1
|
Pasqualetti M, Braconcini M, Barghini P, Gorrasi S, Schillaci D, Ferraro D, Della Sala G, De Marino S, Fenice M. From marine neglected substrata new fungal taxa of potential biotechnological interest: the case of Pelagia noctiluca. Front Microbiol 2024; 15:1473269. [PMID: 39464400 PMCID: PMC11502404 DOI: 10.3389/fmicb.2024.1473269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction The marine environment is extremely complex and exerts strong evolutionary pressure often leading to the appearance of microbial strains with new metabolic competencies. Microorganisms in marine ecosystems are still largely unknown and should be explored and conserved for biodiversity preservation, possible ecosystem restoring, and other applications. Biodiversity conservation should become a basic ecological strategy of particular significance in relation to global change. In this context, the present research aimed at exploring the culturable mycobiota associated with the jellyfish Pelagia noctiluca, never studied before. In addition, the isolated strains were tested for potential application (antimicrobial activity and presence of genes related to the production of secondary metabolites). Methods Five jellyfishes were collected in the coastal area of Giglio Island and processed to isolate epizoic fungi. The strains were identified using a polyphasic approach (morphological, physiological, and molecular) and their salt preference was also investigated. The antifungal and antibacterial activity were tested for each strain with agar plug diffusion test. The presence of some key genes related to the main pathways for the production of secondary metabolites in fungi, polyketide synthases (PKSs), and non-ribosomal peptide synthase (NRPSs), was also assessed. Results A total of 164 isolates were obtained; after the dereplication, 40 morphotypes, and 23 species were identified. The phylogenetic analyses suggested the presence of new taxa belonging to Pleosporales: two new genera and species, and a new species of Tamaricicola. The detected mycobiota showed a relatively high diversity, if compared to other epizoic fungal communities. All isolated strains were marine fungi as confirmed by their salt preference and marked euryhalinism. The genes related to the two main pathways for the production of secondary metabolites in fungi, PKSs and NRPSs, were identified in four and nine strains, respectively. The antimicrobial activity was revealed in 70% of the strains, including the new taxa. The abundance of bioactive strains may be related to the potential involvement of epizoic fungi in host defense strategies. Moreover, these strains could show a high potential for further biotechnological applications particularly in the case of new taxa. All strains are maintained in culture collections.
Collapse
Affiliation(s)
- Marcella Pasqualetti
- Department of Biological and Ecological Sciences, University of Tuscia, Viterbo, Italy
- Laboratory of Ecology of Marine Fungi (CoNISMa), University of Tuscia, Viterbo, Italy
| | - Martina Braconcini
- Department of Biological and Ecological Sciences, University of Tuscia, Viterbo, Italy
| | - Paolo Barghini
- Department of Biological and Ecological Sciences, University of Tuscia, Viterbo, Italy
| | - Susanna Gorrasi
- Department of Biological and Ecological Sciences, University of Tuscia, Viterbo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Donatella Ferraro
- Microbiology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Gerardo Della Sala
- Department of Eco-Sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Simona De Marino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Massimiliano Fenice
- Department of Biological and Ecological Sciences, University of Tuscia, Viterbo, Italy
- Laboratory of Applied Marine Microbiology (CoNISMa), University of Tuscia, Viterbo, Italy
| |
Collapse
|
2
|
Dwivedi M, Singh P, Pandey AK. Botrytis fruit rot management: What have we achieved so far? Food Microbiol 2024; 122:104564. [PMID: 38839226 DOI: 10.1016/j.fm.2024.104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Botrytis cinerea is a destructive necrotrophic phytopathogen causing overwhelming diseases in more than 1400 plant species, especially fruit crops, resulting in significant economic losses worldwide. The pathogen causes rotting of fruits at both pre-harvest and postharvest stages. Aside from causing gray mold of the mature fruits, the fungus infects leaves, flowers, and seeds, which makes it a notorious phytopathogen. Worldwide, in the majority of fruit crops, B. cinerea causes gray mold. In order to effectively control this pathogen, extensive research has been conducted due to its wide host range and the huge economic losses it causes. It is advantageous to explore detection and diagnosis techniques of B. cinerea to provide the fundamental basis for mitigation strategies. Botrytis cinerea has been identified and quantified in fruit/plant samples at pre- and post-infection levels using various detection techniques including DNA markers, volatile organic compounds, qPCR, chip-digital PCR, and PCR-based nucleic acid sensors. In addition, cultural, physical, chemical, biological, and botanical methods have all been used to combat Botrytis fruit rot. This review discusses research progress made on estimating economic losses, detection and diagnosis, as well as management strategies, including cultural, physical, chemical, and biological studies on B. cinerea along with knowledge gaps and potential areas for future research.
Collapse
Affiliation(s)
- Mansi Dwivedi
- Department of Botany, DDU Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| | - Pooja Singh
- Department of Botany, DDU Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India.
| | - Abhay K Pandey
- Department of Botany, DDU Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India; Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, 735225, Jalpaiguri, West Bengal, India.
| |
Collapse
|
3
|
Giraldo D, Saldarriaga C, García H, López M, González A. Genotypic and phenotypic characterization of resistance to fenhexamid, carboxin, and, prochloraz, in Botrytis cinerea isolates collected from cut roses in Colombia. Front Microbiol 2024; 15:1378597. [PMID: 39144215 PMCID: PMC11323744 DOI: 10.3389/fmicb.2024.1378597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/18/2024] [Indexed: 08/16/2024] Open
Abstract
Gray mold, caused by Botrytis sp., is a significant disease in Colombian rose crops and its control depends primarily on the intensive use of chemically synthesized fungicides. Despite the importance of this pathogen, there is limited information in Colombian floriculture about molecular taxonomy of species, fungicide resistance of populations and their genetic mechanism of resistance. In this study, we analyze 12 isolates of this fungus collected from rose-producing crops in the Department of Cundinamarca and conducted phylogenetic analysis using HSP60, G3PDH, and RPB2 gene sequences. Additionally, we realize phenotypic and genotypic characterization of resistance to the fungicides fenhexamid, carboxin, and prochloraz, evaluating the in vitro EC50 and presence of mutations of target genes of each isolate. All isolates were characterized as Botrytis cinerea in the phylogenetic analysis and presents different levels of resistance to each fungicide. These levels are related to mutations in target genes, with predominancy of L195F and L400F in the ERG27 gene to fenhexamid resistance, H272R/Y in the SDHB gene for carboxin resistance, and Y136F in the CYP51 gene for prochloraz resistance. Finally, these mutations were not related to morphological changes. Collectively, this knowledge, presented for the first time to the Colombian floriculture, contribute to a better understanding of the genetic diversity and population of B. cinerea from rose-producing crops in the department of Cundinamarca, and serve as a valuable tool for making informed decisions regarding disease management, future research, and improving crop management and sustainability in the Colombian floriculture industry.
Collapse
Affiliation(s)
- Diego Giraldo
- Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
| | - Catalina Saldarriaga
- Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
| | | | - Miguel López
- Laboratorios Diagnofruit Colombia, Cajicá, Colombia
| | - Adriana González
- Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
| |
Collapse
|
4
|
Abbey JA, Alzohairy SA, Neugebauer KA, Hatlen RJ, Miles TD. Fungicide resistance in Botrytis cinerea and identification of Botrytis species associated with blueberry in Michigan. Front Microbiol 2024; 15:1425392. [PMID: 39104578 PMCID: PMC11298438 DOI: 10.3389/fmicb.2024.1425392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Botrytis blossom blight and fruit rot, caused by Botrytis cinerea, is a significant threat to blueberries, potentially resulting in substantial economic losses if not effectively managed. Despite the recommendation of various cultural and chemical practices to control this pathogen, there are widespread reports of fungicide resistance, leading to decreased efficacy. This study aimed to characterize the resistance profile of B. cinerea isolated from blighted blossoms and fruit in 2019, 2020 and 2022 (n = 131, 40, and 37 for the respective years). Eight fungicides (fludioxonil, thiabendazole, pyraclostrobin, boscalid, fluopyram, fenhexamid, iprodione, and cyprodinil) were tested using conidial germination at specific discriminatory doses. Additionally, 86 isolates were phylogenetically characterized using the internal transcribed spacer regions (ITS) and the protein coding genes: glyceraldehyde-3-phosphate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60), and RNA polymerase II second largest subunit (RPB2). This revealed higher fungicide resistance frequencies in 2020 and 2022 compared to 2019. Over all 3 years, over 80% of the isolates were sensitive to fludioxonil, fluopyram, and fenhexamid. Pyraclostrobin and boscalid showed the lowest sensitivity frequencies (<50%). While multi-fungicide resistance was observed in all the years, none of the isolates demonstrated simultaneous resistance to all tested fungicides. Botrytis cinerea was the most prevalent species among the isolates (74) with intraspecific diversity detected by the genes. Two isolates were found to be closely related to B. fabiopsis, B. galanthina, and B. caroliniana and 10 isolates appeared to be an undescribed species. This study reports the discovery of a potentially new species sympatric with B. cinerea on blueberries in Michigan.
Collapse
Affiliation(s)
| | | | | | | | - Timothy D. Miles
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
5
|
Kifle DR, Bacha KB, Hora RN, Likasa LL. Evaluation of microbiome and physico-chemical profiles of fresh fruits of Musa paradisiaca, Citrus sinensis and Carica papaya at different ripening stages: Implication to quality and safety management. PLoS One 2024; 19:e0297574. [PMID: 38289915 PMCID: PMC10826968 DOI: 10.1371/journal.pone.0297574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
INTRODUCTION The ripening of fleshy fruits is a developmental process that involves changes in color, texture, aroma, nutrients, and diversity of microbiomes. Some microorganisms, specially, bacteria and molds are responsible for postharvest spoilage of fruits. Thus, this study is aimed at evaluating the alterations in microbiome and physico-chemical properties of selected fruits at different ripening stages. METHODS Totally, 108 fresh fruit samples of Musa paradisiaca, Citrus sinensis and Carica papaya at three ripening stages were collected and processed in this study. The biochemical methods and MALD-TOF MS were used in identification. The physico-chemical properties of all samples were analyzed using standard methods. RESULTS The minimum counts (6.74± 0.48-6.76± 0.42 log CFU/mL) and the maximum count (7.51± 0.43-7.96± 0.34 log CFU/mL) of AMB in all fruit samples was observed at mature green and overripe stages of the fruits, respectively. The ripening stage has significantly affected the microbial counts (P < 0.05) in all fruits, except counts of Enterobacteriaceae in banana and orange, and fungal counts in orange. The bacterial community of all fruits was predominated by B. cereus (33.7%), A. faecalis (17.3%), P. putida (15.2%), M. morganii (11.1%), S. sciuri (6.6%) and S. epidermidis (4.9%); while the fungal microbiome was constituted by Candida spp. (33.9%) followed by Saccharomyces spp. (18.1%) and Aspergillus spp. (16.3%). The ripening stages have also significantly affected the physico-chemical property in all samples. Accordingly, the lowest pH (3.53) and highest content of ascorbic acid (69.87 mg/100g) were observed in mature green oranges and overripe papaya, respectively, while the maximum concentration of total sugar (17.87%) and reducing sugar (14.20%) were recorded in overripe bananas. CONCLUSION The presence of some potential human pathogens and spoilage microorganisms in fruit samples could contribute to post-harvest product losses besides the potential health risk associated with consumption of the tainted fruits. Hence, proper safety management practices and preservation mechanisms should be developed and put in place to ensure consumers safety against pathogens besides minimizing product losses through microbial spoilage.
Collapse
Affiliation(s)
- Dawit Raga Kifle
- Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia
- Department of Biology, College of Natural and Computational Sciences, Mizan-Teppi University, Teppi, Ethiopia
| | - Ketema Bedanie Bacha
- Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| | - Reda Nemo Hora
- Department of Biology, College of Natural and Computational Sciences, Dembi Dollo University, Dembi Dollo, Ethiopia
| | - Lata Lachisa Likasa
- Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
6
|
Nemchinov LG, Irish BM, Uschapovsky IV, Grinstead S, Shao J, Postnikova OA. Composition of the alfalfa pathobiome in commercial fields. Front Microbiol 2023; 14:1225781. [PMID: 37692394 PMCID: PMC10491455 DOI: 10.3389/fmicb.2023.1225781] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Through the recent advances of modern high-throughput sequencing technologies, the "one microbe, one disease" dogma is being gradually replaced with the principle of the "pathobiome". Pathobiome is a comprehensive biotic environment that not only includes a diverse community of all disease-causing organisms within the plant but also defines their mutual interactions and resultant effect on plant health. To date, the concept of pathobiome as a major component in plant health and sustainable production of alfalfa (Medicago sativa L.), the most extensively cultivated forage legume in the world, is non-existent. Here, we approached this subject by characterizing the biodiversity of the alfalfa pathobiome using high-throughput sequencing technology. Our metagenomic study revealed a remarkable abundance of different pathogenic communities associated with alfalfa in the natural ecosystem. Profiling the alfalfa pathobiome is a starting point to assess known and identify new and emerging stress challenges in the context of plant disease management. In addition, it allows us to address the complexity of microbial interactions within the plant host and their impact on the development and evolution of pathogenesis.
Collapse
Affiliation(s)
- Lev G. Nemchinov
- Molecular Plant Pathology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Brian M. Irish
- Plant Germplasm Introduction and Testing Research Unit, Prosser, WA, United States
| | | | - Sam Grinstead
- Molecular Plant Pathology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Jonathan Shao
- United States Department of Agriculture, Agricultural Research Service, Office of The Area Director, Beltsville, MD, United States
| | - Olga A. Postnikova
- Molecular Plant Pathology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Center, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
7
|
Dourou M, La Porta CAM. A Pipeline to Investigate Fungal-Fungal Interactions: Trichoderma Isolates against Plant-Associated Fungi. J Fungi (Basel) 2023; 9:jof9040461. [PMID: 37108915 PMCID: PMC10142788 DOI: 10.3390/jof9040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Soil fungi play essential roles in ecosystems, forming complex interaction networks with bacteria, yeasts, other fungi, or plants. In the framework of biocontrol strategies, Trichoderma-based fungicides are at the forefront of research as an alternative to synthetic ones. However, the impact of introducing new microbial strain(s) on the soil microbiome of a habitat is not well-explored. Aiming to identify a quantitative method to explore the complex fungal interactions, we isolated twelve fungi from three Italian vineyards and identified three strains of the Trichoderma genus in addition to nine more plant-associated fungi of different genera. Investigating in dual nucleation assay fungal-fungal interactions, we recognised two types of interaction: neutral or antagonistic. All three Trichoderma strains displayed a slight inhibitory behaviour against themselves. Trichoderma strains showed a mutually intermingling growth with Aspergillus aculeatus and Rhizopus arrhizus but antagonistic behaviour against the plant pathogens Alternaria sp., Fusarium ramigenum, and Botrytis caroliniana. Yet, in some cases, antagonistic behaviour by Trichoderma fungi was also observed against plant-promoting fungi (e.g., Aspergillus piperis and Penicillium oxalicum). Our study highlights the importance of studying the interactions between fungi, aiming to clarify better the impact of fungal-based biological fungicides in the soil communities, and offers a pipeline for further applications.
Collapse
Affiliation(s)
- Marianna Dourou
- Department of Environmental Science and Policy, University of Milan, Via Celoria 10, 20133 Milan, Italy
- Center for Complexity and Biosystems, University of Milan, Via Celoria 16, 20133 Milan, Italy
| | - Caterina Anna Maria La Porta
- Department of Environmental Science and Policy, University of Milan, Via Celoria 10, 20133 Milan, Italy
- Center for Complexity and Biosystems, University of Milan, Via Celoria 16, 20133 Milan, Italy
- Innovation for Well-Being and Environment (CRC-I-WE), University of Milan, 20122 Milan, Italy
| |
Collapse
|
8
|
Brauna-Morževska E, Stoddard FL, Bankina B, Kaņeps J, Bimšteine G, Petrova I, Neusa-Luca I, Roga A, Fridmanis D. Evaluation of pathogenicity of Botrytis species isolated from different legumes. FRONTIERS IN PLANT SCIENCE 2023; 14:1069126. [PMID: 37051088 PMCID: PMC10083380 DOI: 10.3389/fpls.2023.1069126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Fungi of genus Botrytis are important pathogens of legumes, causing gray mold and chocolate spot diseases. The use of molecular methods to identify pathogens has resulted in the discovery of several new Botrytis species and new associations of pathogens with diseases. Thus, chocolate spot of faba bean is now associated with at least four species: B. fabae, B. cinerea, B. pseudocinerea and B. fabiopsis. Species of Botrytis differ in host plant, pathogenicity, fungicide resistance and other relevant properties that affect disease control. The aim of this study was to identify the species of Botrytis isolated from different legume crops and to evaluate their in vitro pathogenicity. Between 2014 and 2019, 278 isolates of Botrytis were obtained from infected legumes in Latvia. A phylogenetic analysis was carried out by sequencing three nuclear genes, RPB2, HSP60, and G3PDH, considered to be diagnostic for species in this genus. A set of 21 representative isolates was selected for pathogenicity tests on detached leaves of faba bean, field pea, lupin and soybean using 5-mm mycelium-agar plugs. The diameter of the formed lesions under the inoculated plug was measured crosswise each day. The datasets were subjected to analysis of variance with the split-plot design of the experiment and repeated-measures model. Six species were identified: B. cinerea, B. fabae, B. pseudocinerea, B. fabiopsis, B. euroamericana and B. medusae. In addition to the expected combinations of host and pathogen, naturally occurring infections of B. fabiopsis were found on chickpea, B. euroamericana on faba bean and B. medusae in lupin seeds. Species and isolate had significant effects on pathogenicity on all crops tested. Several isolates were pathogenic on two or more host species: two of B. pseudocinerea, two of B. cinerea, two of B. fabiopsis and the one of B. medusae. One isolate of B. pseudocinerea and two of B. fabiopsis caused primary lesions on all five host species. The results show that these Botrytis species have a broad host range that should be borne in mind when planning crop sequences and rotations.
Collapse
Affiliation(s)
- Elīna Brauna-Morževska
- Institute of Soil and Plant Sciences, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Frederick L. Stoddard
- Viikki Plant Science Centre, and Helsinki Sustainability Science Centre, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Biruta Bankina
- Institute of Soil and Plant Sciences, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Jānis Kaņeps
- Institute of Soil and Plant Sciences, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Gunita Bimšteine
- Institute of Soil and Plant Sciences, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Irina Petrova
- Institute of Soil and Plant Sciences, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Ingrīda Neusa-Luca
- Institute of Soil and Plant Sciences, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Ance Roga
- Human Genetics and Disease Mechanisms, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Dāvids Fridmanis
- Human Genetics and Disease Mechanisms, Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
9
|
Moparthi S, Parikh LP, Gunnink Troth EE, Burrows ME. Identification and Prevalence of Seedborne Botrytis spp. in Dry Pea, Lentil, and Chickpea in Montana. PLANT DISEASE 2023; 107:382-392. [PMID: 35822889 DOI: 10.1094/pdis-05-22-1236-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Botrytis spp. cause gray mold and are significant pathogens of pulse crops (dry pea, lentil, and chickpea). Seedling infection can result in plant stunting and death. In this study, 100 Botrytis isolates were recovered from pulse crop seed samples that were submitted to the Regional Pulse Crop Diagnostic Laboratory at Montana State University. Nine Botrytis spp. were found to be associated with pulse seeds in Montana based on a combination of cultural characteristics; the amplification of partial sequences of the G3PDH, HSP60, and RPB2 genes; and phylogenetic analysis. Botrytis cinerea (n = 54) was the predominant species, followed by B. euroamericana (n = 22) and B. prunorum (n = 11). There were a few isolates of B. mali and five novel Botrytis spp. that included one cryptic species. To determine the pathogenicity and aggressiveness of the isolates, dry pea cultivar Lifter, lentil cultivar Richlea, and chickpea cultivar Sierra, detached leaves were inoculated using mycelial plugs. Lesion diameter produced by Botrytis isolates on three hosts differed (P < 0.05). Aggressiveness of B. cinerea was high in all three hosts and varied among the tested isolates. Spore inoculations were conducted on greenhouse-grown dry pea, lentil and chickpea plants using one sporulating isolate each of B. cinerea, B. prunorum, and Botrytis sp. 1. Results indicated that these isolates were pathogenic on the tested hosts. This study illustrates that many species of Botrytis are associated with pulse crop seed in Montana and can be aggressive on multiple crops, which may have implications for disease management.
Collapse
Affiliation(s)
- Swarnalatha Moparthi
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT 59717
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613
| | - Lipi P Parikh
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT 59717
| | - Erin E Gunnink Troth
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT 59717
| | - Mary E Burrows
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT 59717
| |
Collapse
|
10
|
Makris G, Nikoloudakis N, Samaras A, Karaoglanidis GS, Kanetis LI. Under Pressure: A Comparative Study of Botrytis cinerea Populations from Conventional and Organic Farms in Cyprus and Greece. PHYTOPATHOLOGY 2022; 112:2236-2247. [PMID: 35671479 DOI: 10.1094/phyto-12-21-0510-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The highly heterogeneous nature of Botrytis cinerea provides adaptive benefits to variable environmental regimes. Disentangling pathogen population structure in anthropogenic agroecosystems is crucial to designing more effective management schemes. Herein, we studied how evolutionary forces exerted in different farming systems, in terms of agrochemicals-input, shape B. cinerea populations. In total, 360 B. cinerea isolates were collected from conventional and organic, strawberry and tomato farms in Cyprus and Greece. The occurrence and frequency of sensitivities to seven botryticides were estimated. Results highlighted widespread fungicide resistance in conventional farms since only 15.5% of the isolates were sensitive. A considerable frequency of fungicide-resistant isolates was also detected in the organic farms (14.9%). High resistance frequencies were observed for boscalid (67.7%), pyraclostrobin (67.3%), cyprodinil (65.9%), and thiophanate-methyl (61.4%) in conventional farms, while high levels of multiple fungicide resistance were also evident. Furthermore, B. cinerea isolates were genotyped using a set of seven microsatellite markers (simple sequence repeat [SSR] markers). Index of association analyses (Ia and rBarD) suggest asexual reproduction of the populations, even though the mating-type idiomorphs were equally distributed, indicating frequency-dependent selection. Fungicide resistance was correlated with farming systems across countries and crops, while SSRs were able to detect population structure associated with resistance to thiophanate-methyl, pyraclostrobin, boscalid, and cyprodinil. The expected heterozygosity in organic farms was significantly higher than in conventional, suggesting the absence of selective pressure that may change the allelic abundance in organic farms. However, genetic variance among strawberry and tomato populations was high, ranking host specificity higher than other selection forces studied.
Collapse
Affiliation(s)
- Georgios Makris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolaos Nikoloudakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Anastasios Samaras
- Department of Agriculture, Plant Pathology Laboratory, Aristotle University of Thessaloniki, Greece
| | - Georgios S Karaoglanidis
- Department of Agriculture, Plant Pathology Laboratory, Aristotle University of Thessaloniki, Greece
| | - Loukas I Kanetis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
11
|
Naegele RP, DeLong J, Alzohairy SA, Saito S, Abdelsamad N, Miles TD. Population Genetic Analyses of Botrytis cinerea Isolates From Michigan Vineyards Using a High-Throughput Marker System Approach. Front Microbiol 2021; 12:660874. [PMID: 33959117 PMCID: PMC8093758 DOI: 10.3389/fmicb.2021.660874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/09/2021] [Indexed: 11/29/2022] Open
Abstract
As sequencing costs continue to decrease, new tools are being developed for assessing pathogen diversity and population structure. Traditional marker types, such as microsatellites, are often more cost effective than single-nucleotide polymorphism (SNP) panels when working with small numbers of individuals, but may not allow for fine scale evaluation of low or moderate structure in populations. Botrytis cinerea is a necrotrophic plant pathogen with high genetic variability that can infect more than 200 plant species worldwide. A panel of 52 amplicons were sequenced for 82 isolates collected from four Michigan vineyards representing 2 years of collection and varying fungicide resistance. A panel of nine microsatellite markers previously described was also tested across 74 isolates from the same population. A microsatellite and SNP marker analysis of B. cinerea populations was performed to assess the genetic diversity and population structure of Michigan vineyards, and the results from both marker types were compared. Both methods were able to detect population structure associated with resistance to the individual fungicides thiabendazole and boscalid, and multiple fungicide resistance (MFR). Microsatellites were also able to differentiate population structure associated with another fungicide, fluopyram, while SNPs were able to additionally differentiate structure based on year. For both methods, AMOVA results were similar, with microsatellite results explaining a smaller portion of the variation compared with the SNP results. The SNP-based markers presented here were able to successfully differentiate population structure similar to microsatellite results. These SNP markers represent new tools to discriminate B. cinerea isolates within closely related populations using multiple targeted sequences.
Collapse
Affiliation(s)
- Rachel P Naegele
- Crop Diseases, Pests and Genetics Unit, United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Jeff DeLong
- Crop Diseases, Pests and Genetics Unit, United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Safa A Alzohairy
- Small Fruit and Hop Pathology Laboratory, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Seiya Saito
- Commodity Protection and Quality Unit, United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Noor Abdelsamad
- Crop Diseases, Pests and Genetics Unit, United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Timothy D Miles
- Small Fruit and Hop Pathology Laboratory, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Garfinkel AR. The History of Botrytis Taxonomy, the Rise of Phylogenetics, and Implications for Species Recognition. PHYTOPATHOLOGY 2021; 111:437-454. [PMID: 32976058 DOI: 10.1094/phyto-06-20-0211-ia] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Botrytis is one of the oldest, most well studied, and most economically important fungal taxa. Nonetheless, many species in this genus have remained obscured for nearly 300 years because of the difficulty in distinguishing these species by conventional mycological methods. Aided by the use of phylogenetic tools, the genus is currently undergoing a taxonomic revolution. The number of putative species in the genus has nearly doubled over the last 10 years and more species are likely to be discovered in the future. The implementation of phylogenetic species recognition concepts in Botrytis is providing for more resolution on the relatedness among species than ever before, and this has helped to overcome issues in historical species recognition using morphology, sexual crosses, and pathogenicity tests. Meanwhile, the use of genetic tools is helping to reveal surprising insight into this archetypal necrotroph's behavior, making these approaches increasingly important in species recognition and identification. As Botrytis taxonomy continues to evolve at a rapid pace, researchers should be encouraged to continue to employ the powerful tool of phylogenetics while considering how it fits into a larger framework of classical Botrytis species recognition. Starting points for discussion on how to move forward with Botrytis species recognition are included herein, with an emphasis on the implications and utility of new species descriptions.
Collapse
|
13
|
Misery B, Legendre P, Rue O, Bouchart V, Guichard H, Laplace JM, Cretenet M. Diversity and dynamics of bacterial and fungal communities in cider for distillation. Int J Food Microbiol 2020; 339:108987. [PMID: 33321431 DOI: 10.1016/j.ijfoodmicro.2020.108987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 11/18/2022]
Abstract
Bacterial and fungal population dynamics in cider for distillation have so far been explored by culture-dependant methods. Cider for distillation can be produced by the spontaneous fermentation of apples that do not undergo any intervention during the process. In this study, cider microbiomes extracted from six tanks containing ciders for distillation from four producers in Normandy were characterized at three main stages of the fermentation process: fermentation Initiation (I), end of the alcoholic Fermentation (F) and end of the Maturation period (M). Cider samples were subjected to Illumina MiSeq sequencing (rRNA 16S V1-V3 and ITS1 region targeting) to determine bacterial and fungal communities. Yeasts (YGC), Zymomonas (mZPP) and lactic acid bacteria selective media (mMRS, mMLO, mPSM) were also used to collect 807 isolates. Alcoholic levels, glycerol, sugar content (glucose, fructose and sucrose), pH, total and volatile acidity, nitrogen, malic and lactic acid contents were determined at all sampling points. Alpha diversity indexes show significant differences (p < 0.05) in microbial populations between I, F and M. Fungal communities were characterized by microorganisms from the environment and phytopathogens at I followed by the association of yearsts with alcoholic fermentation like Saccharomyces and non-Saccharomyces yeasts (Hanseniaspora, Candida). A maturation period for cider leads to an increase of the Dekkera/Brettanomyces population, which is responsible for off-flavors in cider for all producers. Among bacterial communities, the genera community associated to malolactic fermentation (Lactobacillus sp., Leuconostoc sp., Oenococcus sp.) was the most abundant at F and M. Acetic acid bacteria such as Acetobacter sp., Komagataeibacter sp. and Gluconobacter sp. were also detected during the process. Significant differences (p < 0.05) were found in fungal and bacterial populations between the four producers and during the fermentation process. The development of microorganisms associated with cider spoilage such as Zymomonas mobilis, Lactobacillus collinoides or Brettanomyces/Dekkera sp. was anticipated by a metagenomic approach. The monitoring of microbial diversity via high throughput sequencing combined with physical-chemical analysis is an interesting approach to improve the fermentation performance of cider for distillation and therefore, the quality of Calvados.
Collapse
Affiliation(s)
- B Misery
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - P Legendre
- LABÉO Frank Duncombe, 1 Route de Rosel, 14053 Caen Cedex 4, France
| | - O Rue
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, 78350 Jouy-en-Josas, France
| | - V Bouchart
- LABÉO Frank Duncombe, 1 Route de Rosel, 14053 Caen Cedex 4, France
| | - H Guichard
- Institut Français des Produits Cidricoles (IFPC), Domaine de la Motte, 35653 Le Rheu, France
| | - J M Laplace
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - M Cretenet
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France.
| |
Collapse
|
14
|
He SQ, Wen ZH, Bai B, Jing ZQ, Wang XW. Botrytis polygoni, a new species of the genus Botrytis infecting Polygonaceae in Gansu, China. Mycologia 2020; 113:78-91. [PMID: 33125292 DOI: 10.1080/00275514.2020.1809288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A new species, Botrytis polygoni, was isolated from several species of Polygonaceae in 2011 and 2012 in Tongwei County, Gansu Province, China. The species infects Fagopyrum esculentum, F. tataricum, and Fallopia convolvulus, causing brown leaf spots and large blotches with concentric rings in the field. Botrytis polygoni is morphologically characterized by conidia spherical, unicellular, hyaline to pale brown or brown, (10.2-)14.3-21.4(-23.5) μm; and sclerotia black, spherical to subspherical, allantoid, or irregular-shaped, 0.2-4.1 × 0.1-3.0 mm. Comparison of the nuc rDNA internal transcribed spacer region (ITS1-5.8S-ITS2) sequences confirmed its placement in the genus Botrytis. Phylogenetic analysis based on the protein-coding genes glyceraldehyde 3-phosphate dehydrogenase (G3PDH), heat shock protein 60 (HSP60), and DNA-dependent RNA polymerase subunit II (RPB2) showed that the new species is clustered close but separate from Botrytis pyriformis, which was distant from 37 other Botrytis species and 17 undescribed species. Pathogenicity tests showed that the new species has aggressive pathogenicity to four species of Polygonaceae, specifically Fag. tataricum, Fal. convolvulus, Polygonum sibiricum, and Pol. aviculare, weak pathogenicity to Vicia faba in the Fabaceae, and no pathogenicity to eight other tested plants: Amaranthus retroflexus, Cirsium arvense, Convolvulus arvensis, Kalanchoe blossfeldiana, Lagopsis supine, Mentha canadensis, Plantago asiatica, and Raphanus sativus.
Collapse
Affiliation(s)
- S Q He
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences , Lanzhou 730070, China.,Scientific Observing and Experimental Station of Crop Pests in Tianshui, Ministry of Agriculture and Rural Affairs, P. R. China , Tianshui 741200, Gansu, China
| | - Z H Wen
- Technical Center, Lanzhou Customs , Lanzhou, 730010, China
| | - B Bai
- Institute of Agricultural Quality Standards and Testing Technology, Gansu Academy of Agricultural Sciences , Lanzhou 730070, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Lanzhou), Ministry of Agriculture and Rural Affairs , P. R. China, Lanzhou 730070, China
| | - Z Q Jing
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences , Lanzhou 730070, China.,Scientific Observing and Experimental Station of Crop Pests in Tianshui, Ministry of Agriculture and Rural Affairs, P. R. China , Tianshui 741200, Gansu, China
| | - X W Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101, China
| |
Collapse
|
15
|
Azevedo DMQ, Martins SDS, Guterres DC, Martins MD, Araújo L, Guimarães LMS, Alfenas AC, Furtado GQ. Diversity, prevalence and phylogenetic positioning of Botrytis species in Brazil. Fungal Biol 2020; 124:940-957. [PMID: 33059846 DOI: 10.1016/j.funbio.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 11/27/2022]
Abstract
Botrytis is a necrotrophic fungal genus of great economic importance worldwide. Together, the Botrytis species are able to infect over one thousand host plant species, including dicotyledons and monocotyledons. As the identification of Botrytis species in Brazil has mostly been based only on morphological characterization and comparisons of the rDNA ITS region, which is not informative in the genus, its diversity remains unknown. Thus, in this study we determined the diversity and prevalence of Botrytis spp. in Brazil by multilocus phylogeny. Phylogenetic reconstruction of the genus was performed using the nuclear genes glyceraldehyde-3-phosphate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60) and RNA polymerase II second largest subunit (RPB2). From analyses of 56 Botrytis isolates obtained from different hosts and geographical regions in Brazil, we found that Botrytis cinerea is the most prevalent species with considerable intraspecific genetic diversity detected by nuclear genes. Two new hosts to B. cinerea and eight host never previously reported in Brazil were found. We also reported for the first time the occurrence of Botrytispseudocinerea associated with Accasellowiana (Myrtaceae). Due to the new phylogenetic positioning of Botrytispelargonii and Botrytiseucalypti, a taxonomic review of these species was suggested.
Collapse
Affiliation(s)
- Daiana M Q Azevedo
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Sarah D S Martins
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Débora C Guterres
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Mateus D Martins
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Leonardo Araújo
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, 88600-000, São Joaquim, SC, Brazil.
| | - Lúcio M S Guimarães
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Acelino C Alfenas
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Gleiber Q Furtado
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
16
|
Cosseboom SD, Schnabel G, Hu M. Competitive ability of multi-fungicide resistant Botrytis cinerea in a blackberry planting over three years. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:1-7. [PMID: 31973844 DOI: 10.1016/j.pestbp.2019.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Botrytis cinerea isolates with multi-fungicide resistance have frequently been isolated from small fruit fields such as strawberries and blackberries. Individual B. cinerea isolates have been found resistant to up to seven chemical classes of fungicides. Fitness costs and less competitiveness have been observed in multi-fungicide resistant isolates, but this has not been examined under field conditions. In the spring of 2016, flowers of field-grown blackberries were either not inoculated or inoculated with B. cinerea isolates sensitive (0CCR), resistant to five or six chemical classes excluding phenylpyrroles (5CCR), or resistant to six or seven chemical classes including phenylpyrroles (6CCR/MDR1h). The experimental field was left unsprayed for the duration of this study and isolates of B. cinerea were collected from flowers and/or fruit in each of the three experimental years. Isolates collected in summer of 2016 revealed resistance phenotypes in each plot closely matching those of the respective inoculum, with 95% 0CCR, 55% 5CCR, and 91% 6CCR/MDR1h isolates recovered from 0CCR, 5CCR, and 6CCR/MDR1h inoculation plots, respectively. In the 2017 and 2018 isolate collections, 6CCR/MDR1h resistance phenotypes were found in plots inoculated and non-inoculated with this phenotype, indicating their persistence and movement between plots. Resistance phenotypes different from the inoculum were also recovered each year, indicating that the inoculum was successfully competing with a native Botrytis population. Despite the competition, 6CCR/MDR1h isolates were recovered in high frequency from all inoculated plots in 2018. G3pdh and mrr1 sequences of 6CCR/MDR1h isolates collected in 2018 were identical to the sequences of the inoculum, indicating that these isolates likely descended from the inoculum. This study demonstrates that isolates carrying multi-fungicide resistant phenotypes, specifically 6CCR/MDR1h, are competitive in the absence of fungicide selection pressure.
Collapse
Affiliation(s)
- Scott D Cosseboom
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, United States
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson SC 29634, United States
| | - Mengjun Hu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
17
|
Muñoz M, Faust JE, Schnabel G. Characterization of Botrytis cinerea From Commercial Cut Flower Roses. PLANT DISEASE 2019; 103:1577-1583. [PMID: 31082321 DOI: 10.1094/pdis-09-18-1623-re] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Botrytis cinerea Pers. infects cut flower roses (Rosa × hybrida L.) during greenhouse production and gray mold symptoms are often expressed in the postharvest environment, resulting in significant economic losses. Disease management is based on cultural practices and preventative chemical treatments; however, gray mold outbreaks continue to occur. Rose tissues from six commercial shipments from two greenhouses in Colombia were evaluated to determine the Botrytis species composition as well as identify other pathogens present, gray mold incidence and severity, and fungicide resistance profiles. Botrytis isolates (49 total) were grouped into six morphological phenotypes, and all were identified to be B. cinerea sensu stricto. Disease incidence was higher in the petals than in the stem, stamen, ovary, sepal, or leaf tissues. Other fungi were isolated infrequently and included Alternaria alternata, Cladosporium cladosporioides, Epicoccum nigrum, Penicillium citrinum, Aspergillus brasiliensis, and Diplodia sp. Fungicide resistance profiles were determined using previously established discriminatory doses. Isolates resistant to thiophanate-methyl, iprodione, boscalid, and cyprodinil were found frequently in all shipments and in both greenhouses. The frequency of resistance to penthiopyrad, fenhexamid, fluopyram, isofetamid, and fludioxonil varied between shipments and greenhouses. No resistance to pydiflumetofen was observed at the discriminatory doses tested. Isolates with resistance to multiple chemical classes were commonly found. These results indicate that fungicide resistance management practices may improve preharvest and postharvest gray mold control of cut flower roses.
Collapse
Affiliation(s)
- M Muñoz
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - J E Faust
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - G Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| |
Collapse
|
18
|
Zhong S, Zhang J, Zhang GZ. Botrytis polyphyllae: A New Botrytis Species Causing Gray Mold on Paris polyphylla. PLANT DISEASE 2019; 103:1721-1727. [PMID: 31094656 DOI: 10.1094/pdis-07-18-1284-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Paris polyphylla is an important perennial medicinal plant in China. A disease similar to gray mold on P. polyphylla occurred at the seedling stage in March 2016 and 2017 in Tengchong city, Yunnan Province of China. The disease resulted in up to 50% mortality in serious cases. Isolates from diseased plants grew 10.6 mm/day at 20°C on PDA. After 21 days, sclerotia were spherical to elliptical (0.4-2.5 × 0.3-1.8 mm). Conidia from diseased tissues were hyaline to pale brown, long, ovoid, unicellular, and measured 15.1-24.5 × 8.8-13.4 μm; conidiophores were 526-1,064 ×12-15 μm. Isolates did not form conidiophores or conidia on PDA or MYA. A phylogenetic analysis based on G3PDH, RPB2, and HSP60 sequence data supported assignment of three representative isolates as a new species of Botrytis. Based on morphological, phylogenetic characteristics and Koch's Postulates, the causal agent of gray mold on P. polyphylla was identified as a novel species, Botrytis polyphyllae.
Collapse
Affiliation(s)
- Shan Zhong
- 1 Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jing Zhang
- 2 State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Guo-Zhen Zhang
- 1 Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Garfinkel AR, Coats KP, Sherry DL, Chastagner GA. Genetic analysis reveals unprecedented diversity of a globally-important plant pathogenic genus. Sci Rep 2019; 9:6671. [PMID: 31040332 PMCID: PMC6491473 DOI: 10.1038/s41598-019-43165-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 04/16/2019] [Indexed: 01/22/2023] Open
Abstract
Genus Botrytis contains approximately 35 species, many of which are economically-important and globally-distributed plant pathogens which collectively infect over 1,400 plant species. Recent efforts to genetically characterize genus Botrytis have revealed new species on diverse host crops around the world. In this study, surveys and subsequent genetic analysis of the glyceraldehyde-3-phosate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60), DNA-dependent RNA polymerase subunit II (RPB2), and necrosis and ethylene-inducing proteins 1 and 2 (NEP1 and NEP2) genes indicated that Botrytis isolates collected from peony fields in the United States contained more species diversity than ever before reported on a single host, including up to 10 potentially novel species. Together, up to 16 different phylogenetic species were found in association with peonies in the Pacific Northwest, which is over a third of the total number of species that are currently named. Furthermore, species were found on peonies in Alaska that have been described on other host plants in different parts of the world, indicating a wider geographic and host distribution than previously thought. Lastly, some isolates found on peony share sequence similarity with unnamed species found living as endophytes in weedy hosts, suggesting that the isolates found on peony have flexible lifestyles as recently discovered in the genus. Selected pathogenicity, growth, and morphological characteristics of the putatively new Botrytis species were also assessed to provide a basis for future formal description of the isolates as new species.
Collapse
Affiliation(s)
- Andrea R Garfinkel
- Washington State University Puyallup Research and Extension Center, 2606 W, Pioneer, Puyallup, WA, 98371, USA.
| | - Katie P Coats
- Washington State University Puyallup Research and Extension Center, 2606 W, Pioneer, Puyallup, WA, 98371, USA
| | - Don L Sherry
- Washington State University Puyallup Research and Extension Center, 2606 W, Pioneer, Puyallup, WA, 98371, USA
| | - Gary A Chastagner
- Washington State University Puyallup Research and Extension Center, 2606 W, Pioneer, Puyallup, WA, 98371, USA
| |
Collapse
|
20
|
Bhatnagar JM, Peay KG, Treseder KK. Litter chemistry influences decomposition through activity of specific microbial functional guilds. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1303] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Kabir G. Peay
- Department of Biology Stanford University Stanford California 94305 USA
| | - Kathleen K. Treseder
- Department of Ecology and Evolutionary Biology University of California, Irvine Irvine California 92697 USA
| |
Collapse
|
21
|
Dowling ME, Hu MJ, Schnabel G. Fungicide Resistance in Botrytis fragariae and Species Prevalence in the Mid-Atlantic United States. PLANT DISEASE 2018; 102:964-969. [PMID: 30673377 DOI: 10.1094/pdis-10-17-1615-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Botrytis fragariae was recently described causing gray mold of strawberry in Germany and the United States. The goal of the present study was to determine its prevalence, distribution, and sensitivity to fungicides in strawberry fields of five states. In total, 188 Botrytis isolates were obtained from flowers and fruit collected from the states of Maryland (n = 35), Virginia (n = 38), North Carolina (n = 46), South Carolina (n = 41), and Georgia (n = 28). Only 13 of these were fruit samples and came from South Carolina (n = 5) and Georgia (n = 8). B. fragariae made up 35.1% of the entire collection, and composed close to half of the Botrytis population in North Carolina (43.4%), South Carolina (61.0%), and Georgia (42.9%). One isolate of B. mali was also found, and the rest of the isolates were B. cinerea (sensu lato). B. fragariae and B. cinerea were found coexisting in 11 fields, while other field samples consisted of only B. fragariae (n = 3) or only B. cinerea (n = 10) isolates. B. fragariae isolates with resistance to one or more fungicides were found, and resistance profiles differed from those of B. cinerea, in that no resistance to cyprodinil (FRAC 8) or boscalid and other FRAC 7 botryticides was detected. We detected B. fragariae resistance to the active ingredients thiophanate-methyl, iprodione, fludioxonil, and fenhexamid. We also detected B. fragariae isolates with resistance to up to four chemical classes of fungicides, though most isolates were resistant to one or two chemical classes. In conclusion, isolates of the newly detected species B. fragariae were commonly found on strawberry flowers in the Mid-Atlantic United States, and have developed resistance to many of the most commonly used botryticides. Though the relevance of this species to pre- and postharvest fruit infections is unknown, fludioxonil applications may give this species a competitive advantage over B. cinerea. Controlling this fungus with FRAC 7 fungicides may be an effective way of limiting its spread in strawberry fields.
Collapse
Affiliation(s)
- Madeline E Dowling
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Meng-Jun Hu
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| |
Collapse
|
22
|
Hu MJ, Dowling ME, Schnabel G. Genotypic and Phenotypic Variations in Botrytis spp. Isolates from Single Strawberry Flowers. PLANT DISEASE 2018; 102:179-184. [PMID: 30673460 DOI: 10.1094/pdis-06-17-0891-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gray mold, caused by Botrytis spp., is among the most devastating diseases affecting strawberry worldwide. The great diversity present in the pathogen enhances its ability to survive and adapt in the field. In this study, we explored the genotypic and phenotypic diversity present in single strawberry flowers. In total, 192 isolates were collected from 19 flowers and four farms, and 9 to 12 isolates were collected from each flower. Forty-two haplotypes were found using microsatellite fragment analysis. Multiple haplotypes of two different Botrytis spp. (Botrytis cinerea and B. fragariae) were found in 12 flowers. In the remaining seven flowers, the single-spore isolates examined were of identical haplotypes. In three flowers, the two Botrytis spp. were found to coexist. Isolates were either sensitive (zero chemical class resistance) or resistant to one, two, three, four, or five chemical classes of fungicides. Resistance to multiple fungicides was commonly observed in both species but resistance to boscalid and penthiopyrad was only found in B. cinerea isolates. Resistance to cyprodinil was found in B. fragariae for the first time in the United States. Each haplotype was generally linked to a single resistance profile; however, a single resistance profile often was represented by multiple haplotypes. Isolates from the same flower of multiple haplotypes were largely identical in resistance profiles. This study is a first detailed investigation of genotypic diversity combined with phenotypic analysis of Botrytis spp. at the single-tissue level. It demonstrates that high genotypic and phenotypic diversity is present not only within fields but also in individual blossoms as well. This information is important for understanding the epidemiology of Botrytis and also has implications for fungicide resistance management, particularly related to resistance monitoring practices.
Collapse
Affiliation(s)
- Meng-Jun Hu
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Madeline E Dowling
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| |
Collapse
|
23
|
Garfinkel AR, Lorenzini M, Zapparoli G, Chastagner GA. Botrytis euroamericana, a new species from peony and grape in North America and Europe. Mycologia 2017; 109:495-507. [PMID: 28849988 DOI: 10.1080/00275514.2017.1354169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A novel species of Botrytis isolated from peony in Alaska, USA, and grape in Trento District, Italy, was identified based on morphology, pathogenicity, and sequence data. The grape and peony isolates share sequence homology in the glyceraldehyde-3-phosphate dehydrogenase (G3PDH), heat shock protein 60 (HSP60), DNA-dependent RNA polymerase subunit II (RPB2), and necrosis- and ethylene-inducing protein 1 and 2 (NEP1 and NEP2) genes that place them in a distinct group closely related to B. aclada, a globally distributed pathogen of onions. Genetic results were corroborated with morphological and pathogenicity trials that included two isolates of B. cinerea and two isolates of B. paeoniae from peony in Alaska and one isolate of B. aclada. The authors observed differences in colony and conidia morphology and ability to cause lesions on different host tissues that suggest that the grape and peony isolates represent a distinct species. Most notably, the grape and peony isolates did not colonize onion bulbs, whereas B. aclada readily produced lesions and prolific sporulation on onion tissue. The new species Botrytis euroamericana is described herein.
Collapse
Affiliation(s)
- Andrea R Garfinkel
- a Washington State University Puyallup Research and Extension Center , Puyallup , Washington 98371
| | - Marilinda Lorenzini
- b Dipartimento di Biotecnologie , Università degli Studi di Verona , 37134 Verona , Italy
| | - Giacomo Zapparoli
- b Dipartimento di Biotecnologie , Università degli Studi di Verona , 37134 Verona , Italy
| | - Gary A Chastagner
- a Washington State University Puyallup Research and Extension Center , Puyallup , Washington 98371
| |
Collapse
|
24
|
Saito S, Margosan D, Michailides T, Xiao C. Botrytis californica, a new cryptic species in theB. cinereaspecies complex causing gray mold in blueberries and table grapes. Mycologia 2017; 108:330-43. [DOI: 10.3852/15-165] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/21/2015] [Indexed: 11/10/2022]
Affiliation(s)
- S. Saito
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), San Joaquin Valley Agricultural Sciences Center, Parlier, California 93648
| | - D. Margosan
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, California 93648
| | - T.J. Michailides
- University of California, Kearney Agricultural Research and Extension Center, Parlier, California 93648
| | - C.L. Xiao
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, California 93648
| |
Collapse
|
25
|
Botrytis eucalypti, a novel species isolated from diseased Eucalyptus seedlings in South China. Mycol Prog 2016. [DOI: 10.1007/s11557-016-1229-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Zhang J, Yang H, Yu QY, Wu MD, Yang L, Zhuang WY, Chen WD, Li GQ. Botrytis pyriformis sp. nov., a novel and likely saprophytic species of Botrytis. Mycologia 2016; 108:682-96. [PMID: 27153884 DOI: 10.3852/15-340] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/20/2016] [Indexed: 02/02/2023]
Abstract
A novel species of Botrytis from Sedum sarmentosum was described based on morphology and analyses of DNA sequences of nuc rDNA ITS regions and three nuclear genes (G3PDH, HSP60, RPB2). Meanwhile pathogenicity in 32 plant species, response to temperature for growth and conidial germination for the species were determined. The Botrytis species was named Botrytis pyriformis sp. nov. It was characterized by formation of grayish mycelia, brownish conidia and melanized sclerotia on PDA. The conidia are pear-shaped, melanized and covered with abundant villiform appendages on the conidial surface. Comparison of the ITS sequences confirmed its placement in the genus Botrytis Phylogenetic analysis based on DNA sequences of G3PDH, HSP60 and RPB2 genes indicated that B. pyriformis and other 30 Botrytis species form a monophyletic clade, which was further divided into three subclades. Subclade I comprised B. pyriformis alone, whereas subclades II and III comprised six and 24 Botrytis species, respectively. Botrytis pyriformis could not infect 32 plant species including S. sarmentosum, possibly due to deficiency in formation of infection cushions. This study presents a formal description and illustrations for B. pyriformis and provides experimental evidence, indicating that B. pyriformis might be a saprophytic species.
Collapse
Affiliation(s)
- J Zhang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - H Yang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Q Y Yu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - M D Wu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - L Yang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - W Y Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - W D Chen
- USDA Agricultural Research Service, Washington State University, Pullman, Washington
| | - G Q Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
27
|
Ferrada EE, Latorre BA, Zoffoli JP, Castillo A. Identification and Characterization of Botrytis Blossom Blight of Japanese Plums Caused by Botrytis cinerea and B. prunorum sp. nov. in Chile. PHYTOPATHOLOGY 2016; 106:155-65. [PMID: 26474331 DOI: 10.1094/phyto-06-15-0143-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Blossom blight is a destructive disease of plums (Prunus salicina) when humid and temperate weather conditions occur in Chile. Disease incidence ranging from 4 to 53% has been observed. Symptoms include light brown petal necrosis, starting as light brown mottles or V-shaped necrosis at the margins of the petals, progressing to the stamen and pistils. In this study, the etiology of blossom blight of plums was determined. High- and low-sporulating isolates of Botrytis were obtained consistently from blighted blossoms and apparently healthy flowers of plums. Based on colony morphology, conidial production and molecular phylogenetic analysis, these high- and low-sporulating isolates were identified as B. cinerea and B. prunorum sp. nov., respectively. Phylogenetic analysis of the genes glyceraldehyde 3-phosphate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60), and DNA-dependent RNA polymerase subunit II (RPB2) grouped B. prunorum isolates in a single cluster, distantly from B. cinerea and other Botrytis species. The phylogenetic analysis of necrosis and ethylene-inducing protein (NEP1 and NEP2) genes corroborated these results. Analysis of the internal transcribed spacer region and large-subunit (26S) ribosomal DNA and detection of Boty and Flipper transposable elements, were not useful to differentiate between these Botrytis species. Both species were pathogenic on plum flowers and the fruit of plums, apples, and kiwifruits. However, B. prunorum was less virulent than B. cinerea. These pathogens were re-isolated from inoculated and diseased tissues; thus, Koch's postulates were fulfilled, confirming its role in blossom blight of plums. B. cinerea was predominant, suggesting that B. prunorum may play a secondary role in the epidemiology of blossom blight in plums in Chile. This study clearly demonstrated that the etiology of blossom blight of plums is caused by B. cinerea and B. prunorum, which constitute a species complex living in sympatry on plums and possibly on other stone fruit trees.
Collapse
Affiliation(s)
- Enrique E Ferrada
- First, second, and third authors: Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile; and fourth author: Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago
| | - Bernardo A Latorre
- First, second, and third authors: Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile; and fourth author: Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago
| | - Juan P Zoffoli
- First, second, and third authors: Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile; and fourth author: Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago
| | - Antonio Castillo
- First, second, and third authors: Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile; and fourth author: Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago
| |
Collapse
|
28
|
Description of a taxonomically undefined Sclerotiniaceae strain from withered rotten-grapes. Antonie van Leeuwenhoek 2015; 109:197-205. [PMID: 26581438 DOI: 10.1007/s10482-015-0621-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
Abstract
A necrotrophic member of the Sclerotiniaceae family (herewith named strain C10) isolated from withered rotten-grapes, is described. Interestingly, the fungus has no defined taxonomic position since it has been impossible to attribute it to an existing genus. Phylogenetic analysis of partial sequences of glyceraldehyde 3-phosphate dehydrogenase (G3PDH), heat shock protein 60 (HSP60) and DNA-directed RNA polymerase II subunit (RPB2), revealed that strain C10 is distantly related to Amphobotrys and Botrytis. This evidence clearly distinguishes this new Sclerotiniaceae member from other taxa of the family. Moreover, its morphological characteristics did not match those of Amphobotrys and Botrytis. Infectivity assays demonstrated that strain C10 could be a potential postharvest pathogen of withered grapes. This study revealed the taxonomic importance of this strain suggesting the existence of a possible new genus, a theory that requires further investigation.
Collapse
|
29
|
|
30
|
Grant-Downton RT, Terhem RB, Kapralov MV, Mehdi S, Rodriguez-Enriquez MJ, Gurr SJ, van Kan JAL, Dewey FM. A novel Botrytis species is associated with a newly emergent foliar disease in cultivated Hemerocallis. PLoS One 2014; 9:e89272. [PMID: 24887415 PMCID: PMC4041564 DOI: 10.1371/journal.pone.0089272] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022] Open
Abstract
Foliar tissue samples of cultivated daylilies (Hemerocallis hybrids) showing the symptoms of a newly emergent foliar disease known as 'spring sickness' were investigated for associated fungi. The cause(s) of this disease remain obscure. We isolated repeatedly a fungal species which proved to be member of the genus Botrytis, based on immunological tests. DNA sequence analysis of these isolates, using several different phyogenetically informative genes, indicated that they represent a new Botrytis species, most closely related to B. elliptica (lily blight, fire blight) which is a major pathogen of cultivated Lilium. The distinction of the isolates was confirmed by morphological analysis of asexual sporulating cultures. Pathogenicity tests on Hemerocallis tissues in vitro demonstrated that this new species was able to induce lesions and rapid tissue necrosis. Based on this data, we infer that this new species, described here as B. deweyae, is likely to be an important contributor to the development of 'spring sickness' symptoms. Pathogenesis may be promoted by developmental and environmental factors that favour assault by this necrotrophic pathogen. The emergence of this disease is suggested to have been triggered by breeding-related changes in cultivated hybrids, particularly the erosion of genetic diversity. Our investigation confirms that emergent plant diseases are important and deserve close monitoring, especially in intensively in-bred plants.
Collapse
Affiliation(s)
| | - Razak B. Terhem
- Wageningen University, Laboratory of Phytopathology, Wageningen, The Netherlands
| | | | - Saher Mehdi
- Department of Plant Sciences, University of Oxford, Oxford, England
| | | | - Sarah J. Gurr
- Department of Plant Sciences, University of Oxford, Oxford, England
| | - Jan A. L. van Kan
- Wageningen University, Laboratory of Phytopathology, Wageningen, The Netherlands
| | - Frances M. Dewey
- Department of Plant Sciences, University of Oxford, Oxford, England
| |
Collapse
|
31
|
Grabke A, Fernández-Ortuño D, Amiri A, Li X, Peres NA, Smith P, Schnabel G. Characterization of iprodione resistance in Botrytis cinerea from strawberry and blackberry. PHYTOPATHOLOGY 2014; 104:396-402. [PMID: 24156554 DOI: 10.1094/phyto-06-13-0156-r] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Gray mold, caused by the fungal pathogen Botrytis cinerea, is one of the most destructive diseases of strawberry. Control of the disease in commercial fields is largely dependent on the application of fungicides, including the dicarboximide iprodione. Single-spore isolates were collected from strawberry fields in Florida, North Carolina, and South Carolina and subjected to an assay using conidial germination that distinguished sensitive (S) isolates from isolates with various levels of resistance to iprodione. Of the 245 isolates, 1 was highly resistant (HR), 5 were moderately resistant (MR), and 43 had low resistance (LR) to iprodione. LR and MR strains were found in the Florida population and in 9 of 11 locations from North Carolina and South Carolina, indicating that resistance was widespread but accounted for only a relatively small percentage of the B. cinerea population. Sequence analysis of the target gene bos1, which codes for a class III histidine kinase, revealed that the MR phenotype was associated with Q369P and N373S mutations and that the LR phenotype was associated with either a I365S or a I365N mutation. The I365S and I365N mutations were also present in five additionally included HR isolates from North Carolina and South Carolina blackberry fields and one HR isolate from a Virginia strawberry field but no mutation or mutation combinations in bos1 were uniquely associated with the HR phenotype. Expression analysis of bos1 in S and HR isolates did not reveal convincing evidence of the gene's involvement in HR resistance either. The six HR isolates had three different phenotypes with respect to their sensitivity to fludioxonil; two were S, two were LR, and two were MR. The fludioxonil LR and MR isolates were also resistant to tolnaftate, an indication of multidrug efflux pump activity. These data suggest that, in addition to point mutations in bos1, drug efflux pump activity and potentially a third mechanism of resistance may be contributing to the iprodione HR phenotype. Detached fruit studies showed that field rates of Rovral 4 Flowable (iprodione) did not control iprodione MR and HR isolates.
Collapse
|
32
|
Zhou YJ, Zhang J, Wang XD, Yang L, Jiang DH, Li GQ, Hsiang T, Zhuang WY. Morphological and phylogenetic identification of Botrytis sinoviticola, a novel cryptic species causing gray mold disease of table grapes (Vitis vinifera) in China. Mycologia 2014; 106:43-56. [PMID: 24396103 DOI: 10.3852/13-032] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Seventy-five isolates of Botrytis collected from table grapes (Vitis vinifera) with gray mold symptoms in China were identified based on morpho-cultural characteristics on potato dextrose agar (20 C) and/or phylogenetic analysis using the sequences of three nuclear genes (G3PDH, HSP60, RPB2). Isolates of different species of Botrytis were compared with fenhexamid sensitivity, Bc-hch gene-RFLP haplotyping and pathogenicity to V. vinifera. The 75 isolates comprise two species, B. cinerea (63 isolates) and an undescribed Botrytis sp. (12 isolates) described here as Botrytis sinoviticola Zhang et al. sp., nov. Both B. sinoviticola (Bs) and B. cinerea (Bc) were found to have 20 C optimum for mycelial growth and 25 C for conidial germination. Sensitivity to fenhexamid was significantly greater (P < 0.05) for Bc (EC50 = 0.04 ± 0.01 μg mL(-1)) than for Bs (EC50 = 0.08 ± 0.02 μg mL(-1)). Digestion of the PCR amplicons of the Bc-hch gene with Hha I generated two haplotypes, Group I haplotype for Bs and Group II haplotype for Bc. Bs infected table grapes (leaves, berries) only through wounds, whereas Bc infected both injured and non-injured tissues of table grapes. This study suggests that Bs is a cryptic species sympatric with Bc on table grapes in China.
Collapse
Affiliation(s)
- Y J Zhou
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Grabke A, Fernández-Ortuño D, Schnabel G. Fenhexamid Resistance in Botrytis cinerea from Strawberry Fields in the Carolinas Is Associated with Four Target Gene Mutations. PLANT DISEASE 2013; 97:271-276. [PMID: 30722320 DOI: 10.1094/pdis-06-12-0587-re] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Botrytis cinerea, the causal agent of gray mold disease, is one of the most important pathogens of strawberry. Its control in commercial strawberry fields is largely dependent on the application of fungicides during bloom and fruit maturation. The hydroxyanilide fenhexamid is one of the most frequently used fungicides in the southeast of the United States for gray mold control. It inhibits the 3-ketoreductase (Erg27) of the ergosterol biosynthesis pathway and, due to this site-specific mode of action, is at risk for resistance development. Single-spore isolates were collected from 11 commercial strawberry fields in North and South Carolina and subjected to a conidial germination assay that distinguished sensitive from resistant phenotypes. Of the 214 isolates collected, 16.8% were resistant to fenhexamid. Resistance was found in three of four locations from North Carolina and in four of seven locations from South Carolina, indicating that resistance was widespread. Mutations in Erg27 (T63I, F412S, F412C, and F412I) were associated with resistance, with F412S the predominant and most widespread mutation. In this study, mutations T63I and F412C in field isolates of B. cinerea are described for the first time. Detached fruit studies showed that field rates of Elevate 50 WDG (fenhexamid) controlled sensitive but not resistant isolates carrying any of the four mutations. Resistant isolates produced the same lesion size and number of sporulating lesions on fruit sprayed with Elevate 50 WDG as on untreated controls, showing the fungicide's loss of efficacy against those isolates. A rapid polymerase chain reaction method was developed to quickly and reliably distinguish isolates sensitive or resistant to fenhexamid in the Carolinas and to determine the mutation associated with resistance. The presence of fenhexamid-resistant strains in B. cinerea from strawberry fields in the Carolinas must be considered in future resistance management practices for sustained gray mold control.
Collapse
Affiliation(s)
- Anja Grabke
- School of Agricultural, Forest and Environmental Sciences, Clemson University, Clemson SC 29634
| | | | - Guido Schnabel
- School of Agricultural, Forest and Environmental Sciences, Clemson University, Clemson SC 29634
| |
Collapse
|
34
|
Li X, Fernández-Ortuño D, Chai W, Wang F, Schnabel G. Identification and Prevalence of Botrytis spp. from Blackberry and Strawberry Fields of the Carolinas. PLANT DISEASE 2012; 96:1634-1637. [PMID: 30727455 DOI: 10.1094/pdis-02-12-0128-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gray mold disease of blackberry and strawberry is caused by Botrytis cinerea and B. caroliniana in the southeastern United States. In this study, methods to distinguish both species were established and their prevalence was determined in commercial blackberry and strawberry fields. Using DNA from B. cinerea and B. caroliniana reference strains, a species-differentiating polymerase chain reaction (PCR) amplification was developed that amplified G3PDH gene fragments of two different sizes depending on the species. The PCR is performed with three primers (two species-differentiating forward primers and one universal reverse primer) and amplified a 238-bp product from B. cinerea and a 536-bp fragment from B. caroliniana reference isolates. A total of 400 Botrytis isolates were collected from 6 commercial blackberry and 11 strawberry fields of the Carolinas and identified to the species level by the new PCR method. Both Botrytis spp. were identified in blackberry and strawberry fields, but B. caroliniana was less common than B. cinerea. Only 33 of 202 isolates from blackberry fields were identified as B. caroliniana, and the majority of these isolates came from two fields in South Carolina. Only 1 of 198 isolates from strawberries was identified as B. caroliniana, and this isolate was found in central North Carolina. B. cinerea but not B. caroliniana isolates sporulated on potato dextrose agar and Kings medium B. Our results show that B. cinerea and B. caroliniana coexist in at least some commercial blackberry and strawberry fields of the Carolinas, with B. cinerea being the more prevalent species.
Collapse
Affiliation(s)
- Xingpeng Li
- School of Agricultural, Forestry & Life Sciences, Clemson University, Clemson, SC 29634
| | | | - Wenxuan Chai
- School of Agricultural, Forestry & Life Sciences, Clemson University, Clemson, SC 29634
| | - Fei Wang
- Department of Plant Pathology, College of Plant Sciences and Technology and the Key Lab of Crop Disease Monitoring & Safety Control, Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Guido Schnabel
- School of Agricultural, Forestry & Life Sciences, Clemson University
| |
Collapse
|