1
|
Kim JY, Kang W, Yang S, Park SH, Ha SY, Paik YH. NADPH oxidase 4 deficiency promotes hepatocellular carcinoma arising from hepatic fibrosis by inducing M2-macrophages in the tumor microenvironment. Sci Rep 2024; 14:22358. [PMID: 39333166 PMCID: PMC11437090 DOI: 10.1038/s41598-024-72721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) often arises in the cirrhotic livers, highlighting the intricate link between hepatic fibrosis and carcinogenesis. Reactive oxygen species produced by NADPH oxidase 4 (NOX4) contribute to liver injury leading to hepatic fibrosis. Paradoxically, NOX4 is known to inhibit HCC progression. This study aims to elucidate the role of NOX4 in hepatocarcinogenesis in the background of hepatic fibrosis. We established the mouse model of HCC arising from the fibrotic liver by administering diethylnitrosamine and carbon tetrachloride to wild-type (WT) or NOX4-/- mice. Hepatic fibrogenesis, tumorigenesis, and macrophage polarization were assessed by immunohistochemistry, PCR, and flow cytometry using in vivo and in vitro models. In NOX4-/- mice, hepatic fibrosis was attenuated, while the number of tumors and the proliferation of HCC cells were increased compared to WT mice. Notably, a significant increase in M2-polarized macrophages was observed in NOX4-/- mice through immunohistochemistry and PCR analysis. Subsequent experiments demonstrated that NOX4-silenced HCC cells promote macrophage polarization toward M2. In addition to attenuating hepatic fibrogenesis, NOX4 deficiency triggers macrophage polarization towards the M2 phenotype in the fibrotic liver, thereby promoting hepatocellular carcinogenesis. These findings provide novel insights into the mechanism of NOX4-mediated tumor suppression in HCC arising from fibrotic livers.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Wonseok Kang
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, Republic of Korea
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Sera Yang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Su Hyun Park
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Yong-Han Paik
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| |
Collapse
|
2
|
Abbas N, You K, Getachew A, Wu F, Hussain M, Huang X, Chen Y, Pan T, Li Y. Kupffer cells abrogate homing and repopulation of allogeneic hepatic progenitors in injured liver site. Stem Cell Res Ther 2024; 15:48. [PMID: 38378583 PMCID: PMC10877762 DOI: 10.1186/s13287-024-03656-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Allogeneic hepatocyte transplantation is an emerging approach to treat acute liver defects. However, durable engraftment of the transplanted cells remains a daunting task, as they are actively cleared by the recipient's immune system. Therefore, a detailed understanding of the innate or adaptive immune cells-derived responses against allogeneic transplanted hepatic cells is the key to rationalize cell-based therapies. METHODS Here, we induced an acute inflammatory regenerative niche (3-96 h) on the surface of the liver by the application of cryo-injury (CI) to systematically evaluate the innate immune response against transplanted allogeneic hepatic progenitors in a sustained micro-inflammatory environment. RESULTS The resulting data highlighted that the injured site was significantly repopulated by alternating numbers of innate immune cells, including neutrophils, monocytes and Kupffer cells (KCs), from 3 to 96 h. The transplanted allo-HPs, engrafted 6 h post-injury, were collectively eliminated by the innate immune response within 24 h of transplantation. Selective depletion of the KCs demonstrated a delayed recruitment of monocytes from day 2 to day 6. In addition, the intrasplenic engraftment of the hepatic progenitors 54 h post-transplantation was dismantled by KCs, while a time-dependent better survival and translocation of the transplanted cells into the injured site could be observed in samples devoid of KCs. CONCLUSION Overall, this study provides evidence that KCs ablation enables a better survival and integration of allo-HPs in a sustained liver inflammatory environment, having implications for rationalizing the cell-based therapeutic interventions against liver defects.
Collapse
Affiliation(s)
- Nasir Abbas
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China
| | - Kai You
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Anteneh Getachew
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, USA
| | - Feima Wu
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Muzammal Hussain
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Xinping Huang
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yan Chen
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Tingcai Pan
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China
| | - Yinxiong Li
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China.
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou, 510530, China.
| |
Collapse
|
3
|
Balaji A, Bell CA, Houston ZH, Bridle KR, Genz B, Fletcher NL, Ramm GA, Thurecht KJ. Exploring the impact of severity in hepatic fibrosis disease on the intrahepatic distribution of novel biodegradable nanoparticles targeted towards different disease biomarkers. Biomaterials 2023; 302:122318. [PMID: 37708659 DOI: 10.1016/j.biomaterials.2023.122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
Nanoparticle-based drug delivery systems (DDS) have shown promising results in reversing hepatic fibrosis, a common pathological basis of chronic liver diseases (CLDs), in preclinical animal models. However, none of these nanoparticle formulations has transitioned to clinical usage and there are currently no FDA-approved drugs available for liver fibrosis. This highlights the need for a better understanding of the challenges faced by nanoparticles in this complex disease setting. Here, we have systematically studied the impact of targeting strategy, the degree of macrophage infiltration during fibrosis, and the severity of fibrosis, on the liver uptake and intrahepatic distribution of nanocarriers. When tested in mice with advanced liver fibrosis, we demonstrated that the targeting ligand density plays a significant role in determining the uptake and retention of the nanoparticles in the fibrotic liver whilst the type of targeting ligand modulates the trafficking of these nanoparticles into the cell population of interest - activated hepatic stellate cells (aHSCs). Engineering the targeting strategy indeed reduced the uptake of nanoparticles in typical mononuclear phagocyte (MPS) cell populations, but not the infiltrated macrophages. Meanwhile, additional functionalization may be required to enhance the efficacy of DDS in end-stage fibrosis/cirrhosis compared to early stages.
Collapse
Affiliation(s)
- Arunpandian Balaji
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia
| | - Craig A Bell
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia; Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zachary H Houston
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia
| | - Kim R Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia; Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland 4120, Australia
| | - Berit Genz
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia; Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Grant A Ramm
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia; Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
4
|
Lebedeva E, Shchastniy A, Babenka A. Cellular and Molecular Mechanisms of Toxic Liver Fibrosis in Rats Depending on the Stages of Its Development. Sovrem Tekhnologii Med 2023; 15:50-63. [PMID: 38434195 PMCID: PMC10902903 DOI: 10.17691/stm2023.15.4.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Indexed: 03/05/2024] Open
Abstract
The aim is to study the cellular and molecular features of toxic liver fibrosis in rats and its dependence on development stages of this pathological condition. Materials and Methods Liver fibrogenesis in male Wistar rats was induced with the thioacetamide solution by introducing into the stomach with a probe at a dose of 200 mg/kg of animal body weight 2 times per week. The process dynamics was studied at 5 time points (control, week 3, week 5, week 7, and week 9). The mRNA levels of tweak, fn14, ang, vegfa, cxcl12, and mmp-9 genes in liver were detected by real-time polymerase chain reaction. Immunohistochemical study was performed on paraffin sections. The CD31, CD34, CK19, α-SMA, FAP, CD68, CD206, CX3CR1, and CD45 cells were used as markers. Fibrosis degree was determined in histological sections, stained in line with the Mallory technique, according to the Ishak's semi-quantitative scale. Results Two simultaneously existing morphologically heterogeneous populations of myofibroblasts expressing different types of markers (FAP, α-SMA) were identified in rat liver. Prior to the onset of transformation of fibrosis into cirrhosis (F1-F4, weeks 3-7), FAP+ and SMA+ cells were localized in different places on histological specimens. All stages of liver fibrosis development were accompanied by an increase in the number (p=0.0000), a change in the phenotypic structure and functional properties of macrophages. The CK19+ cells of the portal areas differentiated into cholangiocytes that formed interlobular bile ducts and ductules, as well as hepatocytes that formed rudiments of new hepatic microlobules. Pathological venous angiogenesis and heterogeneity of endotheliocytes of the intrahepatic vascular bed were detected. Two options for changes in mRNA expression of the selected genes were identified. The level of the fn14 and mmp-9 mRNAs at all stages of fibrosis was higher (p=0.0000) than in control rats. For tweak, ang, vegfa, and cxcl12 mRNAs, the situation was the opposite - the level of genes decreased (p=0.0000). There were strong and moderate correlations between the studied target genes (p<0.05). Conclusion It was established that the stages of toxic fibrosis had morphological and molecular genetic features. The FAP+ cells make the main contribution to development of portal and initial stage of bridging fibrosis. The stellate macrophages and infiltrating monocytes/ macrophages can potentially be used for development of new therapeutic strategies for liver pathology treatment. One should take into account the features of the markers' expression by endothelial cells during the study of the intrahepatic vascular bed. Joint study of genes is a necessary ad-hoc parameter in fundamental and preclinical research.
Collapse
Affiliation(s)
- E.I. Lebedeva
- Associate Professor, Department of Histology, Cytology and Embryology; Vitebsk State Order of Peoples’ Friendship Medical University, 27 Frunze Avenue, Vitebsk, 210009, the Republic of Belarus
| | - A.T. Shchastniy
- Professor, Head of the Department of Hospital Surgery with the Course of the Fetoplacental Complex and Placental Complex; Vitebsk State Order of Peoples’ Friendship Medical University, 27 Frunze Avenue, Vitebsk, 210009, the Republic of Belarus
| | - A.S. Babenka
- Associate Professor, Department of Bioorganic Chemistry; Belarusian State Medical University, 83 Dzerzhinsky Avenue, Minsk, 220116, the Republic of Belarus
| |
Collapse
|
5
|
Lebedeva EI. Changes in Macrophage Subpopulations in Rat Liver at Different Stages of Experimental Fibrosis. Bull Exp Biol Med 2023:10.1007/s10517-023-05850-x. [PMID: 37477742 DOI: 10.1007/s10517-023-05850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 07/22/2023]
Abstract
The number, phenotypic composition, and functional properties of macrophages in the liver of Wistar rats change depending on the stages of fibrosis induced by thioacetamide. In the sinusoidal capillaries of the liver of control rats, CD68+ wing-shaped cells were mainly detected. The number of CD68+ cells at the stages of fibrosis before the process of its transformation into cirrhosis was 2-fold higher (p=0.0000) than in the control. At later terms of the experiment, no significant differences were found. Immunohistochemical method revealed two morphologically different groups of CD68+ cells differing in shape and localization. At all stages of the experiment, round and elongated CD206+ cells of were detected in the sinusoidal capillaries. At the stage of cirrhosis (13 weeks), the number of CD206+ cells was higher than during the third week of the experiment by 3.21 times (p=0.0000). Later, a decrease in the number of CD206+ cells was observed. At the same time, in the portal zones and connective tissue septa around the false hepatic lobules, round CX3CR1+ cells were noted. By the end of the experiment (17 weeks), their number exceeded that on the third week of the experiment by 5.66 times (p=0.0000).
Collapse
Affiliation(s)
- E I Lebedeva
- Vitebsk State Order of Peoples' Friendship Medical University, Vitebsk, Belarus.
| |
Collapse
|
6
|
Udomsinprasert W. Interleukin-1 family cytokines in liver cell death: a new therapeutic target for liver diseases. Expert Opin Ther Targets 2023; 27:1125-1143. [PMID: 37975716 DOI: 10.1080/14728222.2023.2285763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Liver cell death represents a basic biological process regulating the progression of liver diseases via distinct mechanisms. Accumulating evidence has uncovered participation of interleukin (IL)-1 family cytokines in liver cell death. Upon activation of cell death induced by hepatotoxic stimuli, IL1 family cytokines released by hepatic dead cells stimulate recruitment of immune cells, which in turn influence inflammation and subsequent liver injury, thus highlighting their potential as therapeutic targets in liver diseases. Enhancing our comprehension of mechanisms underlying IL1 family cytokine signaling in cell death responses could pave the way for novel therapeutic interventions aimed at addressing liver cell death-related liver pathologies. AREAS COVERED This review summarizes the recent findings reported in preclinical and clinical studies on mechanisms of liver cell death, alongside participation of IL1 family members consisting of IL1α, ILβ, IL18, and IL33 in liver cell death and their significant implications in liver diseases. EXPERT OPINION Discovery of new and innovative therapeutic approaches for liver diseases will need close cooperation between fundamental and clinical scientists to better understand the multi-step processes behind IL1 family cytokines' contributions to liver cell death.
Collapse
|
7
|
Kuwano A, Okui T, Kohjima M, Kurokawa M, Goya T, Tanaka M, Aoyagi T, Takahashi M, Imoto K, Tashiro S, Suzuki H, Fujita N, Ushijima Y, Ishigami K, Tokunaga S, Kato M, Ogawa Y. Transcatheter arterial steroid injection therapy improves the prognosis of patients with acute liver failure. Medicine (Baltimore) 2023; 102:e33090. [PMID: 36897684 PMCID: PMC9997803 DOI: 10.1097/md.0000000000033090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
Acute liver failure (ALF) is a disorder defined by coagulopathy and encephalopathy with a poor prognosis. No effective therapies have been established except for liver transplantation. We previously reported a subgroup of patients with acute liver injury who developed microcirculatory disturbance. We also established and reported transcatheter arterial steroid injection therapy (TASIT) as a new treatment of ALF. Here, we analyze the effectiveness of TASIT in a larger cohort and evaluate the impact on ALF patients with or without microcirculatory disturbance. We conducted a single-center retrospective study to evaluate the effectiveness of TASIT in patients with ALF admitted at Kyushu University Hospital between January 2005 and March 2018. TASIT is performed by injecting methylprednisolone via the proper hepatic artery for 3 days. One hundred ninety-4 patients with ALF were enrolled and analyzed in this study. Of the 87 patients given TASIT, 71 (81.6%) recovered without any complications and 16 (18.4%) died or underwent liver transplantation. Of the 107 patients not administered TASIT, 77 (72.0%) recovered and 30 (28.0%) progressed to irreversible liver failure. In the high-lactate dehydrogenase subgroup, 52 (86.7%) of the 60 patients with TASIT recovered, and the survival rate was significantly higher than that in patients who did not receive TASIT. Multivariate regression analysis revealed that the TASIT procedure was one of the significant prognostic factors in the high-lactate dehydrogenase subgroup and was significantly associated with prothrombin activity percentage improvement. TASIT is an effective treatment for patients with ALF, especially in those with microcirculatory disturbance.
Collapse
Affiliation(s)
- Akifumi Kuwano
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tasuku Okui
- Medical Information Center, Kyushu University Hospital, Higashi-ku, Fukuoka, Japan
| | - Motoyuki Kohjima
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Miho Kurokawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Takeshi Goya
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Masatake Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tomomi Aoyagi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Motoi Takahashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Koji Imoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Shigeki Tashiro
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Hideo Suzuki
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Nobuhiro Fujita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yasuhiro Ushijima
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Shoji Tokunaga
- Medical Information Center, Kyushu University Hospital, Higashi-ku, Fukuoka, Japan
| | - Masaki Kato
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Jounan-ku, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
8
|
Zhao Q, Sheng MF, Wang YY, Wang XY, Liu WY, Zhang YY, Ke TY, Chen S, Pang GZ, Yong L, Ding Z, Shen YJ, Shen YX, Shao W. LncRNA Gm26917 regulates inflammatory response in macrophages by enhancing Annexin A1 ubiquitination in LPS-induced acute liver injury. Front Pharmacol 2022; 13:975250. [PMID: 36386180 PMCID: PMC9663662 DOI: 10.3389/fphar.2022.975250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are defined as transcripts of more than 200 nucleotides that have little or no coding potential. LncRNAs function as key regulators in diverse physiological and pathological processes. However, the roles of lncRNAs in lipopolysaccharide (LPS)-induced acute liver injury (ALI) are still elusive. In this study, we report the roles of lncRNA Gm26917 induced by LPS in modulating liver inflammation. As key components of the innate immune system, macrophages play critical roles in the initiation, progression and resolution of ALI. Our studies demonstrated that Gm26917 localized in the cytoplasm of hepatic macrophages and globally regulated the expression of inflammatory genes and the differentiation of macrophages. In vivo study showed that lentivirus-mediated gene silencing of Gm26917 attenuated liver inflammation and protected mice from LPS-induced ALI. Furthermore, mechanistic study showed that the 3'-truncation of Gm26917 interacted with the N-terminus of Annexin A1, a negative regulator of the NF-κB signaling pathway. We also found that Gm26917 knockdown suppressed NF-κB activity by decreasing the ubiquitination of Annexin A1 and its interaction with NEMO. In addition, expression of Gm26917 in inflammatory macrophages was regulated by the transcription factor forkhead box M1 (FOXM1). LPS treatment dramatically increased the binding of FOXM1 to the promoter region of Gm26917 in macrophages. In summary, our findings suggest that lncRNA Gm26917 silencing protects against LPS-induced liver injury by regulating the TLR4/NF-κB signaling pathway in macrophages.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Meng-Fei Sheng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Yao-Yun Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Xing-Yu Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Wei-Yi Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Yuan-Yuan Zhang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Tiao-Ying Ke
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Shu Chen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Gao-Zong Pang
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Liang Yong
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zhan Ding
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yu-Jun Shen
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Yu-Xian Shen
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Wei Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
9
|
Li H, Meng Y, He S, Tan X, Zhang Y, Zhang X, Wang L, Zheng W. Macrophages, Chronic Inflammation, and Insulin Resistance. Cells 2022; 11:cells11193001. [PMID: 36230963 PMCID: PMC9562180 DOI: 10.3390/cells11193001] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The prevalence of obesity has reached alarming levels, which is considered a major risk factor for several metabolic diseases, including type 2 diabetes (T2D), non-alcoholic fatty liver, atherosclerosis, and ischemic cardiovascular disease. Obesity-induced chronic, low-grade inflammation may lead to insulin resistance, and it is well-recognized that macrophages play a major role in such inflammation. In the current review, the molecular mechanisms underlying macrophages, low-grade tissue inflammation, insulin resistance, and T2D are described. Also, the role of macrophages in obesity-induced insulin resistance is presented, and therapeutic drugs and recent advances targeting macrophages for the treatment of T2D are introduced.
Collapse
Affiliation(s)
- He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ya Meng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuwang He
- Shandong DYNE Marine Biopharmaceutical Co., Ltd., Rongcheng 264300, China
| | - Xiaochuan Tan
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yujia Zhang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiuli Zhang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Correspondence: (L.W.); (W.Z.); Tel.: +86-010-63165233 (W.Z.)
| | - Wensheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Correspondence: (L.W.); (W.Z.); Tel.: +86-010-63165233 (W.Z.)
| |
Collapse
|
10
|
Gao CC, Bai J, Han H, Qin HY. The versatility of macrophage heterogeneity in liver fibrosis. Front Immunol 2022; 13:968879. [PMID: 35990625 PMCID: PMC9389038 DOI: 10.3389/fimmu.2022.968879] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
Liver fibrosis is a highly conserved wound healing response to liver injury, characterized by excessive deposition of extracellular matrix (ECM) in the liver which might lead to loss of normal functions. In most cases, many types of insult could damage hepatic parenchymal cells like hepatocytes and/or cholangiocytes, and persistent injury might lead to initiation of fibrosis. This process is accompanied by amplified inflammatory responses, with immune cells especially macrophages recruited to the site of injury and activated, in order to orchestrate the process of wound healing and tissue repair. In the liver, both resident macrophages and recruited macrophages could activate interstitial cells which are responsible for ECM synthesis by producing a variety of cytokines and chemokines, modulate local microenvironment, and participate in the regulation of fibrosis. In this review, we will focus on the main pathological characteristics of liver fibrosis, as well as the heterogeneity on origin, polarization and functions of hepatic macrophages in the setting of liver fibrosis and their underlying mechanisms, which opens new perspectives for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Chun-Chen Gao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
| | - Jian Bai
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Hong-Yan Qin
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hong-Yan Qin,
| |
Collapse
|
11
|
Role of Th17 Cytokines in the Liver’s Immune Response during Fatal Yellow Fever: Triggering Cell Damage Mechanisms. Cells 2022; 11:cells11132053. [PMID: 35805137 PMCID: PMC9265354 DOI: 10.3390/cells11132053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/04/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
Yellow fever (YF) is an infectious and acute viral haemorrhagic disease that triggers a cascade of host immune responses. We investigated the Th17 cytokine profile in the liver tissue of patients with fatal YF. Liver tissue samples were collected from 26 deceased patients, including 21 YF-positive and 5 flavivirus-negative patients, with preserved hepatic parenchyma architecture, who died of other causes. Histopathological and immunohistochemical analysis were performed on the liver samples to evaluate the Th17 profiles (ROR-γ, STAT3, IL-6, TGF-β, IL-17A, and IL-23). Substantial differences were found in the expression levels of these markers between the patients with fatal YF and controls. A predominant expression of Th17 cytokine markers was observed in the midzonal region of the YF cases, the most affected area in the liver acinus, compared with the controls. Histopathological changes in the hepatic parenchyma revealed cellular damage characterised mainly by the presence of inflammatory cell infiltrates, Councilman bodies (apoptotic cells), micro/macrovesicular steatosis, and lytic and coagulative necrosis. Hence, Th17 cytokines play a pivotal role in the immunopathogenesis of YF and contribute markedly to triggering cell damage in patients with fatal disease outcomes.
Collapse
|
12
|
Reverse pharmacology of Nimbin-N2 attenuates alcoholic liver injury and promotes the hepatoprotective dual role of improving lipid metabolism and downregulating the levels of inflammatory cytokines in zebrafish larval model. Mol Cell Biochem 2022; 477:2387-2401. [PMID: 35575874 DOI: 10.1007/s11010-022-04448-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
13
|
Zahmatkesh E, Othman A, Braun B, Aspera R, Ruoß M, Piryaei A, Vosough M, Nüssler A. In vitro modeling of liver fibrosis in 3D microtissues using scalable micropatterning system. Arch Toxicol 2022; 96:1799-1813. [PMID: 35366062 DOI: 10.1007/s00204-022-03265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/23/2022] [Indexed: 11/02/2022]
Abstract
Liver fibrosis is the late consequence of chronic liver inflammation which could eventually lead to cirrhosis, and liver failure. Among various etiological factors, activated hepatic stellate cells (aHSCs) are the major players in liver fibrosis. To date, various in vitro liver fibrosis models have been introduced to address biological and medical questions. Availability of traditional in vitro models could not fully recapitulate complicated pathology of liver fibrosis. The purpose of this study was to develop a simple and robust model to investigate the role of aHSCs on the progression of epithelial to mesenchymal transition (EMT) in hepatocytes during liver fibrogenesis. Therefore, we applied a micropatterning approach to generate 3D co-culture microtissues consisted of HepaRG and human umbilical cord endothelial cells (HUVEC) which co-cultured with inactivated LX-2 cells or activated LX-2 cells, respectively, as normal or fibrotic liver models in vitro. The result indicated that the activated LX-2 cells could induce EMT in HepaRG cells through activation of TGF-β/SMAD signaling pathway. Besides, in the fibrotic microtissue, physiologic function of HepaRG cells attenuated compared to the control group, e.g., metabolic activity and albumin secretion. Moreover, our results showed that after treatment with Galunisertib, the fibrogenic properties decreased, in the term of gene and protein expression. In conclusion, it is proposed that aHSCs could lead to EMT in hepatocytes during liver fibrogenesis. Furthermore, the scalable micropatterning approach could provide enough required liver microtissues to prosper our understanding of the mechanisms involved in the progression of liver fibrosis as well as high throughput (HT) drug screening.
Collapse
Affiliation(s)
- Ensieh Zahmatkesh
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, BG Tübingen, 72076, Tübingen, Germany.,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Amnah Othman
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, BG Tübingen, 72076, Tübingen, Germany
| | - Bianca Braun
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, BG Tübingen, 72076, Tübingen, Germany
| | - Romina Aspera
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, BG Tübingen, 72076, Tübingen, Germany
| | - Marc Ruoß
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, BG Tübingen, 72076, Tübingen, Germany
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Andreas Nüssler
- Department of Traumatology, Siegfried Weller Institute, University of Tübingen, BG Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
14
|
Elsherif SA, Alm AS. Role of macrophages in liver cirrhosis: fibrogenesis and resolution. Anat Cell Biol 2022; 55:14-19. [PMID: 35354672 PMCID: PMC8968231 DOI: 10.5115/acb.21.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/20/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
At present, chronic liver disease accounts for approximately 2 million deaths per year worldwide. Liver injury induces a series of events causing inflammation. Chronic inflammation ends in liver fibrosis. A stage of fibrinolysis occurs on stopping insult. Kupffer cells play their role to initiate inflammatory responses, while infiltrating monocyte-derived macrophages have a role both in chronic inflammation and fibrosis and in fibrosis resolution. Ly-6C high expressing monocytes act during fibrogenesis, while Ly-6C low expressing monocytes are restorative macrophages which promote resolution of fibrosis after end of the injury. Recent studies have identified new phenotypes, such as metabolically activated M, oxidized, which may have a role in fatty liver diseases.
Collapse
Affiliation(s)
- Sherine Ahmed Elsherif
- Histology Department, Faculty of Medicine, Sohag University, Sohag, Egypt.,istology Department, Faculty of Medicine, Merit University, Sohag, Egypt
| | - Ahmed Salah Alm
- istology Department, Faculty of Medicine, Merit University, Sohag, Egypt
| |
Collapse
|
15
|
Elshal M, Abdelmageed ME. Diacerein counteracts acetaminophen-induced hepatotoxicity in mice via targeting NLRP3/caspase-1/IL-1β and IL-4/MCP-1 signaling pathways. Arch Pharm Res 2022; 45:142-158. [PMID: 35244883 PMCID: PMC8967791 DOI: 10.1007/s12272-022-01373-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/18/2022] [Indexed: 12/22/2022]
Abstract
The current study aims at repurposing the anti-arthritic drug diacerein (DCN) for the treatment of acetaminophen hepatotoxicity and investigating the potential underlying mechanisms. Mice were randomly divided into six groups receiving either no treatment (control group), 20 mg/kg DCN i.p, 400 mg/kg acetaminophen i.p, DCN 4 h before acetaminophen, DCN 2 h after acetaminophen, or 400 mg/kg N-acetylcysteine (NAC) i.p, 2 h after acetaminophen. Biomarkers of liver dysfunction, oxidative stress, and apoptosis were assessed. Hepatic necroinflammatory changes were evaluated along with hepatic expression of NF-κB and caspase-1. The levels of NLRP3, IL-1β, IL-4, MCP-1, and TNF-α in the liver, as well as CYP2E1 mRNA expression, were measured. Diacerein significantly reduced biomarkers of liver dysfunction, oxidative stress, hepatocyte necrosis, and infiltration of neutrophils and macrophages whether administered 4 h before or 2 h after acetaminophen. Further, the effects were comparable to those of NAC. Diacerein also counteracted acetaminophen-induced hepatocellular apoptosis by increasing Bcl-2 and decreasing Bax and caspase-3 expression levels. Moreover, DCN normalized hepatic TNF-α and significantly decreased NF-κB p65 expression. Accordingly, DCN can prevent or reverse acetaminophen hepatotoxicity in mice, suggesting potential utility as a repurposed drug for clinical treatment.
Collapse
Affiliation(s)
- Mahmoud Elshal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, El Gomhoria Street, Eldakahlia, 35516 Egypt
| | - Marwa E. Abdelmageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, El Gomhoria Street, Eldakahlia, 35516 Egypt
| |
Collapse
|
16
|
Mendes BG, Duan Y, Schnabl B. Immune Response of an Oral Enterococcus faecalis Phage Cocktail in a Mouse Model of Ethanol-Induced Liver Disease. Viruses 2022; 14:490. [PMID: 35336897 PMCID: PMC8955932 DOI: 10.3390/v14030490] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Cytolysin-positive Enterococcus faecalis (E. faecalis) cause more severe alcohol-associated hepatitis, and phages might be used to specifically target these bacteria in a clinical trial. Using a humanized mouse model of ethanol-induced liver disease, the effect of cytolytic E. faecalis phage treatment on the intestinal and liver immune response was evaluated. The observed immune response was predominantly anti-inflammatory and tissue-restoring. Besides, live phages could be readily recovered from the serum, spleen, and liver following oral gavage in ethanol-fed mice. We also isolated 20 new phages from the sewage water; six of them exhibited a relatively broad host range. Taken together, the oral administration of cytolytic E. faecalis phages leads to the translocation of phages to the systemic circulation and appears to be safe, following chronic-binge ethanol administration. A cocktail of three phages covers the majority of tested cytolysin-positive E. faecalis strains and could be tested in a clinical trial.
Collapse
Affiliation(s)
- Beatriz Garcia Mendes
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA 92093, USA; (B.G.M.); (Y.D.)
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA 92093, USA; (B.G.M.); (Y.D.)
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA 92093, USA; (B.G.M.); (Y.D.)
- Department of Medicine, VA San Diego HealthCare System, San Diego, CA 92161, USA
| |
Collapse
|
17
|
CD5L deficiency attenuate acetaminophen-induced liver damage in mice via regulation of JNK and ERK signaling pathway. Cell Death Dis 2021; 7:342. [PMID: 34750342 PMCID: PMC8575892 DOI: 10.1038/s41420-021-00742-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022]
Abstract
CD5 molecule like (CD5L), a member of the scavenger receptor cysteine-rich domain superfamily, plays a critical role in immune homeostasis and inflammatory disease. Acetaminophen (APAP) is a safe and effective antipyretic analgesic. However, overdose may cause liver damage or even liver failure. APAP hepatotoxicity is characterized by extensive necrotic cell death and a sterile inflammatory response, in which the role of CD5L remains to be investigated. In this study, we found that the expression of CD5L was increased in the livers of mice after APAP overdose. Furthermore, CD5L deficiency reduced the increase of alanine transaminase (ALT) level, histopathologic lesion area, c-Jun N-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK) phosphorylation level, Transferase-Mediated dUTP Nick End-Labeling positive (TUNEL+) cells proportion, vascular endothelial cell permeability and release of inflammatory cytokines induced by excess APAP. Therefore, our findings reveal that CD5L may be a potential therapeutic target for prevention and treatment of APAP-induced liver injury.
Collapse
|
18
|
De Muynck K, Vanderborght B, Van Vlierberghe H, Devisscher L. The Gut-Liver Axis in Chronic Liver Disease: A Macrophage Perspective. Cells 2021; 10:2959. [PMID: 34831182 PMCID: PMC8616442 DOI: 10.3390/cells10112959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is a growing health concern which accounts for two million deaths per year. Obesity, alcohol overconsumption, and progressive cholestasis are commonly characterized by persistent low-grade inflammation and advancing fibrosis, which form the basis for development of end-stage liver disease complications, including hepatocellular carcinoma. CLD pathophysiology extends to the intestinal tract and is characterized by intestinal dysbiosis, bile acid dysregulation, and gut barrier disruption. In addition, macrophages are key players in CLD progression and intestinal barrier breakdown. Emerging studies are unveiling macrophage heterogeneity and driving factors of their plasticity in health and disease. To date, in-depth investigation of how gut-liver axis disruption impacts the hepatic and intestinal macrophage pool in CLD pathogenesis is scarce. In this review, we give an overview of the role of intestinal and hepatic macrophages in homeostasis and gut-liver axis disruption in progressive stages of CLD.
Collapse
Affiliation(s)
- Kevin De Muynck
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
| |
Collapse
|
19
|
Ahmed IA, Jaffa MA, Moussa M, Hatem D, El-Achkar GA, Al Sayegh R, Karam M, Hamade E, Habib A, Jaffa AA. Plasma Kallikrein as a Modulator of Liver Injury/Remodeling. Front Pharmacol 2021; 12:715111. [PMID: 34566641 PMCID: PMC8458624 DOI: 10.3389/fphar.2021.715111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The occurrence and persistence of hepatic injury which arises from cell death and inflammation result in liver disease. The processes that lead to liver injury progression and resolution are still not fully delineated. The plasma kallikrein-kinin system (PKKS) has been shown to play diverse functions in coagulation, tissue injury, and inflammation, but its role in liver injury has not been defined yet. In this study, we have characterized the role of the PKKS at various stages of liver injury in mice, as well as the direct effects of plasma kallikrein on human hepatocellular carcinoma cell line (HepG2). Histological, immunohistochemical, and gene expression analyses were utilized to assess cell injury on inflammatory and fibrotic factors. Acute liver injury triggered by carbon tetrachloride (CCl4) injection resulted in significant upregulation of the plasma kallikrein gene (Klkb1) and was highly associated with the high mobility group box 1 gene, the marker of cell death (r = 0.75, p < 0.0005, n = 7). In addition, increased protein expression of plasma kallikrein was observed as clusters around necrotic areas. Plasma kallikrein treatment significantly increased the proliferation of CCl4-induced HepG2 cells and induced a significant increase in the gene expression of the thrombin receptor (protease activated receptor-1), interleukin 1 beta, and lectin–galactose binding soluble 3 (galectin-3) (p < 0.05, n = 4). Temporal variations in the stages of liver fibrosis were associated with an increase in the mRNA levels of bradykinin receptors: beta 1 and 2 genes (p < 0.05; n = 3–10). In conclusion, these findings indicate that plasma kallikrein may play diverse roles in liver injury, inflammation, and fibrosis, and suggest that plasma kallikrein may be a target for intervention in the states of liver injury.
Collapse
Affiliation(s)
- Ibrahim A Ahmed
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon
| | - Miran A Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Mayssam Moussa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon
| | - Duaa Hatem
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon.,Section of Pharmacology, Department of Bioethics and Safety, Catholic University, Rome, Italy
| | - Ghewa A El-Achkar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon
| | - Rola Al Sayegh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon.,INSERM-UMR1149, Centre de Recherche sur l'Inflammation, and Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Universite de Paris, Paris, France
| | - Mia Karam
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon.,Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Eva Hamade
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Aida Habib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon.,INSERM-UMR1149, Centre de Recherche sur l'Inflammation, and Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Universite de Paris, Paris, France
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Beirut, Lebanon
| |
Collapse
|
20
|
Jia F, Hu X, Kimura T, Tanaka N. Impact of Dietary Fat on the Progression of Liver Fibrosis: Lessons from Animal and Cell Studies. Int J Mol Sci 2021; 22:ijms221910303. [PMID: 34638640 PMCID: PMC8508674 DOI: 10.3390/ijms221910303] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Previous studies have revealed that a high-fat diet is one of the key contributors to the progression of liver fibrosis, and increasing studies are devoted to analyzing the different influences of diverse fat sources on the progression of non-alcoholic steatohepatitis. When we treated three types of isocaloric diets that are rich in cholesterol, saturated fatty acid (SFA) and trans fatty acid (TFA) with hepatitis C virus core gene transgenic mice that spontaneously developed hepatic steatosis without apparent fibrosis, TFA and cholesterol-rich diet, but not SFA-rich diet, displayed distinct hepatic fibrosis. This review summarizes the recent advances in animal and cell studies regarding the effects of these three types of fat on liver fibrogenesis.
Collapse
Affiliation(s)
- Fangping Jia
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| | - Xiao Hu
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, China;
| | - Takefumi Kimura
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
- International Relations Office, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Japan
- Correspondence:
| |
Collapse
|
21
|
An SY, Petrescu AD, DeMorrow S. Targeting Certain Interleukins as Novel Treatment Options for Liver Fibrosis. Front Pharmacol 2021; 12:645703. [PMID: 33841164 PMCID: PMC8024568 DOI: 10.3389/fphar.2021.645703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
The liver is a major metabolic organ and an immunologically complex organ. It produces and uses many substances such as acute phase proteins, cytokines, chemokines, and complementary components to maintain the balance between immunity and tolerance. Interleukins are important immune control cytokines, that are produced by many body cells. In liver injury, interleukins are produced in large amount by various cell types, and act as pro-inflammatory (e.g. interleukin (IL)-6, IL-13, IL-17, and IL-33) as well as anti-inflammatory (e.g. IL-10) functions in hepatic cells. Recently, interleukins are regarded as interesting therapeutic targets for the treatment of liver fibrosis patients. Hepatic cells such as hepatocytes, hepatic stellate cells, and hepatic macrophages are involved to the initiation, perpetuation, and resolution of fibrosis. The understanding of the role of interleukins in such cells provides opportunity for the development of therapeutic target drugs. This paper aims to understand the functional roles of interleukins in hepatic and immune cells when the liver is damaged, and suggests the possibility of interleukins as a new treatment target in liver fibrosis.
Collapse
Affiliation(s)
- Su Yeon An
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Anca D Petrescu
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Sharon DeMorrow
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States.,Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, United States.,Research Division, Central Texas Veterans Healthcare System, Temple, TX, United States
| |
Collapse
|
22
|
Avni D, Harikumar KB, Sanyal AJ, Spiegel S. Deletion or inhibition of SphK1 mitigates fulminant hepatic failure by suppressing TNFα-dependent inflammation and apoptosis. FASEB J 2021; 35:e21415. [PMID: 33566377 PMCID: PMC8491138 DOI: 10.1096/fj.202002540r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
Acute liver failure (ALF) causes severe liver dysfunction that can lead to multi-organ failure and death. Previous studies suggest that sphingosine kinase 1 (SphK1) protects against hepatocyte injury, yet not much is still known about its involvement in ALF. This study examines the role of SphK1 in D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced ALF, which is a well-established experimental mouse model that mimics the fulminant hepatitis. Here we report that deletion of SphK1, but not SphK2, dramatically decreased GalN/LPS-induced liver damage, hepatic apoptosis, serum alanine aminotransferase levels, and mortality rate compared to wild-type mice. Whereas GalN/LPS treatment-induced hepatic activation of NF-κB and JNK in wild-type and SphK2-/- mice, these signaling pathways were reduced in SphK1-/- mice. Moreover, repression of ALF in SphK1-/- mice correlated with decreased expression of the pro-inflammatory cytokine TNFα. Adoptive transfer experiments indicated that SphK1 in bone marrow-derived infiltrating immune cells but not in host liver-resident cells, contribute to the development of ALF. Interestingly, LPS-induced TNFα production was drastically suppressed in SphK1-deleted macrophages, whereas IL-10 expression was markedly enhanced, suggesting a switch to the anti-inflammatory phenotype. Finally, treatment with a specific SphK1 inhibitor ameliorated inflammation and protected mice from ALF. Our findings suggest that SphK1 regulates TNFα secretion from macrophages and inhibition or deletion of SphK1 mitigated ALF. Thus, a potent inhibitor of SphK1 could potentially be a therapeutic agent for fulminant hepatitis.
Collapse
Affiliation(s)
- Dorit Avni
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kuzhuvelil B. Harikumar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Arun J. Sanyal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
23
|
Xia Y, Wang P, Yan N, Gonzalez FJ, Yan T. Withaferin A alleviates fulminant hepatitis by targeting macrophage and NLRP3. Cell Death Dis 2021; 12:174. [PMID: 33574236 PMCID: PMC7878893 DOI: 10.1038/s41419-020-03243-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Fulminant hepatitis (FH) is an incurable clinical syndrome where novel therapeutics are warranted. Withaferin A (WA), isolated from herb Withania Somnifera, is a hepatoprotective agent. Whether and how WA improves D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced FH is unknown. This study was to evaluate the hepatoprotective role and mechanism of WA in GalN/LPS-induced FH. To determine the preventive and therapeutic effects of WA, wild-type mice were dosed with WA 0.5 h before or 2 h after GalN treatment, followed by LPS 30 min later, and then killed 6 h after LPS treatment. To explore the mechanism of the protective effect, the macrophage scavenger clodronate, autophagy inhibitor 3-methyladenine, or gene knockout mouse lines NLR family pyrin domain containing 3 (Nlrp3)-null, nuclear factor-erythroid 2-related factor 2 (Nrf2)-null, liver-specific AMP-activated protein kinase (Ampk)a1 knockout (Ampka1ΔHep) and liver-specific inhibitor of KB kinase β (Ikkb) knockout (IkkbΔHep) mice were subjected to GalN/LPS-induced FH. In wild-type mice, WA potently prevented GalN/LPS-induced FH and inhibited hepatic NLRP3 inflammasome activation, and upregulated NRF2 and autophagy signaling. Studies with Nrf2-null, Ampka1ΔHep, and IkkbΔHep mice demonstrated that the hepatoprotective effect was independent of NRF2, hepatic AMPKα1, and IκκB. Similarly, 3-methyladenine cotreatment failed to abolish the hepatoprotective effect of WA. The hepatoprotective effect of WA against GalN/LPS-induced FH was abolished after macrophage depletion, and partially reduced in Nlrp3-null mice. Consistently, WA alleviated LPS-induced inflammation partially dependent on the presence of NLRP3 in primary macrophage in vitro. Notably, WA potently and therapeutically attenuated GalN/LPS-induced hepatotoxicity. In conclusion, WA improves GalN/LPS-induced hepatotoxicity by targeting macrophage partially dependent on NLRP3 antagonism, while largely independent of NRF2 signaling, autophagy induction, and hepatic AMPKα1 and IκκB. These results support the concept of treating FH by pharmacologically targeting macrophage and suggest that WA has the potential to be repurposed for clinically treating FH as an immunoregulator.
Collapse
Affiliation(s)
- Yangliu Xia
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Ping Wang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Nana Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Xue Y, Deng Q, Zhang Q, Ma Z, Chen B, Yu X, Peng H, Yao S, Liu J, Ye Y, Pan G. Gigantol ameliorates CCl 4-induced liver injury via preventing activation of JNK/cPLA2/12-LOX inflammatory pathway. Sci Rep 2020; 10:22265. [PMID: 33335297 PMCID: PMC7746690 DOI: 10.1038/s41598-020-79400-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Arachidonic acid (AA) signaling pathway is an important constituent of inflammatory processes. In our previous study, it was found that dihydro-stilbene gigantol relieved hepatic inflammation in mice with CCl4-induced acute liver injury. This study aimed to investigate the involvement of arachidonate metabolic cascade in this process. Our results showed CCl4 activated AA metabolism with the evidence of cPLA2 phosphorylation, which was dependent on the MAPK/JNK activation. Pretreatment with JNK inhibitor SU3327 or gigantol abolished the cPLA2 activation, along with the attenuation of liver damage. Besides, gigantol markedly decreased immune cells activation. Metabolomic analysis revealed that gigantol universally reversed the upregulation of major AA metabolites in injured mouse livers induced by CCl4, especially 12-hydroxyeicosatetraenoic acid (12-HETE). Gigantol also decreased the mRNA and protein expression of platelet-, and leukocyte-type 12-lipoxxygenase (LOX) in the liver. Furthermore, pan-LOX inhibitor nordihydroguaiaretic acid (NDGA) and specific 12-LOX inhibitors baicalein and ML351 attenuated the liver injury to the same extent as gigantol. Overall, our study elucidated a comprehensive profile of AA metabolites during hepatic inflammation caused by CCl4, highlighting the role of 12-LOX-12-HETE pathway in this process. And gigantol alleviated liver inflammation partly through inhibiting the JNK/cPLA2/12-LOX pathway.
Collapse
Affiliation(s)
- Yaru Xue
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiangqiang Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qingli Zhang
- Institutional Technology Service Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhenghua Ma
- State Key Laboratory of Drug Research and Natural Products Chemistry Department Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,SIMM-CUHK Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines, Shanghai, 201203, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, 201203, China
| | - Binfan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolu Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huige Peng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Sheng Yao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,State Key Laboratory of Drug Research and Natural Products Chemistry Department Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,SIMM-CUHK Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines, Shanghai, 201203, China
| | - Jia Liu
- Institutional Technology Service Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yang Ye
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,State Key Laboratory of Drug Research and Natural Products Chemistry Department Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,SIMM-CUHK Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines, Shanghai, 201203, China. .,School of Life Science and Technology, Shanghai Tech University, Shanghai, 201203, China.
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Zhou Q, Jiang L, Qiu J, Pan Y, Swanda RV, Shi P, Li AM, Zhang X. Oral Exposure to 1,4-Dioxane Induces Hepatic Inflammation in Mice: The Potential Promoting Effect of the Gut Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10149-10158. [PMID: 32674564 DOI: 10.1021/acs.est.0c01543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
1,4-Dioxane is a widely used industrial solvent that has been frequently detected in aquatic environments. However, the hepatotoxicity of long-term dioxane exposure at environmentally relevant concentrations and underlying mechanisms of liver damage remain unclear. In this study, male mice were exposed to dioxane at concentrations of 0.5, 5, 50, and 500 ppm for 12 weeks, followed by histopathological examination of liver sections and multiomics investigation of the hepatic transcriptome, serum metabolome, and gut microbiome. Results showed that dioxane exposure at environmentally relevant concentrations induced hepatic inflammation and caused changes in the hepatic transcriptome and serum metabolic profiles. However, no inflammatory response was observed after in vitro exposure to all concentrations of dioxane and its in vivo metabolites. The gut microbiome was considered to be contributing to this apparently contradictory response. Increased levels of lipopolysaccharide (LPS) may be produced by some gut microbiota, such as Porphyromonadaceae and Helicobacteraceae, after in vivo 500 ppm of dioxane exposure. LPS may enter the blood circulation through an impaired intestinal wall and aggravate hepatic inflammation in mice. This study provides novel insight into the underlying mechanisms of hepatic inflammation induced by dioxane and highlights the need for concerns about environmentally relevant concentrations of dioxane exposure.
Collapse
Affiliation(s)
- Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| | - Liujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| | - Jingfan Qiu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, People's Republic of China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| | - Robert V Swanda
- Division of Nutritional Sciences, Cornell University, 244 Garden Avenue, Ithaca, New York 14853, United States
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
26
|
Immunological distinctions between nonalcoholic steatohepatitis and hepatocellular carcinoma. Exp Mol Med 2020; 52:1209-1219. [PMID: 32770081 PMCID: PMC8080649 DOI: 10.1038/s12276-020-0480-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common cause of chronic liver disease, ranges from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH), which is a more aggressive form characterized by hepatocyte injury, inflammation, and fibrosis. Increasing evidence suggests that NASH is a risk factor for hepatocellular carcinoma (HCC), which is the fifth most common cancer worldwide and the second most common cause of cancer-related death. Recent studies support a strong mechanistic link between the NASH microenvironment and HCC development. The liver has a large capacity to remove circulating pathogens and gut-derived microbial compounds. Thus, the liver is a central player in immunoregulation. Altered immune responses are tightly associated with the development of NASH and HCC. The objective of this study was to differentiate the roles of specific immune cell subsets in NASH and HCC pathogenesis. Clarifying the role of specific cells in the immune system in the transition from non-alcoholic fatty liver disease (NAFLD) to liver cancer will help to understand disease progression and may open avenues towards new preventive and therapeutic strategies. NAFLD is the most common chronic liver disease. Growing evidence suggests that its most aggressive form, non-alcoholic steatohepatitis (NASH), can promote the development of liver cancer, the second most common cause of cancer deaths worldwide. Chang-Woo Lee and colleagues at Sungkyunkwan University, Suwon, South Korea review the immunological distinction between NASH and liver cancer, focusing on the levels and activities of six key types of immune system cells. Chronic inflammation mediated by the immune system can create conditions for NAFLD, NASH and liver cancer to develop and worsen.
Collapse
|
27
|
Abstract
Chronic fatty liver disease is common worldwide. This disease is a spectrum of disease states, ranging from simple steatosis (fat accumulation) to inflammation, and eventually to fibrosis and cirrhosis if untreated. The fibrotic stage of chronic liver disease is primarily characterized by robust accumulation of extracellular matrix (ECM) proteins (collagens) that ultimately impairs the function of the organ. The role of the ECM in early stages of chronic liver disease is less well-understood, but recent research has demonstrated that several changes in the hepatic ECM in prefibrotic liver disease are not only present but may also contribute to disease progression. The purpose of this review is to summarize the established and proposed changes to the hepatic ECM that may contribute to inflammation during earlier stages of disease development, and to discuss potential mechanisms by which these changes may mediate the progression of the disease.
Collapse
Affiliation(s)
- Christine E. Dolin
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky
| | - Gavin E. Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
Orliaguet L, Dalmas E, Drareni K, Venteclef N, Alzaid F. Mechanisms of Macrophage Polarization in Insulin Signaling and Sensitivity. Front Endocrinol (Lausanne) 2020; 11:62. [PMID: 32140136 PMCID: PMC7042402 DOI: 10.3389/fendo.2020.00062] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Type-2 diabetes (T2D) is a disease of two etiologies: metabolic and inflammatory. At the cross-section of these etiologies lays the phenomenon of metabolic inflammation. Whilst metabolic inflammation is characterized as systemic, a common starting point is the tissue-resident macrophage, who's successful physiological or aberrant pathological adaptation to its microenvironment determines disease course and severity. This review will highlight the key mechanisms in macrophage polarization, inflammatory and non-inflammatory signaling that dictates the development and progression of insulin resistance and T2D. We first describe the known homeostatic functions of tissue macrophages in insulin secreting and major insulin sensitive tissues. Importantly we highlight the known mechanisms of aberrant macrophage activation in these tissues and the ways in which this leads to impairment of insulin sensitivity/secretion and the development of T2D. We next describe the cellular mechanisms that are known to dictate macrophage polarization. We review recent progress in macrophage bio-energetics, an emerging field of research that places cellular metabolism at the center of immune-effector function. Importantly, following the advent of the metabolically-activated macrophage, we cover the known transcriptional and epigenetic factors that canonically and non-canonically dictate macrophage differentiation and inflammatory polarization. In closing perspectives, we discuss emerging research themes and highlight novel non-inflammatory or non-immune roles that tissue macrophages have in maintaining microenvironmental and systemic homeostasis.
Collapse
Affiliation(s)
- Lucie Orliaguet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Elise Dalmas
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Karima Drareni
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicolas Venteclef
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Fawaz Alzaid
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| |
Collapse
|
29
|
da Silva Meirelles L, Marson RF, Solari MIG, Nardi NB. Are Liver Pericytes Just Precursors of Myofibroblasts in Hepatic Diseases? Insights from the Crosstalk between Perivascular and Inflammatory Cells in Liver Injury and Repair. Cells 2020; 9:cells9010188. [PMID: 31940814 PMCID: PMC7017158 DOI: 10.3390/cells9010188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Cirrhosis, a late form of liver disease, is characterized by extensive scarring due to exacerbated secretion of extracellular matrix proteins by myofibroblasts that develop during this process. These myofibroblasts arise mainly from hepatic stellate cells (HSCs), liver-specific pericytes that become activated at the onset of liver injury. Consequently, HSCs tend to be viewed mainly as myofibroblast precursors in a fibrotic process driven by inflammation. Here, the molecular interactions between liver pericytes and inflammatory cells such as macrophages and neutrophils at the first moments after injury and during the healing process are brought into focus. Data on HSCs and pericytes from other tissues indicate that these cells are able to sense pathogen- and damage-associated molecular patterns and have an important proinflammatory role in the initial stages of liver injury. On the other hand, further data suggest that as the healing process evolves, activated HSCs play a role in skewing the initial proinflammatory (M1) macrophage polarization by contributing to the emergence of alternatively activated, pro-regenerative (M2-like) macrophages. Finally, data suggesting that some HSCs activated during liver injury could behave as hepatic progenitor or stem cells will be discussed.
Collapse
Affiliation(s)
- Lindolfo da Silva Meirelles
- PPGBioSaúde and School of Medicine, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Renan Fava Marson
- PPGBioSaúde, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Maria Inês Gonzalez Solari
- Institute of Cardiology of Rio Grande do Sul, Av Princesa Isabel 370, 90620-001 Porto Alegre, RS, Brazil
| | - Nance Beyer Nardi
- Institute of Cardiology of Rio Grande do Sul, Av Princesa Isabel 370, 90620-001 Porto Alegre, RS, Brazil
- Correspondence: ; Tel.: +55-51-3230-3600
| |
Collapse
|
30
|
Popović D, Kocić G, Katić V, Zarubica A, Janković Veličković L, Ničković VP, Jović A, Veljković A, Petrović V, Rakić V, Jović Z, Poklar Ulrih N, Sokolović D, Stojanović M, Stanković M, Radenković G, Nikolić GR, Lukač А, Milosavljević A, Sokolović D. Anthocyanins Protect Hepatocytes against CCl 4-Induced Acute Liver Injury in Rats by Inhibiting Pro-inflammatory mediators, Polyamine Catabolism, Lipocalin-2, and Excessive Proliferation of Kupffer Cells. Antioxidants (Basel) 2019; 8:antiox8100451. [PMID: 31590249 PMCID: PMC6826396 DOI: 10.3390/antiox8100451] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/31/2022] Open
Abstract
: This study examined the hepatoprotective and anti-inflammatory effects of anthocyanins from Vaccinim myrtillus (bilberry) fruit extract on the acute liver failure caused by carbon tetrachloride-CCl4 (3 mL/kg, i.p.). The preventive treatment of the bilberry extract (200 mg anthocyanins/kg, orally, 7 days) prior to the exposure to the CCl4 resulted in an evident decrease in markers of liver damage (glutamate dehydrogenase, sorbitol dehydrogenase, malate dehydrogenase), and reduced pro-oxidative (conjugated dienes, lipid hydroperoxide, thiobarbituric acid reactive substances, advanced oxidation protein products, NADPH oxidase, hydrogen peroxide, oxidized glutathione), and pro-inflammatory markers (tumor necrosis factor-alpha, interleukin-6, nitrite, myeloperoxidase, inducible nitric oxide synthase, cyclooxygenase-2, CD68, lipocalin-2), and also caused a significant decrease in the dissipation of the liver antioxidative defence capacities (reduced glutathione, glutathione S-transferase, and quinone reductase) in comparison to the results detected in the animals treated with CCl4 exclusively. The administration of the anthocyanins prevented the arginine metabolism's diversion towards the citrulline, decreased the catabolism of polyamines (the activity of putrescine oxidase and spermine oxidase), and significantly reduced the excessive activation and hyperplasia of the Kupffer cells. There was also an absence of necrosis, in regard to the toxic effect of CCl4 alone. The hepatoprotective mechanisms of bilberry extract are based on the inhibition of pro-oxidative mediators, strong anti-inflammatory properties, inducing of hepatic phase II antioxidant enzymes (glutathione S-transferase, quinone reductase) and reduced glutathione, hypoplasia of Kupffer cells, and a decrease in the catabolism of polyamines.
Collapse
Affiliation(s)
- Dejan Popović
- Department of Biochemistry, Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000 Niš, Serbia; (G.K.); (A.V.); (D.S.)
- Correspondence: ; Tel.: +00-381-637-195-951
| | - Gordana Kocić
- Department of Biochemistry, Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000 Niš, Serbia; (G.K.); (A.V.); (D.S.)
| | - Vuka Katić
- Department of Pathology, Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000 Niš, Serbia; (V.K.); (L.J.V.)
| | - Aleksandra Zarubica
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia;
| | - Ljubinka Janković Veličković
- Department of Pathology, Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000 Niš, Serbia; (V.K.); (L.J.V.)
| | | | - Andrija Jović
- Clinic of Skin and Venereal Diseases, Clinical Center of Niš, Bulevar dr Zorana Đinđića 48, 18000 Niš, Serbia;
| | - Andrej Veljković
- Department of Biochemistry, Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000 Niš, Serbia; (G.K.); (A.V.); (D.S.)
| | - Vladimir Petrović
- Department of Histology and Embryology, Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000 Niš, Serbia; (V.P.); (G.R.)
| | - Violeta Rakić
- College of Agriculture and Food Technology, Ćirila i Metodija 1, 18400 Prokuplje, Serbia;
| | - Zorica Jović
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000 Niš, Serbia;
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Danka Sokolović
- Institute for Blood Transfusion in Nis, Bulevar dr Zorana Đinđića 48, 18000 Niš, Serbia;
| | - Marko Stojanović
- Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000 Niš, Serbia; (M.S.); (M.S.); (A.M.)
| | - Marko Stanković
- Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000 Niš, Serbia; (M.S.); (M.S.); (A.M.)
| | - Goran Radenković
- Department of Histology and Embryology, Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000 Niš, Serbia; (V.P.); (G.R.)
| | - Gordana R. Nikolić
- Medical Faculty, University of Priština, 38220 Kosovska Mitrovica, Serbia;
| | - Аzra Lukač
- Health Center Rožaje, 84310 Rožaje, Montenegro;
| | - Aleksandar Milosavljević
- Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000 Niš, Serbia; (M.S.); (M.S.); (A.M.)
| | - Dušan Sokolović
- Department of Biochemistry, Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000 Niš, Serbia; (G.K.); (A.V.); (D.S.)
| |
Collapse
|
31
|
Elchaninov AV, Fatkhudinov TK, Vishnyakova PA, Lokhonina AV, Sukhikh GT. Phenotypical and Functional Polymorphism of Liver Resident Macrophages. Cells 2019; 8:E1032. [PMID: 31491903 PMCID: PMC6769646 DOI: 10.3390/cells8091032] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Liver diseases are one of the main causes of mortality. In this regard, the development of new ways of reparative processes stimulation is relevant. Macrophages play a leading role in the regulation of liver homeostasis in physiological conditions and in pathology. In this regard, the development of new liver treatment methods is impossible without taking into account this cell population. Resident macrophages of the liver, Kupffer cells, represent a unique cell population, first of all, due to their development. Most of the liver macrophages belong to the self-sustaining macrophage cell population, whose origin is not bone marrow. In addition, Kupffer cells are involved in such processes as regulation of hepatocyte proliferation and apoptosis, remodeling of the intercellular matrix, lipid metabolism, protective function, etc. Such a broad spectrum of liver macrophage functions indicates their high functional plasticity. The review summarizes recent data on the development, phenotypic and functional plasticity, and participation in the reparative processes of liver macrophages: resident macrophages (Kupffer cells) and bone marrow-derived macrophages.
Collapse
Affiliation(s)
- Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Histology, Embryology and Cytology Department, Ministry of Healthcare of The Russian Federation, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997, Russia.
| | - Timur Kh Fatkhudinov
- Histology, Embryology and Cytology Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia.
| | - Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| | - Anastasia V Lokhonina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Histology, Embryology and Cytology Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| |
Collapse
|