 mg/kg/day) or once daily for 2 days with cidofovir (100 mg/kg/day). RESULTS ECA caused 50% inhibition of virus plaque formation at 20-79 muM in four cultured cell lines, with 50% cytotoxicity at 84-173 muM, giving low (1.3-4.2) selectivity index values. Preliminary toxicity tests in uninfected mice indicated that ATA and ECA were both overtly toxic at 100 mg/kg/day. No protection from mortality was afforded by treatment of vaccinia virus infections with ATA or ECA, but 100% survival was achieved in the cidofovir group. ATA- and ECA-treated mice died significantly sooner than placebo-treated animals, indicating that these compounds exacerbated the infection. CONCLUSIONS Both ATA and ECA lack antiviral potency and selectivity in cell culture. The compounds were ineffective in treating mice at intraperitoneal doses of <or=30 mg/kg/day. These compounds do not appear to have potential for the treatment of poxvirus infections in vivo.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.
| | | | | |
Collapse
|
37
|
Hung HC, Chen TC, Fang MY, Yen KJ, Shih SR, Hsu JTA, Tseng CP. Inhibition of enterovirus 71 replication and the viral 3D polymerase by aurintricarboxylic acid. J Antimicrob Chemother 2010; 65:676-83. [PMID: 20089540 PMCID: PMC7110181 DOI: 10.1093/jac/dkp502] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objectives Enterovirus 71 (EV71) causes serious diseases in humans. The aim of this study was to examine the effects of aurintricarboxylic acid (ATA) on EV71 replication and to explore the underlying mechanism. Methods To measure the activity of ATA in inhibiting the cytopathic effect (CPE) of EV71, a cell-based neutralization (inhibition of virus-induced CPE) assay was performed. The effect of ATA was further confirmed using plaque reduction and viral yield reduction assays. A time of addition assay was performed to identify the mechanisms of ATA's anti-EV71 activity. We examined the effects of ATA on the following key steps involved in virus replication: (i) translation of the internal ribosomal entry site (IRES)-mediated viral polyprotein; (ii) the proteolytic activity of viral proteases 2A and/or 3C; and (iii) the viral 3D RNA-dependent RNA polymerase (RdRp) activity. Results In this study, ATA was found to be a potent inhibitor of the replication of EV71. In the antiviral neutralization assay, ATA exhibited inhibitory activity against EV71 (TW/4643/98) and EV71 (TW/2231/98). Plaque assay further demonstrated that ATA inhibited EV71 replication with an EC50 (effective concentration at which 50% of plaques were removed) of 2.9 µM. Studies on the mechanism of action revealed that ATA targets the early stage of the viral life cycle after viral entry. ATA was able to inhibit the RdRp activity of EV71, while neither the IRES-mediated translation of viral polyprotein nor the viral 3C protease activity was affected. Conclusions Overall, the findings in this study suggest that ATA is able to effectively inhibit EV71 replication through interfering with the viral 3D polymerase.
Collapse
Affiliation(s)
- Hui-Chen Hung
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan
| | | | | | | | | | | | | |
Collapse
|