1
|
Mirzaei F, Abbasi E, Mirzaei A, Hosseini NF, Naseri N, Khodadadi I, Jalili C, Majdoub N. Toxicity and Hepatoprotective Effects of ZnO Nanoparticles on Normal and High-Fat Diet-Fed Rat Livers: Mechanism of Action. Biol Trace Elem Res 2024:10.1007/s12011-024-04108-5. [PMID: 38441796 DOI: 10.1007/s12011-024-04108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/13/2024] [Indexed: 10/11/2024]
Abstract
This experiment aimed to evaluate the beneficial and toxic properties of synthetic zinc oxide nanoparticles (ZnO NPs) on the liver of normal and high-fat diet (HFD) fed-rats. The ZnO NPs were synthesized and, its characterizations were determined by different techniques. Effect of ZnO NP on cell viability, liver enzymes and lipid accumulation were measured in HepG2 cells after 24 h. After that, rats orally received various dosages of ZnO NPs for period of 4 weeks. Toxicity tests were done to determine the appropriate dose. In the subsequent step, the hepatoprotective effects of 5 mg/kg ZnO NPs were determined in HFD-fed rats (experiment 2). The oxidative stress, NLRP3 inflammasome, inflammatory, and apoptosis pathways were measured. Additionally, the activity of caspase 3, nitric oxide levels, antioxidant capacity, and various biochemical factors were measured. Morphological changes in the rat livers were also evaluated by hematoxylin and eosin (H & E) and Masson trichrome. Liver apoptosis rate was also approved by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Treatment of animals with 5 mg/ZnO NPs revealed potential hepatoprotective properties, while ZnO NPs at the doses of above 10 mg/kg showed toxic effects. Antioxidant enzyme gene expression and activity were significantly augmented, while apoptosis, NLRP3 inflammasome, and inflammation pathways were significantly reduced by 5 mg/kg ZnO NPs. Liver histopathological alterations were restored by 5 mg/kg ZnO NPs in HFD. Our study highlights the hepatoprotective effects of ZnO NPs against the HFD-induced liver damage, involving antioxidant, anti-inflammatory, and anti-apoptotic pathways, indicating their promising therapeutic potential.
Collapse
Affiliation(s)
- Fatemeh Mirzaei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Abbasi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amir Mirzaei
- Centre Énergie, Matériaux Et Télécommunications, Institut National de La Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X 1P7, Canada
| | - Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nima Naseri
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nesrine Majdoub
- Faculdade de Ciências E Tecnologia, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, MeditBio, Portugal
| |
Collapse
|
2
|
Naringenin inhibits lipid accumulation by activating the AMPK pathway in vivo and vitro. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Cho M, Kim Y, You S, Hwang DY, Jang M. Chlorogenic Acid of Cirsium japonicum Resists Oxidative Stress Caused by Aging and Prolongs Healthspan via SKN-1/Nrf2 and DAF-16/FOXO in Caenorhabditis elegans. Metabolites 2023; 13:metabo13020224. [PMID: 36837843 PMCID: PMC9959019 DOI: 10.3390/metabo13020224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
To evaluate the value of Cirsium japonicum (CJ; thistle) as a material for functional foods, we studied the functional composition of cultivated CJ and the in vitro and in vivo antioxidant activity of the functional substance. The detected phenolics in farmed CJ were chlorogenic acid (CA), linarin (LIN), and pectolinarin (PLIN) by HPLC analysis. As a result of the antioxidant activity of CJ and its phenolics by DPPH and ABTS method, CA had shown the greatest antioxidant activity. We employed Caenorhabditis elegans to validate that in vitro effects of CA are shown in vivo. CA delayed reduction in pumping rate and progeny production during aging of C. elegans. Under both normal and oxidative stress conditions, CA reduced the production of reactive oxygen species (ROS) in worms and increased their lifespan. In particular, CA showed the reducing effect of ROS accumulation due to aging in aged worms (8 days old). To gain insight into the mechanism, we used skn-1/Nrf2 and daf-16/FOXO transformed worms. The CA effects (on catalase activity and lifespan extension) in the wild-type (WT) decreased in skn-1 and daf-16 mutants. In particular, CA strongly relied on daf-16 under mild oxidative condition and skn-1 under overall (from mild to strong) oxidative stress to reduce ROS and extend healthspan. Thus, we conclude that CA, a key bioactive phenolic of CJ, reduces ROS production and ultimately extends healthspan, and this effect is the result of actions of daf-16 or skn-1 at different stages depending on the degree of oxidation or aging. Our results suggest that CJ containing CA can be used as an antiaging material due to its antioxidant properties.
Collapse
Affiliation(s)
- Myogyeong Cho
- Department of Food Technology and Nutrition, Inje University, Gimhae 50834, Republic of Korea
| | - Yebin Kim
- Department of Food Technology and Nutrition, Inje University, Gimhae 50834, Republic of Korea
| | - Sohyeon You
- Bio-Health Convergence, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Miran Jang
- Department of Food Technology and Nutrition, Inje University, Gimhae 50834, Republic of Korea
- Correspondence: ; Tel.: +82-55-320-3234
| |
Collapse
|
4
|
Luo W, Wu B, Tang L, Li G, Chen H, Yin X. Recent research progress of Cirsium medicinal plants in China. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114475. [PMID: 34363929 DOI: 10.1016/j.jep.2021.114475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The species of the genus Cirsium have been used as traditional Chinese medicine for hundreds of years. It is believed that Cirsium has the efficacies of cooling blood and stopping bleeding, dispelling blood stasis, detoxifying and eliminating carbuncle. At present, they are mainly used in treatment of the hemoptysis, hematemesis, hemoptysis, hematuria, traumatic bleeding and Henoch-Schonlein purpura. They are widely used in traditional Chinese medicine. AIM This paper systematically collated the classification, traditional use, pharmacological action, phytochemistry and clinical application of Cirsium plants in the past ten years, intending to provide a critical appraisal of current knowledge for future in-depth study and rational development and utilization of Cirsium plants. MATERIAL AND METHODS This paper searched various databases (SciFinder, Science Direct, CNKI, Wiley online library, Spring Link, Web of Science, PubMed, Wanfang Data, Weipu Data), Chinese Pharmacopoeia 2020 Edition, Chinese Flora, Chinese Materia Medica and some local books on ethnopharmacology. RESULTS More than ten species of Cirsium have been used as folk medicine, and modern pharmacological studies have shown that Cirsium has the effects of protecting liver, antioxidation, anti-tumor, anti-inflammation, antibacterial, etc. More than 200 chemical constituents such as flavonoids, triterpenes, sterols, phenylpropanoids have been isolated from Cirsium. Some ingredients show a wide variety of bioactivities including hepatoprotective, anti-inflammatory, antioxidant, anti-tumor and other activities. At present, Cirsium medicinal plants, as traditional Chinese medicine, were mainly used to treat nephritis, Henoch-Schonlein purpura and hemorrhage, although some species used in folk lack of quality control systems. CONCLUSION Cirsium plants are a safe and effective medicine for cooling blood and hemostasis. Recent studies on pharmacology and phytochemistry also provide solid scientific evidences for the traditional application of this genus. It also shows significant hepatoprotective activity and may be a potential clinical candidate for the treatment of liver disease. However, the qualitative and quantitative analysis, pharmacokinetics-pharmacodynamics and mechanism of action also need in-depth study.
Collapse
Affiliation(s)
- Wei Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bei Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liangjie Tang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guoyou Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hulan Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xuemei Yin
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Tandrasasmita OM, Berlian G, Tjandrawinata RR. Molecular mechanism of DLBS3733, a bioactive fraction of Lagerstroemia speciosa (L.) Pers., on ameliorating hepatic lipid accumulation in HepG2 cells. Biomed Pharmacother 2021; 141:111937. [PMID: 34328120 DOI: 10.1016/j.biopha.2021.111937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lagerstroemia speciosa (L.) Pers., commonly known as banaba and locally known as bungur, is widely used in Indonesia and other countries as a folk remedy for various chronic diseases such as diabetes mellitus and hypertension. L. speciosa (L.) Pers. has been used and evaluated on conditions associated to liver diseases by altering cholesterol absorption, lipid metabolism, as well as the related gene expressions. AIM OF THE STUDY The aim of this study is to evaluate the effect of DLBS3733, a standardized bioactive fraction of Lagerstroemia speciosa (L.) Pers. leaves, on ameliorating hepatic steatosis induced by oleic acid, and elucidate its mechanism of action to ameliorate lipid accumulation in HepG2 cells. MATERIALS AND METHODS Effects of DLBS3733 on expression of genes and proteins associated with lipid metabolism were evaluated in HepG2 cells in this study. Genes associated with lipid metabolism were evaluated using PCR, while the protein levels were revealed using western blot and ELISA. Cellular lipid accumulations and triglyceride (TG) synthesis were measured using ELISA, and antioxidant assay was conducted using DPPH assay. RESULTS DLBS3733 significantly reduced lipid accumulation and TG synthesis by 51% and 32% (p < 0.01), respectively, through the significant increment of adiponectin expression by 58% (p < 0.01). Subsequently, adiponectin enhanced PPARα expression and AMPK phosphorylation which further regulate the downstream signaling pathway of lipogenesis and lipolysis. Moreover, 2.5 µg/mL DLBS3733 was found to significantly downregulate the expression of HMGCR, ACC and SREBP by 66%, 61% and 36%, respectively (p < 0.01), as well as significantly upregulate CPT-1 by 300% at the protein level (P < 0.05). DLBS3733 was also found to possess high antioxidant activity, where the highest concentration exhibited DPPH inhibition activity by up to 93% (P < 0.01). CONCLUSIONS We propose that DLBS3733 may provide a prevention on hepatic steatosis through its activity as anti-lipogenesis, anti-cholesterologenesis and pro-lipolysis in HepG2 cells. This is the first report that revealed the molecular mechanism of L. speciosa (L.) Pers. as a potential treatment of hepatic steatosis-related diseases.
Collapse
Affiliation(s)
- Olivia M Tandrasasmita
- Dexa Laboratories of Biomolecular Sciences (DLBS), Industri Selatan V Block PP No. 7, Jababeka Industrial Estate II, Cikarang 17550, West Java, Indonesia.
| | - Guntur Berlian
- Dexa Laboratories of Biomolecular Sciences (DLBS), Industri Selatan V Block PP No. 7, Jababeka Industrial Estate II, Cikarang 17550, West Java, Indonesia.
| | - Raymond R Tjandrawinata
- Dexa Laboratories of Biomolecular Sciences (DLBS), Industri Selatan V Block PP No. 7, Jababeka Industrial Estate II, Cikarang 17550, West Java, Indonesia; Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk-Lapan No. 10, Tangerang 15345, Indonesia.
| |
Collapse
|
6
|
Zhang CH, Xiao Q, Sheng JQ, Liu TT, Cao YQ, Xue YN, Shi M, Cao Z, Zhou LF, Luo XQ, Deng KZ, Chen C. Gegen Qinlian Decoction abates nonalcoholic steatohepatitis associated liver injuries via anti-oxidative stress and anti-inflammatory response involved inhibition of toll-like receptor 4 signaling pathways. Biomed Pharmacother 2020; 126:110076. [PMID: 32169759 DOI: 10.1016/j.biopha.2020.110076] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
Gegen Qilian Decoction (GGQLD) is a well-established classic Chinese medicine prescription in treating nonalcoholic steatohepatitis (NASH). However, the molecular mechanism of GGQLD action on NASH is still not clear. This study aimed to assess the anti-NASH effect of GGQLD, and to explore its molecular mechanisms in vivo and in vitro. In HFD-fed rats, GGQLD decreased significantly serum triglyceride (TG), cholesterol (CHO), total bile acid (TBA), low-density lipoprotein (LDL), free fatty acid (FFA) and lipopolysaccharide (LPS) levels, increased levels of differentially expressed proteins (DEPs) Ahcy, Gpx1, Mat1a, GNMT, and reduced the expression of ALDOB. In RAW264.7 macrophages, GGQLD reduced the expression levels of inflammatory factors TNF-α and IL-6 mRNA, and diminished NASH by increasing differentially expressed genes (DEGs) CBS, Mat1a, Hnf4α and Pparα to reduce oxidative stress or lipid metabolism. The results of DEGs verification also showed that GGQLD up-regulated expressions of Hnf4α, Pparα and Cbs genes. In HepG2 cells, GGQLD decreased IL-6 levels and intracellular TG content, and inhibited FFA-induced expression of toll-like receptor 4 (TLR4). In summary, GGQLD abates NASH associated liver injuries via anti-oxidative stress and anti-inflammatory response involved inhibition of TLR4 signal pathways. These findings provide new insights into the anti-NASH therapy by GGQLD.
Collapse
Affiliation(s)
- Chang-Hua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Qin Xiao
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Jun-Qing Sheng
- College of Life Science, Nanchang University, Nanchang, 330031, PR China.
| | - Tong-Tong Liu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Ying-Qian Cao
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Ya-Nan Xue
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Min Shi
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Zheng Cao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Li-Fen Zhou
- Large Precise Instruments Shared Services Center of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Xiao-Quan Luo
- Experimental Animal Science and Technology Center of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Ke-Zhong Deng
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
7
|
Lu J, Meng Z, Cheng B, Liu M, Tao S, Guan S. Apigenin reduces the excessive accumulation of lipids induced by palmitic acid via the AMPK signaling pathway in HepG2 cells. Exp Ther Med 2019; 18:2965-2971. [PMID: 31572539 PMCID: PMC6755459 DOI: 10.3892/etm.2019.7905] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/23/2019] [Indexed: 12/24/2022] Open
Abstract
In recent years, increasing attention has been paid to diseases caused by excessive accumulation of lipids in the liver with therapeutic agents derived from natural products offering an alternative treatment to conventional therapies. Among these therapeutic agents, apigenin, a natural flavonoid, has been proven to exert various beneficial biological effects. In the present study, the antiadipogenic effects of apigenin in HepG2 cells was investigated. It was demonstrated that the treatment of cells with different concentrations of apigenin for 24 h significantly decreased the palmitic acid-induced increases in total cholesterol (TC) and triglyceride (TG) levels as well as intracellular lipid accumulation. In addition, apigenin increased the phosphorylated-AMP-activated protein kinase (AMPK) levels but decreased the expression levels of 3-hydroxy-3-methylglutaryl CoA reductase, sterol regulatory element-binding protein (SREBP)-1, fatty acid synthase, and SREBP-2 in a concentration-dependent manner. The present findings suggested that apigenin might improve lipid metabolism by activating the AMPK/SREBP pathway to reduce lipid accumulation in the liver.
Collapse
Affiliation(s)
- Jing Lu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Zhuoqun Meng
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Bijun Cheng
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Meitong Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Siyu Tao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuang Guan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P.R. China
| |
Collapse
|
8
|
Cheng J, Liu D, Zhao J, Li X, Yan Y, Wu Z, Wang H, Wang C. Lutein attenuates oxidative stress and inhibits lipid accumulation in free fatty acids-induced HepG2 cells by activating the AMPK pathway. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
9
|
Comparative antitumor and anti-inflammatory effects of flavonoids, saponins, polysaccharides, essential oil, coumarin and alkaloids from Cirsium japonicum DC. Food Chem Toxicol 2019; 125:422-429. [DOI: 10.1016/j.fct.2019.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/13/2019] [Accepted: 01/20/2019] [Indexed: 11/18/2022]
|
10
|
Jiang M, Li C, Liu Q, Wang A, Lei M. Inhibiting Ceramide Synthesis Attenuates Hepatic Steatosis and Fibrosis in Rats With Non-alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2019; 10:665. [PMID: 31616384 PMCID: PMC6775186 DOI: 10.3389/fendo.2019.00665] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common metabolic disorder diseases, which include a histological spectrum of conditions ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Dysregulated metabolism of sphingomyelin in the liver plays a critical role in the pathogenesis of NAFLD. Ceramides are central molecules of sphingolipid biosynthesis and catabolism and play an important role in insulin resistance, apoptosis, and inflammation. In addition, apoptosis is a main contributor to the development of NAFLD. This study detected whether the inhibition of ceramide synthesis ameliorated hepatic steatosis and fibrosis in rats with NAFLD. Sprague-Dawley rats were used to establish the NAFLD model. Here, we showed that hepatic ceramide, steatosis, and fibrosis increased in liver tissue from rats with NAFLD. Chronic treatment with myriocin inhibited ceramide and lipid accumulation and improved fibrosis in liver tissue samples of high fat diet (HFD)-fed rats. In addition, hepatic inflammation and apoptosis were markedly ameliorated in HFD-fed rats treated with myriocin. Furthermore, myriocin treatment regulated the expression of pro-apoptosis and anti-apoptosis proteins by inactivating the c-Jun N-terminal kinase (JNK) signaling pathway in the liver of HFD-fed rats. Collectively, ceramide plays an important role in the pathogenesis of NASH and may represent a potential therapeutic strategy to prevent NAFLD.
Collapse
|
11
|
Yang X, Shao H, Chen Y, Ding N, Yang A, Tian J, Jiang Y, Li G, Jiang Y. In renal hypertension, Cirsium japonicum strengthens cardiac function via the intermedin/nitric oxide pathway. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.02.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
12
|
Comparison of the Hepatoprotective Effects of Four Endemic Cirsium Species Extracts from Taiwan on CCl₄-Induced Acute Liver Damage in C57BL/6 Mice. Int J Mol Sci 2018; 19:ijms19051329. [PMID: 29710853 PMCID: PMC5983772 DOI: 10.3390/ijms19051329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 12/19/2022] Open
Abstract
Species of Cirsium (Asteraceae family) have been used in folk hepatoprotective medicine in Taiwan. We collected four Cirsium species—including the aerial part of Cirsium arisanense (CAH), the aerial part of Cirsium kawakamii (CKH), the flower part of Cirsium japonicum DC. var. australe (CJF), and Cirsii Herba (CH)—and then made extractions from them with 70% methanol. We compared the antioxidant contents and activities of these four Cirsium species extracts by a spectrophotometric method and high-performance liquid chromatography⁻photodiode array detector (HPLC-DAD). We further evaluated the hepatoprotective effects of these extracts on CCl₄-induced acute liver damage in C57BL/6 mice. The present study found CAH possesses the highest antioxidant activity among the four Cirsium species, and these antioxidant activities are closely related to phenylpropanoid glycoside (PPG) contents. The extracts decreased serum ALT and AST levels elevated by injection with 0.2% CCl₄. However, only CJF and CH decreased hepatic necrosis. Silibinin decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and hepatic necrosis caused by CCl₄. CJF and CH restored the activities of hepatic antioxidant enzymes and decreased hepatic malondialdehyde (MDA) levels. CJF further restored the expression of hepatic antioxidant enzymes including Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-superoxide dismutase (Mn-SOD), and glutathione S-transferase (GST) proteins. HPLC chromatogram indicated that CKH, CJF, and CH contained silibinin diastereomers (α and β). Only CJF contained diosmetin. Hence, the hepatoprotective mechanism of CJF against CCl₄-induced acute liver damage might be involved in restoring the activities and protein expression of the hepatic antioxidant defense system and inhibiting hepatic inflammation, and these hepatoprotective effects are related to the contents of silibinin diastereomers and diosmetin.
Collapse
|
13
|
Fernández-Martínez E, Jiménez-Santana M, Centeno-Álvarez M, Torres-Valencia JM, Shibayama M, Cariño-Cortés R. Hepatoprotective Effects of Nonpolar Extracts from Inflorescences of Thistles Cirsium vulgare and Cirsium ehrenbergii on Acute Liver Damage in Rat. Pharmacogn Mag 2018; 13:S860-S867. [PMID: 29491645 PMCID: PMC5822512 DOI: 10.4103/pm.pm_260_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/29/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Drugs for the treatment of liver diseases are scarce and not effective enough. Some species of the genus Cirsium possess hepatoprotective activity. There are no studies on the hepatoprotective effects of nonpolar extracts from inflorescences of thistles Cirsium vulgare and Cirsium ehrenbergii, and there are few reports on their chemical composition. OBJECTIVE The aim is to obtain the hexane extract from inflorescences of both thistles and to identify preliminarily their main chemical component, and to evaluate the hepatoprotective properties of the extracts. MATERIALS AND METHODS Hexane extracts were obtained using a Soxhlet apparatus. The chemical composition was analyzed using infrared spectra and gas chromatography-mass spectrometry. Two doses (250 and 500 mg/kg, p.o.) of both extracts were administered to assess their hepatoprotective effect on acute carbon tetrachloride (TC)-induced liver damage in rats using biochemical markers of necrosis, cholestasis, functionality, oxidative stress, and histological analysis. RESULTS Extracts were shown to have a very similar chemical profile. Their major constituent seems to be lupeol acetate. The two doses of both extracts demonstrated comparable hepatoprotective properties because they significantly diminished all the liver injury indicators (P < 0.05) and were corroborated using histopathology. CONCLUSION This is the first study on the hepatoprotective effects of nonpolar extracts from inflorescences of thistles C. vulgare and C. ehrenbergii. Hexane extracts administration totally prevented the acute TC-induced liver damage. The preliminary chemical analysis strongly suggests the lupeol acetate as their major constituent. Lupeol and its derivatives have been previously reported as antiinflammatory and hepatoprotective agents. SUMMARY Hexane extracts of both thistles kept normal liver functionality and glycogen store in carbon tetrachloride-induced acute liver damageHexane extracts of both thistles showed anti-necrotic and anti-cholestatic effects, also diminished the lipid peroxidation and nitric oxide levels on the carbon tetrachloride-induced acute liver damageThe two doses of hexane extracts administered (250 and 500 mg/kg) prevented the liver injury in a very similar extentBoth nonpolar extracts are chemically very similar and their main compound seems to be lupeol acetate. Abbreviations used: TC: Carbon tetrachloride; FT-IR: Fourier transform Infrared spectroscopy; GC-MS: Gas chromatography - Mass spectrometry; V: Vehicle; E: Extract; Ecv: Extract of Cirsium vulgare; Ece: Extract of Cirsium ehrenbergii; AP: Alkaline phosphatase; GGTP: γ-Glutamyl transpeptidase; ALT: Alanine aminotransferase; DB: Direct bilirubin; TB: Total bilirubin; LP: Lipid peroxidation; MDA: Malondialdehyde; NO: Nitric oxide; TNF-α: Tumor necrosis factor-α.
Collapse
Affiliation(s)
- Eduardo Fernández-Martínez
- Center for Research on Reproductive Biology, Medicine Department, Institute of Health Sciences, Autonomous University of Hidalgo's State, Mexico
| | - Maribel Jiménez-Santana
- Chemistry Department, Institute of Basic Sciences and Engineering, Autonomous University of Hidalgo's State, Mexico
| | - Mónica Centeno-Álvarez
- Center for Research on Applied Science and Advanced Technology of National Polytechnic Institute, Mexico
| | - Jose Martín Torres-Valencia
- Chemistry Department, Institute of Basic Sciences and Engineering, Autonomous University of Hidalgo's State, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and for Advanced Studies of IPN, Mexico City, Mexico
| | - Raquel Cariño-Cortés
- Center for Research on Reproductive Biology, Medicine Department, Institute of Health Sciences, Autonomous University of Hidalgo's State, Mexico
| |
Collapse
|
14
|
Jung HA, Abdul QA, Byun JS, Joung EJ, Gwon WG, Lee MS, Kim HR, Choi JS. Protective effects of flavonoids isolated from Korean milk thistle Cirsium japonicum var. maackii (Maxim.) Matsum on tert-butyl hydroperoxide-induced hepatotoxicity in HepG2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 209:62-72. [PMID: 28735729 DOI: 10.1016/j.jep.2017.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Milk thistle leaves and flowers have been traditionally used as herbal remedy to alleviate liver diseases for decades. Korean milk thistle, Cirsium japonicum var. maackii (Maxim.) Matsum has been employed in traditional folk medicine as diuretic, antiphlogistic, hemostatic, and detoxifying agents. AIM OF THE STUDY The aim of current investigation was to evaluate hepatoprotective properties of the MeOH extract of the roots, stems, leaves and flowers of Korean milk thistle as well as four isolated flavonoids, luteolin, luteolin 5-O-glucoside, apigenin and apigenin 7-O-glucuronide during t-BHP-induced oxidative stress in HepG2 cells. MATERIALS AND METHODS Hepatoprotective potential of the MeOH extracts and flavonoids derived from Korean milk thistle against t-BHP-induced oxidative stress in HepG2 cells were evaluated following MTT method. Incubating HepG2 cells with t-BHP markedly decreased the cell viability and increased the intracellular ROS generation accompanied by depleted GSH levels. Protein expression of heme oxygenase (HO-1) and nuclear factor-E2-related factor 2 (Nrf-2) was determined by Western blot. RESULTS Our findings revealed that pretreating HepG2 cells with MeOH extracts and bioactive flavonoids significantly attenuated the t-BHP-induced oxidative damage, followed by increased cell viability in a dose-dependent manner. The results illustrate that excess ROS generation was reduced and GSH levels increased dose-dependently when HepG2 cells were pretreated with four flavonoids. Moreover, Western blotting analysis demonstrated that protein expressions of Nrf-2 and HO-1 were also up-regulated by flavonoids treatment. CONCLUSIONS These results clearly demonstrate that the MeOH extracts and flavonoids from Korean milk thistle protected HepG2 cells against oxidative damage triggered by t-BHP principally by modulating ROS generation and restoring depleted GSH levels in addition to the increased Nrf-2/HO-1 signaling cascade. These flavonoids are potential natural antioxidative biomarkers against oxidative stress-induced hepatotoxicity.
Collapse
Affiliation(s)
- Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Qudeer Ahmed Abdul
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Jeong Su Byun
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Eun-Ji Joung
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Wi-Gyeong Gwon
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Min-Sup Lee
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyeung-Rak Kim
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
15
|
Flavonoids extracted from Linaria vulgaris protect against hyperlipidemia and hepatic steatosis induced by western-type diet in mice. Arch Pharm Res 2017; 41:1190-1198. [PMID: 28770537 DOI: 10.1007/s12272-017-0941-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/27/2017] [Indexed: 01/14/2023]
Abstract
Previous studies have shown that flavonoids (Fs) present in Linaria vulgaris inhibit lipid accumulation in vitro. This study was designed to evaluate the effects of Fs extracted from Linaria vulgaris ssp. sinensis (Bebeaux) Hong, on hyperlipidemia and hepatic steatosis induced by a western-type diet in mice. The major constituents of Fs were analyzed by LC-MS analysis. C57BL/6 mice were fed a western-type diet for 8 weeks to induce hyperlipidemia (model group), or fed a western-type diet followed by Fs treatment (90, 30 or 10 mg/kg/day) or atorvastatin treatment (1.0 mg/kg/day), for 8 weeks. It was found that Fs treatment resulted in significant reductions in serum levels of AST, ALT, TC, TG, LDL-C, free fatty acid and hepatic TC, and TG compared to those in model mice with hyperlipidemia (P < 0.05). The mice treated with Fs showed a relatively normal hepatic architecture compared to the hepatic steatosis shown in the model group. Moreover, the expressions of mature forms of sterol regulatory element-binding proteins (nuclear form of srebps, n-SREBPs) and 3-hydroxy-3-methylglutaryl coenzyme reductase (HMGCR) involved in lipid metabolism, were suppressed in the Fs-treated groups. Taken together, these results suggest Fs exert protective effects against hyperlipidemia and hepatic steatosis, which may involve the inhibition of mature SREBPs expressions.
Collapse
|
16
|
Santos IB, de Bem GF, Cordeiro VSC, da Costa CA, de Carvalho LCRM, da Rocha APM, da Costa GF, Ognibene DT, de Moura RS, Resende AC. Supplementation with Vitis vinifera L. skin extract improves insulin resistance and prevents hepatic lipid accumulation and steatosis in high-fat diet-fed mice. Nutr Res 2017; 43:69-81. [PMID: 28739056 DOI: 10.1016/j.nutres.2017.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 04/30/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease is one of the most common complications of obesity. The Vitis vinifera L. grape skin extract (ACH09) is an important source of polyphenols, which are related to its antioxidant and antihyperglycemic activities. We hypothesized that ACH09 could also exert beneficial effects on metabolic disorders associated with obesity and evaluated ACH09's influence on high-fat (HF) diet-induced hepatic steatosis and insulin resistance in C57BL/6 mice. The animals were fed a standard diet (10% fat, control) or an HF diet (60% fat, HF) with or without ACH09 (200mg/[kg d]) for 12weeks. Our results showed that ACH09 reduced HF diet-induced body weight gain, prevented hepatic lipid accumulation and steatosis, and improved hyperglycemia and insulin resistance. The underlying mechanisms of these beneficial effects of ACH09 may involve the activation of hepatic insulin-signaling pathway because the expression of phosphorylated insulin receptor substrate-1, phosphatidylinositol 3-kinase, phosphorylated Akt serine/threonine kinase 1, and glucose transporter 2 was increased by ACH09 and correlated with improvement of hyperglycemia, hyperinsulinemia, and insulin resistance. ACH09 reduced the expression of the lipogenic factor sterol regulatory-element binding protein-1c in the liver and upregulated the lipolytic pathway (phosphorylated liver kinase B1/phosphorylated adenosine-monophosphate-activated protein kinase), which was associated with normal hepatic levels of triglyceride and cholesterol and prevention of steatosis. ACH09 prevented the hepatic oxidative damage in HF diet-fed mice probably by restoration of antioxidant activity. In conclusion, ACH09 protected mice from HF diet-induced obesity, insulin resistance, and hepatic steatosis. The regulation of hepatic insulin signaling pathway, lipogenesis, and oxidative stress may contribute to ACH09's protective effect.
Collapse
Affiliation(s)
- Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Cristiane Aguiar da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Ana Paula Machado da Rocha
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil; Department of Physiological Sciences, Biomedical Institute, Federal University of the State of Rio de Janeiro, Brazil
| | - Gisele França da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Angela Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
17
|
Modified SJH alleviates FFAs-induced hepatic steatosis through leptin signaling pathways. Sci Rep 2017; 7:45425. [PMID: 28358008 PMCID: PMC5371820 DOI: 10.1038/srep45425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 03/01/2017] [Indexed: 02/06/2023] Open
Abstract
Samjunghwan (SJH) is an herbal formula used in traditional Korean medicine. This prescription has long been used in treatment of aging and lifestyle diseases. The current study showed the effect and mechanisms of anti-hepatic steatosis action of modified SJH (mSJH) in vitro and in vivo. Treatment with mSJH resulted in significantly decreased intracellular lipid accumulation in steatosis-induced cells. Furthermore, mSJH triggered the phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase as well as increased the expression of leptin at both protein and gene levels. In addition, C57BL6 mice fed high-fat diet (HFD) showed significant improvements in body, liver weights and fat weights; and serum, hepatic and fecal lipid parameters in response to the treatment with mSJH. Furthermore, mSJH showed favorable effects on the hepatic expression of several genes related to lipid metabolism. Betaine, one of constituents of mSJH exerted fundamental beneficial impact on FFAs-induced cells. However, the beneficial effects of mSJH were diminished upon blocking of leptin signaling by dexamethasone, suggesting the leptin signaling as a key component in mSJH-mediated modulation of lipid homeostasis. Our results suggest that mSJH exerts an anti-hepatic steatosis effect via activation of leptin and associated signaling cascades related to lipid metabolism.
Collapse
|
18
|
Jeong HS, Cho YH, Kim KH, Kim Y, Kim KS, Na YC, Park J, Lee IS, Lee JH, Jang HJ. Anti-lipoapoptotic effects of Alisma orientalis extract on non-esterified fatty acid-induced HepG2 cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:239. [PMID: 27456850 PMCID: PMC4960791 DOI: 10.1186/s12906-016-1181-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/14/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Liver steatosis was caused by lipid accumulation in the liver. Alisma orientale (AO) is recognized as a promising candidate with therapeutic efficacy for the treatment of nonalcoholic fatty liver disease (NAFLD). HepG2 hepatocyte cell line is commonly used for liver disease cell model. METHOD The HepG2 cells were cultured with the NEFAs mixture (oleic and palmitic acids, 2:1 ratio) for 24 h to induce hepatic steatosis. Then different doses of Alisma orientale extract (AOE) was treated to HepG2 for 24 h. Incubated cells were used for further experiments. RESULTS The AOE showed inhibitory effects on lipid accumulation in the Oil Red O staining and Nile red staining tests with no cytotoxicity at a concentration of 300 μg/mL. Fatty acid synthase (FASN) and acetyl-CoA carboxylase 1 (ACC1) mRNA and protein expression level were down-regulated after AOE treatment. Bcl-2 associated X protein (Bax) and c-Jun N-terminal kinase (JNK) mRNA expression level were decreased as well as p-JNK (activated form of JNK), Bax, cleaved caspase-9, caspase-3 protein expression level. Anti-apopototic B-cell lymphoma 2 (Bcl-2) protein level increased after AOE treatment. In addition, inflammatory protein expression including p-p65, p65, COX-2 and iNOS were inhibited by AOE treatment. CONCLUSION The results suggest that AOE has anti-steatosis effects that involve lipogenesis, anti-lipoapoptosis, and anti-inflammation in the NEFA-induced NAFLD pathological cell model.
Collapse
Affiliation(s)
- Hyeon-Soo Jeong
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Young-Hwan Cho
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Kang-Hoon Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Yumi Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul, 120-140, Republic of Korea
| | - Ki-Suk Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Yun-Cheol Na
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul, 120-140, Republic of Korea
| | - Jiyoung Park
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - In-Seung Lee
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Jang-Hoon Lee
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.
| | - Hyeung-Jin Jang
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.
| |
Collapse
|
19
|
Ma Q, Wang LH, Jiang JG. Hepatoprotective effect of flavonoids from Cirsium japonicum DC on hepatotoxicity in comparison with silymarin. Food Funct 2016; 7:2179-84. [PMID: 27094923 DOI: 10.1039/c6fo00068a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cirsium japonicum DC is a perennial plant that is widely distributed throughout China. Flavonoids are the major active constituents of C. japonicum, which has been reported to possess many bioactivities. This study was designed to investigate the protective effects of flavonoids from C. japonicum against liver injury using carbon tetrachloride (CCl4)-induced hepatocyte injury, with silymarin as a positive control. Silymarin is a mixture of flavonoids from Silybum marianum, a traditional European food plant with clear hepatoprotective effects. The results indicated that the pretreatment with C. japonicum flavonoids could significantly reverse CCl4-induced L02 cell viability decrease similarly to silymarin. Analysis of flavonoids of C. japonicum and silymarin by HPLC showed that these two mixtures may contain one common component, which may be the major active ingredient responsible for their hepatoprotective effects. It is concluded that C. japonicum could be developed into functional foods with hepatoprotective efficacy, similarly to S. marianum.
Collapse
Affiliation(s)
- Qin Ma
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | | | | |
Collapse
|
20
|
Liu L, Zhao J, Li Y, Wan Y, Lin J, Shen A, Xu W, Li H, Zhang Y, Xu J, Peng J, Hong Z. Artemisia capillaris formula inhibits hepatic steatosis via an miR‑122‑induced decrease in fatty acid synthase expression in vivo and in vitro. Mol Med Rep 2016; 13:4751-8. [PMID: 27081834 DOI: 10.3892/mmr.2016.5131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/05/2015] [Indexed: 11/06/2022] Open
Abstract
Non‑alcoholic fatty liver disease (NAFLD) is a widespread health concern, and there is currently insufficient understanding regarding its pathogenesis and treatment. The present study aimed to explore the effects of Artemisia capillaris formula (ACF) on high‑fat diet‑induced hepatic steatosis and fatty acid‑induced intracellular lipid accumulation, by micro (mi)RNA regulation. A total of 72 Sprague‑Dawley rats were divided into six groups (n=12/group). One group was designated as the control group and fed a normal diet, and the remaining five groups were allowed ad libitum access to a high‑fat diet for eight weeks, in order to establish an NAFLD rat model. The rats were subsequently administered polyene phosphatidylcholine (PP; 0.076 g/kg body weight/day), low dose of ACF (0.462 g/kg body weight/day), middle dose of ACF (0.924 g/kg body weight/day) or high dose of ACF (1.848 g/kg body weight/day) intragastrically for four weeks. HepG2 human hepatocellular carcinoma cells were treated with oleic acid and palm acid, followed by treatment with various concentrations of ACF. Serum alanine transaminase (ALT), aspartate aminotransferase (AST), triglycerides (TG), total cholesterol (TC), high‑density lipoprotein cholesterol (HDL‑C), low‑density lipoprotein cholesterol (LDL‑C), and steatotic HepG2 human liver carcinoma cell TC and TG levels were measured. ACF and PP treatments attenuated high‑fat diet‑induced hepatic steatosis and fatty acid‑induced intracellular lipid accumulation. A modified high‑fat diet significantly increased ALT, AST, TG, TC, LDL‑C levels and decreased HDL‑C levels. Treatment with ACF and PP abrogated the increase in liver enzymes and TG, TC and LDL‑C levels, but did not influence HDL‑C levels in a high‑fat diet induced rat model of steotosis. Steatotic HepG2 cells exhibited significantly increased levels of both TG and TC. Treatment with ACF significantly decreased TC and TG levels in vivo, and ACF and PP treatment decreased the expression levels of fatty acid synthase (FASN) and increased miR‑122 in vivo and in vitro. In conclusion, these results suggested that ACF may inhibit hepatic steatosis via miR‑122‑induced downregulation of FASN in vivo and in vitro.
Collapse
Affiliation(s)
- Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jinyan Zhao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Ying Li
- Department of Medicine, Xiamen Hospital of Traditional Chinese Medicine, Jinshan Street Community Health Service, Xiamen, Fujian 361000, P.R. China
| | - Yun Wan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Wei Xu
- Department of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Huang Li
- Department of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yuchen Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jianfeng Xu
- Fujian Guizhentang Pharmaceutical Co., Ltd., Quanzhou, Fujian 362142, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zhenfeng Hong
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
21
|
Noh YH, Kim DH, Lee SA, Yin XF, Park J, Lee MY, Lee WB, Lee SH, Kim JK, Kim SS, Jeong Y, Myung SC, Kim TJ, Kang IJ. The Natural Substance MS-10 Improves and Prevents Menopausal Symptoms, Including Colpoxerosis, in Clinical Research. J Med Food 2016; 19:228-37. [PMID: 26848802 DOI: 10.1089/jmf.2015.3547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many natural substances were screened to develop nutraceuticals that reduce menopausal symptoms. A complex of Cirsium japonicum var. maackii and Thymus vulgaris extracts, named MS-10, had significant positive effects. Under a low concentration of estrogen, which represents postmenopausal physiological conditions, MS-10 had beneficial effects on estrogen receptor-expressing MCF-7 cells by reversibly enhancing estrogen activity. In addition, in the ovariectomized rat model, changes in bone-specific alkaline phosphatase activity and osteocalcin, as well as low-density lipoprotein cholesterol and triglyceride levels were significantly decreased by MS-10. These results show that MS-10 protected bone health and reduced metabolic disturbances. Furthermore, in a clinical study, all menopausal symptoms, including hot flushes, parenthesis, insomnia, nervousness, melancholia, vertigo, fatigue, rheumatic pain, palpitations, formication, and headache, as well as colpoxerosis, were significantly improved by taking MS-10 for 90 days. Therefore, the evidence supports that MS-10 is an effective natural substance that can safely improve menopausal symptoms, including colpoxerosis.
Collapse
Affiliation(s)
- Yoo-Hun Noh
- 1 Department of Anatomy and Cell Biology and Neurology, College of Medicine, Chung-Ang University , Seoul, Korea.,2 Famenity Biomedical Research Center, Famenity, Inc. , Gyeonggi, Korea
| | - Do-Hee Kim
- 3 Natural Pharmaceutical R&D Center, Naturesense, Inc. , Gyeonggi, Korea
| | - Seung-Ah Lee
- 1 Department of Anatomy and Cell Biology and Neurology, College of Medicine, Chung-Ang University , Seoul, Korea
| | - Xing Fu Yin
- 2 Famenity Biomedical Research Center, Famenity, Inc. , Gyeonggi, Korea
| | - Jiae Park
- 1 Department of Anatomy and Cell Biology and Neurology, College of Medicine, Chung-Ang University , Seoul, Korea
| | - Moo Yeol Lee
- 4 Department of Physiology, College of Medicine, Chung-Ang University , Seoul, Korea
| | - Won Bok Lee
- 1 Department of Anatomy and Cell Biology and Neurology, College of Medicine, Chung-Ang University , Seoul, Korea
| | - Sang Hyung Lee
- 5 Department of Neurosurgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine , Seoul, Korea
| | - Jae Kwang Kim
- 6 Department of Internal Medicine, The Catholic University of Korea College of Medicine , Gyeonggi, Korea
| | - Sung-Su Kim
- 7 Department of Food Science and Nutrition, College of Natural Science, Dankook University , Chungnam, Korea
| | - Yoonhwa Jeong
- 7 Department of Food Science and Nutrition, College of Natural Science, Dankook University , Chungnam, Korea
| | - Soon-Chul Myung
- 8 Department of Urology, College of Medicine, Chung-Ang University , Seoul, Korea
| | - Tae Jin Kim
- 9 Division of Immunobiology, Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine , Gyeonggi, Korea
| | - Il-Jun Kang
- 10 Department of Food Science and Nutrition, College of Natural Science, Hallym University , Gangwon, Korea
| |
Collapse
|
22
|
Grahame Hardie D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B 2016; 6:1-19. [PMID: 26904394 PMCID: PMC4724661 DOI: 10.1016/j.apsb.2015.06.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is almost universally expressed in eukaryotic cells. While it appears to have evolved in single-celled eukaryotes to regulate energy balance in a cell-autonomous manner, during the evolution of multicellular animals its role has become adapted so that it also regulates energy balance at the whole body level, by responding to hormones that act primarily on the hypothalamus. AMPK monitors energy balance at the cellular level by sensing the ratios of AMP/ATP and ADP/ATP, and recent structural analyses of the AMPK heterotrimer that have provided insight into the complex mechanisms for these effects will be discussed. Given the central importance of energy balance in diseases that are major causes of morbidity or death in humans, such as type 2 diabetes, cancer and inflammatory disorders, there has been a major drive to develop pharmacological activators of AMPK. Many such activators have been described, and the various mechanisms by which these activate AMPK will be discussed. A particularly large class of AMPK activators are natural products of plants derived from traditional herbal medicines. While the mechanism by which most of these activate AMPK has not yet been addressed, I will argue that many of them may be defensive compounds produced by plants to deter infection by pathogens or grazing by insects or herbivores, and that many of them will turn out to be inhibitors of mitochondrial function.
Collapse
Affiliation(s)
- David Grahame Hardie
- Division of Cell Signaling & Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
23
|
Kim SJ, Choung SY. Inhibitory effects of Aster spathulifolius extract on adipogenesis and lipid accumulation in 3T3-L1 preadipocytes. ACTA ACUST UNITED AC 2015; 68:107-18. [PMID: 26471469 DOI: 10.1111/jphp.12485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/28/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Aster spathulifolius Maxim (AS), known for its anti-viral and anti-allergic activity, is also known to reduce body weight gain in high fat diet-induced obese rats. But its molecular mechanism of the anti-obesity effects is still unclear. So, we investigated the inhibitory effect of AS extract (ASE) on adipogenesis and lipid accumulation to determine the underlying cellular molecular mechanism. METHODS To perform this study, the contents of intracellular triglyceride were analysed. Real-time polymerase chain reaction and Western blotting were carried out to investigate the expression of adipogenic transcriptional factors. KEY FINDINGS ASE showed the suppression of adipogenic differentiation and the considerable reduction of the lipid accumulation in 3T3-L1 cells. Especially, ASE inhibited the early stage of differentiation via the downregulation of C/EBP-β and C/EBP-δ, which are early adipogenic factors. Major adipogenic factors, such as PPAR-γ and C/EBP-α, were also subsequently inhibited. These findings were supported by Oil Red O staining and intracellular triglyceride levels. A molecular mechanism liking the effect of ASE was identified through the activation of AMPKα pathway. ASE increased protein levels of phosphorylated AMPKα and phosphorylated ACC. CONCLUSIONS ASE showed anti-adipogenic and anti-lipogenic effects through the regulation of adipogenic factors and AMPKα pathway.
Collapse
Affiliation(s)
- Sa-Jic Kim
- Department of Life and Nanopharmaceutical Science of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Se-Young Choung
- Department of Life and Nanopharmaceutical Science of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Korea.,Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, Seoul, Korea
| |
Collapse
|
24
|
Hwang KA, Hwang YJ, Kim GR, Choe JS. Extracts from Aralia elata (Miq) Seem alleviate hepatosteatosis via improving hepatic insulin sensitivity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:347. [PMID: 26438035 PMCID: PMC4595215 DOI: 10.1186/s12906-015-0871-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/21/2015] [Indexed: 02/07/2023]
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a common liver disease that is strongly associated with obesity and dysregulation of insulin in the liver. However, currently no pharmacological agents have been established for the treatment of NAFLD. In this regard, we sought to evaluate the anti-NAFLD effects of Aralia elata (Miq) Seem (AE) extract and its ability to inhibit hepatic lipid accumulation and modulate cellular signaling in a high fat diet (HFD)-induced obese mouse model. Methods A model of hepatic steatosis in the HepG2 cells was induced by oleic acid. Intracellular lipid droplets were detected by Oil-Red-O staining, and the expression of sterol regulatory element-binding protein 1(SREBP-1), Fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC) 1 and 2, Peroxisome proliferator activated receptor-α (PPARα), and carnitine palmitoyl transferase 1(CPT-1) was analyzed by real time reverse transcription–Polymerase chain reaction (qRT–PCR). And glucose consumption was measured with commercial kit. Furthermore, Male C57BL/6 J mice were fed with HFD to induce NAFLD. Groups of mice were given plant extracts orally at 100 and 300 mg/kg at daily for 4 weeks. After 3 weeks of AE extract treatment, we performed oral glucose tolerance test (OGTT). Liver tissue was procured for histological examination, Phosphoinositide 3-kinase (PI3K) and Protein kinase B (PKB/Akt) activity. Results In the present study, AE extract was shown to reduce hepatic lipid accumulation and significantly downregulate the level of lipogenic genes and upregulate the expression of lipolysis genes in HepG2 cells. And also, AE extract significantly increased the glucose consumption, indicating that AE extract improved insulin resistance. Subsequently, we confirmed the inhibitory activity of AE extract on NAFLD, in vivo. Treatment with AE extract significantly decreased body weight and the fasting glucose level, alleviated hyperinsulinism and hyperlipidemia, and reduced glucose levels, as determined by OGTT. Additionally, AE extract decreased PI3K and Akt activity. Conclusions Our results suggest that treatment with AE extract ameliorated NAFLD by inhibiting insulin resistance through activation of the Akt/GLUT4 pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12906-015-0871-5) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Ethanolic extract of Taheebo attenuates increase in body weight and fatty liver in mice fed a high-fat diet. Molecules 2014; 19:16013-23. [PMID: 25299819 PMCID: PMC6270775 DOI: 10.3390/molecules191016013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 02/06/2023] Open
Abstract
We evaluated whether intake of an ethanolic extract of Taheebo (TBE) from Tabebuia avellanedae protects against body weight increase and fat accumulation in mice with high-fat diet (HFD)-induced obesity. Four-week old male C57BL/6 mice were fed a HFD (25% fat, w/w) for 11 weeks. The diet of control (HFD) mice was supplemented with vehicle (0.5% sodium carboxymethyl cellulose by gavage); the diet of experimental (TBE) mice was supplemented with TBE (150 mg/kg body weight/day by gavage). Mice administered TBE had significantly reduced body weight gain, fat accumulation in the liver, and fat pad weight, compared to HFD mice. Reduced hypertrophy of fat cells was also observed in TBE mice. Mice administered TBE also showed significantly lower serum levels of triglycerides, insulin, and leptin. Lipid profiles and levels of mRNAs and proteins related to lipid metabolism were determined in liver and white adipose tissue of the mice. Expression of mRNA and proteins related to lipogenesis were decreased in TBE-administered mice compared to mice fed HFD alone. These results suggest that TBE inhibits obesity and fat accumulation by regulation of gene expression related to lipid metabolism in HFD-induced obesity in mice.
Collapse
|