1
|
Khan ST, Ahuja N, Taïb S, Vohra S, Cleaver O, Nunes SS. Single-Cell Meta-Analysis Uncovers the Pancreatic Endothelial Cell Transcriptomic Signature and Reveals a Key Role for NKX2-3 in PLVAP Expression. Arterioscler Thromb Vasc Biol 2024. [PMID: 39445426 DOI: 10.1161/atvbaha.124.321781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The pancreatic vasculature displays tissue-specific physiological and functional adaptations that support rapid insulin response by β-cells. However, the digestive enzymes have made it difficult to characterize pancreatic endothelial cells (ECs), resulting in the poor understanding of pancreatic EC specialization. METHODS Available single-nuclei/single-cell RNA-sequencing data sets were mined to identify pancreatic EC-enriched signature genes and to develop an integrated atlas of human pancreatic ECs. We validated the findings using independent single-nuclei/single-cell RNA-sequencing data, bulk RNA-sequencing data of isolated ECs, spatial transcriptomics data, immunofluorescence, and RNAScope of selected markers. The TF (transcription factor) NKX2-3 was expressed in HUVECs via gene transfection, and the expression of pancreatic EC-enriched signature genes was assessed via RT-qPCR. RESULTS We defined a pancreatic EC-enriched gene signature conserved across species and developmental stages that included genes involved in ECM (extracellular matrix) composition (COL15A1 and COL4A1), permeability and barrier function (PLVAP, EHD4, CAVIN3, HSPG2, ROBO4, HEG1, and CLEC14A), and key signaling pathways (S1P, TGF-β [transforming growth factor-β], RHO-RAC GTPase, PI3k-AKT, and PDGF [platelet-derived growth factor]). The integrated atlas revealed the vascular hierarchy within the pancreas. We identified and validated a specialized islet capillary subpopulation characterized by genes involved in permeability (PLVAP and EHD4), immune-modulation (FABP5, HLA-C, and B2M), ECM composition (SPARC and SPARCL1), IGF (insulin-like growth factor) signaling (IGFBP7), and membrane transport (SLCO2A1, SLC2A3, and CD320). Importantly, we identified NKX2-3 as a key TF enriched in pancreatic ECs. DNA-binding motif analysis found NKX2-3 motifs in ≈40% of the signature genes. Induction of NKX2-3 in HUVECs promoted the expression of the islet capillary EC-enriched genes PLVAP and SPARCL1. CONCLUSIONS We defined a validated transcriptomic signature of pancreatic ECs and uncovered their intratissue transcriptomic heterogeneity. We showed that NKX2-3 acts upstream of PLVAP and provided a single-cell online resource that can be further explored by the community: https://vasconcelos.shinyapps.io/pancreatic_endothelial/.
Collapse
Affiliation(s)
- Safwat T Khan
- Institute of Biomedical Engineering, University of Toronto, ON, Canada. (S.T.K., S.S.N.)
- Toronto General Hospital Research Institute, University Health Network, ON, Canada. (S.T.K., S.T., S.V., S.S.N.)
| | - Neha Ahuja
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas (N.A., O.C.)
| | - Sonia Taïb
- Toronto General Hospital Research Institute, University Health Network, ON, Canada. (S.T.K., S.T., S.V., S.S.N.)
| | - Shabana Vohra
- Toronto General Hospital Research Institute, University Health Network, ON, Canada. (S.T.K., S.T., S.V., S.S.N.)
| | - Ondine Cleaver
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas (N.A., O.C.)
| | - Sara S Nunes
- Institute of Biomedical Engineering, University of Toronto, ON, Canada. (S.T.K., S.S.N.)
- Laboratory of Medicine and Pathobiology, University of Toronto, ON, Canada. (S.S.N.)
- Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, ON, Canada. (S.S.N.)
- Toronto General Hospital Research Institute, University Health Network, ON, Canada. (S.T.K., S.T., S.V., S.S.N.)
| |
Collapse
|
2
|
Ye H, Sun M, Jin Z, Yuan Y, Weng H. FTY-720 alleviates diabetes-induced liver injury by inhibiting oxidative stress and inflammation. Fundam Clin Pharmacol 2023; 37:960-970. [PMID: 37038097 DOI: 10.1111/fcp.12897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/23/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
We aimed to investigate the protective effect of FTY-720 on liver injury and explore its potential mechanism in diabetic mice. The diabetic mouse model was induced with streptozotocin and FTY-720 was administered for 12 weeks. We assayed biocharacters and liver function and used histopathology staining to evaluate the protective effects of FTY-720 against diabetic liver injury. Levels of oxidative stress and inflammation in the liver were observed. mRNA and protein levels of essential enzymes for glucose metabolism were quantified in the liver and the protein expression of TLR4, HIF1α and NF-κB was determined. In vivo results revealed that FTY-720 significantly lowered blood glucose and lipids and improved liver function and alleviated liver fibrosis in diabetic mice. FTY-720 reduced oxidative stress and inflammation, with the increased catalase activity and reduced levels of malondialdehyde, myeloperoxidase, IL-1β, IL-6, TNF-α, TGF-β, and MCP1. Furthermore, FTY-720 modulated glucose metabolism in liver and elevated the ATP production, showing the promotion of glycogenesis and glycolysis and inhibition of gluconeogenesis. Moreover, FTY-720 inhibited the expression of TLR4 and HIF1α, contributing to restoration of liver function. In conclusion, FTY-720 ameliorates diabetes-induced liver injury and improves glucose homeostasis by inhibiting oxidative stress and inflammation and may be a promise drug for treatment of liver disease.
Collapse
Affiliation(s)
- Huijing Ye
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Mengyao Sun
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Zijie Jin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yan Yuan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hongbo Weng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Hassanzadeh-Taheri M, Mohammadifard M, Erfanian Z, Hosseini M. The maternal reduced uteroplacental perfusion model of preeclampsia induces sexually dimorphic metabolic responses in rat offspring. Biol Sex Differ 2022; 13:48. [PMID: 36109770 PMCID: PMC9479437 DOI: 10.1186/s13293-022-00458-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Offspring born to preeclamptic mothers are prone to obesity, diabetes and hypertension in later life, but still, studies investigating the underlying mechanism are limited. Here, we aimed to investigate the impact of the reduced uteroplacental perfusion (RUPP) rat preeclampsia model on offspring metabolic outcomes. METHODS Timed pregnant Wistar rats underwent RUPP or sham surgeries on day 14 of gestation. Glucometabolic parameters were evaluated on postnatal days (PND), 14 (childhood), and 60 (young adult). In addition, intraperitoneal glucose tolerance test (IPGTT), homeostatic model assessment of insulin resistance (HOMA-IR), immunohistochemical staining for insulin in pancreatic islets, arterial blood pressure and 24-h urine protein (24hUP) excretion were performed at PND60. RESULTS Male, but not female, young adult rats (PND60) of RUPP dams exhibited an impaired IPGTT, decreased circulatory insulin and weakened pancreatic insulin immunoreactivity. Compared to the male offspring of the sham group, the body mass of male RUPP offspring significantly caught up after PND42, but it was not sex-specific. RUPP pups also exhibited upregulations in glucagon (only males) and ghrelin (both sexes with a more significant increase in males) during PND14-PND60. However, in sham offspring (both sexes), glucagon levels were downregulated and ghrelin levels unchanged during PND14-PND60. The blood pressure, HOMA-IR and 24hUP values did not alter in RUPP pups. CONCLUSIONS The overall results suggest that maternal RUPP has negative and sex-specific impacts on insulin, glucagon and ghrelin regulations in offspring and that, as young adults, male RUPP rats may be more prone to develop obesity and diabetes.
Collapse
Affiliation(s)
- Mohammadmehdi Hassanzadeh-Taheri
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahtab Mohammadifard
- Department of Pathology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Erfanian
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hosseini
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
4
|
Tolksdorf C, Moritz E, Wolf R, Meyer U, Marx S, Bien-Möller S, Garscha U, Jedlitschky G, Rauch BH. Platelet-Derived S1P and Its Relevance for the Communication with Immune Cells in Multiple Human Diseases. Int J Mol Sci 2022; 23:ijms231810278. [PMID: 36142188 PMCID: PMC9499465 DOI: 10.3390/ijms231810278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a versatile signaling lipid involved in the regulation of numerous cellular processes. S1P regulates cellular proliferation, migration, and apoptosis as well as the function of immune cells. S1P is generated from sphingosine (Sph), which derives from the ceramide metabolism. In particular, high concentrations of S1P are present in the blood. This originates mainly from erythrocytes, endothelial cells (ECs), and platelets. While erythrocytes function as a storage pool for circulating S1P, platelets can rapidly generate S1P de novo, store it in large quantities, and release it when the platelet is activated. Platelets can thus provide S1P in a short time when needed or in the case of an injury with subsequent platelet activation and thereby regulate local cellular responses. In addition, platelet-dependently generated and released S1P may also influence long-term immune cell functions in various disease processes, such as inflammation-driven vascular diseases. In this review, the metabolism and release of platelet S1P are presented, and the autocrine versus paracrine functions of platelet-derived S1P and its relevance in various disease processes are discussed. New pharmacological approaches that target the auto- or paracrine effects of S1P may be therapeutically helpful in the future for pathological processes involving S1P.
Collapse
Affiliation(s)
- Céline Tolksdorf
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Eileen Moritz
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Robert Wolf
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Ulrike Meyer
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Sascha Marx
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Sandra Bien-Möller
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Ulrike Garscha
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Gabriele Jedlitschky
- Department of General Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Bernhard H. Rauch
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Correspondence:
| |
Collapse
|
5
|
Park JH, Park KK, Choe JY, Jang KM. Identification of sphingosine 1-phosphate level and MAPK/ERK signaling in pancreatic β cells. Ann Pediatr Endocrinol Metab 2021; 26:252-258. [PMID: 34015900 PMCID: PMC8749023 DOI: 10.6065/apem.2040266.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/11/2021] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Sphingosine kinase is a lipid kinase that phosphorylates sphingosine to generate sphingosine 1-phosphate (S1P). S1P regulates pancreatic islet β-cell endoplasmic reticulum stress and proliferation. Type 1 and type 2 diabetes share some key pathogenic processes. In this study, we investigated whether secretion of insulin and production of S1P is altered in alloxan and glucose-treated cells from the rat pancreatic β-cell line RIN-5F. METHODS RIN-5F cells were treated with 2 mM alloxan and 20 mM glucose for 6 hours or 24 hours before being evaluated by enzyme linked immunosorbent assay (ELISA) and Western blotting. RESULTS Insulin secretion and expression was higher in RIN-5F cells treated with glucose compared to control cells. In contrast, alloxan treatment did not affect insulin secretion and expression in RIN-5F cells. Interestingly, compared with normal control levels, S1P/EDG-5 was increased in both alloxan and glucose-treated pancreatic β cell than normal control. Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) inhibition strongly decreased the expression of insulin and S1P in glucose- or alloxan-treated RIN-5F cells. CONCLUSION We observe that production of S1P is increased in both diabetic cell models. In addition, MAPK/ERK signaling regulates secretion of insulin and S1P expression in pancreatic β-cells. Based on the literature and our findings, S1P may be a promising agent for the treatment of insulin-related disorders.
Collapse
Affiliation(s)
- Ji Hyun Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Kwan Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Jae Young Choe
- Department of Emergency Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Kyung Mi Jang
- Department of Pediatrics, College of Medicine, Yeungnam University, Daegu, Korea,Address for correspondence: Kyung Mi Jang Department of Pediatrics, College of Medicine, Yeungnam University, Hyeonchung-ro, Nam-gu, Daegu 42415, Korea
| |
Collapse
|
6
|
Liu Z, Yang H, Zhi L, Xue H, Lu Z, Zhao Y, Cui L, Liu T, Ren S, He P, Liu Y, Zhang Y. Sphingosine 1-phosphate Stimulates Insulin Secretion and Improves Cell Survival by Blocking Voltage-dependent K + Channels in β Cells. Front Pharmacol 2021; 12:683674. [PMID: 34322019 PMCID: PMC8313013 DOI: 10.3389/fphar.2021.683674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Recent studies suggest that Sphingosine 1-phosphate (S1P) plays an important role in regulating glucose metabolism in type 2 diabetes. However, its effects and mechanisms of promoting insulin secretion remain largely unknown. Here, we found that S1P treatment decreased blood glucose level and increased insulin secretion in C57BL/6 mice. Our results further showed that S1P promoted insulin secretion in a glucose-dependent manner. This stimulatory effect of S1P appeared to be irrelevant to cyclic adenosine monophosphate signaling. Voltage-clamp recordings showed that S1P did not influence voltage-dependent Ca2+ channels, but significantly blocked voltage-dependent potassium (Kv) channels, which could be reversed by inhibition of phospholipase C (PLC) and protein kinase C (PKC). Calcium imaging revealed that S1P increased intracellular Ca2+ levels, mainly by promoting Ca2+ influx, rather than mobilizing intracellular Ca2+ stores. In addition, inhibition of PLC and PKC suppressed S1P-induced insulin secretion. Collectively, these results suggest that the effects of S1P on glucose-stimulated insulin secretion (GSIS) depend on the inhibition of Kv channels via the PLC/PKC signaling pathway in pancreatic β cells. Further, S1P improved β cell survival; this effect was also associated with Kv channel inhibition. This work thus provides new insights into the mechanisms whereby S1P regulates β cell function in diabetes.
Collapse
Affiliation(s)
- Zhihong Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Huanhuan Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Linping Zhi
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Huan Xue
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhihong Lu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yanli Zhao
- Department of Emergency Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Tao Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Shouan Ren
- Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Yang X, Wang X, Lei L, Sun L, Jiao A, Zhu K, Xie T, Liu H, Zhang X, Su Y, Zhang C, Shi L, Zhang D, Zheng H, Zhang J, Liu X, Wang X, Zhou X, Sun C, Zhang B. Age-Related Gene Alteration in Naïve and Memory T cells Using Precise Age-Tracking Model. Front Cell Dev Biol 2021; 8:624380. [PMID: 33644036 PMCID: PMC7905051 DOI: 10.3389/fcell.2020.624380] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 12/22/2022] Open
Abstract
In aged individuals, age-related changes in immune cells, especially T cell deficiency, are associated with an increased incidence of infection, tumor, and autoimmune disease, as well as an impaired response to vaccination. However, the features of gene expression levels in aged T cells are still unknown. Our previous study successfully tracked aged T cells generated from one wave of developing thymocytes of young age by a lineage-specific and inducible Cre-controlled reporter (TCRδCreERR26ZsGreen mouse strain). In this study, we utilized this model and genome-wide transcriptomic analysis to examine changes in gene expression in aged naïve and memory T cell populations during the aging process. We identified profound gene alterations in aged CD4 and CD8 T cells. Both aged CD4+ and CD8+ naïve T cells showed significantly decreased organelle function. Importantly, genes associated with lymphocyte activation and function demonstrated a significant increase in aged memory T cells, accompanied by upregulation of immunosuppressive markers and immune checkpoints, revealing an abnormal T cell function in aged cells. Furthermore, aging significantly affects T cell survival and death signaling. While aged CD4 memory T cells exhibited pro-apoptotic gene signatures, aged CD8 memory T cells expressed anti-apoptotic genes. Thus, the transcriptional analysis of gene expression and signaling pathways in aged T cell subsets shed light on our understanding of altered immune function with aging, which will have great potential for clinical interventions for older adults.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Lina Sun
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States.,Center for Molecular Medicine, University of Georgia, Athens, GA, United States
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Kun Zhu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Tao Xie
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xingzhe Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lin Shi
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Dan Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Huiqiang Zheng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jiahui Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaobin Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaobo Zhou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| |
Collapse
|
8
|
Shi J, Zhang YQ, Hao DD, Fu SH, Meng JL. Key regulatory genes and signaling pathways involved in islet culture: a bioinformatic analysis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:292-303. [PMID: 33564361 PMCID: PMC7868784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Type 1 diabetes (T1D) is characterized by non-ideal mass and low survival rate of islets. Therefore, it is necessary to find intrinsic factors that prolong the survival of islets. This study aimed to track out hub genes and pathways in the process of islet culture by bioinformatic analysis. We downloaded the gene expression microarray of GSE42591 from the Gene Expression Omnibus (GEO). Aberrant Differentially methylated genes (DMGs) were obtained using the GEO2R tool. Gene ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analyses were performed on selected genes by using the Database for Annotation Visualization and Integrated Discovery (DAVID). A protein-protein interaction (PPI) network was constructed with the Retrieval of Interacting Genes (STRING) and visualized in Cytoscape 3.7.2. A total of 434 genes were overexpressed and 114 genes underexpressed in fresh to cultured 4 h tissue. KEGG pathway enrichment analyses revealed the TGF-beta signaling pathway, MAPK signaling pathway, or VEGF signaling pathway. The genes FN1, MKI67, IGF1, MAPK14, COL1A1 might be involved in islet culture. In general, this work scrutinized islet culture-relevant knowledge and provided insight into the regulation and mediation of islet survival.
Collapse
Affiliation(s)
- Jing Shi
- Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.)No. 20, Xi Mian Qiao Heng Jie, Wuhou District, Chengdu 610041, Sichuan Province, China
| | - Yong-Qun Zhang
- Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.)No. 20, Xi Mian Qiao Heng Jie, Wuhou District, Chengdu 610041, Sichuan Province, China
| | - Dou-Dou Hao
- Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.)No. 20, Xi Mian Qiao Heng Jie, Wuhou District, Chengdu 610041, Sichuan Province, China
| | - Su-Hong Fu
- Lab of Natural Medicine of West China Hospital of West China Medical School of Sichuan UniversityNo. 88, South Keyuan Road, Chengdu High-Tech Zone, Chengdu 610041, Sichuan Province, China
| | - Jin-Li Meng
- Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.)No. 20, Xi Mian Qiao Heng Jie, Wuhou District, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
9
|
Erendor F, Eksi YE, Sahin EO, Balci MK, Griffith TS, Sanlioglu S. Lentivirus Mediated Pancreatic Beta-Cell-Specific Insulin Gene Therapy for STZ-Induced Diabetes. Mol Ther 2020; 29:149-161. [PMID: 33130311 DOI: 10.1016/j.ymthe.2020.10.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune destruction of pancreatic beta cells is the characteristic feature of type 1 diabetes mellitus. Consequently, both short- and intermediate-acting insulin analogs are under development to compensate for the lack of endogenous insulin gene expression. Basal insulin is continuously released at low levels in response to hepatic glucose output, while post-prandial insulin is secreted in response to hyperglycemia following a meal. As an alternative to multiple daily injections of insulin, glucose-regulated insulin gene expression by gene therapy is under development to better endure postprandial glucose excursions. Controlled transcription and translation of proinsulin, presence of glucose-sensing machinery, prohormone convertase expression, and a regulated secretory pathway are the key features unique to pancreatic beta cells. To take advantage of these hallmarks, we generated a new lentiviral vector (LentiINS) with an insulin promoter driving expression of the proinsulin encoding cDNA to sustain pancreatic beta-cell-specific insulin gene expression. Intraperitoneal delivery of HIV-based LentiINS resulted in the lowering of fasting plasma glucose, improved glucose tolerance and prevented weight loss in streptozoticin (STZ)-induced diabetic Wistar rats. However, the combinatorial use of LentiINS and anti-inflammatory lentiviral vector (LentiVIP) gene therapy was required to increase serum insulin to a level sufficient to suppress non-fasting plasma glucose and diabetes-related inflammation.
Collapse
Affiliation(s)
- Fulya Erendor
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya 07058, Turkey
| | - Yunus Emre Eksi
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya 07058, Turkey
| | - Elif Ozgecan Sahin
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya 07058, Turkey
| | - Mustafa Kemal Balci
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Akdeniz University, Antalya 07058, Turkey
| | - Thomas S Griffith
- Department of Urology, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Salih Sanlioglu
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya 07058, Turkey.
| |
Collapse
|
10
|
Lentiviral gene therapy vectors encoding VIP suppressed diabetes-related inflammation and augmented pancreatic beta-cell proliferation. Gene Ther 2020; 28:130-141. [PMID: 32733091 DOI: 10.1038/s41434-020-0183-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1DM) is an autoimmune condition in which the immune system attacks and destroys insulin-producing beta cells in the pancreas leading to hyperglycemia. Vasoactive intestinal peptide (VIP) manifests insulinotropic and anti-inflammatory properties, which are useful for the treatment of diabetes. Because of its limited half-life due to DPP-4-mediated degradation, constant infusions or multiple injections are needed to observe any therapeutic benefit. Since gene therapy has the potential to treat genetic diseases, an HIV-based lentiviral vector carrying VIP gene (LentiVIP) was generated to provide a stable VIP gene expression in vivo. The therapeutic efficacy of LentiVIP was tested in a multiple low-dose STZ-induced animal model of T1DM. LentiVIP delivery into diabetic animals reduced hyperglycemia, improved glucose tolerance, and prevented weight loss. Also, a decrease in serum CRP levels, and serum oxidant capacity, but an increase in antioxidant capacity were observed in LentiVIP-treated animals. Restoration of islet cell mass was correlated with an increase in pancreatic beta-cell proliferation. These beneficial results suggest the therapeutic effect of LentiVIP is due to the repression of diabetes-induced inflammation, its insulinotropic properties, and VIP-induced beta-cell proliferation.
Collapse
|
11
|
Yalcinkaya M, von Eckardstein A. Apolipoprotein M and Sphingosine-1-Phosphate: A Potentially Antidiabetic Tandem Carried by HDL. Diabetes 2020; 69:859-861. [PMID: 32312902 PMCID: PMC7171970 DOI: 10.2337/dbi20-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mustafa Yalcinkaya
- Institute of Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|