1
|
Abbas H, Badr G, Ramadan G, Abd-Elhalem SS. Camel Whey Protein and Baicalein Suppressed Mast Cell Degranulation in Mice Models of IgE- and Non-IgE-Mediated Anaphylaxes: Potential Mechanisms on Downstream Cell Signaling of Mast Cells. Immunol Invest 2024:1-18. [PMID: 39258628 DOI: 10.1080/08820139.2024.2400538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Novel treatments are being researched to develop more safe and effective protective medications for anaphylaxis. Camel whey protein (CWP) and baicalein (BAC, one of the major flavones) have multiple beneficial properties including anti-inflammatory and antioxidant activities. METHODS The current study investigated/compared the therapeutic protection of repeated intragastric administration of CWP (100 mg/kg body weight, as an animal extract) and BAC (10 mg/kg body weight, as a plant extract), before the challenge with ovalbumin (OVA) or receiving the compound 48/80 (C48/80), against mice models for IgE-independent and dependent anaphylaxes. Besides, their effects on mast cells (MCs) downstream cell signaling were explored. RESULTS The results revealed that CWP and BAC reduced the mortality rate, as compared with a MCs stabilizer "sulfasalazine (SSZ, 100 mg/kg body weight, intraperitoneally)," in both mice models. Furthermore, they prevented the MCs degranulation and significantly reduced (p < .05) lung tissue levels of cell signaling (p-AKT, p-ERK, and p-IκBα). Additionally, they decreased histamine, tryptase, leukotriene C4, prostaglandin D2, interleukin (IL)-4, and IL-10 levels in broncho-alveolar and peritoneal lavages in systemic anaphylaxis mice models. They also restored the stabilization of peritoneal MCs membrane in inverted light microscopy results accompanied by amelioration of the lung histology. DISCUSSION The present study provided evidence for the protective therapeutic effect of CWP and BAC against anaphylaxis. As a result, CWP and BAC may be used as preventative supplemented regimens for both non-vegetarian and vegetarian consumers to treat allergy through downregulation of MCs signal transduction pathways, and hence controlling the production of inflammatory mediators.
Collapse
Affiliation(s)
- Hend Abbas
- Zoology Department, Faculty of Women for Arts, Science, and Education, Ain Shams University, Cairo, Egypt
| | - Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Gamal Ramadan
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sahar Sobhy Abd-Elhalem
- Zoology Department, Faculty of Women for Arts, Science, and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Suárez Vázquez TA, López López N, Salinas Carmona MC. MASTer cell: chief immune modulator and inductor of antimicrobial immune response. Front Immunol 2024; 15:1360296. [PMID: 38638437 PMCID: PMC11024470 DOI: 10.3389/fimmu.2024.1360296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/20/2024] Open
Abstract
Mast cells have long been recognized for their involvement in allergic pathology through the immunoglobulin E (IgE)-mediated degranulation mechanism. However, there is growing evidence of other "non-canonical" degranulation mechanisms activated by certain pathogen recognition receptors. Mast cells release several mediators, including histamine, cytokines, chemokines, prostaglandins, and leukotrienes, to initiate and enhance inflammation. The chemical nature of activating stimuli influences receptors, triggering mechanisms for the secretion of formed and new synthesized mediators. Mast cells have more than 30 known surface receptors that activate different pathways for direct and indirect activation by microbes. Different bacterial strains stimulate mast cells through various ligands, initiating the innate immune response, which aids in clearing the bacterial burden. Mast cell interactions with adaptative immune cells also play a crucial role in infections. Recent publications revealed another "non-canonical" degranulation mechanism present in tryptase and chymase mast cells in humans and connective tissue mast cells in mice, occurring through the activation of the Mas-related G protein-coupled receptor (MRGPRX2/b2). This receptor represents a new therapeutic target alongside antibiotic therapy. There is an urgent need to reconsider and redefine the biological role of these MASTer cells of innate immunity, extending beyond their involvement in allergic pathology.
Collapse
Affiliation(s)
| | | | - Mario César Salinas Carmona
- Department of Immunology, School of Medicine and Dr. Jose Eleuterio Gonzalez University Hospital, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
3
|
He P, Hao J, Kong LF, Wotan A, Yan P, Geng YC, Wang Y, Li ZY, Hu SX, Ren B, Rong XJ, Tie C. Resolvin and lipoxin metabolism network regulated by Hyssopus Cuspidatus Boriss extract in asthmatic mice. Prostaglandins Other Lipid Mediat 2024; 170:106803. [PMID: 38040190 DOI: 10.1016/j.prostaglandins.2023.106803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Resolvin (Rv) and lipoxin (Lx) play important regulative roles in the development of several inflammation-related diseases. The dysregulation of their metabolic network is believed to be closely related to the occurrence and development of asthma. The Hyssopus Cuspidatus Boriss extract (SXCF) has long been used as a treatment for asthma, while the mechanism of anti-inflammatory and anti-asthma action targeting Rv and Lx has not been thoroughly investigated. In this study, we aimed to investigate the effects of SXCF on Rv, Lx in ovalbumin (OVA)-sensitized asthmatic mice. The changes of Rv, Lx before and after drug administration were analyzed based on high sensitivity chromatography-multiple response monitoring (UHPLC-MRM) analysis and multivariate statistics. The pathology exploration included behavioral changes of mice, IgE in serum, cytokines in BALF, and lung tissue sections stained with H&E. It was found that SXCF significantly modulated the metabolic disturbance of Rv, Lx due to asthma. Its modulation effect was significantly better than that of dexamethasone and rosmarinic acid which is the first-line clinical medicine and the main component of Hyssopus Cuspidatus Boriss, respectively. SXCF is demonstrated to be a potential anti-asthmatic drug with significant disease-modifying effects on OVA-induced asthma. The modulation of Rv and Lx is a possible underlying mechanism of the SXCF effects.
Collapse
Affiliation(s)
- Ping He
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing, Beijing, China; School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Juan Hao
- Xinjiang Huachun Biological Pharmaceutical Co., Urumqi, China
| | - Ling-Fei Kong
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing, Beijing, China; School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Ayidana Wotan
- Xinjiang Institute of Material Medica, Urumqi, China
| | - Pan Yan
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing, Beijing, China; School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Yi-Cong Geng
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing, Beijing, China; School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Yi Wang
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing, Beijing, China; School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Zheng-Ying Li
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing, Beijing, China; School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Shi-Xian Hu
- Xinjiang Huachun Biological Pharmaceutical Co., Urumqi, China
| | - Bin Ren
- Xinjiang Huachun Biological Pharmaceutical Co., Urumqi, China
| | | | - Cai Tie
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing, Beijing, China; School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China.
| |
Collapse
|
4
|
Cha J, Choi S. Gene-Smoking Interaction Analysis for the Identification of Novel Asthma-Associated Genetic Factors. Int J Mol Sci 2023; 24:12266. [PMID: 37569643 PMCID: PMC10419280 DOI: 10.3390/ijms241512266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Asthma is a complex heterogeneous disease caused by gene-environment interactions. Although numerous genome-wide association studies have been conducted, these interactions have not been systemically investigated. We sought to identify genetic factors associated with the asthma phenotype in 66,857 subjects from the Health Examination Study, Cardiovascular Disease Association Study, and Korea Association Resource Study cohorts. We investigated asthma-associated gene-environment (smoking status) interactions at the level of single nucleotide polymorphisms, genes, and gene sets. We identified two potentially novel (SETDB1 and ZNF8) and five previously reported (DM4C, DOCK8, MMP20, MYL7, and ADCY9) genes associated with increased asthma risk. Numerous gene ontology processes, including regulation of T cell differentiation in the thymus (GO:0033081), were significantly enriched for asthma risk. Functional annotation analysis confirmed the causal relationship between five genes (two potentially novel and three previously reported genes) and asthma through genome-wide functional prediction scores (combined annotation-dependent depletion, deleterious annotation of genetic variants using neural networks, and RegulomeDB). Our findings elucidate the genetic architecture of asthma and improve the understanding of its biological mechanisms. However, further studies are necessary for developing preventive treatments based on environmental factors and understanding the immune system mechanisms that contribute to the etiology of asthma.
Collapse
Affiliation(s)
- Junho Cha
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
| | - Sungkyoung Choi
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
- Department of Mathematical Data Science, College of Science and Convergence Technology, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
5
|
Thio CLP, Lai ACY, Ting YT, Chi PY, Chang YJ. The ketone body β-hydroxybutyrate mitigates ILC2-driven airway inflammation by regulating mast cell function. Cell Rep 2022; 40:111437. [PMID: 36170837 DOI: 10.1016/j.celrep.2022.111437] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/28/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Ketone bodies are increasingly understood to have regulatory effects on immune cell function, with β-hydroxybutyrate (BHB) exerting a predominantly anti-inflammatory response. Dietary strategies to increase endogenous ketone body availability such as the ketogenic diet (KD) have recently been shown to alleviate inflammation of the respiratory tract. However, the role of BHB has not been addressed. Here, we observe that BHB suppresses group 2 innate lymphoid cell (ILC2)-mediated airway inflammation. Central to this are mast cells, which support ILC2 proliferation through interleukin-2 (IL-2). Suppression of the mast cell/IL-2 axis by BHB attenuates ILC2 proliferation and the ensuing type 2 cytokine response and immunopathology. Mechanistically, BHB directly inhibits mast cell function in part through GPR109A activation. Similar effects are achieved with either the KD or 1,3-butanediol. Our data reveal the protective role of BHB in ILC2-driven airway inflammation, which underscores the potential therapeutic value of ketone body supplementation for the management of asthma.
Collapse
Affiliation(s)
| | | | - Yu-Tse Ting
- Institute of Biomedical Sciences, Academia Sinica, Taipei City 115, Taiwan
| | - Po-Yu Chi
- Institute of Biomedical Sciences, Academia Sinica, Taipei City 115, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City 115, Taiwan; Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City 404, Taiwan.
| |
Collapse
|
6
|
Singh N, Kulkarni GT, Kumar Y. Therapeutic Potential of Antileukotriene Drug- Camellia sinensis Extract Co-Formulation on Histamine Induced Asthma in Guinea Pigs. Curr Drug Res Rev 2021; 13:59-72. [PMID: 32787770 DOI: 10.2174/2589977512666200812151620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND/OBJECTIVE To study the therapeutic potential of Antileukotriene drug- Camellia sinensis extract co-formulation on histamine induced asthma in guinea pigs. METHODS SRSD of Montelukast sodium was prepared by the solvent evaporation method. Lyophilized aqueous extract of Camellia sinensis leaves and SRSD mixture was filled in capsule and the capsule shell was coated to achieve initial release lag time. In vitro and pharmacokinetic study of capsules was performed and compared with commercial tablets. A further role of green tea, as an antioxidant adjunct for asthma management, has been analyzed by lung histology, mast cell count and oxidative stress assay in the serum of control and experimental animals. RESULTS The drug release from the commercial tablet was immediate and rapid, but capsule has shown an initial 3.5 hr lag time followed by sustained action up to 8 hr. Pharmacokinetic results show that studied formulations are bioequivalent with respect to Cmax and AUC, while rest parameters showed asignificant difference. Mast cells count in lung tissue were increased (p<0.001) in the experimental group along with glycoprotein deposition in asthmatic bronchioles. Levels of SOD and GPX were decreased (p<0.05) while CAT was increased (p<0.04) in the asthma group in comparison to control. CONCLUSION In the experimental animal model, co-formulation was effective in modulating allergic inflammation and contributing to better control of the inflammatory response. Our findings suggest that Camellia sinensis leaves extract may be used as an adjunct for future improvements in asthma treatment and prevention.
Collapse
Affiliation(s)
- Neelam Singh
- Department of Pharmaceutics, ITS College of Pharmacy, NH-58, Ghaziabad 201206, India
| | - Giriraj T Kulkarni
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Sector 125, Noida, India
| | - Yatendra Kumar
- Department of Pharmaceutics, ITS College of Pharmacy, NH-58, Ghaziabad 201206, India
| |
Collapse
|
7
|
Park HH, Lee S, Yu Y, Yoo SM, Baek SY, Jung N, Seo KW, Kang KS. TGF-β secreted by human umbilical cord blood-derived mesenchymal stem cells ameliorates atopic dermatitis by inhibiting secretion of TNF-α and IgE. Stem Cells 2020; 38:904-916. [PMID: 32277785 DOI: 10.1002/stem.3183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
Human mesenchymal stem cells (MSCs) are promising therapeutics for autoimmune diseases due to their immunomodulatory effects. In particular, human umbilical cord blood-derived MSCs (hUCB-MSCs) have a prominent therapeutic effect on atopic dermatitis (AD). However, the underlying mechanism is unclear. This study investigated the role of transforming growth factor-beta (TGF-β) in the therapeutic effect of hUCB-MSCs on AD. Small interfering RNA (siRNA)-mediated depletion of TGF-β disrupted the therapeutic effect of hUCB-MSCs in a mouse model of AD by attenuating the beneficial changes in histopathology, mast cell infiltration, tumor necrosis factor-alpha (TNF-α) expression, and the serum IgE level. To confirm that hUCB-MSCs regulate secretion of TNF-α, we investigated whether they inhibit TNF-α secretion by activated LAD2 cells. Coculture with hUCB-MSCs significantly inhibited secretion of TNF-α by LAD2 cells. However, this effect was abolished by siRNA-mediated depletion of TGF-β in hUCB-MSCs. TNF-α expression in activated LAD2 cells was regulated by the extracellular signal-related kinase signaling pathway and was suppressed by TGF-β secreted from hUCB-MSCs. In addition, TGF-β secreted by hUCB-MSCs inhibited maturation of B cells. Taken together, our findings suggest that TGF-β plays a key role in the therapeutic effect of hUCB-MSCs on AD by regulating TNF-α in mast cells and maturation of B cells.
Collapse
Affiliation(s)
- Hwan Hee Park
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Yeonsil Yu
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Sae Mi Yoo
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Song Yi Baek
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Namhee Jung
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Kwang-Won Seo
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
| | - Kyung-Sun Kang
- Stem Cell and Regenerative Bioengineering Institute, Kangstem Biotech Co., Ltd., Biotechnology Center, Seoul National University, Seoul, South Korea
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
8
|
Effect of Rhus verniciflua Extract on IgE-Antigen-Mediated Allergic Reaction in Rat Basophilic Leukemic RBL-2H3 Mast Cells and Passive Cutaneous Anaphylaxis in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6497691. [PMID: 31687037 PMCID: PMC6811800 DOI: 10.1155/2019/6497691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/03/2019] [Accepted: 08/26/2019] [Indexed: 01/10/2023]
Abstract
Rhus verniciflua is widely known for its antioxidant, antibacterial, anticancer, and antiaging efficacy and α-glucosidase inhibition. This study was designed whether Rhus verniciflua extracts inhibit the IgE-antigen-mediated allergic reaction in RBL-2H3 mast cells, and it further investigated the FcεRI- and arachidonate-signaling by which Rhus verniciflua extracts exert its antiallergic effects. IgE-antigen-sensitized RBL-2H3 mast cells were investigated for the cytotoxicity of Rhus verniciflua extracts and β-hexosaminidase release, and inflammatory mediators (e.g., TNF-α, IL-4, IL-6, histamine, and PGD2) were then assessed. Additionally, we examined expressions of genes involved in arachidonate- and FcεRI-signaling pathway in RBL-2H3. Rhus verniciflua extracts inhibited β-hexosaminidase release and production of the inflammatory mediators in RBL-2H3. Rhus verniciflua extracts reduced amounts of histamine and expressions of FcεRI signaling-related genes such as Lyn and Syk and phosphorylation of extracellular signal-regulated kinase in mast cells. Finally, in late allergic responses, Rhus verniciflua extracts reduced PGD2 release and COX-2 and cPLA2 phosphorylation expressions from IgE-antigen-mediated mast cells. Lastly, 250–500 mg/kg RVE significantly attenuated the Ag/IgE-induced passive cutaneous anaphylaxis (PCA) reaction in mice. These findings provide novel information on the molecular mechanisms underlying the antiallergy properties of Rhus verniciflua extracts in FcɛRI-mediated allergic reaction.
Collapse
|
9
|
Mast cells drive IgE-mediated disease but might be bystanders in many other inflammatory and neoplastic conditions. J Allergy Clin Immunol 2019; 144:S19-S30. [DOI: 10.1016/j.jaci.2019.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 01/05/2023]
|
10
|
Systemic Transplantation of Mesenchymal Stem Cells Modulates Endothelial Cell Adhesion Molecules Induced by Ovalbumin in Rat Model of Asthma. Inflammation 2019; 41:2236-2245. [PMID: 30088169 DOI: 10.1007/s10753-018-0866-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Achieving the optimal clinical outcome of mesenchymal stem cells (MSCs) is particularly dependent on fundamental understanding of therapeutic mechanisms. The current study was focused on the possible mechanisms by which rat bone marrow-derived mesenchymal stem cells (rBMMSCs) and/or conditioned media (CM) display broad immunomodulatory properties for ameliorating of asthma-related pathological changes. Male rats were divided equally into four experimental groups (n = 6): healthy rats received 50 μl PBS intravenously (group C), sensitized rats received 50 μl PBS intravenously (group OVA), sensitized rats received 50 μl CM intravenously (group OVA + CM), and sensitized rats received 50 μl PBS intravenously containing 2 × 106 rBMMSCs (group OVA + MSCs). After 2 weeks, the expression of interleukin (IL)-5, IL-12 and INF-γ, ICAM-1, and VCAM-1; pathological injuries; and the homing of MSCs into the lung tissues were assessed. Our results showed that systemic delivery of rBMMSCs, but not CM, returned the expression of IL-5, IL-12 and INF-γ, ICAM-1, and VCAM-1 and pathological injuries in the lung tissues of asthmatic groups to the near level of control group (p < 0.001 to p < 0.05). Moreover, rBMMSCs had potential to successfully recall to asthmatic niche in cell-administrated rats. However, no regulatory function was observed by MSC-CM. Collectively, our data notified the potency of MSCs in ameliorating OVA-mediated airway inflammation in a rat model of asthma presumably by regulating endothelial expression of leukocyte-selective cell adhesion molecules in lung tissue.
Collapse
|
11
|
Ekstedt S, Säfholm J, Georén SK, Cardell LO. Dividing neutrophils in subsets reveals a significant role for activated neutrophils in the development of airway hyperreactivity. Clin Exp Allergy 2018; 49:285-291. [PMID: 30415501 DOI: 10.1111/cea.13311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/18/2018] [Accepted: 09/22/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Previous research has emphasized the importance of eosinophils in allergic asthma, while paying less attention to neutrophils. The known functionality of neutrophils in the inflammatory process has recently changed and knowledge about subsets of neutrophils, as characterized by their expression of CD16 and CD62L, has surfaced. Their specific roles in asthma are still unknown. OBJECTIVE To study the functional differences between subsets of neutrophils by characterizing the impact of individual subsets on airway smooth muscle reactivity. METHODS The direct effect of neutrophils on airway hyperresponsiveness was assessed by co-culturing different subsets of neutrophils (produced by LPS in vitro stimulation) with human isolated small airways or murine tracheae with subsequent evaluation of smooth muscle reactivity to bradykinin in myographs. Supernatants and tissue were saved for ELISA and immunohistochemistry. RESULTS The CD16high CD62Ldim neutrophils were found to enhance the response to bradykinin in both human isolated small airways and murine tracheae. No such effects were obtained for the other subsets. The response is due to an upregulation of bradykinin receptor 2 through release of TNFα from the neutrophil. CONCLUSIONS AND CLINICAL RELEVANCE The present study introduces a new concept regarding the role of neutrophils and defines a novel direct link between a specific activated neutrophil subset and airway smooth muscle, establishing neutrophils as important players in the development of asthmatic airway hyperactivity.
Collapse
Affiliation(s)
- Sandra Ekstedt
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Säfholm
- Unit for Experimental Asthma and Allergy Research, Institute of Environmental Medicine, and the Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Kumlien Georén
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Olaf Cardell
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of ENT Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Rahbarghazi R, Keyhanmanesh R, Aslani MR, Hassanpour M, Ahmadi M. Bone marrow mesenchymal stem cells and condition media diminish inflammatory adhesion molecules of pulmonary endothelial cells in an ovalbumin-induced asthmatic rat model. Microvasc Res 2018; 121:63-70. [PMID: 30343002 DOI: 10.1016/j.mvr.2018.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Although excitements related to stem cell therapeutic outcomes have been highlighted enormously in asthma, the vast majority of works were conducted by researchers in animal models. Elucidating the mechanisms underlying the therapeutic effects of MSCs in asthmatic rats will provide a rational basis for assuring maximal safety of future clinical application of stem cells. In the current study, we sought to investigate the possible paracrine mechanism by which direct injection of MSCs and/or CM attenuate efficiently Th2-mediated inflammation in asthmatic lung tissues with the focus on ICAM-1 and VCAM-1 expression. METHODS Male rats were divided into four experimental groups (n = 6); healthy rats received PBS intratracheally (group C), sensitized rats received PBS intratracheally (group S), sensitized rats received CM intratracheally (group S + CM), and sensitized rats received PBS intratracheally containing 2 × 106 rBMMSCs (group S + MSCs). Two weeks post-transplantation, the expression of interleukin (IL)-5, -12 and INF-γ, ICAM-1 and VCAM-1 were assessed along with pathological injuries and the homing of MSCs into the lung tissues. RESULTS Our results showed CM, and notably rBMMSCs, returned the expression of IL-5, IL-12, INF-γ, ICAM-1, and VCAM-1 (p < 0.001 to p < 0.05) to the normal levels. Based on data, pathological injuries in pulmonary specimens of asthmatic rats were significantly attenuated (p < 0.001 to p < 0.05). Moreover, rBMMSCs had potential to successfully home to an asthmatic niche in cell-administrated rats. CONCLUSIONS Our data noted the potency of CM and especially MSCs in ameliorating pathological changes via intra-tracheal route presumably by targeting ICAM-1 and VCAM-1 in lung tissues in rat asthma model.
Collapse
Affiliation(s)
- Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Aslani
- Ardabil Imam Khomeini Educational and Clinical Hospital, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mehdi Hassanpour
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Liu H, Liu Q, Hua L, Pan J. Inhibition of transient receptor potential melastatin 8 alleviates airway inflammation and remodeling in a murine model of asthma with cold air stimulus. Acta Biochim Biophys Sin (Shanghai) 2018; 50:499-506. [PMID: 29635321 DOI: 10.1093/abbs/gmy033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/06/2018] [Indexed: 01/29/2023] Open
Abstract
Cold air stimulus is an important environmental factor that exacerbates asthma. At the molecular level, the transient receptor potential melastatin 8 (TRPM8) plays a crucial part in cold detection. The roles of TRPM8 in airway inflammation and remodeling in a murine model of asthma with cold stimulus and the related molecular mechanism are largely unknown. In this study, C57BL/6 mice were randomly divided into four groups: phosphate-buffered saline control group (control), ovalbumin (OVA)-induced asthma group (OVA), OVA with cold air stimulus group (OVA+cold), and OVA+cold+shTRPM8 (TRPM8 short hairpin RNA) group. We showed that cold air stimulus-induced TRPM8 upregulation in the OVA+cold group. Moreover, TRPM8 knockdown significantly attenuated cold-induced inflammation and infiltration, decreased levels of immunoglobulin E, restored the Th1/Th2 balance, and reduced inflammatory cell accumulation and airway remodeling. Furthermore, we demonstrated that TRPM8 knockdown dramatically inhibited mitogen-activated protein kinase and nuclear factor-κB pathways. Collectively, these results revealed that cold air stimulus induced an airway inflammatory response and remodeling by increasing TRPM8 expression and that downregulation of TRPM8 alleviated these responses.
Collapse
Affiliation(s)
- Haipei Liu
- Department of Pediatric Respiratory Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Quanhua Liu
- Department of Pediatric Respiratory Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Li Hua
- Department of Pediatric Respiratory Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jun Pan
- Institute for Pediatric Research, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
14
|
Xiong J, Liu S, Pan Y, Zhang B, Chen X, Fan L. Combination of fish oil and ethanol extracts from Spirulina platensis inhibits the airway inflammation induced by ovalbumin in mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
15
|
Han NR, Moon PD, Ryu KJ, Kim HM, Jeong HJ. Phenethyl isothiocyanate decreases thymic stromal lymphopoietin-induced inflammatory reactions in mast cells. J Food Biochem 2017. [DOI: 10.1111/jfbc.12449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Na-Ra Han
- Department of Pharmacology; College of Korean Medicine, Kyung Hee University; Seoul 02447 Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Ka-Jung Ryu
- Department of Pharmacology; College of Korean Medicine, Kyung Hee University; Seoul 02447 Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology; College of Korean Medicine, Kyung Hee University; Seoul 02447 Republic of Korea
| | - Hyun-Ja Jeong
- Department of Food Science & Technology and Research Institute for Basic Science; Hoseo University; Chungnam 31499 Republic of Korea
| |
Collapse
|
16
|
Nam SY, Kim HY, Kim HM, Jeong HJ. Βeta-eudesmol reduces stem cell factor-induced mast cell migration. Int Immunopharmacol 2017; 48:1-7. [DOI: 10.1016/j.intimp.2017.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/04/2017] [Accepted: 04/14/2017] [Indexed: 11/27/2022]
|
17
|
Bui TT, Piao CH, Song CH, Lee CH, Shin HS, Chai OH. Baicalein, wogonin, and Scutellaria baicalensis ethanol extract alleviate ovalbumin-induced allergic airway inflammation and mast cell-mediated anaphylactic shock by regulation of Th1/Th2 imbalance and histamine release. Anat Cell Biol 2017; 50:124-134. [PMID: 28713616 PMCID: PMC5509896 DOI: 10.5115/acb.2017.50.2.124] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/09/2017] [Accepted: 03/18/2017] [Indexed: 12/20/2022] Open
Abstract
Asthma is characterized by chronic inflammation, goblet cell hyperplasia, the aberrant production of the Th2 cytokines, and eosinophil infiltration into the lungs. In this study, we examined the effects of baicalein, wogonin, and Scutellaria baicalensis ethanol extract on ovalbumin (OVA)-induced asthma by evaluating Th1/Th2 cytokine levels, histopathologic analysis, and compound 48/80-induced systemic anaphylaxis and mast cell activation, focusing on the histamine release from rat peritoneal mast cells. Baicalein, wogonin, and S. baicalensis ethanol extract also decreased the number of inflammatory cells especially eosinophils and downregulated peribronchial and perivascular inflammation in the lungs of mice challenged by OVA. Baicalein, wogonin, and S. baicalensis ethanol extract significantly reduced the levels of tumor necrosis factor α, interleukin (IL)-1β, IL-4, IL-5 and the production of OVA-specific IgE and IgG1, and upregulated the level of interferon-γ and OVA-specific IgG2a. In addition, oral administration of baicalein, wogonin, and S. baicalensis ethanol extract inhibited compound 48/80-induced systemic anaphylaxis and plasma histamine release in mice. Moreover, baicalein, wogonin, and S. baicalensis ethanol extract suppressed compound 48/80-induced mast cell degranulation and histamine release from rat peritoneal mast cells. Conclusively, baicalein and wogonin as major flavonoids of S. baicalensis may have therapeutic potential for allergic asthma through modulation of Th1/Th2 cytokine imbalance and histamine release from mast cells.
Collapse
Affiliation(s)
- Thi Tho Bui
- Department of Anatomy, Chonbuk National University Medical School, Jeonju, Korea
| | - Chun Hua Piao
- Department of Anatomy, Chonbuk National University Medical School, Jeonju, Korea
| | - Chang Ho Song
- Department of Anatomy, Chonbuk National University Medical School, Jeonju, Korea.,Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Korea
| | - Chang-Hyun Lee
- Department of Anatomy, College of Korean Medicine, Woosuk University, Samrye, Korea
| | - Hee Soon Shin
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon, Korea.,Division of Nutrition and Metabolism Research, Korea Food Research Institute, Seongnam, Korea
| | - Ok Hee Chai
- Department of Anatomy, Chonbuk National University Medical School, Jeonju, Korea.,Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
18
|
Bui TT, Piao CH, Kim SM, Song CH, Shin HS, Lee CH, Chai OH. Citrus tachibana Leaves Ethanol Extract Alleviates Airway Inflammation by the Modulation of Th1/Th2 Imbalance via Inhibiting NF-κB Signaling and Histamine Secretion in a Mouse Model of Allergic Asthma. J Med Food 2017; 20:676-684. [PMID: 28598706 DOI: 10.1089/jmf.2016.3853] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic inflammatory disease of bronchial airway, which is characterized by chronic airway inflammation, airway edema, goblet cell hyperplasia, the aberrant production of the Th2 cytokines, and eosinophil infiltration in the lungs. In this study, the therapeutic effect and the underlying mechanism of Citrus tachibana leaves ethanol extract (CTLE) in the ovalbumin (OVA)-induced allergic asthma and compound 48/80-induced anaphylaxis were investigated. Oral administration of CTLE inhibited OVA-induced asthmatic response by reducing airway inflammation, OVA-specific IgE and IgG1 levels, and increasing OVA-specific IgG2a levels. CTLE restored Th1/Th2 balance through an increase in Th2 cytokines tumor necrosis factor-α, interleukin (IL)-4, and IL-6 and decreases in Th1 cytokines interferon-γ and IL-12. Furthermore, CTLE inhibited the total level of NF-κB and the phosphorylation of IκB-α and NF-κB by OVA. In addition, CTLE dose-dependently inhibited compound 48/80-induced anaphylaxis via blocking histamine secretion from mast cells. The anti-inflammatory mechanism of CTLE may involve the modulation of Th1/Th2 imbalance via inhibiting the NF-κB signaling and histamine secretion. Taken together, we suggest that CTLE could be used as a therapeutic agent for patients with Th2-mediated or histamine-mediated allergic asthma.
Collapse
Affiliation(s)
- Thi Tho Bui
- 1 Department of Anatomy, Chonbuk National University Medical School , Jeonju, Korea
| | - Chun Hua Piao
- 1 Department of Anatomy, Chonbuk National University Medical School , Jeonju, Korea
| | - Soo Mi Kim
- 2 Department of Physiology, Chonbuk National University Medical School , Jeonju, Korea
| | - Chang Ho Song
- 1 Department of Anatomy, Chonbuk National University Medical School , Jeonju, Korea.,3 Institute for Medical Sciences, Chonbuk National University , Jeonju, Korea
| | - Hee Soon Shin
- 4 Food Biotechnology Program, Korea University of Science and Technology , Daejeon, Korea.,5 Division of Nutrition and Metabolism Research, Korea Food Research Institute , Seongnam-si, Korea
| | - Chang-Hyun Lee
- 6 Department of Anatomy, College of Korean Medicine, Woosuk University , Samrye, Korea
| | - Ok Hee Chai
- 1 Department of Anatomy, Chonbuk National University Medical School , Jeonju, Korea.,3 Institute for Medical Sciences, Chonbuk National University , Jeonju, Korea
| |
Collapse
|
19
|
Ahmadi Z, Hassanshahi G, Khorramdelazad H, Zainodini N, Koochakzadeh L. An Overlook to the Characteristics and Roles Played by Eotaxin Network in the Pathophysiology of Food Allergies: Allergic Asthma and Atopic Dermatitis. Inflammation 2017; 39:1253-67. [PMID: 26861136 DOI: 10.1007/s10753-016-0303-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Investigations revealed substantial parts accomplished by chemokines specifically eotaxins and their specific receptors. They are functionally involved in the modulation of the pathologic state of tissue inflammation which is as a result of allergic reactions. Chemokines as small proteins with approximately 8-10 kDa molecular weight are considered and fit in the bigger family of cytokines, containing basic heparin-binding polypeptide mediators. Chemokines actively interfere in the processes of selective, oriented leukocyte (including eosinophil) recruitment. As eminent from their name, more specifically, eotaxins are specialized for eosinophils' oriented locomotion toward allergic inflamed regions. To date, three members are defined for eotaxin subfamily as follows: eotaxin-1 (CCL11), eotaxin-2 (CCL24), and eotaxin-3 (CCL26), all of them bind to and activate CCR3 but have a low level of homology and appear to exhibit different physiological potentials. Allergy is described as a clinical state in which a pathologic hypersensitivity reaction is always initiated throughout an immunologic mechanism; similar to other immunologic reactions, an allergic reaction could also either be antibody or cell mediated. This type of allergic reactions occurs in all age groups and damages several different organs, having a significant impact on the emotional and social health of patients and their families and relatives. Concerning introductory comments introduced above, the authors of the present review attempted to collect and provide the latest evidences and information regarding the correlation between expression of eotaxin family members and allergy, in a wider extent, in two important allergic disorders: atopic asthma (AA) and atopic dermatitis (AD). Overall, concerning the most recent articles published within the database in the life sciences literature regarding the fundamental role(s) played by eotaxins in the pathogenesis of AA and AD, the authors of the current article propose that eotaxins (CCL11, CCL24, and CCL26) play key role(s) during symptomatic inflammatory responses raised in response to allergic crisis of these two clinical states.
Collapse
Affiliation(s)
- Zahra Ahmadi
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nahid Zainodini
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Leila Koochakzadeh
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Song CH, Bui TT, Piao CH, Shin HS, Shon DH, Han EH, Kim HT, Chai OH. Rosae Multiflorae Fructus Hot Water Extract Inhibits a Murine Allergic Asthma Via the Suppression of Th2 Cytokine Production and Histamine Release from Mast Cells. J Med Food 2016; 19:853-9. [PMID: 27574849 DOI: 10.1089/jmf.2016.3736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mast cell-mediated anaphylactic reactions are involved in many allergic diseases, including asthma and allergic rhinitis. In Korea, where it has been used as a traditional medicine, Rosae Multiflorae fructus (RMF) is known to have potent antioxidative, analgesic, and anti-inflammatory activities and to have no obvious acute toxicity. However, its specific effect on asthma is still unknown. In this study, we evaluated whether or not RMF hot water extracts (RMFW) could inhibit ovalbumin (OVA)-induced allergic asthma and evaluated compound 48/80-induced mast cell activation to elucidate the mechanisms of asthma inhibition by RMFW. Oral administration of RMFW decreased the number of eosinophils and lymphocytes in the lungs of mice challenged by OVA and downregulated histological changes such as eosinophil infiltration, mucus accumulation, goblet cell hyperplasia, and collagen fiber deposits. In addition, RMFW significantly reduced T helper 2 cytokines, TNF-α, IL-4, and IL-6 levels in the BAL fluid of mice challenged by OVA. Moreover, RMFW suppressed compound 48/80-induced rat peritoneal mast cell degranulation and inhibited histamine release from mast cells induced by compound 48/80 in a dose-dependent manner. These results suggest that RMFW may act as an antiallergic agent by inhibitingTh2 cytokine production from Th2 cells and histamine release from mast cells, and could be used as a therapy for patients with Th2-mediated or mast cell-mediated allergic diseases.
Collapse
Affiliation(s)
- Chang Ho Song
- 1 Department of Anatomy, Chonbuk National University Medical School , Jeonju, Republic of Korea.,2 Institute for Medical Sciences, Chonbuk National University Medical School , Jeonju, Republic of Korea
| | - Thi Tho Bui
- 1 Department of Anatomy, Chonbuk National University Medical School , Jeonju, Republic of Korea
| | - Chun Hua Piao
- 1 Department of Anatomy, Chonbuk National University Medical School , Jeonju, Republic of Korea
| | - Hee Soon Shin
- 3 Food Biotechnology Program, Korea University of Science and Technology , Daejeon, Republic of Korea.,4 Division of Nutrition and Metabolism Research, Korea Food Research Institute , Seongnam-si, Republic of Korea
| | - Dong-Hwa Shon
- 3 Food Biotechnology Program, Korea University of Science and Technology , Daejeon, Republic of Korea.,5 Division of Functional Food Research, Korea Food Research Institute , Seongnam-si, Republic of Korea
| | - Eui-Hyeog Han
- 1 Department of Anatomy, Chonbuk National University Medical School , Jeonju, Republic of Korea.,2 Institute for Medical Sciences, Chonbuk National University Medical School , Jeonju, Republic of Korea
| | - Hyoung Tae Kim
- 1 Department of Anatomy, Chonbuk National University Medical School , Jeonju, Republic of Korea
| | - Ok Hee Chai
- 1 Department of Anatomy, Chonbuk National University Medical School , Jeonju, Republic of Korea.,2 Institute for Medical Sciences, Chonbuk National University Medical School , Jeonju, Republic of Korea
| |
Collapse
|
21
|
Nugent NR, Goldberg A, Uddin M. Topical Review: The Emerging Field of Epigenetics: Informing Models of Pediatric Trauma and Physical Health. J Pediatr Psychol 2015; 41:55-64. [PMID: 25825520 DOI: 10.1093/jpepsy/jsv018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 02/07/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Trauma experienced during childhood and adolescence has been linked to a number of chronic medical concerns. We highlight major findings from the pediatric trauma literature to provide a model for understanding this association. METHODS Studies examining the effects of trauma were systematically reviewed and synthesized into a model proposing a central role for epigenetics in the ways that childhood experiences can affect health. RESULTS Early hypothalamic pituitary adrenal (HPA) axis response may impact initial trauma experience, with downstream effects on posttrauma adjustment reflected in posttrauma neurobiology, psychological health, and physical health. CONCLUSIONS Prospective research with children and adolescents exposed to trauma is needed to better characterize the genetic and epigenetic influences on the course of HPA and immune processes as related to posttrauma psychological and physical health outcomes.
Collapse
Affiliation(s)
- Nicole R Nugent
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School at Brown University, Bradley Hasbro Research Center, Rhode Island Hospital,
| | - Amy Goldberg
- Department of Pediatrics, Warren Alpert Medical School at Brown University, Lawrence A. Aubin Sr. Child Protection Center, Hasbro Children's Hospital and
| | - Monica Uddin
- Department of Psychology and Carl W. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign
| |
Collapse
|
22
|
Niranjan R, Rajavelu P, Ventateshaiah SU, Shukla JS, Zaidi A, Mariswamy SJ, Mattner J, Fortgang I, Kowalczyk M, Balart L, Shukla A, Mishra A. Involvement of interleukin-18 in the pathogenesis of human eosinophilic esophagitis. Clin Immunol 2015; 157:103-13. [PMID: 25638412 DOI: 10.1016/j.clim.2015.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/08/2015] [Accepted: 01/14/2015] [Indexed: 02/06/2023]
Abstract
IL-18 is induced in food allergy and EoE is food allergen-induced disease. Therefore, we tested the hypothesis whether IL-18 is involved in food allergen-induced EoE pathogenesis. Accordingly, we examined normal SPT+ and SPT- EoE patient blood and biopsy samples for IL-18, IL-18Rα, ICAM and VCAM expression. Herein, we show increased IL-18 level is highly significant in food allergen SPT+ compared to SPT- EoE patients. We also report that IL-18Rα+ cells and mRNA levels are induced in the esophageal biopsies of EoE patients and blood IL-18 levels correlate with esophageal eosinophilia (P<0.01). Additionally, we report that the levels of esophageal eosinophil and mast cells correlate with ICAM expression in human EoE. Mechanistically, we show that IL-18 in vitro stimulates iNKT cells and endothelial cells and induce eosinophil active cytokines IL-5 and IL-13. We provide the evidence that IL-18 is critical cytokine involved in activation of iNKT cells and ICAM in promoting human EoE.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Priya Rajavelu
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Jai Shankar Shukla
- Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Asifa Zaidi
- Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | - Jochen Mattner
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Ilana Fortgang
- Section of Pediatric and Adult Gastroenterology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Monika Kowalczyk
- Section of Pediatric and Adult Gastroenterology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Luis Balart
- Section of Pediatric and Adult Gastroenterology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Anshi Shukla
- Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Anil Mishra
- Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
23
|
Cinnamaldehyde is the main mediator of cinnamon extract in mast cell inhibition. Eur J Nutr 2014; 54:1297-309. [DOI: 10.1007/s00394-014-0810-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
|
24
|
Philpott H, Nandurkar S, Thien F, Gibson PR, Royce SG. Eosinophilic esophagitis: a clinicopathological review. Pharmacol Ther 2014; 146:12-22. [PMID: 25200122 DOI: 10.1016/j.pharmthera.2014.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 12/12/2022]
Abstract
Eosinophilic esophagitis (EoE) is considered to be a chronic antigen-driven disease whereby food and/or aeroallergens induce a chronic inflammatory infiltrate in the esophagus, resulting in pathological hyperplasia of the epithelia and muscular layers, and fibrosis of the lamina propria (referred to collectively as remodelling) and the symptoms of dysphagia and food impaction. EoE shares features with other atopic conditions of asthma and atopic dermatitis, such as a TH2 cytokine milieu and a mixed inflammatory infiltrate of eosinophils, mast cells and lymphocytes. Relatively distinct features include the strong male predominance amongst adult patients, and the expression of the eosinophil chemokine eotaxin 3. Current first line treatments such as strict dietary modification and corticosteroids fail many patients. Looking forward, clarification of distinct genotype/phenotype associations, determining the reversibility of remodelling following treatment, and the development of new pharmacotherapies that target fibrotic pathways (as opposed to eosinophilic inflammation per se) or specifically improve barrier integrity appear relevant.
Collapse
Affiliation(s)
- Hamish Philpott
- Department of Gastroenterology Eastern Health, Monash University Melbourne, Australia.
| | - Sanjay Nandurkar
- Department of Gastroenterology Eastern Health, Monash University Melbourne, Australia
| | - Francis Thien
- Department of Respiratory and Sleep Medicine Eastern Health, Monash University Melbourne, Australia
| | - Peter R Gibson
- Department of Gastroenterology The Alfred Hospital, Monash University Melbourne, Australia
| | - Simon G Royce
- Department of Pharmacology Clayton Campus, Monash University Melbourne, Australia
| |
Collapse
|
25
|
Inhibition of TRPM7 channels reduces degranulation and release of cytokines in rat bone marrow-derived mast cells. Int J Mol Sci 2014; 15:11817-31. [PMID: 24995695 PMCID: PMC4139816 DOI: 10.3390/ijms150711817] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/09/2014] [Accepted: 06/19/2014] [Indexed: 11/16/2022] Open
Abstract
Background: mast cells play an important role in airway inflammation in asthma. The transient receptor potential melastatin-like 7 (TRPM7) channel is expressed in primary human lung mast cells and plays a critical role for cell survival. This study aimed to investigate the role of TRPM7 on degranulation and release of cytokines in rat bone marrow-derived mast cells (BMMCs). Methods: the expression levels of TRPM7 were observed by immunocytochemistry and RT-PCR between normal and asthmatic rat BMMCs. TRPM7-specific shRNA and 2-aminoethoxydiphenyl borate (2-APB) and specific shTRPM7 were used to inhibit the function of TRPM7. Degranulation levels were analyzed by beta-hexosaminidase assay. Histamine, TNF-α, IL-6 and IL-13 levels were measured by ELISA. Results: the expression of TRPM7 was significantly higher in asthmatic rat BMMCs than in the normal control group. After application of 2-APB and down-regulation of TRPM7, the beta-hexosaminidase activity and secretion of histamine, IL-6, IL-13 and TNF-α were significantly decreased in the asthmatic group compared to the control group. Conclusion: this study indicates that TRPM7 channels may be involved in the process of degranulation and release of cytokines in rat bone marrow-derived mast cells.
Collapse
|
26
|
Mukhopadhyay S, Malik P, Arora SK, Mukherjee TK. Intercellular adhesion molecule-1 as a drug target in asthma and rhinitis. Respirology 2014; 19:508-13. [PMID: 24689994 DOI: 10.1111/resp.12285] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/28/2013] [Accepted: 11/26/2013] [Indexed: 01/21/2023]
Abstract
Intercellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein receptor of the immunoglobulin superfamily. Endothelial cells, epithelial cells, leukocytes and neutrophils are the major cells expressing ICAM-1. Ligands of ICAM-1 are macrophage adhesion ligand-1, leukocyte function-associated antigen-1 and fibrinogen (extracellular matrix protein). In normal physiological conditions, engagement of ICAM-1 receptor with immunological cells surface ligands assists in homing and trafficking of inflammatory cells to distant tissues. ICAM-1 has also long been known to mediate cell-to-cell interaction during antigen presentation and outside-in cell signalling pathways. ICAM-1-mediated elevated inflammation is implicated in asthma. On respiratory epithelial cells surface, ICAM-1 acts as natural binding site for human rhinovirus (HRV), a common cold virus that ultimately causes exacerbation of asthma. This review presents the findings on the role of ICAM-1 in the complication of asthma and in particular asthma exacerbation by HRV.
Collapse
Affiliation(s)
- Srirupa Mukhopadhyay
- Department of Immunopathology, Research Block A, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | | | | |
Collapse
|
27
|
Bae MJ, Shin HS, See HJ, Chai OH, Shon DH. Cheonggukjang ethanol extracts inhibit a murine allergic asthma via suppression of mast cell-dependent anaphylactic reactions. J Med Food 2014; 17:142-9. [PMID: 24456365 PMCID: PMC3901352 DOI: 10.1089/jmf.2013.2997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/02/2013] [Indexed: 12/21/2022] Open
Abstract
Cheonggukjang (CGJ), a traditional Korean fermented soybean food, exerts immunomodulatory effects. Asthma is the most common chronic allergic disease to be associated with immune response to environmental allergens. In the pathogenesis of asthma, histamine is one of the important inflammatory mediators released from granules of mast cells. In this study, we evaluated the therapeutic effect of CGJ on a mouse model of ovalbumin (OVA)-induced asthma via the suppression of histamine release. C57BL/6 mice were sensitized by intraperitoneal injection of OVA or a phosphate-buffered saline (PBS) control and then challenged with OVA inhalation. Mice were treated intraperitoneally with either 70% ethanol-extracted CGJ (CGJE) (100 mg/kg/day) or equivalent PBS. Asthma-related inflammation was assessed by bronchoalveolar lavage fluid cell counts and histopathological and immunohistochemical analysis of lung tissues. To elucidate the mechanisms of asthma inhibition by CGJE treatment, we also examined degranulation and histamine release of compound 48/80-induced rat peritoneal mast cells (RPMCs). Treatment with CGJE downregulated the number of eosinophils and monocytes in the lungs of mice challenged with OVA and suppressed histopathological changes, such as eosinophil infiltration, mucus accumulation, goblet cell hyperplasia, and collagen fiber deposits. Moreover, CGJE alleviated compound 48/80-induced mast cell degranulation and histamine release from RPMCs through inhibition of calcium (Ca²⁺) uptake as well as ear swelling by infiltration of inflammatory cells. These findings demonstrated that CGJE can be used as an antiasthmatic dietary supplements candidate for histamine-mediated asthma.
Collapse
Affiliation(s)
- Min-Jung Bae
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Seongnam, Gyeonggi-do, Republic of Korea
- Institute for Basic Science, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hee Soon Shin
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hye-Jeong See
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Seongnam, Gyeonggi-do, Republic of Korea
| | - Ok Hee Chai
- Department of Anatomy, Medical School and Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Dong-Hwa Shon
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Seongnam, Gyeonggi-do, Republic of Korea
| |
Collapse
|
28
|
Comparison of TNF antagonism by etanercept and dexamethasone on airway epithelium and remodeling in an experimental model of asthma. Int Immunopharmacol 2013; 17:768-73. [PMID: 24063972 DOI: 10.1016/j.intimp.2013.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND The aim of the study was to compare the influence of TNF antagonism and corticosteroid treatment on epithelial, smooth muscle and basement membrane component of airway remodeling in an experimental murine model of chronic asthma. METHODS We used 30 BALB/c mice. Group 1 not exposed to ovalbumin or any medication was designated as control group. Chronic asthma model was achieved in the other three groups with intraperitoneal (IP) and inhaled ovalbumin. Then, Group 2 received IP saline, Group 3 received IP dexamethasone and Group 4 received IP etanercept. Epithelial, subepithelial smooth muscle and basement membrane thickness as well as goblet cells and mast cells were examined on samples isolated from left lung. RESULTS Etanercept treatment led to thinner epithelial and basement membrane layer and lower goblet and mast cell number than untreated asthmatic mice (p<0.001, p=0.001, p=0.005 and p=0.03 respectively). Neither epithelial and basement membrane thickness nor mast cell number was different among mice treated with etanercept and dexamethasone (p=0.38, p=0.79 and p=0.51 respectively). However, etanercept group was associated with thicker subepithelial muscle layer but lower goblet cell number (p<0.001 and p=0.04 respectively) than dexamethasone group. CONCLUSIONS Corticosteroids are more effective in decreasing smooth muscle mass while TNF antagonists in reducing goblet cell number in animal model of asthma. Therefore, further research is needed to assess the synergistic use of TNF antagonism and dexamethasone for more rational remodeling control.
Collapse
|
29
|
Bargut TCL, Ferreira TPT, Daleprane JB, Martins MA, Silva PMR, Aguila MB. Fish oil has beneficial effects on allergen-induced airway inflammation and hyperreactivity in mice. PLoS One 2013; 8:e75059. [PMID: 24040386 PMCID: PMC3765396 DOI: 10.1371/journal.pone.0075059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 08/12/2013] [Indexed: 12/19/2022] Open
Abstract
Background Fish oil (FO) is rich in n-3 polyunsaturated fatty acids (PUFA), which have been suggested to be anti-inflammatory and are associated with improvement of several inflammatory diseases. In this study, we investigated the influence of FO on allergen-induced lung inflammation and airway hyperreactivity in mice. Methods Male A/J mice were fed either a standard-chow (SC) or a FO diet (FO) for 8 weeks. After 4 weeks, each group was further randomized for ovalbumin (SC-OVA and FO-OVA) or saline (SC-SAL and FO-SAL) challenge. Resistance and elastance were measured at baseline and after aerosolized methacholine, 24h after the last challenge. Bronchoalveolar lavage (BAL) was performed for leukocyte counts. Lung tissue mucus deposition, peribronchiolar matrix deposition and eosinophil infiltration were quantified. Serum immunoglobulin E (IgE) and IgG1 (ref 2.2), lung IL-4, IL-5, IL-10, IL-13, IL-17, INFγ and eotaxin-1 and 2 were detected by ELISA and nuclear factor kappa B (NFκB), GATA-3 and peroxisome proliferator-activated receptor gamma (PPARγ) expression was measured by Western blot. Results Levels of serum IgE and IgG1 were significantly higher in OVA sensitized mice. OVA challenge resulted in increased eosinophil infiltration, increased inflammatory cytokine production, peribronchiolar matrix and mucus deposition and airway hyperreactivity to aerosolized methacholine. Elevated lung NFκB and GATA-3 expression was noted in OVA-challenged mice. These changes were attenuated in mice fed with FO diet. Higher PPARγ expression was also detected in the lungs from the FO-fed groups. Conclusion Our results demonstrate that FO intake attenuated classical asthma features by suppressing the systemic sensitization, thus providing evidence that FO might be a prophylactic alternative for asthma prevention.
Collapse
Affiliation(s)
- Thereza Cristina Lonzetti Bargut
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Paula Teixeira Ferreira
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
30
|
The effectiveness of fish oil supplementation in asthmatic rats is limited by an inefficient action on ASM function. Lipids 2013; 48:889-97. [PMID: 23743575 DOI: 10.1007/s11745-013-3804-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/14/2013] [Indexed: 01/20/2023]
Abstract
Episodes of acute exacerbation are the major clinical feature of asthma and therefore represent an important focus for developing novel therapies for this disease. There are many reports that the n-3 fatty acids found in fish oil exert anti-inflammatory effects, but there are few studies of the action of fish oil on airway smooth muscle (ASM) function. In the present investigation, we evaluated the effect of fish oil supplementation on smooth muscle force of contraction in ovalbumin-induced asthmatic Wistar rats, and its consequences on static lung compliance, mucus production, leukocyte chemotaxis and production of proinflammatory cytokines. Fish oil supplementation suppressed the infiltration of inflammatory cells into the lung in asthmatic animals (2.04 ± 0.19 × 10(6) cells vs. 3.33 ± 0.43 × 10(6) cells in the control asthmatic group; P < 0.05). Static lung compliance increased with fish oil supplementation in asthmatic rats (0.640 ± 0.053 mL/cm H2O vs. 0.399 ± 0.043 mL/cm H2O; P < 0.05). However, fish oil did not prevent asthma-associated lung eosinophilia and did not affect the concentrations of tumor necrosis factor-α and interleukin-1β in lung tissue or the proportion of the airways obliterated with mucus. Fish oil had no effect on the force of contraction in asthmatic rats in response to acetylcholine (3.026 ± 0.274 mN vs. 2.813 ± 0.364 mN in the control asthmatic group). In conclusion, although fish oil exerts some benefits in this model of asthma, its effectiveness appears to be limited by an inefficient action on airway smooth muscle function.
Collapse
|
31
|
Lei Y, Gregory JA, Nilsson GP, Adner M. Insights into mast cell functions in asthma using mouse models. Pulm Pharmacol Ther 2013; 26:532-9. [PMID: 23583635 DOI: 10.1016/j.pupt.2013.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 01/07/2023]
Abstract
Therapeutics targeting specific mechanisms of asthma have shown promising results in mouse models of asthma. However, these successes have not transferred well to the clinic or to the treatment of asthma sufferers. We suggest a reason for this incongruity is that mast cell-dependent responses, which may play an important role in the pathogenesis of both atopic and non-atopic asthma, are not a key component in most of the current asthma mouse models. Two reasons for this are that wild type mice have, in contrast to humans, a negligible number of mast cells localized in the smaller airways and in the parenchyma, and that only specific protocols show mast cell-dependent reactions. The development of mast cell-deficient mice and the reconstitution of mast cells within these mice have opened up the possibility to generate mouse models of asthma with a marked role of mast cells. In addition, mast cell-deficient mice engrafted with mast cells have a distribution of mast cells more similar to humans. In this article we review and highlight the mast cell-dependent and -independent responses with respect to airway hyperresponsiveness and inflammation in asthma models using mast cell-deficient and mast cell-engrafted mice.
Collapse
Affiliation(s)
- Ying Lei
- Clinical Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
32
|
Wei X, Zhang Y, Fu Z, Zhang L. The association between polymorphisms in the MRPL4 and TNF-α genes and susceptibility to allergic rhinitis. PLoS One 2013; 8:e57981. [PMID: 23472126 PMCID: PMC3589466 DOI: 10.1371/journal.pone.0057981] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/30/2013] [Indexed: 11/22/2022] Open
Abstract
Background Allergic rhinitis (AR) is a chronic inflammatory disease of the nasal mucosa, involving a complex interaction between genetic and environmental factors. Evidence suggests that polymorphisms in the gene coding for mitochondrial ribosomal protein L4 (MRPL4), located in close proximity to intercellular adhesion molecule-1 (ICAM-1) gene on chromosome location 19p13.2, may influence the risk factor for the development of AR. Objective The aim of our study was to investigate any association between AR susceptibility and polymorphisms in ICAM-1 gene, as well as associations between AR risk and polymorphisms in MRPL4, nuclear factor-kappaB (NF-κB) and tumor necrosis factor alpha(TNF-α) genes, associated with ICAM-1 expression. Methods A cohort of 414 patients with AR and 293 healthy controls was enrolled from the Han Chinese population in Beijing, China. Blood was drawn for DNA extraction and total serum immunoglobulin E (IgE). A total of 14 single nucleotide polymorphisms (SNPs) in ICAM-1, NF-κB, TNF-α, and MRPL4 genes were selected using the CHB genotyping data from the International Haplotype Mapping (HapMap) and assessed for differences in frequencies of the alleles and genotypes between the AR patients and control subjects. Results TNF-α SNP rs1799964 and MRPL4 SNP rs11668618 were found to occur in significantly greater frequencies in the AR group compared to control group. There were no significant associations between SNPs in NF-κB, ICAM-1 and AR. The SNP-SNP interaction information analysis further indicated that there were no synergistic effects among the selected sets of polymorphisms. Conclusions Our results suggest a strong association between AR risk and polymorphisms of MRPL4 and TNF-α genes in Han Chinese population.
Collapse
Affiliation(s)
- Xin Wei
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China
- Key Laboratory of Otolaryngology, Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otorhinolaryngology, Beijing, PR China
- Department of Otolaryngology, Head and Neck Surgery, People’s Hospital of Hainan Province, Haikou, PR China
| | - Yuan Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China
- Key Laboratory of Otolaryngology, Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otorhinolaryngology, Beijing, PR China
| | - Zheng Fu
- Department of Otolaryngology, Head and Neck Surgery, People’s Hospital of Hainan Province, Haikou, PR China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, PR China
- Key Laboratory of Otolaryngology, Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otorhinolaryngology, Beijing, PR China
- * E-mail:
| |
Collapse
|
33
|
n-3 Long-chain PUFA reduce allergy-related mediator release by human mast cells in vitro via inhibition of reactive oxygen species. Br J Nutr 2012; 109:1821-31. [PMID: 23021516 DOI: 10.1017/s0007114512003959] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increased n-6 and reduced n-3 long-chain PUFA (LC-PUFA) intake in Western diets may contribute to the increased prevalence of allergic diseases. Key effector cells in allergy are mast cells (MC). The aim of the present study was to investigate the effects of n-6 v. n-3 LC-PUFA on MC phenotype. Human MC lines (LAD2 and HMC-1) were incubated for 24 h with either arachidonic acid (AA, n-6 LC-PUFA) or the n-3 LC-PUFA EPA or DHA. The effects of these three LC-PUFA on degranulation, mediator secretion and reactive oxygen species (ROS) generation were assessed. ROS, mitogen-activated protein kinase (MAPK) or NF-κB inhibitors were used to unravel signalling pathways involved in cytokine secretion. AA, EPA or DHA did not reduce IgE-mediated degranulation by LAD2 cells. However, AA increased PGD₂ and TNF-α secretion by ionomycin/phorbol 12-myristate 13-acetate-stimulated HMC-1, whereas EPA and DHA more prominently inhibited IL-4 and IL-13 secretion. Suppression of IL-4 and IL-13 release by LC-PUFA correlated with reduced ROS generation. IL-4 and IL-13 release by activated HMC-1 was abrogated using ROS inhibitors. Inhibition of MAPK signalling, but not NF-κB, downstream of ROS reduced IL-13 secretion by activated HMC-1. Combined incubation of EPA or DHA with MAPK inhibitors further suppressed IL-13 secretion. In conclusion, the n-6 LC-PUFA AA enhanced pro-inflammatory mediator production by MC, while the n-3 LC-PUFA EPA as well as DHA more effectively suppressed ROS generation and IL-4 and IL-13 release. This suggests that dietary supplementation with EPA and/or DHA may alter the MC phenotype, contributing to a reduced susceptibility to develop and sustain allergic disease.
Collapse
|
34
|
Chen HJ, Hsu HY, Chiang W. Allergic immune-regulatory effects of Adlay Bran on an OVA-immunized mice allergic model. Food Chem Toxicol 2012; 50:3808-13. [DOI: 10.1016/j.fct.2012.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
|
35
|
Jeong HJ, Choi Y, Kim KY, Kim MH, Kim HM. C-kit binding properties of hesperidin (a major component of KMP6) as a potential anti-allergic agent. PLoS One 2011; 6:e19528. [PMID: 21559359 PMCID: PMC3085475 DOI: 10.1371/journal.pone.0019528] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/31/2011] [Indexed: 11/24/2022] Open
Abstract
Accumulation of mast cells can be causally related to several allergic inflammations. Stem cell factor (SCF) as a mast cell chemotaxin induces mast cell migration. To clarify a new effect of Pyeongwee-San extract (KMP6, a drug for indigestion) for the treatment of allergy, we investigated the effects of KMP6 on SCF-induced migration of rat peritoneal mast cells (RPMCs). A molecular docking simulation showed that hesperidin, a major component of KMP6, controls the SCF and c-kit binding by interaction with the active site of the c-kit. KMP6 and hesperidin significantly inhibited SCF-induced migration of RPMCs (P<0.05). The ability of the SCF to enhance morphological alteration and F-actin formation was also abolished by treatment with KMP6 or hesperidin. KMP6 and hesperidin inhibited SCF-induced p38 MAPK activation. In addition, SCF-induced inflammatory cytokine production was significantly inhibited by treatment with KMP6 or hesperidin (P<0.05). Our results show for the first time that KMP6 potently regulates SCF-induced migration, p38 MAPK activation and inflammatory cytokines production through hindrance of SCF and c-kit binding in RPMCs. Such modulation may have functional consequences during KMP6 treatment, especially mast cell-mediated allergic inflammation disorders.
Collapse
Affiliation(s)
- Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, Republic of Korea
| | - Youngjin Choi
- Biochip Research Center, Hoseo University, Asan, Republic of Korea
| | - Kyu-Yeob Kim
- Department of Pharmacology, Kyung Hee University, Seoul, Republic of Korea
| | - Min-Ho Kim
- High-Enthalpy Plasma Research Center, Chonbuk National University, Jeonju, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|