1
|
Wisztorski M, Aboulouard S, Roussel L, Duhamel M, Saudemont P, Cardon T, Narducci F, Robin YM, Lemaire AS, Bertin D, Hajjaji N, Kobeissy F, Leblanc E, Fournier I, Salzet M. Fallopian tube lesions as potential precursors of early ovarian cancer: a comprehensive proteomic analysis. Cell Death Dis 2023; 14:644. [PMID: 37775701 PMCID: PMC10541450 DOI: 10.1038/s41419-023-06165-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Ovarian cancer is the leading cause of death from gynecologic cancer worldwide. High-grade serous carcinoma (HGSC) is the most common and deadliest subtype of ovarian cancer. While the origin of ovarian tumors is still debated, it has been suggested that HGSC originates from cells in the fallopian tube epithelium (FTE), specifically the epithelial cells in the region of the tubal-peritoneal junction. Three main lesions, p53 signatures, STILs, and STICs, have been defined based on the immunohistochemistry (IHC) pattern of p53 and Ki67 markers and the architectural alterations of the cells, using the Sectioning and Extensively Examining the Fimbriated End Protocol. In this study, we performed an in-depth proteomic analysis of these pre-neoplastic epithelial lesions guided by mass spectrometry imaging and IHC. We evaluated specific markers related to each preneoplastic lesion. The study identified specific lesion markers, such as CAVIN1, Emilin2, and FBLN5. We also used SpiderMass technology to perform a lipidomic analysis and identified the specific presence of specific lipids signature including dietary Fatty acids precursors in lesions. Our study provides new insights into the molecular mechanisms underlying the progression of ovarian cancer and confirms the fimbria origin of HGSC.
Collapse
Affiliation(s)
- Maxence Wisztorski
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Soulaimane Aboulouard
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Lucas Roussel
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Marie Duhamel
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Philippe Saudemont
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Tristan Cardon
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Fabrice Narducci
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
- Department of Gynecology Oncology, Oscar Lambret Cancer Center, 59020, Lille, France
| | - Yves-Marie Robin
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
- Department of Gynecology Oncology, Oscar Lambret Cancer Center, 59020, Lille, France
| | - Anne-Sophie Lemaire
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
- Department of Gynecology Oncology, Oscar Lambret Cancer Center, 59020, Lille, France
| | - Delphine Bertin
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
- Department of Gynecology Oncology, Oscar Lambret Cancer Center, 59020, Lille, France
| | - Nawale Hajjaji
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
- Medical Oncology Department, Oscar Lambret Cancer Center, 59020, Lille, France
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), MorehouseSchool of Medicine, Atlanta, GA, 30310, USA
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Eric Leblanc
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France.
- Department of Gynecology Oncology, Oscar Lambret Cancer Center, 59020, Lille, France.
| | - Isabelle Fournier
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France.
- Institut Universitaire de France, 75000, Paris, France.
| | - Michel Salzet
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France.
- Institut Universitaire de France, 75000, Paris, France.
| |
Collapse
|
2
|
Wang F, Jin F, Peng S, Li C, Wang L, Wang S. Adipocyte-derived CCDC3 promotes tumorigenesis in epithelial ovarian cancer through the Wnt/ß-catenin signalling pathway. Biochem Biophys Rep 2023; 35:101507. [PMID: 37601453 PMCID: PMC10439399 DOI: 10.1016/j.bbrep.2023.101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/22/2023] [Accepted: 06/28/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Epithelial ovarian cancer (EOC) is a highly aggressive disease whose unique metastatic site is the omentum. Coiled-coil domain containing 3 (CCDC3) is an adipocyte-derived secreted protein that is specifically elevated in omental adipose tissue. However, its function is still unknown. Material and methods Initially, a Kaplan-Meier plot was applied to evaluate the prognostic value of CCDC3 expression in patients with EOC. A bioinformatics analysis was next used to explore the biological function of CCDC3 in EOC. Western blot, quantitative real-time polymerase chain reaction, and in vitro invasion and migration assays were performed using SKOV3 cells and CCDC3 secreted by rat adipocytes to analyzes the impact of CCDC3 on EOC and the underlying mechanism. Results Overexpression of CCDC3 was associated with poor prognosis of EOC. CCDC3 interacted with multiple key signalling pathways, including the Wnt/β-catenin pathway. EOC cellular proliferation, migration, and invasion were promoted in vitro when co-cultured with CCDC3 enriched conditioned medium, and this tumour-promoting effect was induced by activating the Wnt/β-catenin pathway. Furthermore, the epithelial-mesenchymal transition of EOC cells was reversed after CCDC3 silencing. Conclusions Our results support that CCDC3 promotes EOC tumorigenesis through the Wnt/β-catenin pathway and that CCDC3 may serve as a novel prognostic biomarker and therapeutic target for metastatic EOC.
Collapse
Affiliation(s)
- Fen Wang
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Feng Jin
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Shanshan Peng
- Department of Gynecology, Shenzhen Baoan Maternal and Child Healthcare Hospital, Shenzhen 518000, China
| | - Chen Li
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Li Wang
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Shubin Wang
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen 518036, China
| |
Collapse
|
3
|
Russo A, Cain BP, Jackson-Bey T, Lopez Carrero A, Miglo J, MacLaughlan S, Isenberg BC, Coppeta J, Burdette JE. Increased Local Testosterone Levels Alter Human Fallopian Tube mRNA Profile and Signaling. Cancers (Basel) 2023; 15:cancers15072062. [PMID: 37046723 PMCID: PMC10093055 DOI: 10.3390/cancers15072062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Fallopian tube epithelium (FTE) plays a critical role in reproduction and can be the site where High Grade Serous Ovarian Carcinoma (HGSOC) originates. Tumorigenic oviductal cells, which are the murine equivalent of human fallopian tube secretory epithelial cells (FTSEC), enhance testosterone secretion by the ovary when co-cultured with the ovary, suggesting that testosterone is part of the signaling axis between the ovary and FTSEC. Furthermore, testosterone promotes proliferation of oviductal cells. Oral contraceptives, tubal ligation, and salpingectomy, which are all protective against developing ovarian cancer, also decrease circulating levels of androgen. In the current study, we investigated the effect of increased testosterone on FTE and found that testosterone upregulates wingless-type MMTV integration family, member 4 (WNT4) and induces migration and invasion of immortalized human fallopian tube cells. We profiled primary human fallopian tissues grown in the microfluidic system SOLO-microfluidic platform –(MFP) by RNA sequencing and found that p53 and its downstream target genes, such as paired box gene 2 (PAX2), cyclin-dependent kinase inhibitor 1A (CDK1A or p21), and cluster of differentiation 82 (CD82 or KAI1) were downregulated in response to testosterone treatment. A microfluidic platform, the PREDICT-Multi Organ System (PREDICT-MOS) was engineered to support insert technology that allowed for the study of cancer cell migration and invasion through Matrigel. Using this system, we found that testosterone enhanced FTE migration and invasion, which was reversed by the androgen receptor (AR) antagonist, bicalutamide. Testosterone also enhanced FTSEC adhesion to the ovarian stroma using murine ovaries. Overall, these results indicate that primary human fallopian tube tissue and immortalized FTSEC respond to testosterone to shift expression of genes that regulate invasion, while leveraging a new strategy to study migration in the presence of dynamic fluid flow.
Collapse
Affiliation(s)
- Angela Russo
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
- Correspondence:
| | - Brian P. Cain
- Charles Stark Draper Laboratory, Cambridge, MA 02139, USA
| | - Tia Jackson-Bey
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Alfredo Lopez Carrero
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Jane Miglo
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Shannon MacLaughlan
- Department of Obstetrics and Gynecology, University of Illinois Chicago, Chicago, IL 60607, USA
| | | | | | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
4
|
Ghoneum A, Almousa S, Warren B, Abdulfattah AY, Shu J, Abouelfadl H, Gonzalez D, Livingston C, Said N. Exploring the clinical value of tumor microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:83-98. [PMID: 33476723 PMCID: PMC8286277 DOI: 10.1016/j.semcancer.2020.12.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Platinum resistance in epithelial ovarian cancer (OvCa) is rising at an alarming rate, with recurrence of chemo-resistant high grade serous OvCa (HGSC) in roughly 75 % of all patients. Additionally, HGSC has an abysmal five-year survival rate, standing at 39 % and 17 % for FIGO stages III and IV, respectively. Herein we review the crucial cellular interactions between HGSC cells and the cellular and non-cellular components of the unique peritoneal tumor microenvironment (TME). We highlight the role of the extracellular matrix (ECM), ascitic fluid as well as the mesothelial cells, tumor associated macrophages, neutrophils, adipocytes and fibroblasts in platinum-resistance. Moreover, we underscore the importance of other immune-cell players in conferring resistance, including natural killer cells, myeloid-derived suppressive cells (MDSCs) and T-regulatory cells. We show the clinical relevance of the key platinum-resistant markers and their correlation with the major pathways perturbed in OvCa. In parallel, we discuss the effect of immunotherapies in re-sensitizing platinum-resistant patients to platinum-based drugs. Through detailed analysis of platinum-resistance in HGSC, we hope to advance the development of more effective therapy options for this aggressive disease.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Sameh Almousa
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Bailey Warren
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Alexandria University School of Medicine, Alexandria, Egypt
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; The Third Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hebatullah Abouelfadl
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Department of Genetics, Animal Health Research Institute, Dokki, Egypt
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Christopher Livingston
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Comprehensive Cancer Center, Winston Salem, NC, 27157, USA.
| |
Collapse
|
5
|
The "Far Left" of the Morphologic Spectrum of Ovarian High-grade Serous Carcinoma: Case Report of a Purely Noninvasive High-grade Serous Carcinoma Mimicking an Ovarian Serous Borderline Tumor. Int J Gynecol Pathol 2021; 40:175-179. [PMID: 32168063 DOI: 10.1097/pgp.0000000000000668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High-grade serous carcinoma has a variety of different growth patterns, but is typically easily recognizable to pathologists and rarely confused with serous borderline tumors. We report a case of a 71-yr-old woman with a unilateral 5.1 cm ovarian cyst with small papillary projections on contrast-enhanced magnetic resonance imaging of the pelvis. Histologic examination showed a noninvasive papillary neoplasm with hierarchical branching and epithelial proliferation, and thus, at low magnification, bearing a striking resemblance to a serous borderline tumor. However, a more careful examination demonstrated high-grade cytologic features, nuclear pleomorphism, and abundant mitotic activity, suggestive of high-grade serous carcinoma. The morphology and immunohistochemical profile of this lesion is consistent with a rare, purely noninvasive growth pattern of high-grade serous carcinoma. This lesion represents the "far left" of the high-grade ovarian serous carcinoma morphologic spectrum and can mimic a serous borderline tumor.
Collapse
|
6
|
Tao T, Lin W, Wang Y, Zhang J, Chambers SK, Li B, Lea J, Wang Y, Wang Y, Zheng W. Loss of tubal ciliated cells as a risk for "ovarian" or pelvic serous carcinoma. Am J Cancer Res 2020; 10:3815-3827. [PMID: 33294269 PMCID: PMC7716167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023] Open
Abstract
Recent advances suggest the fallopian tube as the main anatomic site for high-grade ovarian or pelvic serous carcinoma (O/PSC). Many studies on the biologic role of tubal secretory cells in O/PSC development has been performed in the last decade. However, the role of tubal ciliated cells in this regard has rarely been explored. The purpose of this study was to determine if the change of the tubal ciliated cells is associated with serous neoplasia within the female pelvis. This study included 3 groups (low-risk or benign control, high-risk, and O/PSC) of patients and they were age-matched. Age of patients ranged from 20 to 85 and the age-associated data was stratified by 10-year intervals. The number of tubal ciliated cells was determined by microscopy and by tubulin immunohistochemical staining. The data was then professionally analyzed. The results showed that the absolute number of tubal ciliated cells decreased significantly with age within each age group. A reduction in ciliated cell counts within the tubal segments remained a significant risk factor for the development of serous cancers within the female pelvis after age adjustment. A dramatic decrease of tubal ciliated cells was identified in patients with high-risk and with O/PSC compared to those in the benign control or low-risk group (P < 0.001). Further, within the tubal fimbria, the number of ciliated cells reduction was more prominent in the high-risk group when compared to those of O/PSC patients. Our findings suggest that a decreased number of ciliated cells within women's fallopian tubes represents another histologic hallmark for early serous carcinogenesis. There is a relationship between loss of tubal ciliated cells and aging, the presence of high-risk factors for tubal-ovarian cancer, and co-existing O/PSCs. This represents an initial study identifying the role of tubal ciliated cells in the development of high-grade serous carcinoma in women's pelvis.
Collapse
Affiliation(s)
- Tao Tao
- Department of Obstetrics and Gynecology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s HospitalZhengzhou, Henan, China
| | - Wanrun Lin
- Department of Pathology, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Yan Wang
- Department of Pathology, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Jing Zhang
- Department of Pediatrics, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Setsuko K Chambers
- Department of Obstetrics and Gynecology, University of ArizonaTucson, AZ, USA
- Arizona Cancer Center, University of ArizonaTucson, AZ, USA
| | - Bo Li
- Lyda Hill Department of Bioinformatics and Department of Immunology, University of Texas Southwestern Medical CenterDallas, TX, USA
- Harold C Simmons Comprehensive Cancer Center at University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Jayanthi Lea
- Harold C Simmons Comprehensive Cancer Center at University of Texas Southwestern Medical CenterDallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Yiying Wang
- Department of Obstetrics and Gynecology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s HospitalZhengzhou, Henan, China
| | - Yue Wang
- Department of Obstetrics and Gynecology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s HospitalZhengzhou, Henan, China
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical CenterDallas, TX, USA
- Harold C Simmons Comprehensive Cancer Center at University of Texas Southwestern Medical CenterDallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
7
|
Colina JA, Varughese P, Karthikeyan S, Salvi A, Modi DA, Burdette JE. Reduced PAX2 expression in murine fallopian tube cells enhances estrogen receptor signaling. Carcinogenesis 2020; 41:646-655. [PMID: 31271204 DOI: 10.1093/carcin/bgz127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is thought to progress from a series of precursor lesions in the fallopian tube epithelium (FTE). One of the preneoplastic lesions found in the FTE is called a secretory cell outgrowth (SCOUT), which is partially defined by a loss of paired box 2 (PAX2). In the present study, we developed PAX2-deficient murine cell lines in order to model a SCOUT and to explore the role of PAX2 loss in the etiology of HGSOC. Loss of PAX2 alone in the murine oviductal epithelium (MOE) did not induce changes in proliferation, migration and survival in hypoxia or contribute to resistance to first line therapies, such as cisplatin or paclitaxel. RNA sequencing of MOE PAX2shRNA cells revealed significant alterations in the transcriptome. Silencing of PAX2 in MOE cells produced a messenger RNA expression pattern that recapitulated several aspects of the transcriptome of previously characterized human SCOUTs. RNA-seq analysis and subsequent qPCR validation of this SCOUT model revealed an enrichment of genes involved in estrogen signaling and an increase in expression of estrogen receptor α. MOE PAX2shRNA cells had higher estrogen signaling activity and higher expression of putative estrogen responsive genes both in the presence and absence of exogenous estrogen. In summary, loss of PAX2 in MOE cells is sufficient to transcriptionally recapitulate a human SCOUT, and this model revealed an enrichment of estrogen signaling as a possible route for tumor progression of precursor lesions in the fallopian tube.
Collapse
Affiliation(s)
- Jose A Colina
- Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Peter Varughese
- Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Subbulakshmi Karthikeyan
- Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Amrita Salvi
- Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Dimple A Modi
- Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Joanna E Burdette
- Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Aslani FS, Maleknasab M, Akbarzadeh-Jahromi M. Fallopian Tube Epithelial Changes in Ovarian Serous Tumors Compared with Control Group: A Single-Center Study. Niger Med J 2019; 60:47-52. [PMID: 31462842 PMCID: PMC6688397 DOI: 10.4103/nmj.nmj_27_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Recent studies have hypothesized that distal end of fallopian tube is a possible origin of ovarian serous carcinoma. This study investigated histopathological changes in fallopian tube epithelium (FTE) of the patients with ovarian serous tumors compared with control group. MATERIALS AND METHODS In a prospective cross-sectional study, fallopian tubes (right and left) of 34 cases with ovarian serous tumors were collected from patients who underwent surgery in two major gynecological centers affiliated to Shiraz University of Medical Sciences, Shiraz, Iran (2012-2015). They are composed of 21 (61.8%) high-grade serous carcinomas (HGSCs), 5 (14.7%) borderline ones, and 8 (23.5%) benign serous tumors. As control group, fallopian tubes of 72 hystrectomy cases without ovarian tumor were added to the study. Both tubes of all of the cases were submitted entirely, according to the protocol of sectioning and extensively examining the fimbriated end. The results were statistically analyzed using SPSS-PC windows and Chi-square tests. RESULTS Significant differences were found between the cases and control group in tubal epithelial cell stratification (especially >3 cell layers thickness), atypia, mitosis, glandular complexity, tufting, and detached epithelial cells (P < 0.05). These findings particularly atypia and mitosis were more frequently seen in the ampulla and fimbriated end of high-grade ovarian serous carcinomas. CONCLUSION Our results showed that premalignant epithelial changes of the ampulla and the distal end of FTE were seen in some of the patients with ovarian HGSCs. Therefore, FTE could be one of the sources of ovarian serous carcinoma.
Collapse
Affiliation(s)
- Fatemeh Sari Aslani
- Department of Pathology, Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mona Maleknasab
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojgan Akbarzadeh-Jahromi
- Department of Pathology, Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Baker KT, Salk JJ, Brentnall TA, Risques RA. Precancer in ulcerative colitis: the role of the field effect and its clinical implications. Carcinogenesis 2018; 39:11-20. [PMID: 29087436 PMCID: PMC6248676 DOI: 10.1093/carcin/bgx117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/22/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Cumulative evidence indicates that a significant proportion of cancer evolution may occur before the development of histological abnormalities. While recent improvements in DNA sequencing technology have begun to reveal the presence of these early preneoplastic clones, the concept of 'premalignant field' was already introduced by Slaughter more than half a century ago. Also referred to as 'field effect', 'field defect' or 'field cancerization', these terms describe the phenomenon by which molecular alterations develop in normal-appearing tissue and expand to form premalignant patches with the potential to progress to dysplasia and cancer. Field effects have been well-characterized in ulcerative colitis, an inflammatory bowel disease that increases the risk of colorectal cancer. The study of the molecular alterations that define these fields is informative of mechanisms of tumor initiation and progression and has provided potential targets for early cancer detection. Herein, we summarize the current knowledge about the molecular alterations that comprise the field effect in ulcerative colitis and the clinical utility of these fields for cancer screening and prevention.
Collapse
Affiliation(s)
- Kathryn T Baker
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Jesse J Salk
- Division of Hematology and Oncology, Department of Medicine, University of
Washington, Seattle, WA, USA
- TwinStrand Biosciences Seattle, WA, USA
| | - Teresa A Brentnall
- Division of Gasteroenterology, Department of Medicine, University of
Washington, Seattle, WA, USA
| | - Rosa Ana Risques
- To whom correspondence should be addressed. Tel: +206-616-4976; Fax:
+206-543-1140;
| |
Collapse
|
10
|
Zhang B, Chen F, Xu Q, Han L, Xu J, Gao L, Sun X, Li Y, Li Y, Qian M, Sun Y. Revisiting ovarian cancer microenvironment: a friend or a foe? Protein Cell 2017; 9:674-692. [PMID: 28929459 PMCID: PMC6053350 DOI: 10.1007/s13238-017-0466-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
Development of ovarian cancer involves the co-evolution of neoplastic cells together with the adjacent microenvironment. Steps of malignant progression including primary tumor outgrowth, therapeutic resistance, and distant metastasis are not determined solely by genetic alterations in ovarian cancer cells, but considerably shaped by the fitness advantage conferred by benign components in the ovarian stroma. As the dynamic cancer topography varies drastically during disease progression, heterologous cell types within the tumor microenvironment (TME) can actively determine the pathological track of ovarian cancer. Resembling many other solid tumor types, ovarian malignancy is nurtured by a TME whose dark side may have been overlooked, rather than overestimated. Further, harnessing breakthrough and targeting cures in human ovarian cancer requires insightful understanding of the merits and drawbacks of current treatment modalities, which mainly target transformed cells. Thus, designing novel and precise strategies that both eliminate cancer cells and manipulate the TME is increasingly recognized as a rational avenue to improve therapeutic outcome and prevent disease deterioration of ovarian cancer patients.
Collapse
Affiliation(s)
- Boyi Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fei Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qixia Xu
- Institute of Health Sciences, Shanghai Jiao Tong University, School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liu Han
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiaqian Xu
- Institute of Health Sciences, Shanghai Jiao Tong University, School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Libin Gao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaochen Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yiwen Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Qian
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|