1
|
Su Z, Xu T, Sun JY, Sun W, Kong X. Alterations in the transcriptome and microRNAs of adipose-derived mesenchymal stem cells from different sites in rats during aging. Am J Physiol Cell Physiol 2025; 328:C78-C94. [PMID: 39495250 DOI: 10.1152/ajpcell.00044.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Aging is an intricate and gradual process characterized by tissue and cellular dysfunction. Adipose-derived mesenchymal stem cells (ADMSCs) experience a functional decline as part of systemic aging. However, the alterations in ADMSCs across various anatomical sites throughout an individual's lifespan remain unclear. To shed light on these changes, we collected white adipose tissue and brown adipose tissue samples from the epididymis, perirenal, inguinal, and scapular regions of young, adult, and aged rats and subsequently isolated ADMSCs for RNA sequencing. As aging progressed, we observed a reduction in the number of ADMSCs at all anatomical sites. Marker genes of ADMSCs from different sites were identified. Aging triggered notable activation of inflammatory and immune responses while diminishing the ADMSC differentiation capacity and ability to maintain a normal tissue morphology. Furthermore, miR-195-5p and miR-497-3p, which promoted cell senescence and apoptosis while inhibiting proliferation and differentiation, were positively correlated with aging. These findings increase our understanding of ADMSC senescence and underscore the unique physiological changes and functions of ADMSCs across different anatomical sites during aging.NEW & NOTEWORTHY Dynamic changes in mRNAs and miRNAs of ADMSCs during aging are shown. As aging progressed, we observed a reduction in the number of ADMSCs at all anatomical sites. Aging leads to the activation of inflammatory and cellular dysfunction. miR-195-5p and miR-497-3p are positively correlated with aging, which promoted cell senescence and apoptosis while inhibiting proliferation and differentiation. ADMSCs associated with different anatomical sites have site-specific markers.
Collapse
Affiliation(s)
- Zhenyang Su
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, People's Republic of China
| | - Tianhua Xu
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, People's Republic of China
| | - Jin-Yu Sun
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Kong X, Zhuo X, Huang X, Shang L, Lan T, Qin H, Chen X, Lv C, Xu Q, Wong PP. Multi-omics analysis reveals a pericyte-associated gene expression signature for predicting prognosis and therapeutic responses in solid cancers. Genomics 2024; 116:110942. [PMID: 39326641 DOI: 10.1016/j.ygeno.2024.110942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
The influence of the stroma on cancer progression has been underestimated, particularly the role of vascular pericytes in the tumor microenvironment. Herein, we identified 51 differentially expressed genes in tumor-derived pericytes (TPCs) by analyzing transcriptomic data from TCGA alongside our proteomic data. Using five key TPC-related genes, we constructed a prognostic risk model that accurately predicts prognosis and treatment responses in liver and lung cancers. Enrichment analyses linked these genes to blood vessel remodeling, function, and immune-related pathways. Single-cell RNA sequencing data from the GEO database validated these findings, showing significant upregulation of AKAP12 and RRAS in TPCs. Immunostaining confirmed increased expression of these genes in liver and lung tumors. Depletion of RRAS or AKAP12 in TPCs restored their blood vessel-supporting role. Overall, our findings suggest that TPC-related gene profiles can predict patient outcomes and therapeutic responses in solid cancers, and targeting these profiles could be an improved treatment strategy.
Collapse
Affiliation(s)
- Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xianhua Zhuo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Otolaryngology, Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Lihuan Shang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Tianjun Lan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510010, China
| | - Hongquan Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaochun Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Cui Lv
- Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
3
|
Cash A, de Jager C, Brickler T, Soliman E, Ladner L, Kaloss AM, Zhu Y, Pridham KJ, Mills J, Ju J, Basso EKG, Chen M, Johnson Z, Sotiropoulos Y, Wang X, Xie H, Matson JB, Marvin EA, Theus MH. Endothelial deletion of EPH receptor A4 alters single-cell profile and Tie2/Akap12 signaling to preserve blood-brain barrier integrity. Proc Natl Acad Sci U S A 2023; 120:e2204700120. [PMID: 37796990 PMCID: PMC10576133 DOI: 10.1073/pnas.2204700120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
Neurobiological consequences of traumatic brain injury (TBI) result from a complex interplay of secondary injury responses and sequela that mediates chronic disability. Endothelial cells are important regulators of the cerebrovascular response to TBI. Our work demonstrates that genetic deletion of endothelial cell (EC)-specific EPH receptor A4 (EphA4) using conditional EphA4f/f/Tie2-Cre and EphA4f/f/VE-Cadherin-CreERT2 knockout (KO) mice promotes blood-brain barrier (BBB) integrity and tissue protection, which correlates with improved motor function and cerebral blood flow recovery following controlled cortical impact (CCI) injury. scRNAseq of capillary-derived KO ECs showed increased differential gene expression of BBB-related junctional and actin cytoskeletal regulators, namely, A-kinase anchor protein 12, Akap12, whose presence at Tie2 clustering domains is enhanced in KO microvessels. Transcript and protein analysis of CCI-injured whole cortical tissue or cortical-derived ECs suggests that EphA4 limits the expression of Cldn5, Akt, and Akap12 and promotes Ang2. Blocking Tie2 using sTie2-Fc attenuated protection and reversed Akap12 mRNA and protein levels cortical-derived ECs. Direct stimulation of Tie2 using Vasculotide, angiopoietin-1 memetic peptide, phenocopied the neuroprotection. Finally, we report a noteworthy rise in soluble Ang2 in the sera of individuals with acute TBI, highlighting its promising role as a vascular biomarker for early detection of BBB disruption. These findings describe a contribution of the axon guidance molecule, EphA4, in mediating TBI microvascular dysfunction through negative regulation of Tie2/Akap12 signaling.
Collapse
Affiliation(s)
- Alison Cash
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA24061
| | - Thomas Brickler
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Liliana Ladner
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA24016
| | - Alexandra M. Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Yumeng Zhu
- Department of Chemistry, Virginia Tech, Blacksburg, VA24061
| | - Kevin J. Pridham
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Jatia Mills
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Jing Ju
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | | | - Michael Chen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Zachary Johnson
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA24061
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Yianni Sotiropoulos
- Summer Veterinary Student Research Program, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA24061
| | - Xia Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA24061
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
- Center for Engineered Health, Virginia Tech, Blacksburg, VA24061
| | - John B. Matson
- Department of Chemistry, Virginia Tech, Blacksburg, VA24061
| | - Eric A. Marvin
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA24016
| | - Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA24061
- Summer Veterinary Student Research Program, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
4
|
Kimura S, Lok J, Gelman IH, Lo EH, Arai K. Role of A-Kinase Anchoring Protein 12 in the Central Nervous System. J Clin Neurol 2023; 19:329-337. [PMID: 37417430 DOI: 10.3988/jcn.2023.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 07/08/2023] Open
Abstract
A-kinase anchoring protein (AKAP) 12 is a scaffolding protein that anchors various signaling proteins to the plasma membrane. These signaling proteins include protein kinase A, protein kinase C, protein phosphatase 2B, Src-family kinases, cyclins, and calmodulin, which regulate their respective signaling pathways. AKAP12 expression is observed in the neurons, astrocytes, endothelial cells, pericytes, and oligodendrocytes of the central nervous system (CNS). Its physiological roles include promoting the development of the blood-brain barrier, maintaining white-matter homeostasis, and even regulating complex cognitive functions such as long-term memory formation. Under pathological conditions, dysregulation of AKAP12 expression levels may be involved in the pathology of neurological diseases such as ischemic brain injury and Alzheimer's disease. This minireview aimed to summarize the current literature on the role of AKAP12 in the CNS.
Collapse
Affiliation(s)
- Shintaro Kimura
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Life Science Research Center, Gifu University, Gifu, Japan
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Critical Care Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Irwin H Gelman
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Li H. Physiologic and pathophysiologic roles of AKAP12. Sci Prog 2022; 105:368504221109212. [PMID: 35775596 PMCID: PMC10450473 DOI: 10.1177/00368504221109212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A kinase anchoring protein (AKAP) 12 is a scaffolding protein that improves the specificity and efficiency of spatiotemporal signal through assembling intracellular signal proteins into a specific complex. AKAP12 is a negative mitogenic regulator that plays an important role in controlling cytoskeletal architecture, maintaining endothelial integrity, regulating glial function and forming blood-brain barrier (BBB) and blood retinal barrier (BRB). Moreover, elevated or reduced AKAP12 contributes to a variety of diseases. Complex connections between AKAP12 and various diseases including chronic liver diseases (CLDs), inflammatory diseases and a series of cancers will be tried to delineate in this paper. We first describe the expression, distribution and physiological function of AKAP12. Then we summarize the current knowledge of different connections between AKAP12 expression and various diseases. Some research groups have found paradoxical roles of AKAP12 in different diseases and further confirmation is needed. This paper aims to assess the role of AKAP12 in physiology and diseases to help lay the foundation for the design of small molecules for specific AKAP12 to correct the pathological signal defects.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
6
|
Duan X, Shi Y, Zhao S, Yao L, Sheng J, Liu D. Foxc1a regulates zebrafish vascular integrity and brain vascular development through targeting amotl2a and ctnnb1. Microvasc Res 2022; 143:104400. [PMID: 35724741 DOI: 10.1016/j.mvr.2022.104400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022]
Abstract
Accumulating evidences have pointed that foxc1a is essential for vascular development and integrity maintenance through regulating the expression of downstream genes and interacting with signaling pathways. However, the underling cellular and molecular mechanisms of foxc1a in regulating vascular development remain undetermined. Based on two different foxc1a mutant zebrafish lines (foxc1anju18 and foxc1anju19 which generated predicted truncated foxc1a proteins with 50aa and 315aa respectively), we found that around 30 % of foxc1anju18 zebrafish exhibited severe vascular developmental defects with obvious hemorrhage in hindbrain and trunk at embryonic stages. Confocal imaging analysis revealed that the formation of middle cerebral vein (MCeV), intra-cerebral central arteries (CtAs) and dorsal longitudinal vein (DLV) of brain vessels was significantly blocked in foxc1anju18enbryos. Injection of exogenous full length and foxc1anju19 truncated foxc1a mRNA both rescued the deficiency of foxc1anju18 embryos. Transcriptome analysis revealed 186 DEGs in foxc1anju18 zebrafish among which amotl2a and ctnnb1 expression were reduced and functionally associated with adherens junctions. Dual-Luciferase assays validated amotl2a and ctnnb1 were both directly transactivated by foxc1a. Rescue experiments demonstrated that amotl2a was mainly responsible for the vascular integrity caused by foxc1a mutation and also coordinated with ctnnb1 to regulate brain vascular development. Our data point to a novel clue that foxc1a regulates vascular integrity and brain vascular development through targeting amotl2a and ctnnb1.
Collapse
Affiliation(s)
- Xuchu Duan
- School of Life Science, Nantong Laboratory of Development and Diseases, Department of Endocrine, Affiliated Hospital, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, China
| | - Yuanyuan Shi
- The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - Shu Zhao
- School of Life Science, Nantong Laboratory of Development and Diseases, Department of Endocrine, Affiliated Hospital, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, China
| | - Lili Yao
- School of Life Science, Nantong Laboratory of Development and Diseases, Department of Endocrine, Affiliated Hospital, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, China
| | - Jiajing Sheng
- School of Life Science, Nantong Laboratory of Development and Diseases, Department of Endocrine, Affiliated Hospital, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, China.
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases, Department of Endocrine, Affiliated Hospital, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, China.
| |
Collapse
|
7
|
Wolpe AG, Ruddiman CA, Hall PJ, Isakson BE. Polarized Proteins in Endothelium and Their Contribution to Function. J Vasc Res 2021; 58:65-91. [PMID: 33503620 DOI: 10.1159/000512618] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Protein localization in endothelial cells is tightly regulated to create distinct signaling domains within their tight spatial restrictions including luminal membranes, abluminal membranes, and interendothelial junctions, as well as caveolae and calcium signaling domains. Protein localization in endothelial cells is also determined in part by the vascular bed, with differences between arteries and veins and between large and small arteries. Specific protein polarity and localization is essential for endothelial cells in responding to various extracellular stimuli. In this review, we examine protein localization in the endothelium of resistance arteries, with occasional references to other vessels for contrast, and how that polarization contributes to endothelial function and ultimately whole organism physiology. We highlight the protein localization on the luminal surface, discussing important physiological receptors and the glycocalyx. The protein polarization to the abluminal membrane is especially unique in small resistance arteries with the presence of the myoendothelial junction, a signaling microdomain that regulates vasodilation, feedback to smooth muscle cells, and ultimately total peripheral resistance. We also discuss the interendothelial junction, where tight junctions, adherens junctions, and gap junctions all convene and regulate endothelial function. Finally, we address planar cell polarity, or axial polarity, and how this is regulated by mechanosensory signals like blood flow.
Collapse
Affiliation(s)
- Abigail G Wolpe
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Claire A Ruddiman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Phillip J Hall
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA, .,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA,
| |
Collapse
|
8
|
FRZB as a key molecule in abdominal aortic aneurysm progression affecting vascular integrity. Biosci Rep 2021; 41:227068. [PMID: 33245093 PMCID: PMC7789806 DOI: 10.1042/bsr20203204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
Abdominal aortic aneurysm (AAA), when ruptured, results in high mortality. The identification of molecular pathways involved in AAA progression is required to improve AAA prognosis. The aim of the present study was to assess the key genes for the progression of AAA and their functional role. Genomic and clinical data of three independent cohorts were downloaded from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) (GSE57691, GSE7084, and GSE98278). To develop AAA diagnosis and progression-related differentially expressed genes (DEGs), we used a significance analysis of microarray (SAM). Spearman correlation test and gene set analysis were performed to identify potential enriched pathways for DEGs. Only the Frizzled-related protein (FRZB) gene and chromosome 1 open reading frame 24 (C1orf24) exhibited significant down-regulation in all analyses. With FRZB, the pathways were associated with RHO GTPase and elastin fiber formation. With C1orf24, the pathways were elastic fiber formation, extracellular matrix organization, and cell–cell communication. Since only FRZB was evolutionally conserved in the vertebrates, function of FRZB was validated using zebrafish embryos. Knockdown of frzb remarkably reduced vascular integrity in zebrafish embryos. We believe that FRZB is a key gene involved in AAA initiation and progression affecting vascular integrity.
Collapse
|
9
|
Zhang C, Tan Y, Feng J, Huang C, Liu B, Fan Z, Xu B, Lu T. Exploration of the Effects of Substrate Stiffness on Biological Responses of Neural Cells and Their Mechanisms. ACS OMEGA 2020; 5:31115-31125. [PMID: 33324820 PMCID: PMC7726759 DOI: 10.1021/acsomega.0c04279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/03/2020] [Indexed: 05/10/2023]
Abstract
Substrate stiffness, as a critical mechanical factor, has been proven to be an important regulator of biological responses, cellular functions, and disease occurrence. However, the effects of substrate stiffness on the phenotypes and drug responses of neural cells remain largely unknown. In this study, polydimethylsiloxane (PDMS) substrates with different stiffnesses were employed to establish the mechanical microenvironment of tissues of different organs. We studied the influences of stiffness on neural cell phenotypes, including cell viability, cell cycle, cytoskeleton structures, cell stiffness, and drug responses of neural cells for hormesis and therapeutic efficacy in neurodegenerative disorders (NDD). The results showed that the greater the range of maximum stimulatory responses, the bigger the width of the stimulatory dosage and the higher the range of maximum neuroprotective activities of hormetic chemicals in neural cells grown on the soft substrate commensurable to the stiffness of the brain, indicating that neural cells on a rigid substrate are resistant to hormetic and neuroprotective effects of hormetic chemicals against 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD) model. The sensitivity of neural cells on the soft substrate to drug response was attributed to the increased cell viability rate, cell cycle progression, actin stress fibers, focal adhesion formation, and decreased cell stiffness. The promoting effect of the soft substrate and the enhanced hormetic and neuroprotective effect of hormetic chemicals on soft substrates in PC12 cells were confirmed to be mediated by the upregulated EGFR/PI3K/AKT signaling pathway by RNA-Seq and bioinformatics analysis. This study demonstrates that the biomechanical properties of the neural microenvironment play important roles in cell phenotypes and drug responses of neural cells in vitro and suggests that substrate stiffness should be considered in the anti-NDD drug design and treatment.
Collapse
Affiliation(s)
- Chao Zhang
- School
of Chinese Pharmacy, Beijing University
of Chinese Medicine, Beijing 100102, China
| | - Yan Tan
- School
of Life Sciences, Beijing University of
Chinese Medicine, Beijing 100102, China
| | - Jiantao Feng
- Artemisinin
Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chang Huang
- School
of Acupuncture-Moxibustion and Tuina, Beijing
University of Chinese Medicine, Beijing 100102, China
| | - Biyuan Liu
- School
of Life Sciences, Beijing University of
Chinese Medicine, Beijing 100102, China
| | - Zhu Fan
- School
of Life Sciences, Beijing University of
Chinese Medicine, Beijing 100102, China
| | - Bing Xu
- School
of Chinese Pharmacy, Beijing University
of Chinese Medicine, Beijing 100102, China
| | - Tao Lu
- School
of Life Sciences, Beijing University of
Chinese Medicine, Beijing 100102, China
| |
Collapse
|
10
|
Qasim H, McConnell BK. AKAP12 Signaling Complex: Impacts of Compartmentalizing cAMP-Dependent Signaling Pathways in the Heart and Various Signaling Systems. J Am Heart Assoc 2020; 9:e016615. [PMID: 32573313 PMCID: PMC7670535 DOI: 10.1161/jaha.120.016615] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure is a complex clinical syndrome, represented as an impairment in ventricular filling and myocardial blood ejection. As such, heart failure is one of the leading causes of death in the United States. With a mortality rate of 1 per 8 individuals and a prevalence of 6.2 million Americans, it has been projected that heart failure prevalence will increase by 46% by 2030. Cardiac remodeling (a general determinant of heart failure) is regulated by an extensive network of intertwined intracellular signaling pathways. The ability of signalosomes (molecular signaling complexes) to compartmentalize several cellular pathways has been recently established. These signalosome signaling complexes provide an additional level of specificity to general signaling pathways by regulating the association of upstream signals with downstream effector molecules. In cardiac myocytes, the AKAP12 (A-kinase anchoring protein 12) scaffolds a large signalosome that orchestrates spatiotemporal signaling through stabilizing pools of phosphatases and kinases. Predominantly upon β-AR (β2-adrenergic-receptor) stimulation, the AKAP12 signalosome is recruited near the plasma membrane and binds tightly to β-AR. Thus, one major function of AKAP12 is compartmentalizing PKA (protein kinase A) signaling near the plasma membrane. In addition, it is involved in regulating desensitization, downregulation, and recycling of β-AR. In this review, the critical roles of AKAP12 as a scaffold protein in mediating signaling downstream GPCRs (G protein-coupled receptor) are discussed with an emphasis on its reported and potential roles in cardiovascular disease initiation and progression.
Collapse
Affiliation(s)
- Hanan Qasim
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonTX
| | - Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonTX
| |
Collapse
|
11
|
Jiang WD, Zhang L, Feng L, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Zhou XQ. Inconsistently impairment of immune function and structural integrity of head kidney and spleen by vitamin A deficiency in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2020; 99:243-256. [PMID: 32058097 DOI: 10.1016/j.fsi.2020.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
To investigate effects of vitamin A (VA) on fish immune function and structural integrity in the head kidney and spleen of fish, total of 540 on-growing grass carp (Ctenopharyngodon idella) were divided into six groups, feeding graded levels of VA (0, 600, 1200, 1800, 2800 and 3800 IU/kg diet) for 70 days. Results showed that dietary VA deficiency depressed antibacterial ability and aggravated inflammatory response partially linked to nuclear factor κB p65 (NF-κB p65) and target of rapamycin (TOR) signaling pathways in the head kidney and spleen of fish. Meanwhile, VA deficiency caused oxidative damage, apoptosis and disruption of tight junctions (TJs), which were partially attributed to the down-regulation of NF-E2-related factor 2 (Nrf2) signaling mediated antioxidant ability, the up-regulation of p38 mitogen-activated protein kinase (p38MAPK) signaling mediated apoptosis and myosin light chain kinase (MLCK) signaling mediated disruption of tight junctions (TJs). Taken together, current study firstly demonstrated that VA deficiency decreased the immune function and damaged the structural integrity of the head kidney and spleen in fish.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Li Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| |
Collapse
|
12
|
Benz PM, Ding Y, Stingl H, Loot AE, Zink J, Wittig I, Popp R, Fleming I. AKAP12 deficiency impairs VEGF-induced endothelial cell migration and sprouting. Acta Physiol (Oxf) 2020; 228:e13325. [PMID: 31162891 PMCID: PMC6916389 DOI: 10.1111/apha.13325] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022]
Abstract
Aim Protein kinase (PK) A anchoring protein (AKAP) 12 is a scaffolding protein that anchors PKA to compartmentalize cyclic AMP signalling. This study assessed the consequences of the downregulation or deletion of AKAP12 on endothelial cell migration and angiogenesis. Methods The consequences of siRNA‐mediated downregulation AKAP12 were studied in primary cultures of human endothelial cells as well as in endothelial cells and retinas from wild‐type versus AKAP12−/− mice. Molecular interactions were investigated using a combination of immunoprecipitation and mass spectrometry. Results AKAP12 was expressed at low levels in confluent endothelial cells but its expression was increased in actively migrating cells, where it localized to lamellipodia. In the postnatal retina, AKAP12 was expressed by actively migrating tip cells at the angiogenic front, and its deletion resulted in defective extension of the vascular plexus. In migrating endothelial cells, AKAP12 was co‐localized with the PKA type II‐α regulatory subunit as well as multiple key regulators of actin dynamics and actin filament‐based movement; including components of the Arp2/3 complex and the vasodilator‐stimulated phosphoprotein (VASP). Fitting with the evidence of a physical VASP/AKAP12/PKA complex, it was possible to demonstrate that the VEGF‐stimulated and PKA‐dependent phosphorylation of VASP was dependent on AKAP12. Indeed, AKAP12 colocalized with phospho‐Ser157 VASP at the leading edge of migrating endothelial cells. Conclusion The results suggest that compartmentalized AKAP12/PKA signalling mediates VASP phosphorylation at the leading edge of migrating endothelial cells to translate angiogenic stimuli into altered actin dynamics and cell movement.
Collapse
Affiliation(s)
- Peter M. Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Yindi Ding
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Heike Stingl
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Annemarieke E. Loot
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Ilka Wittig
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine Goethe University Frankfurt am Main Germany
| | - Rüdiger Popp
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| |
Collapse
|
13
|
Kim JG, Kim HH, Bae SJ. Akap12beta supports asymmetric heart development via modulating the Kupffer’s vesicle formation in zebrafish. BMB Rep 2019. [PMID: 31383248 PMCID: PMC6726206 DOI: 10.5483/bmbrep.2019.52.8.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The vertebrate body plan is accomplished by left-right asymmetric organ development and the heart is a representative asymmetric internal organ which jogs to the left-side. Kupffer’s vesicle (KV) is a spherical left-right organizer during zebrafish embryogenesis and is derived from a cluster of dorsal forerunner cells (DFCs). Cadherin1 is required for collective migration of a DFC cluster and failure of DFC collective migration by Cadherin1 decrement causes KV malformation which results in defective heart laterality. Recently, loss of function mutation of A-kinase anchoring protein 12 (AKAP12) is reported as a high-risk gene in congenital heart disease patients. In this study, we demonstrated the role of akap12β in asymmetric heart development. The akap12β, one of the akap12 isoforms, was expressed in DFCs which give rise to KV and akap12β-deficient zebrafish embryos showed defective heart laterality due to the fragmentation of DFC clusters which resulted in KV malformation. DFC-specific loss of akap12β also led to defective heart laterality as a consequence of the failure of collective migration by cadherin1 reduction. Exogenous akap12β mRNA not only restored the defective heart laterality but also increased cadherin1 expression in akap12β morphant zebrafish embryos. Taken together, these findings provide the first experimental evidence that akap12β regulates heart laterality via cadherin1.
Collapse
Affiliation(s)
- Jeong-gyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyun-Ho Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
- Biological and Medical Device Evaluation Team, Korea Testing & Research Institute, Gwacheon 13810, Korea
| | - Sung-Jin Bae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
- Korean Medicine Research Center for Healthy Aging, Pusan National Univerity, Yangsan 50612, Korea
| |
Collapse
|
14
|
Aldosterone Impairs Mitochondrial Function in Human Cardiac Fibroblasts via A-Kinase Anchor Protein 12. Sci Rep 2018; 8:6801. [PMID: 29717226 PMCID: PMC5931570 DOI: 10.1038/s41598-018-25068-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/06/2018] [Indexed: 12/26/2022] Open
Abstract
Aldosterone (Aldo) contributes to mitochondrial dysfunction and cardiac oxidative stress. Using a proteomic approach, A-kinase anchor protein (AKAP)-12 has been identified as a down-regulated protein by Aldo in human cardiac fibroblasts. We aim to characterize whether AKAP-12 down-regulation could be a deleterious mechanism which induces mitochondrial dysfunction and oxidative stress in cardiac cells. Aldo down-regulated AKAP-12 via its mineralocorticoid receptor, increased oxidative stress and induced mitochondrial dysfunction characterized by decreased mitochondrial-DNA and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expressions in human cardiac fibroblasts. CRISPR/Cas9-mediated knock-down of AKAP-12 produced similar deleterious effects in human cardiac fibroblasts. CRISPR/Cas9-mediated activation of AKAP-12 blunted Aldo effects on mitochondrial dysfunction and oxidative stress in human cardiac fibroblasts. In Aldo-salt-treated rats, cardiac AKAP-12, mitochondrial-DNA and PGC-1α expressions were decreased and paralleled increased oxidative stress. In myocardial biopsies from patients with aortic stenosis (AS, n = 26), AKAP-12, mitochondrial-DNA and PGC-1α expressions were decreased as compared to Controls (n = 13). Circulating Aldo levels inversely correlated with cardiac AKAP-12. PGC-1α positively associated with AKAP-12 and with mitochondrial-DNA. Aldo decreased AKAP-12 expression, impairing mitochondrial biogenesis and increasing cardiac oxidative stress. AKAP-12 down-regulation triggered by Aldo may represent an important event in the development of mitochondrial dysfunction and cardiac oxidative stress.
Collapse
|
15
|
Ercu M, Klussmann E. Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System. J Cardiovasc Dev Dis 2018; 5:jcdd5010014. [PMID: 29461511 PMCID: PMC5872362 DOI: 10.3390/jcdd5010014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 12/13/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Maria Ercu
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin 13347, Germany.
| |
Collapse
|
16
|
Jiang WD, Xu J, Zhou XQ, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Feng L. Dietary protein levels regulated antibacterial activity, inflammatory response and structural integrity in the head kidney, spleen and skin of grass carp (Ctenopharyngodon idella) after challenged with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2017; 68:154-172. [PMID: 28698127 DOI: 10.1016/j.fsi.2017.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/02/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the effects of dietary protein levels on disease resistance, immune function and structural integrity in the head kidney, spleen and skin of grass carp (Ctenopharyngodon idella). A total of 540 grass carp (264.11 ± 0.76 g) were fed six diets containing graded levels of protein (143.1, 176.7, 217.2, 257.5, 292.2 and 322.8 g digestible protein kg-1 diet) for 8 weeks. After the growth trial, fish were challenged with Aeromonas hydrophila for 14 days. The results indicated that optimal levels of dietary protein: (1) (1) increased the lysozyme (LA) and acid phosphatase (ACP) activities and the complement 3 (C3) and C4 contents, up-regulated antimicrobial peptides, anti-inflammatory cytokines, inhibitor of κBα, target of rapamycin and ribosomal protein S6 kinases 1 mRNA levels, whereas down-regulated pro-inflammatory cytokines, nuclear factor kappa B (NF-κB) P65, IKKβ, IKKγ, eIF4E-binding proteins (4E-BP) 1 and 4E-BP2 mRNA levels in the head kidney, spleen and skin of grass carp (P < 0.05), suggesting that optimal level of dietary protein could enhance immune function in the head kidney, spleen and skin of fish; (2) increased the activities and mRNA levels of antioxidant enzymes, enhanced the glutathione content, decreased reactive oxygen species, malondialdehyde (MDA) and protein carbonyl contents, and up-regulated the mRNA levels of NF-E2-related factor 2, B-cell lymphoma protein-2, inhibitor of apoptosis proteins, myeloid cell leukemia-1 and tight junction complexes, whereas down-regulated Kelch-like-ECH-associated protein (Keap) 1b, cysteinyl aspartic acid-protease 3, 8, 9, Fas ligand, apoptotic protease activating factor-1, Bcl-2 associated X protein and myosin light chain kinase mRNA levels in the head kidney, spleen and skin of grass carp (P < 0.05), indicating that optimal level of dietary protein could improve structural integrity in the head kidney, spleen and skin of fish. Finally, based on the skin hemorrhage and lesion morbidity, LA activity and MDA content, the optimal levels of dietary protein for grass carp (264 g-787 g) were estimated to be 241.45 g kg-1 diet (217.68 g digestible protein kg-1 diet), 301.68 g kg-1 diet (265.48 g digestible protein kg-1 diet) and 307.84 g kg-1 diet (272.71 g digestible protein kg-1 diet), respectively.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jing Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
17
|
Xu J, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Effects of dietary protein levels on the disease resistance, immune function and physical barrier function in the gill of grass carp (Ctenopharyngodon idella) after challenged with Flavobacterium columnare. FISH & SHELLFISH IMMUNOLOGY 2016; 57:1-16. [PMID: 27539702 DOI: 10.1016/j.fsi.2016.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
The effects of dietary protein levels on the disease resistance, gill immune function and physical barrier function of grass carp (Ctenopharyngodon idella) were investigated in this study. A total of 540 grass carp (264.11 ± 0.76 g) were fed six diets containing graded levels of protein (143.1, 176.7, 217.2, 257.5, 292.2 and 322.8 g digestible protein kg(-1) diet) for 8 weeks. After the growth trial, fish were challenged with Flavobacterium columnare for 3 days. The results indicated that optimal levels of dietary protein had the following effects: (1) the production of antibacterial components increased, and anti-inflammatory cytokines, inhibitor of κBα, target of rapamycin and ribosomal protein S6 kinases 1 mRNA levels were up-regulated, whereas mRNA levels of pro-inflammatory cytokines, nuclear factor kappa B (NF-κB) P65, NF-κB P52, IκB kinase (IKK) α, IKKβ, IKKγ, eIF4E-binding proteins (4E-BP) 1 and 4E-BP2 were down-regulated in the gills of grass carp (P < 0.05), indicating that fish gill immune function was enhanced at an optimal level of dietary protein; (2) the activities and mRNA levels of antioxidant enzymes and glutathione content increased, the contents of reactive oxygen species, malondialdehyde and protein carbonyl (PC) decreased, and NF-E2-related factor 2, B-cell lymphoma protein-2, inhibitor of apoptosis proteins, myeloid cell leukemia-1 and tight junction complexes mRNA levels were up-regulated, whereas Kelch-like-ECH-associated protein (Keap) 1a, Keap1b, cysteinyl aspartic acid-protease 3, 8, 9, fatty acid synthetase ligand, apoptotic protease activating factor-1, Bcl-2 associated X protein, c-Jun N-terminal protein kinase, myosin light chain kinase and p38 mitogen-activated protein kinase mRNA levels were down-regulated in the gills of grass carp (P < 0.05), indicating that the fish gill physical barrier function improved at an optimal level of dietary protein. Finally, based on the gill rot morbidity, ACP activity and PC content, the optimal levels of dietary protein for grass carp were estimated to be 286.65 g kg(-1) diet (253.73 g digestible protein kg(-1) diet), 290.46 g kg(-1) diet (257.76 g digestible protein kg(-1) diet) and 296.25 g kg(-1) diet (260.69 g digestible protein kg(-1) diet), respectively.
Collapse
Affiliation(s)
- Jing Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
18
|
Affiliation(s)
- Shahram Eisa-Beygi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
19
|
FRET biosensors reveal AKAP-mediated shaping of subcellular PKA activity and a novel mode of Ca(2+)/PKA crosstalk. Cell Signal 2016; 28:294-306. [PMID: 26772752 DOI: 10.1016/j.cellsig.2016.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 12/18/2015] [Accepted: 01/04/2016] [Indexed: 02/01/2023]
Abstract
Scaffold proteins play a critical role in cellular homeostasis by anchoring signaling enzymes in close proximity to downstream effectors. In addition to anchoring static enzyme complexes, some scaffold proteins also form dynamic signalosomes that can traffic to different subcellular compartments upon stimulation. Gravin (AKAP12), a multivalent scaffold, anchors PKA and other enzymes to the plasma membrane under basal conditions, but upon [Ca(2+)]i elevation, is rapidly redistributed to the cytosol. Because gravin redistribution also impacts PKA localization, we postulate that gravin acts as a calcium "switch" that modulates PKA-substrate interactions at the plasma membrane, thus facilitating a novel crosstalk mechanism between Ca(2+) and PKA-dependent pathways. To assess this, we measured the impact of gravin-V5/His expression on compartmentalized PKA activity using the FRET biosensor AKAR3 in cultured cells. Upon treatment with forskolin or isoproterenol, cells expressing gravin-V5/His showed elevated levels of plasma membrane PKA activity, but cytosolic PKA activity levels were reduced compared with control cells lacking gravin. This effect required both gravin interaction with PKA and localization at the plasma membrane. Pretreatment with calcium-elevating agents thapsigargin or ATP caused gravin redistribution away from the plasma membrane and prevented gravin from elevating PKA activity levels at the membrane. Importantly, this mode of Ca(2+)/PKA crosstalk was not observed in cells expressing a gravin mutant that resisted calcium-mediated redistribution from the cell periphery. These results reveal that gravin impacts subcellular PKA activity levels through the spatial targeting of PKA, and that calcium elevation modulates downstream β-adrenergic/PKA signaling through gravin redistribution, thus supporting the hypothesis that gravin mediates crosstalk between Ca(2+) and PKA-dependent signaling pathways. Based on these results, AKAP localization dynamics may represent an important paradigm for the regulation of cellular signaling networks.
Collapse
|
20
|
Diviani D, Reggi E, Arambasic M, Caso S, Maric D. Emerging roles of A-kinase anchoring proteins in cardiovascular pathophysiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1926-36. [PMID: 26643253 DOI: 10.1016/j.bbamcr.2015.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023]
Abstract
Heart and blood vessels ensure adequate perfusion of peripheral organs with blood and nutrients. Alteration of the homeostatic functions of the cardiovascular system can cause hypertension, atherosclerosis, and coronary artery disease leading to heart injury and failure. A-kinase anchoring proteins (AKAPs) constitute a family of scaffolding proteins that are crucially involved in modulating the function of the cardiovascular system both under physiological and pathological conditions. AKAPs assemble multifunctional signaling complexes that ensure correct targeting of the cAMP-dependent protein kinase (PKA) as well as other signaling enzymes to precise subcellular compartments. This allows local regulation of specific effector proteins that control the function of vascular and cardiac cells. This review will focus on recent advances illustrating the role of AKAPs in cardiovascular pathophysiology. The accent will be mainly placed on the molecular events linked to the control of vascular integrity and blood pressure as well as on the cardiac remodeling process associated with heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Dario Diviani
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland.
| | - Erica Reggi
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Miroslav Arambasic
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Stefania Caso
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| | - Darko Maric
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne 1005, Switzerland
| |
Collapse
|
21
|
Kim HH, Kim JG, Jeong J, Han SY, Kim KW. Akap12 is essential for the morphogenesis of muscles involved in zebrafish locomotion. Differentiation 2014; 88:106-16. [PMID: 25534553 DOI: 10.1016/j.diff.2014.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/20/2014] [Accepted: 11/28/2014] [Indexed: 12/22/2022]
Abstract
Swimming behavior in fish is driven by coordinated contractions of muscle fibers. In zebrafish, slow muscle cell migration is crucial for the formation of the muscle network; slow myoblasts, which arise from medial adaxial cells, migrate radially to the lateral surface of the trunk and tail during embryogenesis. This study found that the zebrafish A-kinase anchoring protein (akap)12 isoforms akap12α and akap12β are required for muscle morphogenesis and locomotor activity. Embryos deficient in akap12 exhibited reduced spontaneous coiling, touch response, and free swimming. Akap12-depleted slow but not fast muscle cells were misaligned, suggesting that the behavioral abnormalities resulted from specific defects in slow muscle patterning; indeed, slow muscle cells and muscle pioneers in these embryos showed abnormal migration in a cell-autonomous manner. Taken together, these results suggest that akap12 plays a critical role in the development of zebrafish locomotion by regulating the normal morphogenesis of muscles.
Collapse
Affiliation(s)
- Hyun-Ho Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jeong-gyun Kim
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Korea
| | - Jinkyung Jeong
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Song-Yi Han
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Korea
| | - Kyu-Won Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea; Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
22
|
Cha JH, Wee HJ, Seo JH, Ahn BJ, Park JH, Yang JM, Lee SW, Lee OH, Lee HJ, Gelman IH, Arai K, Lo EH, Kim KW. Prompt meningeal reconstruction mediated by oxygen-sensitive AKAP12 scaffolding protein after central nervous system injury. Nat Commun 2014; 5:4952. [PMID: 25229625 DOI: 10.1038/ncomms5952] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 08/11/2014] [Indexed: 11/09/2022] Open
Abstract
The meninges forms a critical epithelial barrier, which protects the central nervous system (CNS), and therefore its prompt reconstruction after CNS injury is essential for reducing neuronal damage. Meningeal cells migrate into the lesion site after undergoing an epithelial-mesenchymal transition (EMT) and repair the impaired meninges. However, the molecular mechanisms of meningeal EMT remain largely undefined. Here we show that TGF-β1 and retinoic acid (RA) released from the meninges, together with oxygen tension, could constitute the mechanism for rapid meningeal reconstruction. AKAP12 is an effector of this mechanism, and its expression in meningeal cells is regulated by integrated upstream signals composed of TGF-β1, RA and oxygen tension. Functionally, AKAP12 modulates meningeal EMT by regulating the TGF-β1-non-Smad-SNAI1 signalling pathway. Collectively, TGF-β1, RA and oxygen tension can modulate the dynamic change in AKAP12 expression, causing prompt meningeal reconstruction after CNS injury by regulating the transition between the epithelial and mesenchymal states of meningeal cells.
Collapse
Affiliation(s)
- Jong-Ho Cha
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hee-Jun Wee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Ji Hae Seo
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Bum Ju Ahn
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Ji-Hyeon Park
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jun-Mo Yang
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Sae-Won Lee
- Department of Internal Medicine, Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul 110-799, Korea
| | - Ok-Hee Lee
- Department of Biomedical Science, CHA University, Seoul 135-081, Korea
| | - Hyo-Jong Lee
- College of Pharmacy, Inje University, Gimhae 621-749, Korea
| | - Irwin H Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA
| | - Kyu-Won Kim
- 1] SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea [2] Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
23
|
Radeva MY, Kugelmann D, Spindler V, Waschke J. PKA compartmentalization via AKAP220 and AKAP12 contributes to endothelial barrier regulation. PLoS One 2014; 9:e106733. [PMID: 25188285 PMCID: PMC4154725 DOI: 10.1371/journal.pone.0106733] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/07/2014] [Indexed: 01/14/2023] Open
Abstract
cAMP-mediated PKA signaling is the main known pathway involved in maintenance of the endothelial barrier. Tight regulation of PKA function can be achieved by discrete compartmentalization of the enzyme via physical interaction with A-kinase anchoring proteins (AKAPs). Here, we investigated the role of AKAPs 220 and 12 in endothelial barrier regulation. Analysis of human and mouse microvascular endothelial cells as well as isolated rat mesenteric microvessels was performed using TAT-Ahx-AKAPis peptide, designed to competitively inhibit PKA-AKAP interaction. In vivo microvessel hydraulic conductivity and in vitro transendothelial electrical resistance measurements showed that this peptide destabilized endothelial barrier properties, and dampened the cAMP-mediated endothelial barrier stabilization induced by forskolin and rolipram. Immunofluorescence analysis revealed that TAT-Ahx-AKAPis led to both adherens junctions and actin cytoskeleton reorganization. Those effects were paralleled by redistribution of PKA and Rac1 from endothelial junctions and by Rac1 inactivation. Similarly, membrane localization of AKAP220 was also reduced. In addition, depletion of either AKAP12 or AKAP220 significantly impaired endothelial barrier function and AKAP12 was also shown to interfere with cAMP-mediated barrier enhancement. Furthermore, immunoprecipitation analysis demonstrated that AKAP220 interacts not only with PKA but also with VE-cadherin and ß-catenin. Taken together, these results indicate that AKAP-mediated PKA subcellular compartmentalization is involved in endothelial barrier regulation. More specifically, AKAP220 and AKAP12 contribute to endothelial barrier function and AKAP12 is required for cAMP-mediated barrier stabilization.
Collapse
Affiliation(s)
- Mariya Y. Radeva
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniela Kugelmann
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Volker Spindler
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
24
|
Eisa-Beygi S, Macdonald RL, Wen XY. Regulatory pathways affecting vascular stabilization via VE-cadherin dynamics: insights from zebrafish (Danio rerio). J Cereb Blood Flow Metab 2014; 34:1430-3. [PMID: 25027310 PMCID: PMC4158677 DOI: 10.1038/jcbfm.2014.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 05/31/2014] [Accepted: 06/23/2014] [Indexed: 12/22/2022]
Abstract
The endothelial-specific transmembrane glycoprotein, vascular endothelial (VE)-cadherin, is required for the organization of a stable vascular endothelium. A number of cerebrovascular disorders are associated with mutations in genes that otherwise regulate vascular integrity through VE-cadherin dynamics. Hence, identification and characterization of regulatory pathways contributing to endothelial cell-cell adhesion is of clinical relevance, particularly in the treatment of aneurysms and cerebral cavernous malformations. The zebrafish (Danio rerio) have recently emerged as a powerful paradigm for studies geared toward elucidating the etiology of cerebrovascular disorders, principally in uncovering the genetic and mechanistic basis controlling endothelial adhesive barrier function.
Collapse
Affiliation(s)
- Shahram Eisa-Beygi
- 1] Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre of the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada [2] Institute of Medical Science, Departments of Medicine and Surgery, University of Toronto, Toronto, Ontario, Canada
| | - R Loch Macdonald
- 1] Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre of the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada [2] Institute of Medical Science, Departments of Medicine and Surgery, University of Toronto, Toronto, Ontario, Canada [3] Division of Neurosurgery, St Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St Michael's Hospital, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Xiao-Yan Wen
- 1] Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre of the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada [2] Institute of Medical Science, Departments of Medicine and Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Incardona JP, Swarts TL, Edmunds RC, Linbo TL, Aquilina-Beck A, Sloan CA, Gardner LD, Block BA, Scholz NL. Exxon Valdez to Deepwater Horizon: comparable toxicity of both crude oils to fish early life stages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:303-16. [PMID: 24080042 DOI: 10.1016/j.aquatox.2013.08.011] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 05/23/2023]
Abstract
The 2010 Deepwater Horizon disaster in the Gulf of Mexico was the largest oil spill in United States history. Crude oils are highly toxic to developing fish embryos, and many pelagic fish species were spawning in the northern Gulf in the months before containment of the damaged Mississippi Canyon 252 (MC252) wellhead (April-July). The largest prior U.S. spill was the 1989 grounding of the Exxon Valdez that released 11 million gallons of Alaska North Slope crude oil (ANSCO) into Prince William Sound. Numerous studies in the aftermath of the Exxon Valdez spill defined a conventional crude oil injury phenotype in fish early life stages, mediated primarily by toxicity to the developing heart. To determine whether this type of injury extends to fishes exposed to crude oil from the Deepwater Horizon - MC252 incident, we used zebrafish to compare the embryotoxicity of ANSCO alongside unweathered and weathered MC252 oil. We also developed a standardized protocol for generating dispersed oil water-accommodated fractions containing microdroplets of crude oil in the size range of those detected in subsurface plumes in the Gulf. We show here that MC252 oil and ANSCO cause similar cardiotoxicity and photo-induced toxicity in zebrafish embryos. Morphological defects and patterns of cytochrome P450 induction were largely indistinguishable and generally correlated with polycyclic aromatic compound (PAC) composition of each oil type. Analyses of embryos exposed during different developmental windows provided additional insight into mechanisms of crude oil cardiotoxicity. These findings indicate that the impacts of MC252 crude oil on fish embryos and larvae are consistent with the canonical ANSCO cardiac injury phenotype. For those marine fish species that spawned in the northern Gulf of Mexico during and after the Deepwater Horizon incident, the established literature can therefore inform the assessment of natural resource injury in the form of potential year-class losses.
Collapse
Affiliation(s)
- John P Incardona
- Environmental Conservation Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Weissmüller T, Glover LE, Fennimore B, Curtis VF, MacManus CF, Ehrentraut SF, Campbell EL, Scully M, Grove BD, Colgan SP. HIF-dependent regulation of AKAP12 (gravin) in the control of human vascular endothelial function. FASEB J 2013; 28:256-64. [PMID: 24029533 DOI: 10.1096/fj.13-238741] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hypoxia has been widely implicated in many pathological conditions, including those associated with inflammation and tumorigenesis. A number of recent studies have implicated hypoxia in the control of vasculogenesis and permeability, the basis for which is not fully understood. Here we examine the transcriptional regulation of angiogenesis and permeability by hypoxia in endothelial cells. Guided by a global profiling approach in cultured endothelial cells, these studies revealed the selective induction of human gravin (protein kinase A anchoring protein 12) by hypoxia. Analysis of the cloned gravin promoter identified a functional hypoxia-responsive region including 2 binding sites for hypoxia-inducible factor (HIF). Site-directed mutagenesis identified the most distal HIF-binding site as essential for the induction of gravin by hypoxia. Further studies examining gravin gain and loss of function confirmed strong dependence of gravin in control of microvascular endothelial tube formation, wherein gravin functions as a "braking" system for angiogenesis. Additional studies in confluent endothelia revealed that gravin functionally couples to control endothelial barrier function in response to protein kinase A (PKA) agonists. Taken together, these results demonstrate transcriptional coordination of gravin by HIF-1α and amplified PKA-dependent endothelial responses. These findings provide an important link between hypoxia and metabolic conditions associated with inflammation and angiogenesis.
Collapse
Affiliation(s)
- Thomas Weissmüller
- 1Mucosal Inflammation Program, University of Colorado, 12700 E. 19th Ave, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Suppression of tumor and metastasis progression through the scaffolding functions of SSeCKS/Gravin/AKAP12. Cancer Metastasis Rev 2013; 31:493-500. [PMID: 22684366 DOI: 10.1007/s10555-012-9360-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Scaffolding proteins such as SSeCKS/Gravin/AKAP12 ("AKAP12") are thought to control oncogenic signaling pathways by regulating key mediators in a spatiotemporal manner. The downregulation of AKAP12 in many human cancers, often associated with promoter hypermethylation, or the loss of its locus at 6q24-25.2, correlates with progression to malignancy and metastasis. The forced re-expression of AKAP12 in cancer cell lines suppresses in vitro parameters of oncogenic growth, invasiveness, and cell motility through its ability to scaffold protein kinase C (PKC), F-actin, cyclins, Src, and phosphoinositides, and possibly through additional scaffolding domains for PKA, calmodulin, β1,4-galactosyltransferase-polypeptide-1, β2-adrenergic receptors, and cAMP-specific 3',5'-cyclic phosphodiesterase 4D. Moreover, AKAP12 re-expression in tumor models results in metastasis suppression through the inhibition of Src-regulated, VEGF-mediated neovascularization at distal sites. The current review will describe the emerging understanding of how AKAP12 regulates cellular senescence and oncogenic progression at the level of tumor cells and tumor-associated microenvironment via its multiple scaffolding functions.
Collapse
|
28
|
Pivotal Role of AKAP12 in the Regulation of Cellular Adhesion Dynamics: Control of Cytoskeletal Architecture, Cell Migration, and Mitogenic Signaling. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:529179. [PMID: 22811901 PMCID: PMC3395252 DOI: 10.1155/2012/529179] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/24/2012] [Indexed: 11/18/2022]
Abstract
Cellular dynamics are controlled by key signaling molecules such as cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). AKAP12/SSeCKS/Gravin (AKAP12) is a scaffold protein for PKA and PKC which controls actin-cytoskeleton reorganization in a spatiotemporal manner. AKAP12 also acts as a tumor suppressor which regulates cell-cycle progression and inhibits Src-mediated oncogenic signaling and cytoskeletal pathways. Reexpression of AKAP12 causes cell flattening, reorganization of the actin cytoskeleton, and the production of normalized focal adhesion structures. Downregulation of AKAP12 induces the formation of thickened, longitudinal stress fibers and the proliferation of adhesion complexes. AKAP12-null mouse embryonic fibroblasts exhibit hyperactivation of PKC, premature cellular senescence, and defects in cytokinesis, relating to the loss of PKC scaffolding activity by AKAP12. AKAP12-null mice exhibit increased cell senescence and increased susceptibility to carcinogen-induced oncogenesis. The paper describes the regulatory and scaffolding functions of AKAP12 and how it regulates cell adhesion, signaling, and oncogenic suppression.
Collapse
|