1
|
Fan Y, Ma Y, Wang R, Wang L. Prospective Study of lncRNA NORAD for Predicting Cerebrovascular Events in Asymptomatic Patients with Carotid Artery Stenosis. Clin Appl Thromb Hemost 2025; 31:10760296241299792. [PMID: 39763215 PMCID: PMC11705339 DOI: 10.1177/10760296241299792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Carotid artery stenosis (CAS) may cause many cerebrovascular diseases, and a biomarker for screening and monitoring is needed. This study focused on the clinical significance of long-chain non-coding RNA (lncRNA) non-coding RNA activated by DNA damage (NORAD) in patients with CAS and aimed to search for potential biomarkers of CAS. METHODS Eighty-six asymptomatic patients with CAS and 60 healthy individuals were enrolled, with corresponding clinical data and serum samples collected. The expression of NORAD was detected by reverse transcription-quantitive PCR (RT-qPCR). All patients were followed up for 2 years to collected the occurrence data of cerebrovascular events, and Kaplan-Meier and Cox regression were used for data analysis. Receiver operator characteristic curve was used to analyze the diagnostic value of NORAD in distinguishing CAS patients from healthy people, and to evaluate the prediction accuracy of NORAD. RESULTS NORAD is overexpressed in the serum of CAS patients, and associated with patients' hypertension, TC, LDL-C levels and stenosis degree. NORAD has high sensitivity (88.37%) and specificity (80.00%) in the identification of CAS patients (AUC = 0.917). NORAD was independently related to the occurrence of cerebrovascular events (HR = 2.435, P = .003). a logistic regression risk model for predicting cerebrovascular events was constructed with the parameters including NORAD, TC and LDL. CONCLUSION NORAD can be used as a diagnostic and prognostic biomarker for CAS, and NORAD, total cholesterol (TC), and low density lipoprotein cholesterol (LDL-C) can be independently correlated to predict cerebrovascular events.
Collapse
Affiliation(s)
- Yan Fan
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Yan Ma
- Department of Hyperbaric Oxygen, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Rui Wang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Lili Wang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| |
Collapse
|
2
|
Kalló G, Zaman K, Potor L, Hendrik Z, Méhes G, Tóth C, Gergely P, Tőzsér J, Balla G, Balla J, Prokai L, Csősz É. Identification of Protein Networks and Biological Pathways Driving the Progression of Atherosclerosis in Human Carotid Arteries Through Mass Spectrometry-Based Proteomics. Int J Mol Sci 2024; 25:13665. [PMID: 39769427 PMCID: PMC11728284 DOI: 10.3390/ijms252413665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Vulnerable atherosclerotic plaques, especially hemorrhaged lesions, are the major cause of mortalities related to vascular pathologies. The early identification of vulnerable plaques helps to stratify patients at risk of developing acute vascular events. In this study, proteomics analyses of human carotid artery samples collected from patients with atheromatous plaques and complicated lesions, respectively, as well as from healthy controls were performed. The proteins isolated from the carotid artery samples were analyzed by a bottom-up shotgun approach that relied on nanoflow liquid chromatography-tandem mass spectrometry analyses (LC-MS/MS) using both data-dependent (DDA) and data-independent (DIA) acquisitions. The data obtained by high-resolution DIA analyses displayed a stronger distinction among groups compared to DDA analyses. Differentially expressed proteins were further examined using Ingenuity Pathway Analysis® with focus on pathological and molecular processes driving atherosclerosis. From the more than 150 significantly regulated canonical pathways, atherosclerosis signaling and neutrophil extracellular trap signaling were verified by protein-targeted data extraction. The results of our study are expected to facilitate a better understanding of the disease progression's molecular drivers and provide inspiration for further multiomics and hypothesis-driven studies.
Collapse
Affiliation(s)
- Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (J.T.)
| | - Khadiza Zaman
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - László Potor
- HUN-REN-DE Vascular Pathophysiology Research Group 11003, University of Debrecen, 4032 Debrecen, Hungary; (L.P.); (J.B.)
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zoltán Hendrik
- Department of Forensic Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.H.); (P.G.)
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Csaba Tóth
- Division of Vascular Surgery, Department of Surgery, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Péter Gergely
- Department of Forensic Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.H.); (P.G.)
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (J.T.)
| | - György Balla
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - József Balla
- HUN-REN-DE Vascular Pathophysiology Research Group 11003, University of Debrecen, 4032 Debrecen, Hungary; (L.P.); (J.B.)
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Laszlo Prokai
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (J.T.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (J.T.)
| |
Collapse
|
3
|
Hinkema HJ, Westra J, Arends S, Brouwer E, Mulder DJ. Higher levels of markers for early atherosclerosis in anti-citrullinated protein antibodies positive individuals at risk for RA, a cross sectional study. Rheumatol Int 2024; 44:2007-2016. [PMID: 39012360 PMCID: PMC11393035 DOI: 10.1007/s00296-024-05659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVE To identify differences in levels of serum biomarkers associated with atherosclerosis between anti-citrullinated protein antibodies (ACPA) positive groups. METHODS Cross-sectional data were used from the Dutch Lifelines Cohort Study combined with data derived from RA risk and early RA studies conducted at the University Medical Center Groningen (UMCG). Serum biomarkers of inflammation, endothelial cell activation, tissue remodeling and adipokine, which were previously associated with atherosclerosis, were measured with Luminex in four ACPA positive groups with different characteristics: without joint complaints, with joint complaints, RA risk and early RA groups. RESULTS Levels of C-reactive protein (CRP), Interleukin-6 (IL-6), Tumor Necrosis Factor Receptor 1 (TNFR1) and vascular endothelial growth factor (VEGF) were significantly higher in the RA risk and early RA groups compared to the joint complaints and the no joint complaints groups. The difference remained statistically significant after correcting for renal function, smoking and hypertension in multivariate logistic regression analysis, with focus on ACPA positive with joint complaints group versus RA risk group: CRP OR = 2.67, p = 0.033; IL-6 OR = 3.73, p = 0.019; TNFR1 OR = 1.003, p < 0.001; VGEF OR = 8.59, p = 0.019. CONCLUSION Individuals at risk for RA have higher levels of inflammatory markers and VEGF, which suggests that they might also have a risk of higher cardiovascular disease (CVD); however, this does not apply to individuals with ACPA positivity with self-reported joint complaints or without joint complaints only. Therefore, it is important that individuals with RA risk are referred to a rheumatologist to rule in or out arthritis/development of RA and discuss CVD risk.
Collapse
Affiliation(s)
- Helma J Hinkema
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, P.O. Box 30001, Groningen, 9700 RB, The Netherlands.
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, P.O. Box 30001, Groningen, 9700 RB, The Netherlands
| | - Suzanne Arends
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, P.O. Box 30001, Groningen, 9700 RB, The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, P.O. Box 30001, Groningen, 9700 RB, The Netherlands
| | - Douwe J Mulder
- Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Patel P, Rai V, Agrawal DK. Role of oncostatin-M in ECM remodeling and plaque vulnerability. Mol Cell Biochem 2023; 478:2451-2460. [PMID: 36856919 PMCID: PMC10579161 DOI: 10.1007/s11010-023-04673-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023]
Abstract
Atherosclerosis is a multifactorial inflammatory disease characterized by the development of plaque formation leading to occlusion of the vessel and hypoxia of the tissue supplied by the vessel. Chronic inflammation and altered collagen expression render stable plaque to unstable and increase plaque vulnerability. Thinned and weakened fibrous cap results in plaque rupture and formation of thrombosis and emboli formation leading to acute ischemic events such as stroke and myocardial infarction. Inflammatory mediators including TREM-1, TLRs, MMPs, and immune cells play a critical role in plaque vulnerability. Among the other inflammatory mediators, oncostatin-M (OSM), a pro-inflammatory cytokine, play an important role in the development and progression of atherosclerosis, however, the role of OSM in plaque vulnerability and extracellular matrix remodeling (ECM) is not well understood and studied. Since ECM remodeling plays an important role in atherosclerosis and plaque vulnerability, a detailed investigation on the role of OSM in ECM remodeling and plaque vulnerability is critical. This is important because the role of OSM has been discussed in the context of proliferation of vascular smooth muscle cells and regulation of cytokine expression but the role of OSM is scarcely discussed in relation to ECM remodeling and plaque vulnerability. This review focuses on critically discussing the role of OSM in ECM remodeling and plaque vulnerability.
Collapse
Affiliation(s)
- Parth Patel
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
5
|
Kalani R, Bartz TM, Psaty BM, Elkind MSV, Floyd JS, Gerszten RE, Shojaie A, Heckbert SR, Bis JC, Austin TR, Tirschwell DL, Delaney JAC, Longstreth WT. Plasma Proteomic Associations With Incident Ischemic Stroke in Older Adults: The Cardiovascular Health Study. Neurology 2023; 100:e2182-e2190. [PMID: 37015819 PMCID: PMC10238156 DOI: 10.1212/wnl.0000000000207242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 02/16/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Plasma proteomics may elucidate novel insights into the pathophysiology of ischemic stroke (IS), identify biomarkers of IS risk, and guide development of nascent prevention strategies. We evaluated the relationship between the plasma proteome and IS risk in the population-based Cardiovascular Health Study (CHS). METHODS Eligible CHS participants were free of prevalent stroke and underwent quantification of 1,298 plasma proteins using the aptamer-based SOMAScan assay platform from the 1992-1993 study visit. Multivariable Cox proportional hazards regression was used to evaluate associations between a 1-SD increase in the log2-transformed estimated plasma protein concentrations and incident IS, adjusting for demographics, IS risk factors, and estimated glomerular filtration rate. For proteins independently associated with incident IS, a secondary stratified analysis evaluated associations in subgroups defined by sex and race. Exploratory analyses evaluated plasma proteomic associations with cardioembolic and noncardioembolic IS and proteins associated with IS risk in participants with left atrial dysfunction but without atrial fibrillation. RESULTS Of 2,983 eligible participants, the mean age was 74.3 (±4.8) years, 61.2% were women, and 15.4% were Black. Over a median follow-up of 12.6 years, 450 participants experienced an incident IS. N-terminal probrain natriuretic peptide (NTproBNP, adjusted HR 1.37, 95% CI 1.23-1.53, p = 2.08 × 10-08) and macrophage metalloelastase (MMP12, adjusted HR 1.30, 95% CI 1.16-1.45, p = 4.55 × 10-06) were independently associated with IS risk. These 2 associations were similar in men and women and in Black and non-Black participants. In exploratory analyses, NTproBNP was independently associated with incident cardioembolic IS, E-selectin with incident noncardioembolic IS, and secreted frizzled-related protein 1 with IS risk in participants with left atrial dysfunction. DISCUSSION In a cohort of older adults, NTproBNP and MMP12 were independently associated with IS risk. We identified plasma proteomic determinants of incident cardioembolic and noncardioembolic IS and found a novel protein associated with IS risk in those with left atrial dysfunction.
Collapse
Affiliation(s)
- Rizwan Kalani
- From the Departments of Neurology (R.K., D.L.T., W.T.L.), Biostatistics (T.M.B., A.S.), Cardiovascular Health Research Unit (B.M.P., J.S.F., S.R.H., J.C.B., T.R.A.), Medicine, Epidemiology (B.M.P., J.S.F., S.R.H., J.A.C.D., W.T.L.), and Health Services (B.M.P.), University of Washington, Seattle; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Medicine (R.E.G.), Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and College of Pharmacy (J.A.C.D.), University of Manitoba, Winnipeg, Canada.
| | - Traci M Bartz
- From the Departments of Neurology (R.K., D.L.T., W.T.L.), Biostatistics (T.M.B., A.S.), Cardiovascular Health Research Unit (B.M.P., J.S.F., S.R.H., J.C.B., T.R.A.), Medicine, Epidemiology (B.M.P., J.S.F., S.R.H., J.A.C.D., W.T.L.), and Health Services (B.M.P.), University of Washington, Seattle; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Medicine (R.E.G.), Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and College of Pharmacy (J.A.C.D.), University of Manitoba, Winnipeg, Canada
| | - Bruce M Psaty
- From the Departments of Neurology (R.K., D.L.T., W.T.L.), Biostatistics (T.M.B., A.S.), Cardiovascular Health Research Unit (B.M.P., J.S.F., S.R.H., J.C.B., T.R.A.), Medicine, Epidemiology (B.M.P., J.S.F., S.R.H., J.A.C.D., W.T.L.), and Health Services (B.M.P.), University of Washington, Seattle; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Medicine (R.E.G.), Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and College of Pharmacy (J.A.C.D.), University of Manitoba, Winnipeg, Canada
| | - Mitchell S V Elkind
- From the Departments of Neurology (R.K., D.L.T., W.T.L.), Biostatistics (T.M.B., A.S.), Cardiovascular Health Research Unit (B.M.P., J.S.F., S.R.H., J.C.B., T.R.A.), Medicine, Epidemiology (B.M.P., J.S.F., S.R.H., J.A.C.D., W.T.L.), and Health Services (B.M.P.), University of Washington, Seattle; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Medicine (R.E.G.), Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and College of Pharmacy (J.A.C.D.), University of Manitoba, Winnipeg, Canada
| | - James S Floyd
- From the Departments of Neurology (R.K., D.L.T., W.T.L.), Biostatistics (T.M.B., A.S.), Cardiovascular Health Research Unit (B.M.P., J.S.F., S.R.H., J.C.B., T.R.A.), Medicine, Epidemiology (B.M.P., J.S.F., S.R.H., J.A.C.D., W.T.L.), and Health Services (B.M.P.), University of Washington, Seattle; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Medicine (R.E.G.), Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and College of Pharmacy (J.A.C.D.), University of Manitoba, Winnipeg, Canada
| | - Robert E Gerszten
- From the Departments of Neurology (R.K., D.L.T., W.T.L.), Biostatistics (T.M.B., A.S.), Cardiovascular Health Research Unit (B.M.P., J.S.F., S.R.H., J.C.B., T.R.A.), Medicine, Epidemiology (B.M.P., J.S.F., S.R.H., J.A.C.D., W.T.L.), and Health Services (B.M.P.), University of Washington, Seattle; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Medicine (R.E.G.), Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and College of Pharmacy (J.A.C.D.), University of Manitoba, Winnipeg, Canada
| | - Ali Shojaie
- From the Departments of Neurology (R.K., D.L.T., W.T.L.), Biostatistics (T.M.B., A.S.), Cardiovascular Health Research Unit (B.M.P., J.S.F., S.R.H., J.C.B., T.R.A.), Medicine, Epidemiology (B.M.P., J.S.F., S.R.H., J.A.C.D., W.T.L.), and Health Services (B.M.P.), University of Washington, Seattle; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Medicine (R.E.G.), Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and College of Pharmacy (J.A.C.D.), University of Manitoba, Winnipeg, Canada
| | - Susan R Heckbert
- From the Departments of Neurology (R.K., D.L.T., W.T.L.), Biostatistics (T.M.B., A.S.), Cardiovascular Health Research Unit (B.M.P., J.S.F., S.R.H., J.C.B., T.R.A.), Medicine, Epidemiology (B.M.P., J.S.F., S.R.H., J.A.C.D., W.T.L.), and Health Services (B.M.P.), University of Washington, Seattle; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Medicine (R.E.G.), Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and College of Pharmacy (J.A.C.D.), University of Manitoba, Winnipeg, Canada
| | - Joshua C Bis
- From the Departments of Neurology (R.K., D.L.T., W.T.L.), Biostatistics (T.M.B., A.S.), Cardiovascular Health Research Unit (B.M.P., J.S.F., S.R.H., J.C.B., T.R.A.), Medicine, Epidemiology (B.M.P., J.S.F., S.R.H., J.A.C.D., W.T.L.), and Health Services (B.M.P.), University of Washington, Seattle; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Medicine (R.E.G.), Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and College of Pharmacy (J.A.C.D.), University of Manitoba, Winnipeg, Canada
| | - Thomas R Austin
- From the Departments of Neurology (R.K., D.L.T., W.T.L.), Biostatistics (T.M.B., A.S.), Cardiovascular Health Research Unit (B.M.P., J.S.F., S.R.H., J.C.B., T.R.A.), Medicine, Epidemiology (B.M.P., J.S.F., S.R.H., J.A.C.D., W.T.L.), and Health Services (B.M.P.), University of Washington, Seattle; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Medicine (R.E.G.), Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and College of Pharmacy (J.A.C.D.), University of Manitoba, Winnipeg, Canada
| | - David L Tirschwell
- From the Departments of Neurology (R.K., D.L.T., W.T.L.), Biostatistics (T.M.B., A.S.), Cardiovascular Health Research Unit (B.M.P., J.S.F., S.R.H., J.C.B., T.R.A.), Medicine, Epidemiology (B.M.P., J.S.F., S.R.H., J.A.C.D., W.T.L.), and Health Services (B.M.P.), University of Washington, Seattle; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Medicine (R.E.G.), Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and College of Pharmacy (J.A.C.D.), University of Manitoba, Winnipeg, Canada
| | - Joseph A C Delaney
- From the Departments of Neurology (R.K., D.L.T., W.T.L.), Biostatistics (T.M.B., A.S.), Cardiovascular Health Research Unit (B.M.P., J.S.F., S.R.H., J.C.B., T.R.A.), Medicine, Epidemiology (B.M.P., J.S.F., S.R.H., J.A.C.D., W.T.L.), and Health Services (B.M.P.), University of Washington, Seattle; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Medicine (R.E.G.), Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and College of Pharmacy (J.A.C.D.), University of Manitoba, Winnipeg, Canada
| | - W T Longstreth
- From the Departments of Neurology (R.K., D.L.T., W.T.L.), Biostatistics (T.M.B., A.S.), Cardiovascular Health Research Unit (B.M.P., J.S.F., S.R.H., J.C.B., T.R.A.), Medicine, Epidemiology (B.M.P., J.S.F., S.R.H., J.A.C.D., W.T.L.), and Health Services (B.M.P.), University of Washington, Seattle; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons, and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY; Division of Cardiovascular Medicine (R.E.G.), Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and College of Pharmacy (J.A.C.D.), University of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
Bräuninger H, Krüger S, Bacmeister L, Nyström A, Eyerich K, Westermann D, Lindner D. Matrix metalloproteinases in coronary artery disease and myocardial infarction. Basic Res Cardiol 2023; 118:18. [PMID: 37160529 PMCID: PMC10169894 DOI: 10.1007/s00395-023-00987-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. Most cardiovascular deaths are caused by ischaemic heart diseases such as myocardial infarction (MI). Hereby atherosclerosis in the coronary arteries often precedes disease manifestation. Since tissue remodelling plays an important role in the development and progression of atherosclerosis as well as in outcome after MI, regulation of matrix metalloproteinases (MMPs) as the major ECM-degrading enzymes with diverse other functions is crucial. Here, we provide an overview of the expression profiles of MMPs in coronary artery and left ventricular tissue using publicly available data from whole tissue to single-cell resolution. To approach an association between MMP expression and the development and outcome of CVDs, we further review studies investigating polymorphisms in MMP genes since polymorphisms are known to have an impact on gene expression. This review therefore aims to shed light on the role of MMPs in atherosclerosis and MI by summarizing current knowledge from publically available datasets, human studies, and analyses of polymorphisms up to preclinical and clinical trials of pharmacological MMP inhibition.
Collapse
Affiliation(s)
- Hanna Bräuninger
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Side Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Saskia Krüger
- Clinic for Cardiology, University Heart and Vascular Centre Hamburg, Hamburg, Germany
| | - Lucas Bacmeister
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kilian Eyerich
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Diana Lindner
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Side Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
7
|
Hong SY, Jiang HC, Xu WC, Zeng HS, Wang SG, Qin BL. Bioinformatics analysis reveals the potential role of matrix metalloproteinases in immunity and urolithiasis. Front Immunol 2023; 14:1158379. [PMID: 37006258 PMCID: PMC10050583 DOI: 10.3389/fimmu.2023.1158379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundThe pathogenesis of urolithiasis remains unclear, making the development of medications for treatment and prevention stagnant. Randall’s plaques (RPs) begin as interstitial calcium phosphate crystal deposits, grow outward and breach the renal papillary surface, acting as attachment for CaOx stones. Since matrix metalloproteinases (MMPs) can degrade all components of extracellular matrix (ECM), they might participate in the breach of RPs. Besides, MMPs can modulate the immune response and inflammation, which were confirmed to be involved in urolithiasis. We aimed to investigate the role of MMPs in the development of RPs and stone formation.MethodsThe public dataset GSE73680 was mined to identify differentially expressed MMPs (DEMMPs) between normal tissues and RPs. WGCNA and three machine learning algorithms were performed to screen the hub DEMMPs. In vitro experiments were conducted for validation. Afterwards, RPs samples were classified into clusters based on the hub DEMMPs expression. Differentially expressed genes (DEGs) between clusters were identified and functional enrichment analysis and GSEA were applied to explore the biological role of DEGs. Moreover, the immune infiltration levels between clusters were evaluated by CIBERSORT and ssGSEA.ResultsFive DEMMPs, including MMP1, MMP3, MMP9, MMP10, and MMP12, were identified between normal tissues and RPs, and all of them were elevated in RPs. Based on WGCNA and three machine learning algorithms, all of five DEMMPs were regarded as hub DEMMPs. In vitro validation found the expression of hub DEMMPs also increased in renal tubular epithelial cells under lithogenic environment. RPs samples were divided into two clusters and cluster A exhibited higher expression of hub DEMMPs compared to cluster B. Functional enrichment analysis and GSEA found DEGs were enriched in immune-related functions and pathways. Moreover, increased infiltration of M1 macrophages and enhanced levels of inflammation were observed in cluster A by immune infiltration analysis.ConclusionWe assumed that MMPs might participate in RPs and stone formation through ECM degradation and macrophages-mediated immune response and inflammation. Our findings offer a novel perspective on the role of MMPs in immunity and urolithiasis for the first time, and provide potential biomarkers to develop targets for treatment and prevention.
Collapse
Affiliation(s)
- Sen-Yuan Hong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Cheng Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Chao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He-Song Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shao-Gang Wang, ; Bao-Long Qin,
| | - Bao-Long Qin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shao-Gang Wang, ; Bao-Long Qin,
| |
Collapse
|
8
|
Zhao Z, Wang H, Hou Q, Zhou Y, Zhang Y. Non-traditional lipid parameters as potential predictors of carotid plaque vulnerability and stenosis in patients with acute ischemic stroke. Neurol Sci 2023; 44:835-843. [PMID: 36301362 DOI: 10.1007/s10072-022-06472-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Lipid abnormalities are important risk factors in patients with large atherosclerotic strokes. Recent studies have shown that non-traditional lipid parameters are crucial to the development of atherosclerosis and are closely related to the clinical outcome of acute ischemic stroke (AIS). Therefore, we aimed to investigate the relationship between non-traditional lipid parameters and carotid plaque stability and stenosis degree in patients with large atherosclerotic stroke. METHODS We retrospectively analyzed 336 patients with AIS. All patients were divided into the non-plaque group, stable plaque group, and vulnerable plaque group according to ultrasound examination. At the same time, the patients were divided into non-stenosis, mild stenosis, moderate stenosis, and severe stenosis groups according to the degree of stenosis. Non-traditional lipid parameters, including residual lipoprotein cholesterol (RLP-C), non-high-density lipoprotein cholesterol (non-HDL-C), non-HDL-C to high-density lipoprotein cholesterol ratio (non-HDL-C/HDL-C), triglyceride to HDL-C ratio (TG/HDL-C), Castelli's risk index (CRI), and the atherogenic index of plasma (AIP). Receiver operating characteristic (ROC) curves and multivariate logistic regression analyses were used to investigate the associations between the non-traditional lipid parameters and carotid plaque vulnerability. Spearman linear correlation analysis was used to test the correlation between variables and the degree of carotid plaque stenosis. RESULTS This study population included 336 patients with AIS, of whom 294 had a carotid plaque. Multivariate logistic regression model showed that RLP-C (OR, 3.361; 95%CI, 1.311-8.617), non-HDL-C/HDL-C (OR, 1.699; 95%CI, 1.279-2.258), non-HDL-C (OR, 1.704; 95%CI, 1.143-2.540), CRI-I (OR, 1.573; 95%CI, 1.196-2.068), and CRI-II (OR, 2.022; 95%CI, 1.369-2.985) were independent risk factors for carotid plaque vulnerability. In addition, Spearman correlation analysis showed that the values of RLP-C, non-HDL-C/HDL-C, non-HDL-C, TG/HDL-C, CRI-I, CRI-II, and AIP on admission were positively correlated with the degree of carotid plaque stenosis (all P < 0.001). CONCLUSION This study provides evidence that non-traditional lipid parameters (LP-C, non-HDL-C/HDL-C, non-HDL-C, CRI-I, and CRI-II) were potential predictors of carotid plaque vulnerability in patients with AIS. However, no significant correlation was observed between TG/HDL-C and AIP. RLP-C, non-HDL-C/HDL-C, non-HDL-C, TG/HDL-C, CRI-I, CRI-II, and AIP were closely related to the degree of carotid plaque stenosis. Non-traditional lipid parameters can be used as novel biomarkers of carotid plaque vulnerability and stenosis.
Collapse
Affiliation(s)
- Zhao Zhao
- Qinghai University, Xining, 810000, China
| | | | - Qian Hou
- Qinghai Provincial People's Hospital, Xining, 810000, China.
| | - Youting Zhou
- Qinghai Provincial People's Hospital, Xining, 810000, China
| | | |
Collapse
|
9
|
Chiorescu RM, Mocan M, Inceu AI, Buda AP, Blendea D, Vlaicu SI. Vulnerable Atherosclerotic Plaque: Is There a Molecular Signature? Int J Mol Sci 2022; 23:13638. [PMID: 36362423 PMCID: PMC9656166 DOI: 10.3390/ijms232113638] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2023] Open
Abstract
Atherosclerosis and its clinical manifestations, coronary and cerebral artery diseases, are the most common cause of death worldwide. The main pathophysiological mechanism for these complications is the rupture of vulnerable atherosclerotic plaques and subsequent thrombosis. Pathological studies of the vulnerable lesions showed that more frequently, plaques rich in lipids and with a high level of inflammation, responsible for mild or moderate stenosis, are more prone to rupture, leading to acute events. Identifying the vulnerable plaques helps to stratify patients at risk of developing acute vascular events. Traditional imaging methods based on plaque appearance and size are not reliable in prediction the risk of rupture. Intravascular imaging is a novel technique able to identify vulnerable lesions, but it is invasive and an operator-dependent technique. This review aims to summarize the current data from literature regarding the main biomarkers involved in the attempt to diagnose vulnerable atherosclerotic lesions. These biomarkers could be the base for risk stratification and development of the new therapeutic drugs in the treatment of patients with vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Roxana Mihaela Chiorescu
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Mihaela Mocan
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Andreea Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine, 400349 Cluj-Napoca, Romania
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
| | - Andreea Paula Buda
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
| | - Dan Blendea
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
- Department of Cardiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400437 Cluj-Napoca, Romania
| | - Sonia Irina Vlaicu
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Exogenous Regulators Enhance the Yield and Stress Resistance of Chlamydospores of the Biocontrol Agent Trichoderma harzianum T4. J Fungi (Basel) 2022; 8:jof8101017. [PMID: 36294583 PMCID: PMC9604748 DOI: 10.3390/jof8101017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
Trichoderma strains have been successfully used in plant disease control. However, the poor stress resistance of mycelia and conidia makes processing and storage difficult. Furthermore, they cannot produce chlamydospores in large quantities during fermentation, which limits the industrialization process of chlamydospore preparation. It is important to explore an efficient liquid fermentation strategy for ensuring chlamydospore production in Trichoderma harzianum. We found that the addition of mannitol, glycine betaine, and N-acetylglucosamine (N-A-G) during liquid fermentation effectively increases the yield of chlamydospores. Furthermore, we provided evidence that chlamydospores have stronger tolerance to high temperature, ultraviolet, and hypertonic stress after the addition of mannitol and trehalose. Lipids are an important component of microbial cells and impact the stress resistance of microorganisms. We studied the internal relationship between lipid metabolism and the stress resistance of chlamydospores by detecting changes in the lipid content and gene expression. Our results showed that mannitol and trehalose cause lipid accumulation in chlamydospores and increase the unsaturated fatty acid content. In conclusion, we verified that these exogenous regulators increase the production of chlamydospores and enhance their stress resistance by regulating lipid metabolism. In addition, we believe that lipid metabolism is an important part of the chlamydospore production process and impacts the stress resistance of chlamydospores. Our findings provide clues for studying the differentiation pathway of chlamydospores in filamentous fungi and a basis for the industrial production of chlamydospores.
Collapse
|
11
|
Klimontov VV, Koroleva EA, Khapaev RS, Korbut AI, Lykov AP. Carotid Artery Disease in Subjects with Type 2 Diabetes: Risk Factors and Biomarkers. J Clin Med 2021; 11:72. [PMID: 35011813 PMCID: PMC8745306 DOI: 10.3390/jcm11010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Carotid atherosclerosis (CA) and, especially, carotid artery stenosis (CAS), are associated with a high risk of cardiovascular events in subjects with type 2 diabetes (T2D). In this study, we aimed to identify risk factors and biomarkers of subclinical CA and CAS in T2D individuals. High-resolution ultrasonography of carotid arteries was performed in 389 patients. Ninety-five clinical parameters were evaluated, including diabetic complications and comorbidities; antihyperglycemic, hypolipidemic, and antihypertensive therapy; indices of glycemic control and glucose variability (GV); lipid panels; estimated glomerular filtration rate (eGFR); albuminuria; blood cell count; and coagulation. Additionally, serum levels of calponin-1, relaxin, L-citrulline, and matrix metalloproteinase-2 and -3 (MMP-2, -3) were measured by ELISA. In univariate analysis, older age, male sex, diabetes duration, GV, diabetic retinopathy, chronic kidney disease, coronary artery disease, peripheral artery disease, and MMP-3 were associated with subclinical CA. In addition to these factors, long-term arterial hypertension, high daily insulin doses, eGFR, and L-citrulline were associated with CAS. In multivariate logistic regression, age, male sex, BMI, GV, and eGFR predicted CA independently; male sex, BMI, diabetes duration, eGFR, and L-citrulline were predictors of CAS. These results can be used to develop screening and prevention programs for CA and CAS in T2D subjects.
Collapse
Affiliation(s)
- Vadim V. Klimontov
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (E.A.K.); (R.S.K.); (A.I.K.); (A.P.L.)
| | | | | | | | | |
Collapse
|
12
|
Kang CM, Li WK, Yu KW, Li XH, Huang RY, Ke PF, Jin X, Cao SW, Yuan YS, Wang H, Yan J, Chen WY, Huang XZ, Zhao JJ. Long non‑coding RNA AL355711 promotes smooth muscle cell migration through the ABCG1/MMP3 pathway. Int J Mol Med 2021; 48:207. [PMID: 34608503 PMCID: PMC8510679 DOI: 10.3892/ijmm.2021.5040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
Atherosclerosis and related cardiovascular diseases pose severe threats to human health worldwide. There is evidence to suggest that at least 50% of foam cells in atheromas are derived from vascular smooth muscle cells (VSMCs); the first step in this process involves migration to human atherosclerotic lesions. Long non‑coding RNAs (lncRNAs) have been found to play significant roles in diverse biological processes. The present study aimed to investigate the role of lncRNAs in VSMCs. The expression of lncRNAs or mRNAs was detected using reverse transcription‑quantitative polymerase chain reaction. The Gene Expression Omnibus datasets in the NCBI portal were searched using the key words 'Atherosclerosis AND tissue AND Homo sapiens' and the GSE12288 dataset. Gene expression in circulating leukocytes was measured to identify patients with coronary artery disease (CAD) or controls, and used to analyze the correlation coefficient and expression profiles. The protein level of ATP‑binding cassette sub‑family G member 1 (ABCG1) and matrix metalloproteinase (MMP)3 was determined using immunohistochemistry and western blot analysis. The analysis of mouse aortic roots was performed using Masson's and Oil Red O staining. The expression of lncRNA AL355711, ABCG1 and MMP3 was found to be higher in human atherosclerotic plaques or in patients with atherosclerotic CAD. The correlation analysis revealed that ABCG1 may be involved in the regulation between lncRNA AL355711 and MMP3 in atherosclerotic CAD. The knockdown of lncRNA AL355711 inhibited ABCG1 transcription and smooth muscle cell migration. In addition, lncRNA AL355711 was found to regulate MMP3 expression through the ABCG1 pathway. The expression of ABCG1 and MMP3 was found to be high in an animal model of atherosclerosis. The results indicated that lncRNA AL355711 promoted VSMC migration and atherosclerosis partly via the ABCG1/MMP3 pathway. On the whole, the present study demonstrates that the inhibition of lncRNA AL355711 may serve as a novel therapeutic target for atherosclerosis. lncRNA AL355711 in circulating leukocytes may be a novel biomarker for atherosclerotic CAD.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Cell Movement/genetics
- Cells, Cultured
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Male
- Matrix Metalloproteinase 3/genetics
- Matrix Metalloproteinase 3/metabolism
- Metabolic Networks and Pathways/genetics
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/physiology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- RNA, Long Noncoding/genetics
- Mice
Collapse
Affiliation(s)
- Chun-Min Kang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Wei-Kang Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Ke-Wei Yu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Xue-Heng Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Rui-Ying Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Pei-Feng Ke
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Xing Jin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Shun-Wang Cao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Ying-Shi Yuan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Heng Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Jun Yan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Wei-Ye Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Xian-Zhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Jing-Jing Zhao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
13
|
Levels of Serum sST2, MMP-3, and Gal-3 in Patients with Essential Hypertension and Their Correlation with Left Ventricular Hypertrophy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7262776. [PMID: 34675989 PMCID: PMC8526212 DOI: 10.1155/2021/7262776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022]
Abstract
Essential hypertension (EH) is a clinically frequent cardiovascular disease, with insidious onset, causing increased pressure load and neuroregulation disorders in patients. Long-term EH can cause left ventricular hypertrophy (LVH), which can lead to arrhythmia and even death. The soluble suppression of tumorigenicity 2 (sST2), matrix metalloproteinase-3 (MMP-3), and galectin-3 (Gal-3) in serum plays an important role in the occurrence, development, and prognosis of cardiovascular diseases. In our study, we divided EH patients into 3 levels and groups with or without LVH, according to their condition. The levels of sST2, MMP-3, and Gal-3 in the serum were measured in different groups of patients. Our results showed that the levels of sST2, MMP-3, and Gal-3 in the serum increased progressively with the level in different EH groups. The levels of sST2, MMP-3, and Gal-3 in the serum of the LVH group were higher than those of the NLVH group, and it is positively correlated with LVH-related indexes. The risk of developing and progressing to LVH in patients with EH can be determined by the method of measuring three indicators.
Collapse
|
14
|
Lind L, Gigante B, Borné Y, Feldreich T, Leppert J, Hedberg P, Östgren CJ, Nyström FH, Sundström J, Ärnlöv J, Baldassarre D, Tremoli E, Veglia F, Hamsten A, O'Donnell CJ, Franceschini N, Orho-Melander M, Nilsson J, Melander O, Engström G, Mälarstig A. Plasma Protein Profile of Carotid Artery Atherosclerosis and Atherosclerotic Outcomes: Meta-Analyses and Mendelian Randomization Analyses. Arterioscler Thromb Vasc Biol 2021; 41:1777-1788. [PMID: 33657885 DOI: 10.1161/atvbaha.120.315597] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Uppsala University, Sweden (L.L., J.S.)
| | - Bruna Gigante
- Unit of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Sweden (B.G., A.H., A.M.)
| | - Yan Borné
- Department of Clinical Sciences Malmö, Lund University, Sweden (Y.B., M.O.-M., J.N., O.M., G.E.)
| | - Tobias Feldreich
- School of Health and Social Sciences, Dalarna University, Falun, Sweden (T.F., J.A.)
| | - Jerzy Leppert
- Centre for Clinical Research, Uppsala University (J.L., P.H.), Västmanland County Hospital, Västerås, Sweden
| | - Pär Hedberg
- Centre for Clinical Research, Uppsala University (J.L., P.H.), Västmanland County Hospital, Västerås, Sweden.,Department of Clinical Physiology (P.H.), Västmanland County Hospital, Västerås, Sweden
| | - Carl Johan Östgren
- Department of Health, Medicine and Caring Sciences, Linköping University, Sweden (C.J.O., F.H.N.).,Department of Medicine, Boston University, MA (C.J.O.)
| | - Fredrik H Nyström
- Department of Health, Medicine and Caring Sciences, Linköping University, Sweden (C.J.O., F.H.N.)
| | - Johan Sundström
- Department of Medical Sciences, Uppsala University, Sweden (L.L., J.S.).,The George Institute for Global Health, University of New South Wales, Sydney, Australia (J.S.)
| | - Johan Ärnlöv
- School of Health and Social Sciences, Dalarna University, Falun, Sweden (T.F., J.A.)
| | - Damiano Baldassarre
- Damiano Baldassarre, Department of Medical Biotechnology and Translational Medicine, Università di Milano (D.B.).,Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., E.T., F.V.)
| | - Elena Tremoli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., E.T., F.V.)
| | - Fabrizio Veglia
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., E.T., F.V.)
| | - Anders Hamsten
- Unit of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Sweden (B.G., A.H., A.M.)
| | - Christopher J O'Donnell
- Department of Health, Medicine and Caring Sciences, Linköping University, Sweden (C.J.O., F.H.N.).,Department of Medicine, Boston University, MA (C.J.O.)
| | - Nora Franceschini
- Department of Epidemiology, University of North Caroline, Capel Hill (N.F.)
| | - Marju Orho-Melander
- Department of Clinical Sciences Malmö, Lund University, Sweden (Y.B., M.O.-M., J.N., O.M., G.E.)
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Sweden (Y.B., M.O.-M., J.N., O.M., G.E.)
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Sweden (Y.B., M.O.-M., J.N., O.M., G.E.)
| | - Gunnar Engström
- Department of Clinical Sciences Malmö, Lund University, Sweden (Y.B., M.O.-M., J.N., O.M., G.E.)
| | - Anders Mälarstig
- Unit of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Sweden (B.G., A.H., A.M.)
| |
Collapse
|
15
|
Plasma Proteomic Profiling in Hypertrophic Cardiomyopathy Patients before and after Surgical Myectomy Reveals Post-Procedural Reduction in Systemic Inflammation. Int J Mol Sci 2021; 22:ijms22052474. [PMID: 33804404 PMCID: PMC7957543 DOI: 10.3390/ijms22052474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/17/2022] Open
Abstract
Left Ventricular Outflow Tract (LVOT) obstruction occurs in approximately 70% of Hypertrophic Cardiomyopathy (HCM) patients and currently requires imaging or invasive testing for diagnosis, sometimes in conjunction with provocative physiological or pharmaceutical stimuli. To identify potential biomarkers of LVOT obstruction, we performed proteomics profiling of 1305 plasma proteins in 12 HCM patients with documented LVOT obstruction, referred for surgical myectomy. Plasma was collected at the surgical preoperative visit, approximately one month prior to surgery and then at the post-surgical visit, approximately 3 months later. Proteomic profiles were generated using the aptamer-based SOMAscan assay. Principal Component Analysis using the highest statistically significant proteins separated all preoperative samples from all postoperative samples. Further analysis revealed a set of 25 proteins that distinguished the preoperative and postoperative states with a paired t-test p-value of <0.01. Ingenuity Pathway analysis facilitated the generation of protein interaction networks and the elucidation of key upstream regulators of differentially expressed proteins, such as interferon-γ, TGF-β1, and TNF. Biological pathways affected by surgery included organ inflammation, migration, and motility of leukocytes, fibrosis, vasculogenesis, angiogenesis, acute coronary events, endothelial proliferation, eicosanoid metabolism, calcium flux, apoptosis, and morphology of the cardiovascular system. Our results indicate that surgical relief of dynamic outflow tract obstruction in HCM patients is associated with unique alterations in plasma proteomic profiles that likely reflect improvement in organ inflammation and physiological function.
Collapse
|
16
|
Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG. Metalloproteinases and Their Inhibitors: Potential for the Development of New Therapeutics. Cells 2020; 9:E1313. [PMID: 32466129 PMCID: PMC7290391 DOI: 10.3390/cells9051313] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
The metalloproteinase (MP) family of zinc-dependent proteases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteases (ADAMs), and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) plays a crucial role in the extracellular matrix (ECM) remodeling and degradation activities. A wide range of substrates of the MP family includes ECM components, chemokines, cell receptors, and growth factors. Metalloproteinases activities are tightly regulated by proteolytic activation and inhibition via their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs), and the imbalance of the activation and inhibition is responsible in progression or inhibition of several diseases, e.g., cancer, neurological disorders, and cardiovascular diseases. We provide an overview of the structure, function, and the multifaceted role of MMPs, ADAMs, and TIMPs in several diseases via their cellular functions such as proteolysis of other cell signaling factors, degradation and remodeling of the ECM, and other essential protease-independent interactions in the ECM. The significance of MP inhibitors targeting specific MMP or ADAMs with high selectivity is also discussed. Recent advances and techniques used in developing novel MP inhibitors and MP responsive drug delivery tools are also reviewed.
Collapse
Affiliation(s)
- Maryam Raeeszadeh-Sarmazdeh
- Chemical and Materials Engineering Department, University of Nevada, Reno, NV 89557, USA; (L.D.D.); (B.G.H.)
| | | | | |
Collapse
|
17
|
Hsieh FI, Chiou HY, Hu CJ, Jeng JS, Lin HJ, Lee JT, Lien LM. Combined Effects of MMP-7, MMP-8 and MMP-26 on the Risk of Ischemic Stroke. J Clin Med 2019; 8:jcm8112011. [PMID: 31752174 PMCID: PMC6912324 DOI: 10.3390/jcm8112011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke (IS) is multifactorial causation combining with traditional cardiovascular disease (CVD) and genetic risk factors. Combined effects of MMP-7, MMP-8 and MMP-26 on the risk of IS remain incompletely understood. We aimed to assess individual and joint effects for IS risk by weighted genetic risk score (wGRS) from these three genes and traditional CVD risk factors. A case-control study including 500 cases with IS and 500 stroke-free healthy controls frequency-matched with cases by age and sex was conducted. The wGRS was a weighted average of the number of risk genotype across selected SNPs from MMP-7, MMP-8 and MMP-26. Multivariate logistic regression models were used to analyze the relationship between wGRS and risk of IS. A wGRS in the second tertile was associated with a 1.5-fold increased risk of IS compared with the lowest tertile after adjusting for traditional CVD risk factors. Compared to subjects with low genetic and low modifiable CVD risk, those with high genetic and high modifiable CVD risk had the highest risk of IS (adjusted-OR = 5.75). In conclusion, higher wGRS was significantly associated with an increased risk for IS. A significant interaction between genetic and traditional CVD risk factors was also found on the risk of IS.
Collapse
Affiliation(s)
- Fang-I Hsieh
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 110, Taiwan; (F.-I.H.); (H.-Y.C.)
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Hung-Yi Chiou
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 110, Taiwan; (F.-I.H.); (H.-Y.C.)
| | - Chaur-Jong Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan;
| | - Jiann-Shing Jeng
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Huey-Juan Lin
- Department of Neurology, Chi-Mei Medical Center, Tainan 710, Taiwan;
| | - Jiunn-Tay Lee
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Li-Ming Lien
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
- Correspondence:
| |
Collapse
|
18
|
Wu Y, Zhang F, Li X, Hou W, Zhang S, Feng Y, Lu R, Ding Y, Sun L. Systematic analysis of lncRNA expression profiles and atherosclerosis-associated lncRNA-mRNA network revealing functional lncRNAs in carotid atherosclerotic rabbit models. Funct Integr Genomics 2019; 20:103-115. [PMID: 31392586 DOI: 10.1007/s10142-019-00705-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, a multifactorial and chronic immune inflammatory disorder, is the main cause of multiple cardiovascular diseases. Researchers recently reported that lncRNAs may exert important functions in the progression of atherosclerosis (AS). Some studies found that lncRNAs can act as ceRNAs to communicate with each other by the competition of common miRNA response elements. However, lncRNA-associated ceRNA network in terms of atherosclerosis is limited. In present study, we pioneered to construct and systematically analyze the lncRNA-mRNA network and reveal its potential roles in carotid atherosclerotic rabbit models. Atherosclerosis was induced in rabbits (n = 3) carotid arteries via a high-fat diet and balloon injury, while age-matched rabbits (n = 3) were treated with normal chow as controls. RNA-seq analysis was conducted on rabbits carotid arteries (n = 6) with or without plaque formation. Based on the ceRNA mechanism, a ternary interaction network including lncRNA, mRNA, and miRNA was generated and an AS-related lncRNA-mRNA network (ASLMN) was extracted. Furthermore, we analyzed the properties of ASLMN and discovered that six lncRNAs (MSTRG.10603.16, 5258.4, 12799.3, 5352.1, 12022.1, and 12250.4) were highly related to AS through topological analysis. GO and KEGG enrichment analysis indicated that lncRNA MSTRG.5258.4 may downregulate inducible co-stimulator to perform a downregulated role in AS through T cell receptor signaling pathway and downregulate THBS1 to conduct a upregulated function in AS through ECM-receptor interaction pathway. Finally, our results elucidated the important function of lncRNAs in the origination and progression of AS. We provided an ASLMN of atherosclerosis development in carotid arteries of rabbits and probable targets which may lay the foundation for future research of clinical applications.
Collapse
Affiliation(s)
- Yingnan Wu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoying Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenying Hou
- Department of Ultrasound, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Shuang Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Feng
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Lu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Ding
- Department of Bioinformatics, Harbin Medical University, Harbin, China
| | - Litao Sun
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
19
|
Mouton AJ, Rivera Gonzalez OJ, Kaminski AR, Moore ET, Lindsey ML. Matrix metalloproteinase-12 as an endogenous resolution promoting factor following myocardial infarction. Pharmacol Res 2018; 137:252-258. [PMID: 30394317 DOI: 10.1016/j.phrs.2018.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023]
Abstract
Following myocardial infarction (MI), timely resolution of inflammation promotes wound healing and scar formation while limiting excessive tissue damage. Resolution promoting factors (RPFs) are agents that blunt leukocyte trafficking and inflammation, promote necrotic and apoptotic cell clearance, and stimulate scar formation. Previously identified RPFs include mediators derived from lipids (resolvins, lipoxins, protectins, and maresins), proteins (glucocorticoids, annexin A1, galectin 1, and melanocortins), or gases (CO, H2S, and NO). Matrix metalloproteinase-12 (MMP-12; macrophage elastase) has shown promising RPF qualities in a variety of disease states. We review here the evidence that MMP-12 may serve as a novel RPF with potential therapeutic efficacy in the setting of MI.
Collapse
Affiliation(s)
- Alan J Mouton
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States
| | - Osvaldo J Rivera Gonzalez
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States
| | - Amanda R Kaminski
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States
| | - Edwin T Moore
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, 1500 E Woodrow Wilson Ave, Jackson, MS, 39216, United States.
| |
Collapse
|