1
|
Wang R, Wang Y, Qin Y, Wei H. Antioxidative effects of ghrelin on human trabecular meshwork cells. J Fr Ophtalmol 2024; 47:103746. [PMID: 37806937 DOI: 10.1016/j.jfo.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 10/10/2023]
Abstract
Glaucoma is a group of neurodegenerative diseases characterized by loss of retinal ganglion cells and visual field defects and is one of the major causes of irreversible blindness worldwide. Primary open-angle glaucoma (POAG) is one of the classifications of glaucoma. Oxidative stress in trabecular reticulated cells is one of the possible mechanisms of the development of glaucoma. At present, there is still a lack of effective methods to treat glaucoma. Ghrelin is characterized by its wide distribution and high potency and has anti-inflammatory, antioxidant, and anti-apoptotic effects, which may be beneficial in the treatment of glaucoma. In this study, we investigated whether ghrelin can protect human trabecular meshwork cells (HTMCs) from oxidative damage induced by hydrogen peroxide (H2O2), as well as the possible mechanism of action. CCK8 and flow cytometry results revealed that treatment of HTMCs with ghrelin showed a dose-dependent protective effect against H2O2-induced damage. Ghrelin significantly decreased the rate of apoptosis and levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and increased the level of superoxide dismutase (SOD) and catalase (CAT) in HTMCs. The difference was statistically significant compared with the H2O2 group. Ghrelin activated Nrf2/HO-1/NQO-1 signaling pathways and decreased HIF-1α level in H2O2-injured HTMCs as shown on qPCR and Western blot. In conclusion, ghrelin can protect HTMCs from oxidative damage induced by H2O2 and reduce apoptosis in HTMCs, which can be a new approach to treating POAG. The underlying therapeutic mechanism may be related to Nrf2/HO-1/NQO-1 signaling pathways and HIF-1α.
Collapse
Affiliation(s)
- R Wang
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China.
| | - Y Wang
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China
| | - Y Qin
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China
| | - H Wei
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China.
| |
Collapse
|
2
|
Naguib S, Backstrom JR, Artis E, Ghose P, Stahl A, Hardin R, Haider AA, Ang J, Calkins DJ, Rex TS. NRF2/ARE mediated antioxidant response to glaucoma: role of glia and retinal ganglion cells. Acta Neuropathol Commun 2023; 11:171. [PMID: 37875948 PMCID: PMC10594672 DOI: 10.1186/s40478-023-01663-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
Glaucoma, the second leading cause of irreversible blindness worldwide, is associated with age and sensitivity to intraocular pressure (IOP). We have shown that elevated IOP causes an early increase in levels of reactive oxygen species (ROS) in the microbead occlusion mouse model. We also detected an endogenous antioxidant response mediated by Nuclear factor erythroid 2-Related Factor 2 (NRF2), a transcription factor that binds to the antioxidant response element (ARE) and increases transcription of antioxidant genes. Our previous studies show that inhibiting this pathway results in earlier and greater glaucoma pathology. In this study, we sought to determine if this endogenous antioxidant response is driven by the retinal ganglion cells (RGCs) or glial cells. We used Nrf2fl/fl mice and cell-type specific adeno-associated viruses (AAVs) expressing Cre to alter Nrf2 levels in either the RGCs or glial cells. Then, we quantified the endogenous antioxidant response, visual function and optic nerve histology after IOP elevation. We found that knock-down of Nrf2 in either cell type blunts the antioxidant response and results in earlier pathology and vision loss. Further, we show that delivery of Nrf2 to the RGCs is sufficient to provide neuroprotection. In summary, both the RGCs and glial cells contribute to the antioxidant response, but treatment of the RGCs alone with increased Nrf2 is sufficient to delay onset of vision loss and axon degeneration in this induced model of glaucoma.
Collapse
Affiliation(s)
- Sarah Naguib
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Jon R Backstrom
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN, USA
| | - Elisabeth Artis
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN, USA
| | - Purnima Ghose
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN, USA
| | - Amy Stahl
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Rachael Hardin
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN, USA
| | - Ameer A Haider
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - John Ang
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - David J Calkins
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN, USA
| | - Tonia S Rex
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN, USA.
| |
Collapse
|
3
|
Sun J, Chen F, Wu G. Potential effects of gut microbiota on host cancers: focus on immunity, DNA damage, cellular pathways, and anticancer therapy. THE ISME JOURNAL 2023; 17:1535-1551. [PMID: 37553473 PMCID: PMC10504269 DOI: 10.1038/s41396-023-01483-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023]
Abstract
The symbiotic bacteria that live in the human gut and the metabolites they produce have long influenced local and systemic physiological and pathological processes of the host. The gut microbiota are increasingly being recognized for its impact on a range of human diseases, including cancer, it may play a key role in the occurrence, progression, treatment, and prognosis of many types of cancer. Understanding the functional role of the gut microbiota in cancer is crucial for the development of the era of personalized medicine. Here, we review recent advances in research and summarize the important associations and clear experimental evidence for the role of the gut microbiota in a variety of human cancers, focus on the application and possible challenges associated with the gut microbiota in antitumor therapy. In conclusion, our research demonstrated the multifaceted mechanisms of gut microbiota affecting human cancer and provides directions and ideas for future clinical research.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Feng Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
4
|
Hvozda Arana AG, Lerner SF, Reides CG, Contin M, Tripodi V, Lasagni Vitar RM, Ferreira SM. Experimental glaucoma triggers a pro-oxidative and pro-inflammatory state in the rat cornea. Biochim Biophys Acta Gen Subj 2023:130426. [PMID: 37451477 DOI: 10.1016/j.bbagen.2023.130426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Increasing evidence suggests that glaucoma affects the ocular surface. We aimed to investigate the cellular mechanisms underlying the glaucoma-associated corneal alterations in an animal model. METHODS Wistar rats underwent the cauterization of two episcleral veins of the left eye to elevate the intraocular pressure (ipsilateral, G-IL). Control animals received a sham procedure (C-IL). Contralateral eyes did not receive any procedure (G-CL or C-CL). Enzymes related to the redox status, oxidative damage to macromolecules, and inflammatory markers were assessed in corneal lysates. RESULTS Compared to C-IL, NOX4, NOX2, and iNOS expression was increased in G-IL (68%, p < 0.01; 247%, p < 0.01; and 200%, p < 0.001, respectively). We found an increase in SOD activity in G-IL (60%, p < 0.05). The GSH/GSSG ratio decreased in G-IL (80%, p < 0.05), with a decrease in GR activity (40%, p < 0.05). G-IL displayed oxidative (90%, p < 0.01) and nitrosative (40%, p < 0.05) protein damage, and enhanced lipid peroxidation (100%, p < 0.01). G-IL group showed an increased in CD45, CD68 and F4/80 expression (50%, p < 0.05; 190%, p < 0.001 and 110%, p < 0.05, respectively). G-CL displayed a higher expression of Nrf2 (60%, p < 0.001) and increased activity of SOD, CAT, and GPx (60%, p < 0.05; 90%, p < 0.01; and 50%, p < 0.05, respectively). CONCLUSIONS Glaucoma induces a redox imbalance in the ipsilateral cornea with an adaptive response of the contralateral one. GENERAL SIGNIFICANCE Our study provides a possible mechanism involving oxidative stress and inflammation that explains the corneal alterations observed in glaucoma. We demonstrate that these changes extend not only to the ipsilateral but also to the contralateral cornea.
Collapse
Affiliation(s)
- Ailen G Hvozda Arana
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Departamento de Ciencias Químicas. Cátedra de Química General e Inorgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - S Fabián Lerner
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Departamento de Ciencias Químicas. Cátedra de Química General e Inorgánica, Buenos Aires, Argentina
| | - Claudia G Reides
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Departamento de Ciencias Químicas. Cátedra de Química General e Inorgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Mario Contin
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentina
| | - Valeria Tripodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentina
| | - Romina M Lasagni Vitar
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Departamento de Ciencias Químicas. Cátedra de Química General e Inorgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Sandra M Ferreira
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Departamento de Ciencias Químicas. Cátedra de Química General e Inorgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Çiçek U, Garip R, Solmaz B, Altan C. Changes in intra-ocular pressure, ocular pulse amplitude and choroidal thickness after trabeculectomy. Clin Exp Optom 2023; 106:36-40. [PMID: 36628598 DOI: 10.1080/08164622.2021.2003690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
CLINICAL RELEVANCE Glaucoma is one of the most common causes of blindness. Although high intra-ocular pressure (IOP) is the most important risk factor, ocular blood flow also has an effect on prognosis. BACKGROUND The aim of this study was to investigate the IOP, ocular pulse amplitude (OPA) and choroidal thickness (CT) changes after trabeculectomy and to determine whether trabeculectomy has an effect on ocular blood flow. METHODS This retrospective, comparative case series was conducted with 33 eyes of 33 patients who underwent trabeculectomy due to uncontrolled glaucoma. The fellow eyes of 20 patients who were followed up with medical therapy were included as a control group. IOP and OPA were evaluated using a dynamic contour tonometer. Subfoveal choroidal thickness (SFCT) was obtained with enhanced depth imaging (EDI) mode of Spectralis-OCT. RESULTS The mean IOP was 21.6 ± 6.3 mmHg at baseline and 13.8 ± 0.9 mmHg after trabeculectomy (p ˂ 0.001), and the mean OPA was 4.1 ± 1.5 at baseline and 2.6 ± 1.6 mmHg after trabeculectomy (p ˂ 0.001). The mean SFCT was 292.2 ± 63.2 µm at baseline and 303.8 ± 70.4 µm after trabeculectomy (p = 0.024). The change in OPA was strongly positively correlated with the change in IOP (r = 0.597, p ˂ 0.001) and SFCT change was positively correlated with OPA change (r = 0.34, p = 0.05). There was no difference between the two groups in terms of IOP, OPA and SFCT values measured after trabeculectomy (respectively, p = 0.264, p = 0.627 and p = 0.949). CONCLUSION The large IOP decrease following trabeculectomy causes a decrease in OPA and choroidal thickening. On the other hand, trabeculectomy has no effect on OPA change.
Collapse
Affiliation(s)
- Uğur Çiçek
- Department of Ophthalmology, Şarkışla State Hospital, Sivas, Turkey
| | - Rüveyde Garip
- Department of Ophthalmology, Trakya University School of Medicine, Edirne, Turkey
| | - Banu Solmaz
- Department of Ophthalmology, University of Health Sciences, Beyoglu Eye Training and Research Hospital, İstanbul, Turkey
| | - Cigdem Altan
- Department of Ophthalmology, University of Health Sciences, Beyoglu Eye Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
6
|
The role of nutrition in harnessing the immune system: a potential approach to prevent cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:245. [PMID: 36180759 DOI: 10.1007/s12032-022-01850-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Cancer is a vital barrier to increase the life expectancy and the foremost cause of death globally. The initial diagnosis and proper management of cancer can expand the survival rate of individuals. This review provides an in-depth investigation of cancer causes symptoms, types of cancer, and worldwide distribution of cancer. The relation between nutrition (i.e., various food items) and cancer is also emphasized to offer a framework of nutrition management in different cancer types. The microbiota is closely associated with the occurrence of cancer. Thus, genomics of intestinal microbes and nutrigenomics have been discussed based on the reported meta-analysis studies. A dramatic increase in cancer rates has been observed due to intake of alcohol, microbial infections, and deficiency of nutrition. Malnutrition is a substantial problem in cancer patients linked with improper treatment and increased morbidity. The detail studies of cancer and nutrigenomics are an eminent approach to comprehend the relation between microbes and the consumption of certain food types which can further reduce the cancer risk. The incorporation of specific nutrients and probiotics improved the gut microbial health, increased life expectancy, and also decreased the incidence of tumorigenesis in individuals.
Collapse
|
7
|
Choline Protects the Heart from Doxorubicin-Induced Cardiotoxicity through Vagal Activation and Nrf2/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4740931. [PMID: 35422894 PMCID: PMC9005275 DOI: 10.1155/2022/4740931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022]
Abstract
Choline is a precursor of the major neurotransmitter acetylcholine and has been demonstrated beneficial in diverse models of cardiovascular disease. Here, we sought to verify that choline protects the heart from DOX-induced cardiotoxicity and the underlying mechanisms. The results showed that DOX treatment decreased left ventricular ejection fraction and fractional shortening and increased serum cardiac markers and myocardial fibrosis, which were alleviated by cotreatment with choline. DOX-induced cardiotoxicity was accompanied by increases in oxidative stress, inflammation, and apoptosis, which were rectified by choline cotreatment. Levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase-1 (HO-1), which are antioxidant markers, were lowered by DOX and upregulated by choline. Moreover, DOX significantly decreased serum acetylcholine levels and the high-frequency component of heart rate variability and increased serum norepinephrine levels and the low-frequency component; these effects were rescued by choline administration. Interestingly, the protective effects of choline could be partially reversed by administration of the muscarinic receptor antagonist atropine. This suggests that choline might be a promising adjunct therapeutic agent to alleviate DOX-induced cardiotoxicity.
Collapse
|
8
|
Cáceres-Vélez PR, Hui F, Hercus J, Bui B, Jusuf PR. Restoring the oxidative balance in age-related diseases - An approach in glaucoma. Ageing Res Rev 2022; 75:101572. [PMID: 35065274 DOI: 10.1016/j.arr.2022.101572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/10/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
As human life expectancy increases, age-related health issues including neurodegenerative diseases continue to rise. Regardless of genetic or environmental factors, many neurodegenerative conditions share common pathological mechanisms, such as oxidative stress, a hallmark of many age-related health burdens. In this review, we describe oxidative damage and mitochondrial dysfunction in glaucoma, an age-related neurodegenerative eye disease affecting 80 million people worldwide. We consider therapeutic approaches used to counteract oxidative stress in glaucoma, including untapped treatment options such as novel plant-derived antioxidant compounds that can reduce oxidative stress and prevent neuronal loss. We summarize the current pre-clinical models and clinical work exploring the therapeutic potential of a range of candidate plant-derived antioxidant compounds. Finally, we explore advances in drug delivery systems, particular those employing nanotechnology-based carriers which hold significant promise as a carrier for antioxidants to treat age-related disease, thus reviewing the key current state of all of the aspects required towards translation.
Collapse
|
9
|
Cai ZY, Fu MD, Liu K, Duan XC. Therapeutic effect of Keap1-Nrf2-ARE pathway-related drugs on age-related eye diseases through anti-oxidative stress. Int J Ophthalmol 2021; 14:1260-1273. [PMID: 34414093 DOI: 10.18240/ijo.2021.08.19] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Age-related eye diseases, including cataract, glaucoma, diabetic retinopathy (DR), and age-related macular degeneration (AMD), are the leading causes of vision loss in the world. Several studies have shown that the occurrence and development of these diseases have an important relationship with oxidative stress in the eye. The Keap1-Nrf2-ARE pathway is a classical pathway that resists oxidative stress and inflammation in the body. This pathway is also active in the development of age-related eye diseases. A variety of drugs have been shown to treat age-related eye diseases through the Keap1-Nrf2-ARE (Kelch-like ECH-Associating protein 1- nuclear factor erythroid 2 related factor 2-antioxidant response element) pathway. This review describes the role of oxidative stress in the development of age-related eye diseases, the function and regulation of the Keap1-Nrf2-ARE pathway, and the therapeutic effects of drugs associated with this pathway on age-related eye diseases.
Collapse
Affiliation(s)
- Zi-Yan Cai
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Meng-Die Fu
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Ke Liu
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Xuan-Chu Duan
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China.,Department of Ophthalmology, Changsha Aier Eye Hospital, Changsha 410011, Hunan Province, China
| |
Collapse
|
10
|
Maruei-Milan R, Heidari Z, Aryan A, Asadi-Tarani M, Salimi S. Long non-coding RNA ANRIL polymorphisms in papillary thyroid cancer and its severity. Br J Biomed Sci 2021; 78:58-62. [PMID: 33186076 DOI: 10.1080/09674845.2020.1829853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Long non-coding RNAs are likely to have a role in the pathogenesis of many diseases, including cancer. We hypothesised an effect of certain ANRIL single nucleotide polymorphisms (SNPs) in papillary thyroid cancer. Methods: Genomic ANRIL SNPs in rs11333048, rs4977574, rs1333040 and rs10757274 were determined in 134 papillary thyroid cancer patients and 155 age- and sex-matched controls. Results: None of the ANRIL SNPs were individually linked to papillary thyroid cancer. However, the AAAC haplotype (A from rs11333048, A from rs4977574, A from rs1333040 and C from rs10757274, respectively) showed a protective effect from papillary thyroid cancer whilst the CAAC and CAGT haplotypes were associated with cancer. The rs1333048 CC variant was more frequent in patients with larger tumour size (≥1 cm) in a recessive model (OR 3.4 [95%CI, 1.1-11], P = 0.035). The rs4977574 AC variant was associated with smaller tumour size in an over-dominant model (OR 0.4 [95%CI, 0.2-1.0], P = 0.041). SNPs in rs10757274 (AA: p = 0.045) and rs1333040 (CC: p = 0.019) are linked to a lower likelihood of III-IV cancer stages in dominant or codominant models. Conclusions: Certain haplotypes of ANRIL SNPs are associated with papillary thyroid cancer. ANRIL rs1333048 and rs4977574 variants were associated with larger and smaller tumour sizes, respectively. rs10757274 and rs1333040 variants might lead to lower III-IV cancer stages. These SNPs may be important in the diagnosis of this form of thyroid cancer.
Collapse
Affiliation(s)
- R Maruei-Milan
- Departments of Clinical Biochemistry, Zahedan University of Medical Sciences , Zahedan, Iran
| | - Z Heidari
- Department of Internal Medicine, Zahedan University of Medical Sciences , Zahedan, Iran
| | - A Aryan
- Department of Radiology, Zahedan University of Medical Sciences , Zahedan, Iran
| | - M Asadi-Tarani
- Departments of Clinical Biochemistry, Zahedan University of Medical Sciences , Zahedan, Iran
| | - S Salimi
- Departments of Clinical Biochemistry, Zahedan University of Medical Sciences , Zahedan, Iran.,Cellular and Molecular Research Center, Zahedan University of Medical Sciences , Zahedan, Iran
| |
Collapse
|
11
|
Saccà SC, Izzotti A, Vernazza S, Tirendi S, Scarfì S, Gandolfi S, Bassi AM. Can Polyphenols in Eye Drops Be Useful for Trabecular Protection from Oxidative Damage? J Clin Med 2020; 9:jcm9113584. [PMID: 33172106 PMCID: PMC7694784 DOI: 10.3390/jcm9113584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Polyphenols, with anti-oxidant properties, counteract oxidative stress effects. Increasing evidence has found oxidative stressto be the main risk factor for trabecular meshwork (TM) damage, leading to high-tension glaucoma. Topical anti-oxidants could represent a new target for glaucoma treatment. Our aim is to investigate the protective mechanisms on a human TM culture of a patented polyphenol and fatty acid (iTRAB®)formulation in response to oxidative stress using an advanced invitromodel consisting of 3D-human TM cells, embedded in a natural hydrogel, and a milli-scaled multi-organ device model for constantdynamic conditions. The 3D-human TM cells(3D-HTMCs) were treated daily with 500 µM H2O2or 500 µM H2O2and 0.15% iTRAB®(m/v) for 72 h, and molecular differences in the intracellular reactive oxygen species (iROS), state of the cells, activation of the apoptosis pathway and NF-kB and the expression ofinflammatory and fibrotic markers wereanalyzed at different time-points.Concomitant exposure significantly reduced iROS and restored TM viability, iTRAB® having a significant inhibitory effect on the apoptotic pathway, activation of NF-κB, induction of pro-inflammatory (IL-1α, IL-1ß and TNFα) and pro-fibrotic (TGFβ) cytokines and the matrix metalloproteinase expressions. It is clear that this specific anti-oxidant provides a valid TM protection, suggesting iTRAB® could be an adjuvant therapy in primary open-angle glaucoma (POAG).
Collapse
Affiliation(s)
| | - Alberto Izzotti
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (A.I.); (S.T.); (A.M.B.)
| | - Stefania Vernazza
- IRCCS-Fondazione Bietti via Livenza 3, 00198 Rome, Italy
- Correspondence: ; Tel.: +39-3473892160
| | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (A.I.); (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy;
| | - Sonia Scarfì
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy;
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy
| | - Stefano Gandolfi
- Ophthalmology Unit, Department of Biological, Biotechnological and Translational Sciences, University of Parma, 43121 Parma, Italy;
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (A.I.); (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy;
| |
Collapse
|
12
|
Hvozda Arana AG, Lasagni Vitar RM, Reides CG, Lerner SF, Ferreira SM. Glaucoma causes redox imbalance in the primary visual cortex by modulating NADPH oxidase-4, iNOS, and Nrf2 pathway in a rat experimental model. Exp Eye Res 2020; 200:108225. [DOI: 10.1016/j.exer.2020.108225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
|
13
|
Baudouin C, Kolko M, Melik-Parsadaniantz S, Messmer EM. Inflammation in Glaucoma: From the back to the front of the eye, and beyond. Prog Retin Eye Res 2020; 83:100916. [PMID: 33075485 DOI: 10.1016/j.preteyeres.2020.100916] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023]
Abstract
The pathophysiology of glaucoma is complex, multifactorial and not completely understood. Elevated intraocular pressure (IOP) and/or impaired retinal blood flow may cause initial optic nerve damage. In addition, age-related oxidative stress in the retina concurrently with chronic mechanical and vascular stress is crucial for the initiation of retinal neurodegeneration. Oxidative stress is closely related to cell senescence, mitochondrial dysfunction, excitotoxicity, and neuroinflammation, which are involved in glaucoma progression. Accumulating evidence from animal glaucoma models and from human ocular samples suggests a dysfunction of the para-inflammation in the retinal ganglion cell layer and the optic nerve head. Moreover, quite similar mechanisms in the anterior chamber could explain the trabecular meshwork dysfunction and the elevated IOP in primary open-angle glaucoma. On the other hand, ocular surface disease due to topical interventions is the most prominent and visible consequence of inflammation in glaucoma, with a negative impact on filtering surgery failure, topical treatment efficacy, and possibly on inflammation in the anterior segment. Consequently, glaucoma appears as an outstanding eye disease where inflammatory changes may be present to various extents and consequences along the eye structure, from the ocular surface to the posterior segment, and the visual pathway. Here we reviewed the inflammatory processes in all ocular structures in glaucoma from the back to the front of the eye and beyond. Our approach was to explain how para-inflammation is necessary to maintain homoeostasis, and to describe abnormal inflammatory findings observed in glaucomatous patients or in animal glaucoma models, supporting the hypothesis of a dysregulation of the inflammatory balance toward a pro-inflammatory phenotype. Possible anti-inflammatory therapeutic approaches in glaucoma are also discussed.
Collapse
Affiliation(s)
- Christophe Baudouin
- Quinze-Vingts National Ophthalmology Hospital, INSERM-DGOS CIC 1423, IHU Foresight, Paris, France; Sorbonne Université, INSERM, CNRS, Institut de La Vision, Paris, France; Department of Ophthalmology, Ambroise Paré Hospital, APHP, Université de Versailles Saint-Quentin en Yvelines, Boulogne-Billancourt, France.
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | | | | |
Collapse
|
14
|
Jin Y, Wang X, Irnadiastputri SFR, Mohan RE, Aung T, Perera SA, Boote C, Jonas JB, Schmetterer L, Girard MJA. Effect of Changing Heart Rate on the Ocular Pulse and Dynamic Biomechanical Behavior of the Optic Nerve Head. Invest Ophthalmol Vis Sci 2020; 61:27. [PMID: 32315378 PMCID: PMC7401455 DOI: 10.1167/iovs.61.4.27] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose To study the effect of changing heart rate on the ocular pulse and the dynamic biomechanical behavior of the optic nerve head (ONH) using a comprehensive mathematical model. Methods In a finite element model of a healthy eye, a biphasic choroid consisted of a solid phase with connective tissues and a fluid phase with blood, and the lamina cribrosa (LC) was viscoelastic as characterized by a stress-relaxation test. We applied arterial pressures at 18 ocular entry sites (posterior ciliary arteries), and venous pressures at four exit sites (vortex veins). In the model, the heart rate was varied from 60 to 120 bpm (increment: 20 bpm). We assessed the ocular pulse amplitude (OPA), pulse volume, ONH deformations, and the dynamic modulus of the LC at different heart rates. Results With an increasing heart rate, the OPA decreased by 0.04 mm Hg for every 10 bpm increase in heart rate. The ocular pulse volume decreased linearly by 0.13 µL for every 10 bpm increase in heart rate. The storage modulus and the loss modulus of the LC increased by 0.014 and 0.04 MPa, respectively, for every 10 bpm increase in heart rate. Conclusions In our model, the OPA, pulse volume, and ONH deformations decreased with an increasing heart rate, whereas the LC became stiffer. The effects of blood pressure/heart rate changes on ONH stiffening may be of interest for glaucoma pathology.
Collapse
|
15
|
Potential Protective and Therapeutic Roles of the Nrf2 Pathway in Ocular Diseases: An Update. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9410952. [PMID: 32273949 PMCID: PMC7125500 DOI: 10.1155/2020/9410952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022]
Abstract
Nuclear factor- (erythroid-derived 2-) like 2 (Nrf2) is a regulator of many processes of life, and it plays an important role in antioxidant, anti-inflammatory, and antifibrotic responses and in cancer. This review is focused on the potential mechanism of Nrf2 in the occurrence and development of ocular diseases. Also, several Nrf2 inducers, including noncoding RNAs and exogenous compounds, which control the expression of Nrf2 through different pathways, are discussed in ocular disease models and ocular cells, protecting them from dysfunctional changes. Therefore, Nrf2 might be a potential target of protecting ocular cells from various stresses and preventing ocular diseases.
Collapse
|
16
|
Chen Z, Liu W, Qin Z, Liang X, Tian G. Geniposide exhibits anticancer activity to medulloblastoma cells by downregulating microRNA-373. J Biochem Mol Toxicol 2020; 34:e22471. [PMID: 32057176 DOI: 10.1002/jbt.22471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/30/2019] [Accepted: 01/31/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Medulloblastoma is a common tumor originates from central nervous system in children with metastatic potential. Geniposide is the major active ingredient separated from the fruit of Gardenia jasminoides Ellis. Herein, we tested the possible anticancer activity of geniposide on human medulloblastoma cells, as well as the potential underlying molecular mechanisms. METHODS Firstly, followed by geniposide incubation, cell viability, proliferation, apoptosis, migration, and invasion of medulloblastoma Daoy cells, along with microRNA-373 (miR-373) expression were tested, respectively. Then, the influences of miR-373 overexpression in the reduction of medulloblastoma cell proliferation, migration, and invasion and the elevation of apoptosis, triggered by geniposide treatment, were re-investigated. Finally, the Ras/Raf/MEK/ERK pathway activity was analyzed. RESULTS Geniposide treatment inhibited medulloblastoma cell viability, proliferation, migration, and invasion, but promoted cell apoptosis. Surprisingly, miR-373 expression in medulloblastoma cells was obviously downregulated by geniposide treatment. miR-373 overexpression reversed the effects of geniposide on Daoy cells. Furthermore, geniposide hindered the Ras/Raf/MEK/ERK pathway by downregulating miR-373 expression. CONCLUSION Geniposide exhibited anticancer activity on human medulloblastoma cells and blocked Ras/Raf/MEK/ERK pathway by downregulating miR-373 expression.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Weiming Liu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhigang Qin
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoting Liang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Gengren Tian
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
17
|
Wang M, Li J, Zheng Y. The Potential Role of Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) in Glaucoma: A Review. Med Sci Monit 2020; 26:e921514. [PMID: 31949124 PMCID: PMC6986212 DOI: 10.12659/msm.921514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) acts as a regulator of many biological processes and plays an essential role in preventing oxidation, inflammation, and fibrosis. In the past 20 years, there has been increasing research on the role of Nrf2 and oxidative stress in human glaucoma, including the roles of inflammation, trabecular meshwork cells, retinal ganglion cells, Tenon's capsule, antioxidants, fibrosis, and noncoding RNAs. Studies have shown that the upregulation of Nrf2 can reduce damage from oxidative stress in the trabecular meshwork cells and the retinal ganglion cells, reduce fibrosis in Tenon's capsule fibroblasts, which may reduce the progression of fibrosis after surgery for glaucoma. The regulatory roles of Nrf2, microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and exogenous compounds on trabecular meshwork cells (TMCs) and retinal ganglion cells have also been studied. The use of Nrf2 agonists, including noncoding RNAs, control the expression of Nrf2 through signaling pathways that continue to be investigated to identify effective treatments to improve clinical outcome following surgery for glaucoma. This review of publications between 1999 and 2019 aims to focus on the potential mechanisms of Nrf2 in the occurrence and development of glaucoma and the prognosis following surgical treatment. Also, several factors that induce the expression of Nrf2 in trabecular meshwork cells, retinal ganglion cells, and human Tenon's capsule fibroblasts are discussed.
Collapse
Affiliation(s)
- Mingxuan Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Jia Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
18
|
Wang XJ, Chen JY, Fu LQ, Yan MJ. Recent advances in natural therapeutic approaches for the treatment of cancer. J Chemother 2020; 32:53-65. [PMID: 31928332 DOI: 10.1080/1120009x.2019.1707417] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xue-Jun Wang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an Branch), Zhejiang Province, Hangzhou, China
| | - Jin-Yang Chen
- Research and Development Department, Zhejiang Healthfuture Institute for Cell-Based Applied Technology, Zhejiang Province, Hangzhou, China
| | - Luo-Qin Fu
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an Branch), Zhejiang Province, Hangzhou, China
| | - Mei-Juan Yan
- Department of Anesthesiology, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Zhejiang Province, Hangzhou, China
| |
Collapse
|
19
|
Su P, Mu S, Wang Z. Long Noncoding RNA SNHG16 Promotes Osteosarcoma Cells Migration and Invasion via Sponging miRNA-340. DNA Cell Biol 2019; 38:170-175. [PMID: 30726150 DOI: 10.1089/dna.2018.4424] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNA host gene 16 (SNHG16) has a key role in a variety of cancer progression. However, the role and mechanism of SNHG16 in osteosarcoma (OS) remain unknown. In this study, we examined the functional role of SNHG16 in OS cells through knocked-down SNHG16 by using siRNA. We found that SNHG16 is overexpressed in OS tissues and cell lines. Inhibition of SNHG16 reduced OS cells proliferation, stimulated apoptosis, and decreased migration and invasion. In addition, SNHG16 reduced miR-340 expression in OS cells. The results showed that SNHG16 involves in the migration and invasion of OS cells through sponging miRNA-340. Together, our data support an important role of SNHG16 in regulating OS cell invasion and migration that highlights SNHG16 may be regarded as a potential target for OS treatment.
Collapse
Affiliation(s)
- Pan Su
- 1 Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Henan, China
| | - Shimin Mu
- 1 Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Henan, China
| | - Zhiyuan Wang
- 2 Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Saccà SC, Corazza P, Gandolfi S, Ferrari D, Sukkar S, Iorio EL, Traverso CE. Substances of Interest That Support Glaucoma Therapy. Nutrients 2019; 11:E239. [PMID: 30678262 PMCID: PMC6412416 DOI: 10.3390/nu11020239] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is a multifactorial disease in which pro-apoptotic signals are directed to retinal ganglion cells. During this disease the conventional outflow pathway becomes malfunctioning. Aqueous humour builds up in the anterior chamber, leading to increased intraocular pressure. Both of these events are related to functional impairment. The knowledge of molecular mechanisms allows us to better understand the usefulness of substances that can support anti-glaucoma therapy. The goal of glaucoma therapy is not simply to lower intraocular pressure; it should also be to facilitate the survival of retinal ganglion cells, as these constitute the real target tissue in this disease, in which the visual pathway is progressively compromised. Indeed, an endothelial dysfunction syndrome affecting the endothelial cells of the trabecular meshwork occurs in both normal-tension glaucoma and high-tension glaucoma. Some substances, such as polyunsaturated fatty acids, can counteract the damage due to the molecular mechanisms - whether ischemic, oxidative, inflammatory or other - that underlie the pathogenesis of glaucoma. In this review, we consider some molecules, such as polyphenols, that can contribute, not only theoretically, to neuroprotection but which are also able to counteract the metabolic pathways that lead to glaucomatous damage. Ginkgo biloba extract, for instance, improves the blood supply to peripheral districts, including the optic nerve and retina and exerts a neuro-protective action by inhibiting apoptosis. Polyunsaturated fatty acids can protect the endothelium and polyphenols exert an anti-inflammatory action through the down-regulation of cytokines such as TNF-α and IL-6. All these substances can aid anti-glaucoma therapy by providing metabolic support for the cells involved in glaucomatous injury. Indeed, it is known that the food we eat is able to change our gene expression.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- Ophthalmology Unit, Department of Head/Neck Pathologies, Policlinico San Martino Hospital, IRCCS Hospital-University San Martino, Viale Benedetto XV, 16132 Genoa, Italy.
| | - Paolo Corazza
- Eye Clinic, Department of Neuroscience and Sensory Organs, University of Genoa, Policlinico San Martino Hospital IRCCS Hospital-University San Martino, Viale Benedetto XV, 16132 Genoa, Italy.
| | - Stefano Gandolfi
- Ophthalmology Unit, Department of Biological, Biotechnological and Translational Sciences, University of Parma, 43121 Parma, Italy.
| | - Daniele Ferrari
- Ophthalmology Unit, Department of Head/Neck Pathologies, Policlinico San Martino Hospital, IRCCS Hospital-University San Martino, Viale Benedetto XV, 16132 Genoa, Italy.
| | - Samir Sukkar
- U.O. di Dietetica e Nutrizione Clinica, Policlinico San Martino Hospital IRCCS Hospital-University San Martino, 35122 Genoa, Italy.
| | - Eugenio Luigi Iorio
- International Observatory of Oxidative Stress, Via Paolo Grisignano 21, 84127 Salerno, Italy.
| | - Carlo Enrico Traverso
- Eye Clinic, Department of Neuroscience and Sensory Organs, University of Genoa, Policlinico San Martino Hospital IRCCS Hospital-University San Martino, Viale Benedetto XV, 16132 Genoa, Italy.
| |
Collapse
|