1
|
Han D, Li F, Zhao Y, Wang B, Wang J, Liu B, Mou K, Meng L, Zheng Y, Lu S, Zhu W, Zhou Y. IL-21 promoting angiogenesis contributes to the development of psoriasis. FASEB J 2024; 38:e23375. [PMID: 38102968 DOI: 10.1096/fj.202201709rrrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Elevated IL-21 expression which can effectively induce Th17 cell differentiation has been implicated in the pathogenesis of psoriasis, but its role in angiogenesis remains poorly understood. METHODS PASI and PSI score assessment was applied to evaluate the severity of psoriatic lesions. The expression of IL-21, IL-21 receptor (IL-21R), CD31, VEGFA, MMP-9, and ICAM-1 in skin was determined by immunohistochemistry or quantitative real-time polymerase chain reaction. The serum level of IL-21 was measured by enzyme-linked immunosorbent assay (ELISA). Then, their correlation was analyzed statistically. Human umbilical vein endothelial cells (HUVECs) cocultured with conditional medium from normal human epidermal keratinocytes (NHEKs) were treated with IL-21 and/or M5 cocktail (mixture of IL-1α, IL-17A, IL-22, TNF-α, and oncostatin M). The migration and tube formation of HUVECs were detected, and the levels of VEGFA, MMP-9, and ICAM-1 in NHEKs were measured by Western blotting or ELISA. RESULTS Increased IL-21 and IL-21R expression was observed in psoriatic sera or skin specimens, with IL-21R mainly locating in keratinocytes and IL-21 in immune cells. Pearson analysis showed significantly positive correlation between IL-21/IL-21R and erythema scores/microvessel density in psoriatic lesions. Moreover, the expression of proangiogenic genes, VEGFA, ICAM-1, and MMP-9 was upregulated in skins of psoriasis. Additionally, in M5 microenvironment, migration and tube formation could be magnified in HUVECs using IL-21 pre-treated NHEK medium. Mechanically, the co-stimulation of IL-21 and M5 to NEHKs increased the expression of ICAM-1. CONCLUSION IL-21 could regulate keratinocytes to secrete ICAM-1, thereby promoting angiogenesis in psoriasis.
Collapse
Affiliation(s)
- Dan Han
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fei Li
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhao
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyuan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bei Liu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kuanhou Mou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Yan Zhou
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Li M, Zhao Z, Mak TK, Wang X, Chen J, Ren H, Yu Z, Zhang C. Neutrophil extracellular traps-related signature predicts the prognosis and immune infiltration in gastric cancer. Front Med (Lausanne) 2023; 10:1174764. [PMID: 37636564 PMCID: PMC10447905 DOI: 10.3389/fmed.2023.1174764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Gastric cancer (GC) is the fifth most prevalent cancer globally, with the third highest case fatality rate. Neutrophil extracellular traps (NETs) are a reticulated structure of DNA, histones, and antimicrobial peptides produced by active neutrophils that trap pathogens. Even though NETs are associated with poorer recurrence-free survival (RFS) and overall survival (OS), the specifics of this interaction between NETs and cancer cells are yet unknown. Methods The keywords "neutrophil extracellular traps and gastric cancer" were used in the GEO database for retrieval, and the GSE188741 dataset was selected to obtain the NETs-related gene. 27 NETs-related genes were screened by univariate Cox regression analysis (p < 0.05). 27 NETs-related genes were employed to identify and categorize NETs-subgroups of GC patients under the Consensus clustering analysis. 808 GC patients in TCGA-STAD combined with GES84437 were randomly divided into a training group (n = 403) and a test group (n = 403) at a ratio of 1:1 to validate the NETs-related signature. Results Based on Multivariate Cox regression and LASSO regression analysis to develop a NETs-related prognosis model. We developed a very specific nomogram to improve the NETs-clinical score's usefulness. Similarly, we also performed a great result in pan-cancer study with NETs-score. Low NETs scores were linked to higher MSI-H (microsatellite instability-high), mutation load, and immune activity. The cancer stem cell (CSC) index and chemotherapeutic treatment sensitivity were also connected to the NET score. Our comprehensive analysis of NETs in GC suggests that NETs have a role in the tumor microenvironment, clinicopathological features, and prognosis. Discussion The NETs-score risk model provides a basis for better prognosis and therapy outcomes in GC patients.
Collapse
Affiliation(s)
- Mingzhe Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zidan Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tsz Kin Mak
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaoqun Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jingyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hui Ren
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhiwei Yu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Xiao X, Cheng W, Zhang G, Wang C, Sun B, Zha C, Kong F, Jia Y. Long Noncoding RNA: Shining Stars in the Immune Microenvironment of Gastric Cancer. Front Oncol 2022; 12:862337. [PMID: 35402261 PMCID: PMC8989925 DOI: 10.3389/fonc.2022.862337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is a kind of malignant tumor disease that poses a serious threat to human health. The GC immune microenvironment (TIME) is a very complex tumor microenvironment, mainly composed of infiltrating immune cells, extracellular matrix, tumor-associated fibroblasts, cytokines and chemokines, all of which play a key role in inhibiting or promoting tumor development and affecting tumor prognosis. Long non-coding RNA (lncRNA) is a non-coding RNA with a transcript length is more than 200 nucleotides. LncRNAs are expressed in various infiltrating immune cells in TIME and are involved in innate and adaptive immune regulation, which is closely related to immune escape, migration and invasion of tumor cells. LncRNA-targeted therapeutic effect prediction for GC immunotherapy provides a new approach for clinical research on the disease.
Collapse
Affiliation(s)
- Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guixing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Binxu Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chunyuan Zha
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
4
|
Long ZY, Zhou YF, Yuan H, Peng YM, Wu SX, Peng F. Expression and Correlation of IgG4 and IL-21 in Collagen-Induced Arthritis Rats. J Inflamm Res 2021; 14:5051-5058. [PMID: 34629885 PMCID: PMC8493012 DOI: 10.2147/jir.s317420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose We explored the expression levels of IgG4 and interleukin (IL)-21 in the serum and ankle joints of collagen-induced arthritis (CIA) rats at different disease stages. Materials and Methods Wistar rats were randomly divided into normal and model groups, and the latter group was administered bovine type II collagen to induce arthritis. Enzyme-linked immunosorbent assay was performed at 21, 28, 35, and 42 days to detect IgG4 and IL-21 in the serum, followed by histological and immunohistochemical analyses of IgG4 and IL-21r in the ankle joint of rats. Results The contents of IgG4 and IL-21 in the serum of the CIA model group were positively correlated and increased with disease progression. The expression of IgG4 and IL-21 receptors in the ankle joint of the CIA model group was significantly higher than that in the control group. These proteins were closely related to the pathological score. The serum IL-21 level in the model group was closely related to the level of IL-21 receptor in the ankle joint. Conclusion IL-21 may promote the occurrence and development of rheumatoid arthritis by combining with IL-21r to regulate the content of IgG4.
Collapse
Affiliation(s)
- Zhen-Yi Long
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Yi-Feng Zhou
- Operating Room, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Hao Yuan
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Ya-Meng Peng
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Si-Xian Wu
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Fang Peng
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| |
Collapse
|
5
|
Dinesh P, Rasool M. Berberine mitigates IL-21/IL-21R mediated autophagic influx in fibroblast-like synoviocytes and regulates Th17/Treg imbalance in rheumatoid arthritis. Apoptosis 2020; 24:644-661. [PMID: 31111379 DOI: 10.1007/s10495-019-01548-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In our previous study, we explored the therapeutic effect of berberine (BBR) against IL-21/IL-21R mediated inflammatory proliferation of adjuvant-induced arthritic fibroblast-like synoviocytes (AA-FLS) through the PI3K/Akt pathway. The current study was designed to explore the therapeutic potential of BBR (15-45 µM) against IL-21/IL-21R mediated autophagy in AA-FLS mediated through PI3K/Akt signaling and Th17/Treg imbalance. Upon IL-21 stimulation, AA-FLS expressed elevated levels of autophagy-related 5 (Atg5), Beclin-1 and LC3-phosphatidylethanolamine conjugate 3-II (LC3-II) through the utilization of p62 and inhibition of C/EBP homologous protein (CHOP). BBR (15-45 µM) inhibited autophagy in AA-FLS cells mediated through PI3K/Akt signaling via suppressing autophagic elements, p62 sequestration and induction of CHOP in a dose-dependent manner. Moreover, IL-21 promoted the uncontrolled proliferation of AA-FLS through induction of B cell lymphoma-2 (Bcl-2) and diminished expression of Bcl-2 associated X protein (BAX) via PI3K/Akt signaling. BBR inhibited the proliferation of AA-FLS via promoting apoptosis through increased expression of BAX and diminished Bcl-2 transcription factor levels. Furthermore, T cells stimulated with IL-21 induced CD4+ CD196+ Th17 cells proliferation through RORγt activation mediated in a PI3K/Akt dependent manner. BBR inhibited the proliferation of Th17 cells through downregulation of RORγt in a concentration-dependent manner. BBR also promoted the differentiation of CD4+ CD25+ Treg cells through induction of forkhead box P3 (Foxp3) activation via aryl hydrocarbon receptor (AhR) and upregulation of cytochrome P450 family 1, subfamily A, polypeptide 1 (CYP1A1). Collectively, we conclude that BBR might attenuate AA-FLS proliferation through inhibition of IL-21/IL-21R dependent autophagy and regulates the Th17/Treg imbalance in RA.
Collapse
Affiliation(s)
- Palani Dinesh
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - MahaboobKhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India. .,SMV 240, Immunopathology Lab, School of Bio Sciences and Technology, VIT, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
6
|
Liu Y, Yang Z, Lai P, Huang Z, Sun X, Zhou T, He C, Liu X. Bcl-6-directed follicular helper T cells promote vascular inflammatory injury in diabetic retinopathy. Am J Cancer Res 2020; 10:4250-4264. [PMID: 32226551 PMCID: PMC7086358 DOI: 10.7150/thno.43731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
Diabetic retinopathy (DR) is a vision-threatening complication of diabetes mellitus characterized by chronic retinal microvascular inflammation. The involvement of CD4+ T cells in retinal vascular inflammation has been considered, but the specific subset and mechanism of T cell-mediated response during the process remains unclear. Here, we aim to investigate the potential role of follicular helper T (Tfh) cells, a newly identified subset of CD4+ T cells in retinal vascular inflammation in DR. Methods: Patients with DR were enrolled and the PD-1+CXCR5+CD4+ Tfh cells were detected in the peripheral blood by flow cytometry. The streptozotocin (STZ)-induced DR model and oxygen-induced retinopathy (OIR) model were established, and 79-6, an inhibitor of Bcl-6, was injected intraperitoneally to suppress Tfh cells. The Tfh cells-related genes were investigated in the spleen, lymph nodes, and retina of mice by flow cytometry, immunofluorescence, and qPCR. Results: The Tfh cells expanded in the circulation of patients with DR and also increased in circulation, lymph nodes and retinal tissues from the STZ-induced DR mice and OIR mice. Notably, inhibition of Bcl-6, a critical transcription factor for Tfh cells development, prevented upregulation of Tfh cells and its typical IL-21 cytokine, and ameliorated vascular leakage in DR mice or retinal angiogenesis in OIR mice, indicating that Bcl-6-directed Tfh cells could promote vascular inflammation and angiogenesis. Conclusions: Our results suggested that excessive Bcl-6-directed Tfh cells represent an unrecognized feature of DR and be responsible for the retinal vascular inflammation and angiogenesis, providing opportunities for new therapeutic approaches to DR.
Collapse
|
7
|
Liu Z, Wang Y, Shi J, Chen S, Xu L, Li F, Dong N. IL-21 promotes osteoblastic differentiation of human valvular interstitial cells through the JAK3/STAT3 pathway. Int J Med Sci 2020; 17:3065-3072. [PMID: 33173427 PMCID: PMC7646116 DOI: 10.7150/ijms.49533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Objectives: This study amied to whether IL-21 promotes osteoblast transdifferentiation of cultured human Valvular interstitial cells (VICs). Methods: We first confirmed that IL-21 alters gene expression between CAVD aortic valve tissue and normal samples by immunohistochemistry, qPCR, and western blotting. VICs were cultured and treated with IL-21. Gene and protein expression levels of the osteoblastic markers ALP and Runx2, which can be blocked by specific JAK3 inhibitors and/or siRNA of STAT3, were measured. Results: IL-21 expression was upregulated in calcified aortic valves and promotes osteogenic differentiation of human VICs. IL-21 accelerated VIC calcification through the JAK3/STAT3 pathway. Conclusion: Our data suggest that IL-21 is a key factor in valve calcification and a promising candidate for targeted therapeutics for CAVD.
Collapse
Affiliation(s)
- Zongtao Liu
- Department of Cardiovascular Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yixuan Wang
- Department of Cardiovascular Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Si Chen
- Department of Cardiovascular Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Cardiovascular Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Li
- Department of Cardiovascular Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Huang Y, Zhang J, Wang G, Chen X, Zhang R, Liu H, Zhu J. Oxymatrine exhibits anti-tumor activity in gastric cancer through inhibition of IL-21R-mediated JAK2/STAT3 pathway. Int J Immunopathol Pharmacol 2018; 32:2058738418781634. [PMID: 30103640 PMCID: PMC6096673 DOI: 10.1177/2058738418781634] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oxymatrine (OMT) as a type of alkaloids collected from Sophora flavescens Ait exerts some biological functions including anticancer properties. Here, we investigated the therapeutic effects of OMT in gastric cancer cells (HGC 27 and AGS). As a result, the exposure of gastric cancer (GC) cells to OMT contributed to the suppression of cell proliferation and invasion. Interleukin 21 receptor (IL-21R) was identified to be differentially expressed between OMT treatment group (4 mg/mL) and control group (0 mg/mL), and knockdown of IL-21R repressed cell proliferation and invasion via inactivation of the JAK2/STAT3 pathway. The rescue experiment showed that IL-21R overexpression attenuated the anti-tumor effects of OMT through activation of the JAK2/STAT3 pathway. Moreover, the expression of IL-21R was significantly upregulated in GC samples compared with the adjacent normal tissues and associated with overall survival (OS) and tumor recurrence of GC patients. Taken together, in this study, we evaluated the anti-tumor effects of OMT on GC by investigating proliferation and invasion ability changes, and our findings show that OMT exhibits effects via regulation of JAK/STAT signaling pathway. Through the mechanism study, we may enlighten the potential therapeutic target for treatment of GC.
Collapse
Affiliation(s)
- Yanxia Huang
- 1 Department of Traditional Chinese Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Zhang
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ge Wang
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaoyu Chen
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Zhang
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hui Liu
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinshui Zhu
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
9
|
Yan L, Zhang J, Guo D, Ma J, Shui SF, Han XW. IL-21R functions as an oncogenic factor and is regulated by the lncRNA MALAT1/miR-125a-3p axis in gastric cancer. Int J Oncol 2018; 54:7-16. [PMID: 30387833 PMCID: PMC6255062 DOI: 10.3892/ijo.2018.4612] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
Interleukin-21 receptor (IL-21R) is involved in the immunological regulation of immune cells and tumor progression in multiple malignancies. However, the potential molecular mechanisms through which non-coding RNAs (ncRNAs) modulate IL-21R signaling in gastric cancer (GC) remain elusive. In this study, the expression of IL-21R was detected by RT-qPCR and western blot analysis in GC cell lines. The association between IL-21R expression and clinicopathological characteristics and the prognosis of patients with GC was analyzed by immunohistochemistry and Kaplan-Meier plotter analysis. The biological functions of IL-21R were analyzed by a series of in vitro and in vivo experiments, and its regulation by ncRNAs was predicted by bioinformatics analysis and confirmed by luciferase assays and rescue experiments. As a result, the expression of IL-21R was found to be significantly increased in GC cell lines and tissues as compared with normal tissues, and was associated with tumor size and lymphatic metastasis, acting as an independent prognostic factor of poor survival and recurrence in patients with GC. The knockdown of IL-21R markedly suppressed GC cell proliferation and invasion, and IL-21R expression was further validated to be negatively regulated by miR-125a-3p (miR-125a). The overexpression of IL-21R reversed the tumor suppressive effects of miR-125a in vitro and in vivo. Moreover, lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) acted as a sponge of miR-125a to modulate the IL-21R signaling pathway in GC cells and represented a risk factor for survival and recurrence in patients with GC. Taken together, the findings of this study reveal an oncogenic role for IL-21R in gastric tumorigenesis and verify that its activation is partly due to the dysregulation of the lncRNA MALAT1/miR-125a axis. These findings may provide a potential prognostic marker for patients with GC.
Collapse
Affiliation(s)
- Lei Yan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Dong Guo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Ji Ma
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Shao-Feng Shui
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Xin-Wei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| |
Collapse
|
10
|
Hu H, Li L, Yu T, Li Y, Tang Y. Interleukin-22 receptor 1 upregulation and activation in hypoxic endothelial cells improves perfusion recovery in experimental peripheral arterial disease. Biochem Biophys Res Commun 2018; 505:60-66. [PMID: 30236983 DOI: 10.1016/j.bbrc.2018.08.163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Inflammation induced by muscle ischemia is involved in tissue repair and perfusion recovery in peripheral arterial disease (PAD) patients. Interleukin (IL)-22 is an inflammatory cytokine discovered in recent years and shows versatile functions; however, its role in PAD remains unknown. Here, we test whether IL-22 and its receptors are involved in angiogenesis in experimental PAD. METHODS AND RESULTS Both IL-22 and its receptor-IL-22 receptor 1(IL-22R1) were upregulated in muscle and endothelial cells after ischemia. In experimental PAD models, blocking IL-22 using IL-22 monoclonal antibody impaired perfusion recovery and angiogenesis; on the other hand, IL-22 treatment improved perfusion recovery. Ischemic muscle tissue was harvested 3 days after experimental PAD for biochemical test, IL-22 antagonism resulted in decreased Signal Transducer and Activator of Transcription (STAT3) phosphorylation, but did not alter the levels of VEGF-A or cyclic guanine monophosphate (cGMP) levels in ischemic muscle. In cultured endothelial cells, IL-22R1 was upregulated under simulated ischemic conditions, and IL-22 treatment increased STAT3 phosphorylation, endothelial cell survival and tube formation. Knock down of IL-22R1 or treatment with STAT3 inhibitor blunted IL-22-induced endothelial cell survival or tube formation. CONCULSION Ischemia-induced IL-22 and IL-22R1 upregulation improves angiogenesis in PAD by inducing STAT3 phosphorylation in endothelial cells. IL-22R1 may serve as a new therapeutic target for PAD.
Collapse
Affiliation(s)
- Hongyao Hu
- Department of Interventional Radiology, Department of Radiology, Renmin Hospital of Wuhan University, 238Jiefang Road, Wuhan, Hubei, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei, 430060, PR China.
| | - Le Li
- Department of Cardiology, Taikang Tongji (Wuhan) Hospital, PR China
| | - Taihui Yu
- Department of Cardiology, Hubei Provincial Hospital of Integrated Chinese&Western Medicine, Wuhan, PR China
| | - Yanjun Li
- Department of Cardiology, Taikang Tongji (Wuhan) Hospital, PR China
| | - Yanhong Tang
- Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei, 430060, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, PR China
| |
Collapse
|
11
|
Elsegeiny W, Zheng M, Eddens T, Gallo RL, Dai G, Trevejo-Nunez G, Castillo P, Kracinovsky K, Cleveland H, Horne W, Franks J, Pociask D, Pilarski M, Alcorn JF, Chen K, Kolls JK. Murine models of Pneumocystis infection recapitulate human primary immune disorders. JCI Insight 2018; 3:91894. [PMID: 29925696 PMCID: PMC6124425 DOI: 10.1172/jci.insight.91894] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/17/2018] [Indexed: 12/19/2022] Open
Abstract
Despite the discovery of key pattern recognition receptors and CD4+ T cell subsets in laboratory mice, there is ongoing discussion of the value of murine models to reflect human disease. Pneumocystis is an AIDS-defining illness, in which risk of infection is inversely correlated with peripheral CD4+ T cell counts. Due to medical advances in the control of HIV, the current epidemiology of Pneumocystis infection is predominantly due to primary human immunodeficiencies and immunosuppressive therapies. To this end, we found that every human genetic immunodeficiency associated with Pneumocystis infection that has been tested in mice recapitulated susceptibility. For example, humans with a loss-of-function IL21R mutation are severely immunocompromised. We found that IL-21R, in addition to CD4+ T cell intrinsic STAT3 signaling, were required for generating protective antifungal class-switched antibody responses, as well as effector T cell-mediated protection. Furthermore, CD4+ T cell intrinsic IL-21R/STAT3 signaling was required for CD4+ T cell effector responses, including IL-22 production. Recombinant IL-22 administration to Il21r-/- mice induced the expression of a fungicidal peptide, cathelicidin antimicrobial peptide, which showed in vitro fungicidal activity. In conclusion, SPF laboratory mice faithfully replicate many aspects of human primary immunodeficiency and provide useful tools to understand the generation and nature of effector CD4+ T cell immunity.
Collapse
Affiliation(s)
- Waleed Elsegeiny
- Richard King Mellon Foundation Institute for Pediatric Research and
- Department of Pediatrics, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mingquan Zheng
- Richard King Mellon Foundation Institute for Pediatric Research and
- Department of Pediatrics, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Taylor Eddens
- Richard King Mellon Foundation Institute for Pediatric Research and
- Department of Pediatrics, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Guixiang Dai
- Department of Medicine, Tulane School of Medicine, New Orleans, Louisiana, USA
| | - Giraldina Trevejo-Nunez
- Richard King Mellon Foundation Institute for Pediatric Research and
- Department of Pediatrics, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Patricia Castillo
- Richard King Mellon Foundation Institute for Pediatric Research and
- Department of Pediatrics, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kara Kracinovsky
- Richard King Mellon Foundation Institute for Pediatric Research and
- Department of Pediatrics, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hillary Cleveland
- Richard King Mellon Foundation Institute for Pediatric Research and
- Department of Pediatrics, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - William Horne
- Richard King Mellon Foundation Institute for Pediatric Research and
| | - Jonathan Franks
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Derek Pociask
- Department of Medicine, Tulane School of Medicine, New Orleans, Louisiana, USA
| | - Mark Pilarski
- Richard King Mellon Foundation Institute for Pediatric Research and
| | - John F. Alcorn
- Department of Pediatrics, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research and
- Department of Pediatrics, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jay K. Kolls
- Richard King Mellon Foundation Institute for Pediatric Research and
- Department of Pediatrics, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, Tulane School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
12
|
Liu DY, Liu XK, Lu XY, Chen F, Zhao HM. Regulating BCL-6 signaling pathway to control Tfh cell differentiation: A new strategy for treatment of inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2018; 26:821-826. [DOI: 10.11569/wcjd.v26.i14.821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of follicular helper T (Tfh) cells, there has been a great deal of evidence that this cell type is involved in the pathogenesis of inflammatory bowel disease. Different cytokines secreted by different subtypes of Tfh cells play an important role in the pathogenesis of inflammatory bowel disease, and thus provide an important approach for the targeted treatment of this disease. As a key transcription factor in Tfh cell differentiation, BCL-6 signaling can regulate the proliferation and differentiation of Tfh cells. In the absence of BCL-6 signaling, Tfh cells cannot be produced. BCL-6 signaling can also effectively regulate Tfh cell differentiation through positive regulation, negative regulation, and epigenetics. Abnormal regulation of BCL-6 signaling can induce abnormal differentiation of Tfh and lead to the occurrence of inflammatory bowel disease. Therefore, Tfh cell differentiation can be regulated by intervention of BCL-6 signaling, which may be used as a new strategy for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Duan-Yong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China,Key Laboratory of Pharmacology of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xue-Ke Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xiu-Yun Lu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Fang Chen
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Hai-Mei Zhao
- School of Life Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| |
Collapse
|
13
|
Calautti E, Avalle L, Poli V. Psoriasis: A STAT3-Centric View. Int J Mol Sci 2018; 19:ijms19010171. [PMID: 29316631 PMCID: PMC5796120 DOI: 10.3390/ijms19010171] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 12/24/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT)3 has recently emerged as a key player in the development and pathogenesis of psoriasis and psoriatic-like inflammatory conditions. Indeed, STAT3 hyperactivation has been reported in virtually every cell type involved in disease initiation and maintenance, and this factor mediates the signal of most cytokines that are involved in disease pathogenesis, including the central Interleukin (IL)-23/IL-17/IL-22 axis. Despite the recent availability of effective biological agents (monoclonal antibodies) against IL-17 and IL-23, which have radically changed the current standard of disease management, the possibility of targeting either STAT3 itself or, even better, the family of upstream activators Janus kinases (JAK1, 2, 3, and TYK2) offers additional therapeutic options. Due to the oral/topical administration modality of these small molecule drugs, their lower cost, and the reduced risk of eliciting adverse immune responses, these compounds are being actively scrutinized in clinical settings. Here, we summarize the main pathological features of psoriatic conditions that provide the rationale for targeting the JAK/STAT3 axis in disease treatment.
Collapse
Affiliation(s)
- Enzo Calautti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
14
|
Dinesh P, Rasool M. Multifaceted role of IL‐21 in rheumatoid arthritis: Current understanding and future perspectives. J Cell Physiol 2017; 233:3918-3928. [DOI: 10.1002/jcp.26158] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Palani Dinesh
- Immunopathology LabSchool of Bio Sciences and TechnologyVIT UniversityVelloreTamil NaduIndia
| | | |
Collapse
|