1
|
Zhang Q, Zhang Y, Guo S, Wang X, Wang H. Hydrogen sulfide plays an important role by regulating microRNA in different ischemia-reperfusion injury. Biochem Pharmacol 2024; 229:116503. [PMID: 39179120 DOI: 10.1016/j.bcp.2024.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
MicroRNAs (miRNAs) are the short endogenous non-coding RNAs that regulate the expression of the target gene at posttranscriptional level through degrading or inhibiting the specific target messenger RNAs (mRNAs). MiRNAs regulate the expression of approximately one-third of protein coding genes, and in most cases inhibit gene expression. MiRNAs have been reported to regulate various biological processes, such as cell proliferation, apoptosis and differentiation. Therefore, miRNAs participate in multiple diseases, including ischemia-reperfusion (I/R) injury. Hydrogen sulfide (H2S) was once considered as a colorless, toxic and harmful gas with foul smelling. However, in recent years, it has been discovered that it is the third gas signaling molecule after carbon monoxide (CO) and nitric oxide (NO), with multiple important biological functions. Increasing evidence indicates that H2S plays a vital role in I/R injury through regulating miRNA, however, the mechanism has not been fully understood. In this review, we summarized the current knowledge about the role of H2S in I/R injury by regulating miRNAs, and analyzed its mechanism in detail.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yanting Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiao Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Xia R, Shan Y, Luo S, Li J, Liu Y. CIRC_0033530 KNOCKDOWN ALLEVIATES LIPOPOLYSACCHARIDE-INDUCED ACUTE LUNG INJURY MODEL OF HUMAN LUNG FIBROBLASTS BY MIR-1184/TLR4 AXIS. Shock 2024; 61:215-222. [PMID: 37962954 DOI: 10.1097/shk.0000000000002270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
ABSTRACT Background: Circular RNAs have been reported to be involved in regulating the progression of sepsis and sepsis-associated damage. Herein, this work investigated whether circ_0033530 had roles in the process of septic acute lung injury (sepsis-ALI) and its associated mechanism. Methods: Lipopolysaccharide (LPS)-stimulated human lung fibroblasts MRC-5 were used to mimic the cell model of sepsis-ALI in vitro . Levels of genes and proteins were detected by quantitative real-time polymerase chain reaction and Western blotting. Functional experiments were conducted using 5-ethynyl-2'-deoxyuridine assay, Cell Counting Kit-8 assay, flow cytometry, and enzyme-linked immunosorbent assay. The interaction between miR-1184 and circ_0033530 or toll-like receptor 4 (TLR4) was confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. Results: Circ_0033530 expression was lower in sepsis patients and LPS-induced fibroblasts than those in healthy control and untreated cells. Functionally, knockdown of circ_0033530 protected fibroblasts against LPS-induced proliferation arrest, apoptosis, and inflammatory response. Mechanistically, circ_0033530 acted as a sponge for miR-1184, and TLR4 RNA was targeted by miR-1184, indicating the circ_0033530/miR-1184/TLR4 axis. Further rescue experiments showed that circ_0033530 silencing-mediated growth inhibition and inflammation on fibroblasts were attenuated by miR-1184 downregulation or TLR4 upregulation. Conclusion: Circ_0033530 knockdown alleviated LPS-induced proliferation arrest, apoptosis, and inflammation in lung fibroblasts by miR-1184/TLR4 axis, and provided molecular theoretical basis for circ_0033530 on the pathogenesis of sepsis-ALI.
Collapse
Affiliation(s)
- Rui Xia
- Synthesize Intensive Care Unit, Zhumadian Central Hospital, Zhumadian 463000, China
| | | | | | | | | |
Collapse
|
3
|
Wang X, Wang Y, Luo J, Wang L, Guo L, Zhu X. PSTPIP2 is associated with disease severity in patients with pressure ulcer sepsis and has anti-inflammatory effects. Allergol Immunopathol (Madr) 2023; 51:23-28. [PMID: 37695226 DOI: 10.15586/aei.v51i5.939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/04/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND One of the common adverse reactions in patients with pressure ulcers (PU) is sepsis, which is mainly related to microbial infections caused by pathogenic organisms. The activation of nuclear factor kappa-B (NF-κB) frequently occurs in conjunction with pathogenic microbial infections. Proline-serine-threonine-phosphatase-interacting protein 2 (PSTPIP2) is closely related to inflammatory disorders. The role and mechanism of PSTPIP2 in sepsis because of pressure ulcers is unclear. In this study, we discovered that PSTPIP2 was lowly expressed in peripheral blood of patients with sepsis induced by pressure ulcers. METHODS Peripheral blood was collected from 20 patients with sepsis due to pressure ulcers and 10 healthy controls, and the expression of PSTPIP2 in peripheral blood was discovered by polymerase chain reaction and Western blot analysis. Information on the clinical characteristics of patients was summarized, and the expression data of PSTPIP2 were correlated with the patients' acute physiology and chronic health evaluation (APACHE) II score, sequential organ failure assessment (SOFA) score, and C-reactive protein (CRP) and procalcitonin (PCT) scores by Spearman's correlation analysis. One of the main mediators of Gram-negative sepsis is lipopolysaccharide (LPS). In order to establish an in vitro sepsis model, THP-1 cells were treated with LPS, and the cells were transfected with PSTPIP2. Contents of interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor-α (TNF-α) in each group of cells were detected by enzyme-linked--immunosorbent serologic assay, and NF-κB-related proteins were detected by Western blot analysis. RESULTS When compared to healthy controls, the peripheral blood of patients with pressure sepsis had lower PSTPIP2 expression, which had a negative correlation with the APACHE II, SOFA, CRP, and PCT scores. LPS-induced THP-1 cells expressed less PSTPIP2 than the untreated control cells, and PSTPIP2 transfection decreased IL-6, IL-1β, and TNF-α levels and inhibited the activation of NF-κB pathway. CONCLUSION PSTPIP2 is associated with disease severity in patients with pressure ulcer sepsis and has anti-inflammatory effects.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Critical Care Medicine, The 903rd Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, Zhejiang Province, China
| | - Youli Wang
- Department of Dermatology, Zhuji Traditional Chinese Medicine Hospital, Shaoxing, Zhejiang Province, China;
| | - Jianjun Luo
- Department of Critical Care Medicine, The 903rd Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, Zhejiang Province, China
| | - Lipeng Wang
- Department of Critical Care Medicine, The 903rd Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, Zhejiang Province, China
| | - Liye Guo
- Department of Critical Care Medicine, The 903rd Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, Zhejiang Province, China
| | - Xinxin Zhu
- Department of Critical Care Medicine, The 903rd Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Cai X, Yang H, Pan Y, Wen Y, Huang C, Li R. Circ_0060967 contributes to colorectal cancer progression by sponging miR-1184 to up-regulate SRC proto-oncogene. Arab J Gastroenterol 2023:S1687-1979(23)00010-2. [PMID: 37045727 DOI: 10.1016/j.ajg.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 12/06/2022] [Accepted: 02/05/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND AND STUDY AIMS Circular RNAs (circRNAs) are closely associated with cancer pathogenesis. The purpose of our current study was to explore the role and mechanism of circ_0060967 in colorectal cancer (CRC) development. PATIENTS AND METHODS Human CRC specimens and paired healthy tissues were used to examine variable expression. The expression of circ_0060967 and microRNA (miR)-1184 was examined by quantitative reverse transcription-PCR. The protein levels of proliferating cell nuclear antigen, BCL2-associated X, apoptosis regulator (Bax), proto-oncogene nonreceptor tyrosine kinase Src (SRC), nuclear factor-κB inhibitor alpha (IκBα), phosphorylated-IκBα (p-IκBα), RELA proto-oncogene, nuclear factor-κB subunit (p65), and phosphorylated-p65 (p-p65) were determined by western blot. Proliferation and motility of HCT-116 and SW480 CRC cells were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and transwell assays, respectively. Dual-luciferase reporter assay and RNA immunoprecipitation assay were used to determine the binding relation between miR-1184 and circ_0060967 or SRC. Animal studies were used to detect the role of circ_0060967 in CRC cell tumorigenicity. RESULTS Circ_0060967 abundance was enhanced in human CRC tissue samples versus paired normal colorectal tissues and in HCT-116 and SW480 CRC cells versus normal HCO cells. Decreased expression of circ_0060967 could suppress cell growth, motility, and invasiveness of CRC cells in vitro and tumor growth in vivo. Circ_0060967 sponged miR-1184, and miR-1184 targeted SRC. Furthermore, we also found circ_0060967 affected cell growth by modulating miR-1184/SRC axis in CRC. CONCLUSION This study demonstrates a novel circ_0060967/miR-1184/SRC regulatory cascade in affecting CRC cell malignant behaviors, which can have a broad effect on the field of molecularly targeted therapeutics.
Collapse
Affiliation(s)
- Xingrui Cai
- Department of Medical Oncology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Hui Yang
- Department of Radiotherapy, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yinglian Pan
- Department of Medical Oncology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yang Wen
- Department of Medical Oncology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Chengmou Huang
- Department of Medical Oncology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| | - Rucai Li
- Department of Radiotherapy, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
5
|
Huang L, Guo B, Yan J, Wei H, Liu S, Li Y. CircHSPG2 knockdown attenuates hypoxia-induced apoptosis, inflammation, and oxidative stress in human AC16 cardiomyocytes by regulating the miR-1184/MAP3K2 axis. Cell Stress Chaperones 2023; 28:177-190. [PMID: 36810972 PMCID: PMC10050264 DOI: 10.1007/s12192-023-01328-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Circular RNAs (circRNAs) have been identified as vital regulators in cardiovascular diseases, including acute myocardial infarction (AMI). In this study, the function and mechanism of circRNA heparan sulfate proteoglycan 2 (circHSPG2) in hypoxia-induced injury in AC16 cardiomyocytes were investigated. AC16 cells were stimulated with hypoxia to establish an AMI cell model in vitro. Real-time quantitative PCR and western blot assays were performed to quantify the expression levels of circHSPG2, microRNA-1184 (miR-1184), and mitogen-activated protein kinase kinase kinase 2 (MAP3K2). Counting Kit-8 (CCK-8) assay was used to measure cell viability. Flow cytometry was performed to detect cell cycle and apoptosis. Enzyme-linked immunosorbent assay (ELISA) was used to determine the expression of inflammatory factors. Dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays were used to analyze the relationship between miR-1184 and circHSPG2 or MAP3K2. In AMI serum, circHSPG2 and MAP3K2 mRNA were highly expressed and miR-1184 was down-regulated. Hypoxia treatment elevated HIF1α expression and repressed cell growth and glycolysis. Moreover, hypoxia promoted cell apoptosis, inflammation, and oxidative stress in AC16 cells. Hypoxia-induced circHSPG2 expression in AC16 cells. CircHSPG2 knockdown alleviated hypoxia-induced AC16 cell injury. CircHSPG2 directly targeted miR-1184, and miR-1184 targeted and suppressed MAP3K2. Inhibition of miR-1184 or overexpression of MAP3K2 abolished the alleviated effect of circHSPG2 knockdown on hypoxia-induced AC16 cell injury. Overexpression of miR-1184 relieved hypoxia-induced impairment in AC16 cells by MAP3K2. CircHSPG2 could regulate MAP3K2 expression through miR-1184. CircHSPG2 knockdown protected AC16 cells from hypoxia-induced injury by regulating the miR-1184/MAP3K2 cascade.
Collapse
Affiliation(s)
- Liu Huang
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, China
| | - Bingyan Guo
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, China
| | - Jie Yan
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, China
| | - Huiqing Wei
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, China
| | - Suyun Liu
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, China
| | - Yongjun Li
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, China.
| |
Collapse
|
6
|
Chen Y, Gu Y, Xiong X, Zheng Y, Liu X, Wang W, Meng G. Roles of the adaptor protein tumor necrosis factor receptor type 1-associated death domain protein (TRADD) in human diseases. Biomed Pharmacother 2022; 153:113467. [DOI: 10.1016/j.biopha.2022.113467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022] Open
|
7
|
Antonakos N, Gilbert C, Théroude C, Schrijver IT, Roger T. Modes of action and diagnostic value of miRNAs in sepsis. Front Immunol 2022; 13:951798. [PMID: 35990654 PMCID: PMC9389448 DOI: 10.3389/fimmu.2022.951798] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis is a major public health concern associated with one in five deaths worldwide. Sepsis is characterized by unbalanced inflammation and profound and sustained immunosuppression, increasing patient susceptibility to secondary infections and mortality. microRNAs (miRNAs) play a central role in the control of many biological processes, and deregulation of their expression has been linked to the development of oncological, cardiovascular, neurodegenerative and metabolic diseases. In this review, we discuss the role of miRNAs in sepsis pathophysiology. Overall, miRNAs are seen as promising biomarkers, and it has been proposed to develop miRNA-based therapies for sepsis. Yet, the picture is not so straightforward because of the versatile and dynamic features of miRNAs. Clearly, more research is needed to clarify the expression and role of miRNAs in sepsis, and to promote the use of miRNAs for sepsis management.
Collapse
Affiliation(s)
| | | | | | | | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
8
|
Al-Mustanjid M, Mahmud SMH, Akter F, Rahman MS, Hossen MS, Rahman MH, Moni MA. Systems biology models to identify the influence of SARS-CoV-2 infections to the progression of human autoimmune diseases. INFORMATICS IN MEDICINE UNLOCKED 2022; 32:101003. [PMID: 35818398 PMCID: PMC9259025 DOI: 10.1016/j.imu.2022.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been circulating since 2019, and its global dominance is rising. Evidences suggest the respiratory illness SARS-CoV-2 has a sensitive affect on causing organ damage and other complications to the patients with autoimmune diseases (AD), posing a significant risk factor. The genetic interrelationships and molecular appearances between SARS-CoV-2 and AD are yet unknown. We carried out the transcriptomic analytical framework to delve into the SARS-CoV-2 impacts on AD progression. We analyzed both gene expression microarray and RNA-Seq datasets from SARS-CoV-2 and AD affected tissues. With neighborhood-based benchmarks and multilevel network topology, we obtained dysfunctional signaling and ontological pathways, gene disease (diseasesome) association network and protein-protein interaction network (PPIN), uncovered essential shared infection recurrence connectivities with biological insights underlying between SARS-CoV-2 and AD. We found a total of 77, 21, 9, 54 common DEGs for SARS-CoV-2 and inflammatory bowel disorder (IBD), SARS-CoV-2 and rheumatoid arthritis (RA), SARS-CoV-2 and systemic lupus erythematosus (SLE) and SARS-CoV-2 and type 1 diabetes (T1D). The enclosure of these common DEGs with bimolecular networks revealed 10 hub proteins (FYN, VEGFA, CTNNB1, KDR, STAT1, B2M, CD3G, ITGAV, TGFB3). Drugs such as amlodipine besylate, vorinostat, methylprednisolone, and disulfiram have been identified as a common ground between SARS-CoV-2 and AD from drug repurposing investigation which will stimulate the optimal selection of medications in the battle against this ongoing pandemic triggered by COVID-19.
Collapse
Affiliation(s)
- Md Al-Mustanjid
- Department of Software Engineering, Faculty of Science and Information Technology, Daffodil International University, Dhaka-1207, Bangladesh
| | - S M Hasan Mahmud
- Department of Computer Science, American International University-Bangladesh, Dhaka, 1229, Bangladesh
| | - Farzana Akter
- Department of Software Engineering, Faculty of Science and Information Technology, Daffodil International University, Dhaka-1207, Bangladesh
| | - Md Shazzadur Rahman
- Department of Computer Science & Engineering, Faculty of Science and Information Technology, Daffodil International University, Dhaka-1207, Bangladesh
| | - Md Sajid Hossen
- Department of Software Engineering, Faculty of Science and Information Technology, Daffodil International University, Dhaka-1207, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia-7003, Bangladesh
| | - Mohammad Ali Moni
- Department of Computer Science and Engineering, Pabna Science & Technology University, Pabna, 6600, Bangladesh
| |
Collapse
|
9
|
Wang L, Su H, Liu W. Hsa_circ_0010729 regulates H 2O 2-induced myocardial injury by regulating miR-1184/RIPK1 axis. Transpl Immunol 2022; 74:101653. [PMID: 35772682 DOI: 10.1016/j.trim.2022.101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) is an important risk factor for cardiovascular diseases (CVDs) and cardiac transplantation, as I/R can cause myocardial cell hypoxia/reoxygenation (H/R) injury. Recent research has shown that circular RNAs (circRNAs) may affect the progress of H/R-induced myocardial injury, but the mechanism remains unknown. Our work explored the role of circ_0010729 in H2O2-induced myocardial injury. METHODS The levels of circ_0010729, microRNA-1184 (miR-1184) and mRNA of receptor interacting serine/threonine kinase 1 (RIPK1) were indicated by quantitative real-time polymerase chain reaction (qRT-PCR) in human cardiac myocytes (HCMs). Meanwhile, the protein level of RIPK1 was quantified by western blot analysis. Besides, the cell functions were examined by 5-Ethynyl-29-deoxyuridine (EdU) assay, flow cytometry assay, western blot and antioxidant indexes analysis. Furthermore, the interplay between miR-1184 and circ_0010729 or RIPK1 was detected by dual-luciferase reporter assay. Eventually, the in vivo experiments were applied to measure the role of circ_0010729. RESULTS The levels of circ_0010729 RNA and RIPK1 protein were increased, and the miR-1184 was decreased in HCMs exposed to H2O2. In functional analysis, circ_0010729 deficiency restrained cell apoptosis and oxidative stress, whereas promoted cell proliferation in HCMs under H2O2 exposure. Moreover, miR-1184 inhibited the H2O2-induced myocardial injury by targeting RIPK1. Mechanistically, circ_0010729 acted as a miR-1184 sponge to regulate the level of RIPK1. CONCLUSION Circ_0010729 promotes H2O2-induced myocardial injury, and thus circ_001729 may be targeted as a potential therapy for H/R-induced myocardial injury.
Collapse
Affiliation(s)
- Lingna Wang
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, No.48, Baishuitang Road, Haikou, Hainan Province 571000, China
| | - Huiqin Su
- Department of Cardiology, Qionghai Hospital of Traditional Chinese Medicine, Qionghai City, Hainan Province 571400, China
| | - Wen Liu
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, No.48, Baishuitang Road, Haikou, Hainan Province 571000, China.
| |
Collapse
|