1
|
Li N, Li YJ, Guo XJ, Wu SH, Jiang WF, Zhang DL, Wang KW, Li L, Sun YM, Xu YJ, Yang YQ, Qiu XB. Discovery of TBX20 as a Novel Gene Underlying Atrial Fibrillation. BIOLOGY 2023; 12:1186. [PMID: 37759586 PMCID: PMC10525918 DOI: 10.3390/biology12091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Atrial fibrillation (AF), the most prevalent type of sustained cardiac dysrhythmia globally, confers strikingly enhanced risks for cognitive dysfunction, stroke, chronic cardiac failure, and sudden cardiovascular demise. Aggregating studies underscore the crucial roles of inherited determinants in the occurrence and perpetuation of AF. However, due to conspicuous genetic heterogeneity, the inherited defects accounting for AF remain largely indefinite. Here, via whole-genome genotyping with genetic markers and a linkage assay in a family suffering from AF, a new AF-causative locus was located at human chromosome 7p14.2-p14.3, a ~4.89 cM (~4.43-Mb) interval between the markers D7S526 and D7S2250. An exome-wide sequencing assay unveiled that, at the defined locus, the mutation in the TBX20 gene, NM_001077653.2: c.695A>G; p.(His232Arg), was solely co-segregated with AF in the family. Additionally, a Sanger sequencing assay of TBX20 in another family suffering from AF uncovered a novel mutation, NM_001077653.2: c.862G>C; p.(Asp288His). Neither of the two mutations were observed in 600 unrelated control individuals. Functional investigations demonstrated that the two mutations both significantly reduced the transactivation of the target gene KCNH2 (a well-established AF-causing gene) and the ability to bind the promoter of KCNH2, while they had no effect on the nuclear distribution of TBX20. Conclusively, these findings reveal a new AF-causative locus at human chromosome 7p14.2-p14.3 and strongly indicate TBX20 as a novel AF-predisposing gene, shedding light on the mechanism underlying AF and suggesting clinical significance for the allele-specific treatment of AF patients.
Collapse
Affiliation(s)
- Ning Li
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China;
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| | - Xiao-Juan Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China; (X.-J.G.); (Y.-J.X.)
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Shao-Hui Wu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| | - Dao-Liang Zhang
- Cardiac Arrhythmia Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China;
| | - Kun-Wei Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China;
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education of China, Tongji University School of Medicine, Shanghai 200092, China;
| | - Yu-Min Sun
- Department of Cardiology, Shanghai Jing’an District Central Hospital, Fudan University, Shanghai 200040, China;
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China; (X.-J.G.); (Y.-J.X.)
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China; (X.-J.G.); (Y.-J.X.)
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
- Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| |
Collapse
|
2
|
Henry S, Kokity L, Pirity MK. Polycomb protein RYBP activates transcription factor Plagl1 during in vitro cardiac differentiation of mouse embryonic stem cells. Open Biol 2023; 13:220305. [PMID: 36751888 PMCID: PMC9905990 DOI: 10.1098/rsob.220305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
RING1 and YY1 binding protein (RYBP) is primarily known to function as a repressor being a core component of the non-canonical polycomb repressive complexes 1 (ncPRC1s). However, several ncPRC1-independent functions of RYBP have also been described. We previously reported that RYBP is essential for mouse embryonic development and that Rybp null mutant embryonic stem cells cannot form contractile cardiomyocytes (CMCs) in vitro. We also showed that PLAGL1, a cardiac transcription factor, which is often mutated in congenital heart diseases (CHDs), is not expressed in Rybp-null mutant CMCs. However, the underlying mechanism of how RYBP regulates Plagl1 expression was not revealed. Here, we demonstrate that RYBP cooperated with NKX2-5 to transcriptionally activate the P1 and P3 promoters of the Plagl1 gene and that this activation is ncPRC1-independent. We also show that two non-coding RNAs residing in the Plagl1 locus can also regulate the Plagl1 promoters. Finally, PLAGL1 was able to activate Tnnt2, a gene important for contractility of CMCs in transfected HEK293 cells. Our study shows that the activation of Plagl1 by RYBP is important for sarcomere development and contractility, and suggests that RYBP, via its regulatory functions, may contribute to the development of CHDs.
Collapse
Affiliation(s)
- Surya Henry
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Lilla Kokity
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Melinda Katalin Pirity
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary
| |
Collapse
|
3
|
Malakootian M, Jalilian M, Kalayinia S, Hosseini Moghadam M, Heidarali M, Haghjoo M. Whole-exome sequencing reveals a rare missense variant in DTNA in an Iranian pedigree with early-onset atrial fibrillation. BMC Cardiovasc Disord 2022; 22:37. [PMID: 35148685 PMCID: PMC8832862 DOI: 10.1186/s12872-022-02485-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Atrial fibrillation (AF) is a morbid and heritable irregular cardiac rhythm that affects about 2%–3% of the population. Patients with early-onset AF have a strong genetic association with the disease; nonetheless, the exact underlying mechanisms need clarification. We herein present our evaluation of a 2-generation Iranian pedigree with early-onset AF. Whole-exome sequencing was applied to elucidate the genetic predisposition. Direct DNA sequencing was utilized to confirm and screen the variants in the proband and his available family members. The pathogenicity of the identified nucleotide variations was scrutinized via either segregation analysis in the family or in silico predictive software. The comprehensive variant analysis revealed a missense variant (c.G681C, p.E227D, rs1477078144) in the human α-dystrobrevin gene (DTNA), which is rare in genetic databases. Most in silico analyses have predicted this variant as a disease-causing variant, and the variant is co-segregated with the disease phenotype in the family. Previous studies have demonstrated the association between the DTNA gene and left ventricular noncompaction cardiomyopathy. Taken together, we provide the first evidence of an association between a nucleotide variation in the DTNA gene and early-onset AF in an Iranian family. However, the genetic testing of AF in the Iranian population is still limited. This finding not only further confirms the significant role of genetics in the incidence of early-onset AF but also expands the spectrum of the gene variations that lead to AF. Additionally, it may have further implications for the treatment and prevention of AF.
Collapse
Affiliation(s)
- Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jalilian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Hosseini Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Heidarali
- Cardiac Electrophysiology Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Vali-Asr St, Hashemi-Rafsanjani Blvd, Tehran, Iran
| | - Majid Haghjoo
- Cardiac Electrophysiology Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Vali-Asr St, Hashemi-Rafsanjani Blvd, Tehran, Iran.
| |
Collapse
|
4
|
Assum I, Krause J, Scheinhardt MO, Müller C, Hammer E, Börschel CS, Völker U, Conradi L, Geelhoed B, Zeller T, Schnabel RB, Heinig M. Tissue-specific multi-omics analysis of atrial fibrillation. Nat Commun 2022; 13:441. [PMID: 35064145 PMCID: PMC8782899 DOI: 10.1038/s41467-022-27953-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies (GWAS) for atrial fibrillation (AF) have uncovered numerous disease-associated variants. Their underlying molecular mechanisms, especially consequences for mRNA and protein expression remain largely elusive. Thus, refined multi-omics approaches are needed for deciphering the underlying molecular networks. Here, we integrate genomics, transcriptomics, and proteomics of human atrial tissue in a cross-sectional study to identify widespread effects of genetic variants on both transcript (cis-eQTL) and protein (cis-pQTL) abundance. We further establish a novel targeted trans-QTL approach based on polygenic risk scores to determine candidates for AF core genes. Using this approach, we identify two trans-eQTLs and five trans-pQTLs for AF GWAS hits, and elucidate the role of the transcription factor NKX2-5 as a link between the GWAS SNP rs9481842 and AF. Altogether, we present an integrative multi-omics method to uncover trans-acting networks in small datasets and provide a rich resource of atrial tissue-specific regulatory variants for transcript and protein levels for cardiovascular disease gene prioritization.
Collapse
Affiliation(s)
- Ines Assum
- Computational Health Center, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), München, Germany
- Department of Informatics, Technical University Munich, München, Germany
| | - Julia Krause
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, Hamburg, Germany
- Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Markus O Scheinhardt
- Institute of Medical Biometry and Statistics, University of Lübeck, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Christian Müller
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, Hamburg, Germany
- Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- Partner site Greifswald, DZHK (German Center for Cardiovascular Research), Greifswald, Germany
| | - Christin S Börschel
- Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- Partner site Greifswald, DZHK (German Center for Cardiovascular Research), Greifswald, Germany
| | - Lenard Conradi
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Bastiaan Geelhoed
- Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tanja Zeller
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, Hamburg, Germany
- Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Renate B Schnabel
- Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany.
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany.
| | - Matthias Heinig
- Computational Health Center, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), München, Germany.
- Department of Informatics, Technical University Munich, München, Germany.
- Partner site Munich, DZHK (German Center for Cardiovascular Research), Munich, Germany.
| |
Collapse
|
5
|
Dixit R, Narasimhan C, Balekundri VI, Agrawal D, Kumar A, Mohapatra B. Functional analysis of novel genetic variants of NKX2-5 associated with nonsyndromic congenital heart disease. Am J Med Genet A 2021; 185:3644-3663. [PMID: 34214246 DOI: 10.1002/ajmg.a.62413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/26/2023]
Abstract
NKX2-5, a master cardiac regulatory transcription factor was the first known genetic cause of congenital heart diseases (CHDs). To further investigate its role in CHD pathogenesis, we performed mutational screening of 285 CHD probands and 200 healthy controls. Five coding sequence variants were identified in six CHD cases (2.1%), including three in the N-terminal region (p.A61G, p.R95L, and p.E131K) and one each in homeodomain (HD) (p.A148E) and tyrosine-rich domain (p.P247A). Variant-p.A148E showed tertiary structure changes and differential DNA binding affinity of mutant compared to wild type. Two N-terminal variants-p.A61G and p.E131K along with HD variant p.A148E demonstrated significantly reduced transcriptional activity of Nppa and Actc1 promoters in dual luciferase promoter assay supported by their reduced expression in qRT-PCR. Nonetheless, variant p.R95L affected the synergy of NKX2-5 with serum response factor and TBX5 leading to significantly decreased Actc1 promoter activity depicting a distinctive role of this region. The aberrant expression of other target genes-Irx4, Mef2c, Bmp10, Myh6, Myh7, and Myocd is also observed in response to NKX2-5 variants, possibly due to the defective gene regulatory network. Severely impaired downstream promoter activities and abnormal expression of target genes due to N-terminal variants supports the emerging role of this region during cardiac-developmental pathways.
Collapse
Affiliation(s)
- Ritu Dixit
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Chitra Narasimhan
- Department of Pediatric Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, Karnataka, India
| | - Vijayalakshmi I Balekundri
- Super Speciality Hospital, Pradhan Mantri Swasthya Suraksha Yojana (PMSSY), Medical College and Research Institute, Bengaluru, Karnataka, India
| | - Damyanti Agrawal
- Department of Cardiothoracic and Vascular Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
6
|
Dai W, Kesaraju S, Weber CR. Transcriptional factors in calcium mishandling and atrial fibrillation development. Pflugers Arch 2021; 473:1177-1197. [PMID: 34003377 DOI: 10.1007/s00424-021-02553-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Healthy cardiac conduction relies on the coordinated electrical activity of distinct populations of cardiomyocytes. Disruption of cell-cell conduction results in cardiac arrhythmias, a leading cause of morbidity and mortality worldwide. Recent genetic studies have highlighted a major heritable component and identified numerous loci associated with risk of atrial fibrillation, including transcription factor genes, particularly those important in cardiac development, microRNAs, and long noncoding RNAs. Identification of such genetic factors has prompted the search to understand the mechanisms that underlie the genetic component of AF. Recent studies have found several mechanisms by which genetic alterations can result in AF formation via disruption of calcium handling. Loss of developmental transcription factors in adult cardiomyocytes can result in disruption of SR calcium ATPase, sodium calcium exchanger, calcium channels, among other ion channels, which underlie action potential abnormalities and triggered activity that can contribute to AF. This review aims to summarize the complex network of transcription factors and their roles in calcium handling.
Collapse
Affiliation(s)
- Wenli Dai
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sneha Kesaraju
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
7
|
Wallace MJ, El Refaey M, Mesirca P, Hund TJ, Mangoni ME, Mohler PJ. Genetic Complexity of Sinoatrial Node Dysfunction. Front Genet 2021; 12:654925. [PMID: 33868385 PMCID: PMC8047474 DOI: 10.3389/fgene.2021.654925] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The pacemaker cells of the cardiac sinoatrial node (SAN) are essential for normal cardiac automaticity. Dysfunction in cardiac pacemaking results in human sinoatrial node dysfunction (SND). SND more generally occurs in the elderly population and is associated with impaired pacemaker function causing abnormal heart rhythm. Individuals with SND have a variety of symptoms including sinus bradycardia, sinus arrest, SAN block, bradycardia/tachycardia syndrome, and syncope. Importantly, individuals with SND report chronotropic incompetence in response to stress and/or exercise. SND may be genetic or secondary to systemic or cardiovascular conditions. Current management of patients with SND is limited to the relief of arrhythmia symptoms and pacemaker implantation if indicated. Lack of effective therapeutic measures that target the underlying causes of SND renders management of these patients challenging due to its progressive nature and has highlighted a critical need to improve our understanding of its underlying mechanistic basis of SND. This review focuses on current information on the genetics underlying SND, followed by future implications of this knowledge in the management of individuals with SND.
Collapse
Affiliation(s)
- Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Pietro Mesirca
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Thomas J. Hund
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Matteo E. Mangoni
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
8
|
Genetics and Epigenetics of Atrial Fibrillation. Int J Mol Sci 2020; 21:ijms21165717. [PMID: 32784971 PMCID: PMC7460853 DOI: 10.3390/ijms21165717] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is known to be the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence exponentially increases with age and could reach up to 8% in the elderly population. The management of AF is a complex issue that is addressed by extensive ongoing basic and clinical research. AF centers around different types of disturbances, including ion channel dysfunction, Ca2+-handling abnormalities, and structural remodeling. Genome-wide association studies (GWAS) have uncovered over 100 genetic loci associated with AF. Most of these loci point to ion channels, distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Recently, the discovery of post-transcriptional regulatory mechanisms, involving non-coding RNAs (especially microRNAs), DNA methylation, and histone modification, has allowed to decipher how a normal heart develops and which modifications are involved in reshaping the processes leading to arrhythmias. This review aims to provide a current state of the field regarding the identification and functional characterization of AF-related epigenetic regulatory networks
Collapse
|
9
|
Wu SH, Wang XH, Xu YJ, Gu JN, Yang CX, Qiao Q, Guo XJ, Guo YH, Qiu XB, Jiang WF, Yang YQ. ISL1 loss-of-function variation causes familial atrial fibrillation. Eur J Med Genet 2020; 63:104029. [PMID: 32771629 DOI: 10.1016/j.ejmg.2020.104029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 02/08/2023]
Abstract
Atrial fibrillation (AF) represents the most frequent form of sustained cardiac rhythm disturbance, affecting approximately 1% of the general population worldwide, and confers a substantially enhanced risk of cerebral stroke, heart failure, and death. Increasing epidemiological studies have clearly demonstrated a strong genetic basis for AF, and variants in a wide range of genes, including those coding for ion channels, gap junction channels, cardiac structural proteins and transcription factors, have been identified to underlie AF. Nevertheless, the genetic pathogenesis of AF is complex and still far from completely understood. Here, whole-exome sequencing and bioinformatics analyses of a three-generation family with AF were performed, and after filtering variants by multiple metrics, we identified a heterozygous variant in the ISL1 gene (encoding a transcription factor critical for embryonic cardiogenesis and postnatal cardiac remodeling), NM_002202.2: c.481G > T; p.(Glu161*), which was validated by Sanger sequencing and segregated with autosome-dominant AF in the family with complete penetrance. The nonsense variant was absent from 284 unrelated healthy individuals used as controls. Functional assays with a dual-luciferase reporter assay system revealed that the truncating ISL1 protein lost transcriptional activation on the verified target genes MEF2C and NKX2-5. Additionally, the variant nullified the synergistic transactivation between ISL1 and TBX5 as well as GATA4, two other transcription factors that have been implicated in AF. The findings suggest ISL1 as a novel gene contributing to AF, which adds new insight to the genetic mechanisms underpinning AF, implying potential implications for genetic testing and risk stratification of the AF family members.
Collapse
Affiliation(s)
- Shao-Hui Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Hua Wang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiao-Juan Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Laforest B, Dai W, Tyan L, Lazarevic S, Shen KM, Gadek M, Broman MT, Weber CR, Moskowitz IP. Atrial fibrillation risk loci interact to modulate Ca2+-dependent atrial rhythm homeostasis. J Clin Invest 2020; 129:4937-4950. [PMID: 31609246 DOI: 10.1172/jci124231] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/16/2019] [Indexed: 12/30/2022] Open
Abstract
Atrial fibrillation (AF), defined by disorganized atrial cardiac rhythm, is the most prevalent cardiac arrhythmia worldwide. Recent genetic studies have highlighted a major heritable component and identified numerous loci associated with AF risk, including the cardiogenic transcription factor genes TBX5, GATA4, and NKX2-5. We report that Tbx5 and Gata4 interact with opposite signs for atrial rhythm controls compared with cardiac development. Using mouse genetics, we found that AF pathophysiology caused by Tbx5 haploinsufficiency, including atrial arrhythmia susceptibility, prolonged action potential duration, and ectopic cardiomyocyte depolarizations, were all rescued by Gata4 haploinsufficiency. In contrast, Nkx2-5 haploinsufficiency showed no combinatorial effect. The molecular basis of the TBX5/GATA4 interaction included normalization of intra-cardiomyocyte calcium flux and expression of calcium channel genes Atp2a2 and Ryr2. Furthermore, GATA4 and TBX5 showed antagonistic interactions on an Ryr2 enhancer. Atrial rhythm instability caused by Tbx5 haploinsufficiency was rescued by a decreased dose of phospholamban, a sarco/endoplasmic reticulum Ca2+-ATPase inhibitor, consistent with a role for decreased sarcoplasmic reticulum calcium flux in Tbx5-dependent AF susceptibility. This work defines a link between Tbx5 dose, sarcoplasmic reticulum calcium flux, and AF propensity. The unexpected interactions between Tbx5 and Gata4 in atrial rhythm control suggest that evaluating specific interactions between genetic risk loci will be necessary for ascertaining personalized risk from genetic association data.
Collapse
Affiliation(s)
| | | | - Leonid Tyan
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | | | | - Michael T Broman
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Ivan P Moskowitz
- Department of Pediatrics, Pathology, and Human Genetics.,Department of Pathology, and
| |
Collapse
|
11
|
Patterson J, Coats C, McGowan R. Familial dilated cardiomyopathy associated with pathogenic TBX5 variants: Expanding the cardiac phenotype associated with Holt-Oram syndrome. Am J Med Genet A 2020; 182:1725-1734. [PMID: 32449309 DOI: 10.1002/ajmg.a.61635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/03/2020] [Accepted: 04/29/2020] [Indexed: 11/07/2022]
Abstract
Holt-Oram syndrome (HOS) is a rare, autosomal dominant disorder caused by heterozygous pathogenic variants in cardiac T-box transcription factor, TBX5. Classically, it is associated with upper limb malformations and variable cardiac abnormalities. Limb manifestations are considered to be invariably present, ranging in severity from limitation in movement, to triphalangeal thumbs, absent thumbs, shortened forearms, or phocomelia. Cardiac involvement is characterized by congenital heart defects, most commonly septal structural malformations, and conduction system disease. Recently, novel TBX5 variants have also been reported in association with dilated cardiomyopathy (DCM). In this context, we report eight individuals from four unrelated families, in whom pathogenic variants in TBX5 segregated with an atypical HOS phenotype. Affected individuals exhibit relatively mild skeletal features of HOS, with a predominant cardiac phenotype, which includes several individuals affected by non-ischaemic DCM. To our knowledge, these represent the first reported cases of DCM in families with skeletal features of HOS, some of whom also harbored variants previously linked to a classical HOS phenotype (p. Arg279* and p.Arg237Gln). This finding supports diverse roles of TBX5 in cardiovascular development and function, and confirms the importance of long-term cardiac surveillance for individuals affected by HOS. Furthermore, these families highlight the wide phenotypic variability of HOS, which may include comparatively mild upper limb findings in respect to cardiac manifestations.
Collapse
Affiliation(s)
- Jenny Patterson
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Caroline Coats
- Department of Cardiology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Ruth McGowan
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
12
|
Kolomenski JE, Delea M, Simonetti L, Fabbro MC, Espeche LD, Taboas M, Nadra AD, Bruque CD, Dain L. An update on genetic variants of the NKX2-5. Hum Mutat 2020; 41:1187-1208. [PMID: 32369864 DOI: 10.1002/humu.24030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/03/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022]
Abstract
NKX2-5 is a homeodomain transcription factor that plays a crucial role in heart development. It is the first gene where a single genetic variant (GV) was found to be associated with congenital heart diseases in humans. In this study, we carried out a comprehensive survey of NKX2-5 GVs to build a unified, curated, and updated compilation of all available GVs. We retrieved a total of 1,380 unique GVs. From these, 970 had information on their frequency in the general population and 143 have been linked to pathogenic phenotypes in humans. In vitro effect was ascertained for 38 GVs. The homeodomain had the biggest cluster of pathogenic variants in the protein: 49 GVs in 60 residues, 23 in its third α-helix, where 11 missense variants may affect protein-DNA interaction or the hydrophobic core. We also pinpointed the likely location of pathogenic GVs in four linear motifs. These analyses allowed us to assign a putative explanation for the effect of 90 GVs. This study pointed to reliable pathogenicity for GVs in helix 3 of the homeodomain and may broaden the scope of functional and structural studies that can be done to better understand the effect of GVs in NKX2-5 function.
Collapse
Affiliation(s)
- Jorge E Kolomenski
- Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional, iB3, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisol Delea
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Leandro Simonetti
- Department of Chemistry-Biomedical Centre, Uppsala University, Uppsala, Sweden
| | | | - Lucía D Espeche
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Melisa Taboas
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Alejandro D Nadra
- Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional, iB3, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos D Bruque
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina.,Instituto de Biología y Medicina Experimental, (IBYME-CONICET), Buenos Aires, Argentina
| | - Liliana Dain
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional, iB3, Universidad de Buenos Aires, Buenos Aires, Argentina.,Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina.,Instituto de Biología y Medicina Experimental, (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
13
|
Abstract
Background Atrial fibrillation (AF) is a common arrhythmia seen in clinical practice. Occasionally, no common risk factors are present in patients with this arrhythmia. This suggests the potential underlying role of genetic factors associated with predisposition to developing AF. Methods and Results We conducted a comprehensive review of the literature through large online libraries, including PubMed. Many different potassium and sodium channel mutations have been discussed in their relation to AF. There have also been non–ion channel mutations that have been linked to AF. Genome‐wide association studies have helped in identifying potential links between single‐nucleotide polymorphisms and AF. Ancestry studies have also highlighted a role of genetics in AF. Blacks with a higher percentage of European ancestry are at higher risk of developing AF. The emerging field of ablatogenomics involves the use of genetic profiles in their relation to recurrence of AF after catheter ablation. Conclusions The evidence for the underlying role of genetics in AF continues to expand. Ultimately, the role of genetics in risk stratification of AF and its recurrence is of significant interest. No established risk scores that are useful in clinical practice are present to date.
Collapse
Affiliation(s)
- Julien Feghaly
- 1 Department of Internal Medicine St Louis University Hospital St Louis MO
| | - Patrick Zakka
- 2 Department of Internal Medicine Emory University Hospital Atlanta GA
| | - Barry London
- 3 Department of Cardiovascular Medicine University of Iowa Carver College of Medicine Iowa City IA
| | - Calum A MacRae
- 4 Department of Cardiovascular Medicine Brigham and Women's Hospital Boston MA
| | - Marwan M Refaat
- 5 Department of Cardiovascular Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
14
|
Kalayinia S, Ghasemi S, Mahdieh N. A comprehensive in silico analysis, distribution and frequency of human Nkx2-5 mutations; A critical gene in congenital heart disease. J Cardiovasc Thorac Res 2019; 11:287-299. [PMID: 31824610 PMCID: PMC6891041 DOI: 10.15171/jcvtr.2019.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction: Congenital heart disease (CHD) affects 1% to 2 % of live births. The Nkx2-5 gene, is known as the significant heart marker during embryonic evolution and it is also necessary for the survival of cardiomyocytes and homeostasis in adulthood. In this study, Nkx2-5 mutations are investigated to identify the frequency, distribution, functional consequences of mutations by using computational tools.
Methods: A complete literature search was conducted to find Nkx2-5 mutations using the following key words: Nkx2-5 and/or CHD and mutations. The mutations were in silico analyzed using tools which predict the pathogenicity of the variants. A picture of Nkx2-5 protein and functional or structural effects of its variants were also figured using I-TASSER and STRING.
Results: A total number of 105 mutations from 18 countries were introduced. The most (24.1%) and the least (1.49%) frequency of Nkx2-5 mutations were observed in Europe and Africa, respectively. The c.73C>T and c.533C>T mutations are distributed worldwide. c.325G>T (62.5%) and c.896A>G (52.9%) had the most frequency. The most numbers of Nkx2-5 mutations were reported from Germany. The c.541C>T had the highest CADD score (Phred score = 38) and the least was for c.380C>A (Phred score=0.002). 41.9% of mutations were predicted as potentially pathogenic by all prediction tools.
Conclusion: This is the first report of the Nkx2-5 mutations evaluation in the worldwide. Given that the high frequency of mutation in Germany, and also some mutations were seen only in this country, therefore, presumably the main origin of Nkx2-5 mutations arise from Germany.
Collapse
Affiliation(s)
- Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Serwa Ghasemi
- Department of Biology, School of Basic Sciences, Islamic Azad University Research Tehran Branch, Tehran, Iran
| | - Nejat Mahdieh
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Chen J, Xu S, Li W, Wu L, Wang L, Li Y, Zhou W. Nkx2.5 insufficiency leads to atrial electrical remodeling through Wnt signaling in HL-1 cells. Exp Ther Med 2019; 18:4631-4636. [PMID: 31798700 PMCID: PMC6880433 DOI: 10.3892/etm.2019.8134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Homeobox protein Nxk-2.5 (Nkx2.5) is a homeobox transcription factor that promotes chamber-like myocardial gene expression. Data from a previous genome-wide association study suggested that Nkx2.5 may be associated with the genetic variation that underlies atrial fibrillation (AF). Nkx2.5 loss of function has been demonstrated to be associated with an increasing susceptibility of familial AF. Therefore, the aim of the present study was to investigate the effect of Nkx2.5 loss of function on electrophysiological substrates in HL-1 cells. To the best of our knowledge, the results demonstrated for the first time that Nkx2.5 expression was significantly decreased in a rat model exhibiting AF. The effect of silencing Nkx2.5 was assessed following transfection with adenoviral vectors with specific NKX2.5-shRNA. The effect of Nkx2.5 silencing on potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4), gap junction alpha-5 protein (Cx40), calcium handling proteins and protein Wnt-11 (Wnt11) expression levels was also assessed in HL-1 cells. The results revealed that Nkx2.5 silencing increased HCN4 expression, decreased Cx40 expression and disrupted the expression of calcium handling proteins. Additionally, Wnt11 signal protein expression was decreased following Nkx2.5 silencing. The results of the present study demonstrated that Nkx2.5 served as a transcriptional regulator of the electrophysiological substrates associated with AF.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shunen Xu
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Wei Li
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lirong Wu
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Long Wang
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yongkang Li
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Wei Zhou
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
16
|
Krasi G, Precone V, Paolacci S, Stuppia L, Nodari S, Romeo F, Perrone M, Bushati V, Dautaj A, Bertelli M. Genetics and pharmacogenetics in the diagnosis and therapy of cardiovascular diseases. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:7-19. [PMID: 31577248 PMCID: PMC7233637 DOI: 10.23750/abm.v90i10-s.8748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases are the main cause of death worldwide. The ability to accurately define individual susceptibility to these disorders is therefore of strategic importance. Linkage analysis and genome-wide association studies have been useful for the identification of genes related to cardiovascular diseases. The identification of variants predisposing to cardiovascular diseases contributes to the risk profile and the possibility of tailored preventive or therapeutic strategies. Molecular genetics and pharmacogenetics are playing an increasingly important role in the correct clinical management of patients. For instance, genetic testing can identify variants that influence how patients metabolize medications, making it possible to prescribe personalized, safer and more efficient treatments, reducing medical costs and improving clinical outcomes. In the near future we can expect a great increment in information and genetic testing, which should be acknowledged as a true branch of diagnostics in cardiology, like hemodynamics and electrophysiology. In this review we summarize the genetics and pharmacogenetics of the main cardiovascular diseases, showing the role played by genetic information in the identification of cardiovascular risk factors and in the diagnosis and therapy of these conditions. (www.actabiomedica.it)
Collapse
|
17
|
Lozano-Velasco E, Garcia-Padilla C, Aránega AE, Franco D. Genetics of Atrial Fibrilation: In Search of Novel Therapeutic Targets. Cardiovasc Hematol Disord Drug Targets 2019; 19:183-194. [PMID: 30727926 DOI: 10.2174/1871529x19666190206150349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmogenic disease in humans, ranging from 2% in the general population and rising up to 10-12% in 80+ years. Genetic analyses of AF familiar cases have identified a series of point mutations in distinct ion channels, supporting a causative link. However, these genetic defects only explain a minority of AF patients. Genomewide association studies identified single nucleotide polymorphisms (SNPs), close to PITX2 on 4q25 chromosome, that are highly associated to AF. Subsequent GWAS studies have identified several new loci, involving additional transcription and growth factors. Furthermore, these risk 4q25 SNPs serve as surrogate biomarkers to identify AF recurrence in distinct surgical and pharmacological interventions. Experimental studies have demonstrated an intricate signalling pathway supporting a key role of the homeobox transcription factor PITX2 as a transcriptional regulator. Furthermore, cardiovascular risk factors such as hyperthyroidism, hypertension and redox homeostasis have been identified to modulate PITX2 driven gene regulatory networks. We provide herein a state-of-the-art review of the genetic bases of atrial fibrillation, our current understanding of the genetic regulatory networks involved in AF and its plausible usage for searching novel therapeutic targets.
Collapse
Affiliation(s)
- Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Amelia E Aránega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
18
|
Bruyneel AAN, McKeithan WL, Feyen DAM, Mercola M. Using iPSC Models to Probe Regulation of Cardiac Ion Channel Function. Curr Cardiol Rep 2018; 20:57. [DOI: 10.1007/s11886-018-1000-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Abstract
Atrial fibrillation (AF) is a common clinical arrhythmia that appears to be highly heritable, despite representing a complex interplay of several disease processes that generally do not manifest until later in life. In this manuscript, we will review the genetic basis of this complex trait established through studies of familial AF, linkage and candidate gene studies of common AF, genome wide association studies (GWAS) of common AF, and transcriptomic studies of AF. Since AF is associated with a five-fold increase in the risk of stroke, we also review the intersection of common genetic factors associated with both of these conditions. Similarly, we highlight the intersection of common genetic markers associated with some risk factors for AF, such as hypertension and obesity, and AF. Lastly, we describe a paradigm where genetic factors predispose to the risk of AF, but which may require additional stress and trigger factors in older age to allow for the clinical manifestation of AF.
Collapse
Affiliation(s)
| | - Mina K Chung
- Department of Cardiovascular Medicine, Heart & Vascular Institute, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., J2-2, Cleveland, OH, 44195, USA.
| |
Collapse
|
20
|
Gene Expression Networks in the Murine Pulmonary Myocardium Provide Insight into the Pathobiology of Atrial Fibrillation. G3-GENES GENOMES GENETICS 2017; 7:2999-3017. [PMID: 28720711 PMCID: PMC5592927 DOI: 10.1534/g3.117.044651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pulmonary myocardium is a muscular coat surrounding the pulmonary and caval veins. Although its definitive physiological function is unknown, it may have a pathological role as the source of ectopic beats initiating atrial fibrillation. How the pulmonary myocardium gains pacemaker function is not clearly defined, although recent evidence indicates that changed transcriptional gene expression networks are at fault. The gene expression profile of this distinct cell type in situ was examined to investigate underlying molecular events that might contribute to atrial fibrillation. Via systems genetics, a whole-lung transcriptome data set from the BXD recombinant inbred mouse resource was analyzed, uncovering a pulmonary cardiomyocyte gene network of 24 transcripts, coordinately regulated by chromosome 1 and 2 loci. Promoter enrichment analysis and interrogation of publicly available ChIP-seq data suggested that transcription of this gene network may be regulated by the concerted activity of NKX2-5, serum response factor, myocyte enhancer factor 2, and also, at a post-transcriptional level, by RNA binding protein motif 20. Gene ontology terms indicate that this gene network overlaps with molecular markers of the stressed heart. Therefore, we propose that perturbed regulation of this gene network might lead to altered calcium handling, myocyte growth, and contractile force contributing to the aberrant electrophysiological properties observed in atrial fibrillation. We reveal novel molecular interactions and pathways representing possible therapeutic targets for atrial fibrillation. In addition, we highlight the utility of recombinant inbred mouse resources in detecting and characterizing gene expression networks of relatively small populations of cells that have a pathological significance.
Collapse
|
21
|
Qiao Y, Lipovsky C, Hicks S, Bhatnagar S, Li G, Khandekar A, Guzy R, Woo KV, Nichols CG, Efimov IR, Rentschler S. Transient Notch Activation Induces Long-Term Gene Expression Changes Leading to Sick Sinus Syndrome in Mice. Circ Res 2017; 121:549-563. [PMID: 28674041 DOI: 10.1161/circresaha.116.310396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/21/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022]
Abstract
RATIONALE Notch signaling programs cardiac conduction during development, and in the adult ventricle, injury-induced Notch reactivation initiates global transcriptional and epigenetic changes. OBJECTIVE To determine whether Notch reactivation may stably alter atrial ion channel gene expression and arrhythmia inducibility. METHODS AND RESULTS To model an injury response and determine the effects of Notch signaling on atrial electrophysiology, we transiently activate Notch signaling within adult myocardium using a doxycycline-inducible genetic system (inducible Notch intracellular domain [iNICD]). Significant heart rate slowing and frequent sinus pauses are observed in iNICD mice when compared with controls. iNICD mice have structurally normal atria and preserved sinus node architecture, but expression of key transcriptional regulators of sinus node and atrial conduction, including Nkx2-5 (NK2 homeobox 5), Tbx3, and Tbx5 are dysregulated. To determine whether the induced electrical changes are stable, we transiently activated Notch followed by a prolonged washout period and observed that, in addition to decreased heart rate, atrial conduction velocity is persistently slower than control. Consistent with conduction slowing, genes encoding molecular determinants of atrial conduction velocity, including Scn5a (Nav1.5) and Gja5 (connexin 40), are persistently downregulated long after a transient Notch pulse. Consistent with the reduction in Scn5a transcript, Notch induces global changes in the atrial action potential, including a reduced dVm/dtmax. In addition, programmed electrical stimulation near the murine pulmonary vein demonstrates increased susceptibility to atrial arrhythmias in mice where Notch has been transiently activated. Taken together, these results suggest that transient Notch activation persistently alters ion channel gene expression and atrial electrophysiology and predisposes to an arrhythmogenic substrate. CONCLUSIONS Our data provide evidence that Notch signaling regulates transcription factor and ion channel gene expression within adult atrial myocardium. Notch reactivation induces electrical changes, resulting in sinus bradycardia, sinus pauses, and a susceptibility to atrial arrhythmias, which contribute to a phenotype resembling sick sinus syndrome.
Collapse
Affiliation(s)
- Yun Qiao
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Catherine Lipovsky
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Stephanie Hicks
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Somya Bhatnagar
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Gang Li
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Aditi Khandekar
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Robert Guzy
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Kel Vin Woo
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Colin G Nichols
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Igor R Efimov
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Stacey Rentschler
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.).
| |
Collapse
|
22
|
Willis MS, Holley DW, Wang Z, Chen X, Quintana M, Jensen BC, Tannu M, Parker J, Jeyaraj D, Jain MK, Wolfram JA, Lee HG, Bultman SJ. BRG1 and BRM function antagonistically with c-MYC in adult cardiomyocytes to regulate conduction and contractility. J Mol Cell Cardiol 2017; 105:99-109. [PMID: 28232072 DOI: 10.1016/j.yjmcc.2017.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/27/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022]
Abstract
RATIONALE The contractile dysfunction that underlies heart failure involves perturbations in multiple biological processes ranging from metabolism to electrophysiology. Yet the epigenetic mechanisms that are altered in this disease state have not been elucidated. SWI/SNF chromatin-remodeling complexes are plausible candidates based on mouse knockout studies demonstrating a combined requirement for the BRG1 and BRM catalytic subunits in adult cardiomyocytes. Brg1/Brm double mutants exhibit metabolic and mitochondrial defects and are not viable although their cause of death has not been ascertained. OBJECTIVE To determine the cause of death of Brg1/Brm double-mutant mice, to test the hypothesis that BRG1 and BRM are required for cardiac contractility, and to identify relevant downstream target genes. METHODS AND RESULTS A tamoxifen-inducible gene-targeting strategy utilizing αMHC-Cre-ERT was implemented to delete both SWI/SNF catalytic subunits in adult cardiomyocytes. Brg1/Brm double-mutant mice were monitored by echocardiography and electrocardiography, and they underwent rapidly progressive ventricular dysfunction including conduction defects and arrhythmias that culminated in heart failure and death within 3weeks. Mechanistically, BRG1/BRM repressed c-Myc expression, and enforced expression of a DOX-inducible c-MYC trangene in mouse cardiomyocytes phenocopied the ventricular conduction defects observed in Brg1/Brm double mutants. BRG1/BRM and c-MYC had opposite effects on the expression of cardiac conduction genes, and the directionality was consistent with their respective loss- and gain-of-function phenotypes. To support the clinical relevance of this mechanism, BRG1/BRM occupancy was diminished at the same target genes in human heart failure cases compared to controls, and this correlated with increased c-MYC expression and decreased CX43 and SCN5A expression. CONCLUSION BRG1/BRM and c-MYC have an antagonistic relationship regulating the expression of cardiac conduction genes that maintain contractility, which is reminiscent of their antagonistic roles as a tumor suppressor and oncogene in cancer.
Collapse
Affiliation(s)
- Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Darcy Wood Holley
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zhongjing Wang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Xin Chen
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, 250021 Jinan, PR China
| | - Megan Quintana
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brian C Jensen
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Manasi Tannu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, 250021 Jinan, PR China
| | - Joel Parker
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Darwin Jeyaraj
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Harrington Heart & Vascular Institute, Cleveland, OH 44106, USA
| | - Mukesh K Jain
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Harrington Heart & Vascular Institute, Cleveland, OH 44106, USA
| | - Julie A Wolfram
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hyoung-Gon Lee
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Scott J Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
23
|
Abstract
Atrial fibrillation is the most common sustained arrhythmia and remains as one of main challenges in current clinical practice. The disease may be induced secondary to other diseases such as hypertension, valvular heart disease, and heart failure, conferring an increased risk of stroke and sudden death. Epidemiological studies have provided evidence that genetic factors play an important role and up to 30% of clinically diagnosed patients may have a family history of atrial fibrillation. To date, several rare variants have been identified in a wide range of genes associated with ionic channels, calcium handling protein, fibrosis, conduction and inflammation. Important advances in clinical, genetic and molecular basis have been performed over the last decade, improving diagnosis and treatment. However, the genetics of atrial fibrillation is complex and pathophysiological data remains still unraveling. A better understanding of the genetic basis will induce accurate risk stratification and personalized clinical treatment. In this review, we have focused on current genetics basis of atrial fibrillation.
Collapse
|
24
|
Wang W, Zhu Y, Yi J, Cheng W. Nkx2.5/CARP signaling pathway contributes to the regulation of ion channel remodeling induced by rapid pacing in rat atrial myocytes. Mol Med Rep 2016; 14:3848-54. [PMID: 27600472 DOI: 10.3892/mmr.2016.5727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 07/18/2016] [Indexed: 11/06/2022] Open
Abstract
Remodeling of atrial electrophysiology and structure is the primary feature of atrial fibrillation (AF). Evidence suggests that abnormalities in the expression levels of embryological cardiovascular development‑associated transcription factors, including Nkx2.5, are crucial for the development of AF. Rat atrial myocardial cells (AMCs) in culture dishes were placed in an electric field and stimulated. Transmission electron microscopy was used to observe the ultrastucture prior to and following rapid pacing. The action potential durations and effective refractory periods were measured. RT‑PCR and western blotting were performed to investigate the effect of rapid pacing on the expression levels of ion channel and nuclear proteins in AMCs. Nkx2.5 short interfering RNA (siRNA) transfection was performed. Through this in vitro rat AMC culture and rapid pacing model, it was demonstrated that rapid pacing shortened the action potential and downregulated the expression levels of L‑type calcium and potassium channels. Expression levels of Nkx2.5 and cardiac ankyrin repeat protein (CARP) were significantly upregulated by rapid pacing at the mRNA and protein levels. siRNA‑mediated Nkx2.5 silencing attenuated the rapid pacing‑induced downreglation of ion channel levels. These results suggest that the Nkx2.5/CARP signaling pathway contributes to the early electrical remodeling process of AF.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Third Military Medical University, Chongqing 400038, P.R. China
| | - Yun Zhu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Third Military Medical University, Chongqing 400038, P.R. China
| | - Jianguang Yi
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Third Military Medical University, Chongqing 400038, P.R. China
| | - Wei Cheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
25
|
Zhou YM, Dai XY, Huang RT, Xue S, Xu YJ, Qiu XB, Yang YQ. A novel TBX20 loss-of-function mutation contributes to adult-onset dilated cardiomyopathy or congenital atrial septal defect. Mol Med Rep 2016; 14:3307-14. [DOI: 10.3892/mmr.2016.5609] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 07/22/2016] [Indexed: 11/06/2022] Open
|
26
|
GUO DONGFENG, LI RUOGU, YUAN FANG, SHI HONGYU, HOU XUMIN, QU XINKAI, XU YINGJIA, ZHANG MIN, LIU XU, JIANG JINQI, YANG YIQING, QIU XINGBIAO. TBX5 loss-of-function mutation contributes to atrial fibrillation and atypical Holt-Oram syndrome. Mol Med Rep 2016; 13:4349-56. [DOI: 10.3892/mmr.2016.5043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 03/14/2016] [Indexed: 11/06/2022] Open
|
27
|
Franco D, Lozano-Velasco E, Aranega A. Gene regulatory networks in atrial fibrillation. World J Med Genet 2016; 6:1-16. [DOI: 10.5496/wjmg.v6.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/15/2015] [Accepted: 02/17/2016] [Indexed: 02/06/2023] Open
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmogenic syndrome in humans. With an estimate incidence of 1%-2% in the general population, AF raises up to almost 10%-12% in 80+ years. Thus, AF represents nowadays a highly prevalent medical problem generating a large economic burden. At the electrophysiological level, distinct mechanisms have been elucidated. Yet, despite its prevalence, the genetic and molecular culprits of this pandemic cardiac electrophysiological abnormality have remained largely obscure. Molecular genetics of AF familiar cases have demonstrated that single nucleotide mutations in distinct genes encoding for ion channels underlie the onset of AF, albeit such alterations only explain a minor subset of patients with AF. In recent years, analyses by means of genome-wide association studies have unraveled a more complex picture of the etiology of AF, pointing out to distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Furthermore a new layer of regulatory mechanisms have emerged, i.e., post-transcriptional regulation mediated by non-coding RNA, which have been demonstrated to exert pivotal roles in cardiac electrophysiology. In this manuscript, we aim to provide a comprehensive review of the genetic regulatory networks that if impaired exert electrophysiological abnormalities that contribute to the onset, and subsequently, on self-perpetuation of AF.
Collapse
|
28
|
Wang ZC, Ji WH, Ruan CW, Liu XY, Qiu XB, Yuan F, Li RG, Xu YJ, Liu X, Huang RT, Xue S, Yang YQ. Prevalence and Spectrum of TBX5 Mutation in Patients with Lone Atrial Fibrillation. Int J Med Sci 2016; 13:60-7. [PMID: 26917986 PMCID: PMC4747871 DOI: 10.7150/ijms.13264] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/09/2015] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF), the most common type of cardiac rhythm disturbance encountered in clinical practice, is associated with substantially increased morbidity and mortality. Aggregating evidence demonstrates that abnormal cardiovascular development is involved in the pathogenesis of AF. A recent study has revealed that the TBX5 gene, which encodes a T-box transcription factor key to cardiovascular development, was associated with AF and atypical Holt-Oram syndrome. However, the prevalence and spectrum of TBX5 mutation in patients with lone AF remain unclear. In this study, the coding regions and splicing junction sites of TBX5 were sequenced in 192 unrelated patients with lone AF and 300 unrelated ethnically-matched healthy individuals used as controls. The causative potential of the identified TBX5 variation was evaluated by MutationTaster and PolyPhen-2. The functional effect of the mutant TBX5 was assayed by using a dual-luciferase reporter assay system. As a result, a novel heterozygous TBX5 mutation, p.H170D, was identified in a patient, with a mutational prevalence of approximately 0.52%. This mutation, which was absent in the 300 control individuals, altered the amino acid completely conserved evolutionarily across species, and was predicted to be disease-causing. Functional deciphers showed that the mutant TBX5 was associated with significantly reduced transcriptional activity when compared with its wild-type counterpart. Furthermore, the mutation significantly decreased the synergistic activation between TBX5 and NKX2-5 or GATA4. The findings expand the mutational spectrum of TBX5 linked to AF and provide new evidence that dysfunctional TBX5 may contribute to lone AF.
Collapse
Affiliation(s)
- Zhan-Cheng Wang
- 1. Department of Cardiology, Shanghai Eighth People's Hospital, 8 Caobao Road, Shanghai 200235, China
| | - Wen-Hui Ji
- 2. Department of Internal Medicine, Huajing Community Health Service Center of Xu Hui Distric, 180 Jianhua Road, Shanghai 200231, China
| | - Chang-Wu Ruan
- 1. Department of Cardiology, Shanghai Eighth People's Hospital, 8 Caobao Road, Shanghai 200235, China
| | - Xing-Yuan Liu
- 3. Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China
| | - Xing-Biao Qiu
- 4. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Fang Yuan
- 4. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Ruo-Gu Li
- 4. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Ying-Jia Xu
- 4. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Xu Liu
- 4. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Ru-Tai Huang
- 5. Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Song Xue
- 5. Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi-Qing Yang
- 4. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China;; 6. Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China;; 7. Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| |
Collapse
|
29
|
Zhao CM, Bing-Sun, Song HM, Wang J, Xu WJ, Jiang JF, Qiu XB, Yuan F, Xu JH, Yang YQ. TBX20 loss-of-function mutation associated with familial dilated cardiomyopathy. ACTA ACUST UNITED AC 2016; 54:325-32. [DOI: 10.1515/cclm-2015-0328] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/01/2015] [Indexed: 11/15/2022]
Abstract
AbstractDilated cardiomyopathy (DCM) is a major cause of congestive heart failure, sudden cardiac death and cardiac transplantation. Aggregating evidence highlights the genetic origin of DCM. However, DCM is a genetically heterogeneous disorder, and the genetic components underlying DCM in most cases remain unknown.The coding regions and splicing junction sites of theA novel heterozygous TBX20 mutation, p.F256I, was identified in a family with DCM transmitted in an autosomal dominant fashion, which co-segregated with DCM in the family with complete penetrance. The missense mutation was absent in 600 control chromosomes and the altered amino acid was completely conserved evolutionarily among various species. Functional assays revealed that the mutant TBX20 had significantly diminished transcriptional activity. Furthermore, the mutation markedly reduced the synergistic activation of TBX20 with NKX2-5 or GATA4.This study links TBX20 loss-of-function mutation to idiopathic DCM in humans for the first time, providing novel insight into the molecular mechanism underpinning DCM.
Collapse
|
30
|
QU XINKAI, YUAN FANG, LI RUOGU, XU LEI, JING WEIFENG, LIU HUA, XU YINGJIA, ZHANG MIN, LIU XU, FANG WEIYI, YANG YIQING, QIU XINGBIAO. Prevalence and spectrum of LRRC10 mutations associated with idiopathic dilated cardiomyopathy. Mol Med Rep 2015; 12:3718-3724. [DOI: 10.3892/mmr.2015.3843] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 05/01/2015] [Indexed: 11/06/2022] Open
|
31
|
Ye W, Wang J, Song Y, Yu D, Sun C, Liu C, Chen F, Zhang Y, Wang F, Harvey RP, Schrader L, Martin JF, Chen Y. A common Shox2-Nkx2-5 antagonistic mechanism primes the pacemaker cell fate in the pulmonary vein myocardium and sinoatrial node. Development 2015; 142:2521-32. [PMID: 26138475 DOI: 10.1242/dev.120220] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/04/2015] [Indexed: 12/26/2022]
Abstract
In humans, atrial fibrillation is often triggered by ectopic pacemaking activity in the myocardium sleeves of the pulmonary vein (PV) and systemic venous return. The genetic programs that abnormally reinforce pacemaker properties at these sites and how this relates to normal sinoatrial node (SAN) development remain uncharacterized. It was noted previously that Nkx2-5, which is expressed in the PV myocardium and reinforces a chamber-like myocardial identity in the PV, is lacking in the SAN. Here we present evidence that in mice Shox2 antagonizes the transcriptional output of Nkx2-5 in the PV myocardium and in a functional Nkx2-5(+) domain within the SAN to determine cell fate. Shox2 deletion in the Nkx2-5(+) domain of the SAN caused sick sinus syndrome, associated with the loss of the pacemaker program. Explanted Shox2(+) cells from the embryonic PV myocardium exhibited pacemaker characteristics including node-like electrophysiological properties and the capability to pace surrounding Shox2(-) cells. Shox2 deletion led to Hcn4 ablation in the developing PV myocardium. Nkx2-5 hypomorphism rescued the requirement for Shox2 for the expression of genes essential for SAN development in Shox2 mutants. Similarly, the pacemaker-like phenotype induced in the PV myocardium in Nkx2-5 hypomorphs reverted back to a working myocardial phenotype when Shox2 was simultaneously deleted. A similar mechanism is also adopted in differentiated embryoid bodies. We found that Shox2 interacts with Nkx2-5 directly, and discovered a substantial genome-wide co-occupancy of Shox2, Nkx2-5 and Tbx5, further supporting a pivotal role for Shox2 in the core myogenic program orchestrating venous pole and pacemaker development.
Collapse
Affiliation(s)
- Wenduo Ye
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Jun Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine and the Texas Heart Institute, Houston, TX 77030, USA
| | - Yingnan Song
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian 350108, P.R. China
| | - Diankun Yu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Cheng Sun
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Chao Liu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Fading Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Yanding Zhang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian 350108, P.R. China
| | - Fen Wang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia St. Vincent's Clinical School and School of Biological and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Laura Schrader
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine and the Texas Heart Institute, Houston, TX 77030, USA
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
32
|
Christophersen IE, Ellinor PT. Genetics of atrial fibrillation: from families to genomes. J Hum Genet 2015; 61:61-70. [DOI: 10.1038/jhg.2015.44] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 03/27/2015] [Accepted: 04/07/2015] [Indexed: 12/19/2022]
|
33
|
Zhou W, Zhao L, Jiang JQ, Jiang WF, Yang YQ, Qiu XB. A novel TBX5 loss-of-function mutation associated with sporadic dilated cardiomyopathy. Int J Mol Med 2015; 36:282-8. [PMID: 25963046 DOI: 10.3892/ijmm.2015.2206] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/07/2015] [Indexed: 01/08/2023] Open
Abstract
Dilated cardiomyopathy (DCM) represents the most prevalent form of primary cardiomyopathy, and is the most common reason for heart transplantation and a major cause of congestive heart failure. Aggregating evidence demonstrates that genetic defects are associated with DCM, and a great number of mutations in >50 genes have been linked to DCM. However, DCM is a genetically heterogeneous disorder and the genetic components underpinning DCM in a significant proportion of patients remain unknown. In the present study, the coding exons and flanking exon‑intron boundaries of the T-Box 5 (TBX5) gene, which encodes a T‑box transcription factor required for normal cardiac development, were sequenced in 146 unrelated patients with sporadic DCM. The functional characteristics of the mutant TBX5 were assayed in contrast to its wild‑type counterpart by using a dual‑luciferase reporter assay system. As a result, a novel heterozygous TBX5 mutation, p.A143T, was identified in a patient with sporadic DCM. The missense mutation, which was absent in 400 control chromosomes, altered the amino acid that was completely conserved evolutionarily among species. Biological analyses revealed that the A143T mutation of TBX5 was associated with significantly decreased transcriptional activity on the promoter of the target gene atrial natriuretic factor (ANF), when compared to its wild‑type counterpart. Furthermore, the A143T mutation abolished the synergistic activation of the ANF promoter between TBX5 and GATA binding protein 4 (GATA4), another crucial transcriptional factor for heart development. To the best of our knowledge, this is the first report on the association of a TBX5 loss‑of‑function mutation with an enhanced susceptibility to sporadic DCM, providing novel insight into the molecular mechanisms of the pathogenesis of DCM and suggesting potential implications for the prenatal prophylaxis and personalized treatment of this commonest primary myocardial disease.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Emergency Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Lan Zhao
- Department of Cardiology, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Jin-Qi Jiang
- Department of Emergency Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
34
|
Zhao CM, Peng LY, Li L, Liu XY, Wang J, Zhang XL, Yuan F, Li RG, Qiu XB, Yang YQ. PITX2 Loss-of-Function Mutation Contributes to Congenital Endocardial Cushion Defect and Axenfeld-Rieger Syndrome. PLoS One 2015; 10:e0124409. [PMID: 25893250 PMCID: PMC4404345 DOI: 10.1371/journal.pone.0124409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 03/13/2015] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease (CHD), the most common type of birth defect, is still the leading non-infectious cause of infant morbidity and mortality in humans. Aggregating evidence demonstrates that genetic defects are involved in the pathogenesis of CHD. However, CHD is genetically heterogeneous and the genetic components underpinning CHD in an overwhelming majority of patients remain unclear. In the present study, the coding exons and flanking introns of the PITX2 gene, which encodes a paired-like homeodomain transcription factor 2essential for cardiovascular morphogenesis as well as maxillary facial development, was sequenced in 196 unrelated patients with CHD and subsequently in the mutation carrier's family members available. As a result, a novel heterozygous PITX2 mutation, p.Q102X for PITX2a, or p.Q148X for PITX2b, or p.Q155X for PITX2c, was identified in a family with endocardial cushion defect (ECD) and Axenfeld-Rieger syndrome (ARS). Genetic analysis of the pedigree showed that the nonsense mutation co-segregated with ECD and ARS transmitted in an autosomal dominant pattern with complete penetrance. The mutation was absent in 800 control chromosomes from an ethnically matched population. Functional analysis by using a dual-luciferase reporter assay system revealed that the mutant PITX2 had no transcriptional activity and that the mutation eliminated synergistic transcriptional activation between PITX2 and NKX2.5, another transcription factor pivotal for cardiogenesis. To our knowledge, this is the first report on the association of PITX2 loss-of-function mutation with increased susceptibility to ECD and ARS. The findings provide novel insight into the molecular mechanisms underpinning ECD and ARS, suggesting the potential implications for the antenatal prophylaxis and personalized treatment of CHD and ARS.
Collapse
Affiliation(s)
- Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Division of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Lu-Ying Peng
- Division of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Li Li
- Division of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xian-Ling Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Zhang XL, Dai N, Tang K, Chen YQ, Chen W, Wang J, Zhao CM, Yuan F, Qiu XB, Qu XK, Yang YQ, Xu YW. GATA5 loss-of-function mutation in familial dilated cardiomyopathy. Int J Mol Med 2015; 35:763-70. [PMID: 25543888 DOI: 10.3892/ijmm.2014.2050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/22/2014] [Indexed: 11/05/2022] Open
Abstract
Dilated cardiomyopathy (DCM), the most common form of primary myocardial disease, is an important cause of sudden cardiac death and heart failure and is the leading indication for heart transplantation in children and adults worldwide. Recent studies have revealed a strong genetic basis for idiopathic DCM, with many distinct genes causally implicated. Nevertheless, DCM is a genetically heterogeneous disorder and the genetic determinants underlying DCM in a substantial proportion of patients remain unclear. In this study, the whole coding exons and flanking introns of the GATA binding protein 5 (GATA5) gene, which codes for a zinc-finger transcription factor essential for cardiovascular development and structural remodeling, were sequenced in 130 unrelated patients with idiopathic DCM. The available relatives of the index patient carrying an identified mutation and 200 unrelated ethnically matched healthy individuals used as the controls were genotyped for GATA5. The functional characteristics of the mutant GATA5 were analyzed in contrast to its wild-type counterpart by using a dual-luciferase reporter assay system. As a result, a novel heterozygous GATA5 mutation, p.G240D, was identified in a family with DCM inherited in an autosomal dominant pattern, which co-segregated with DCM in the family with complete penetrance. The missense mutation was absent in 400 reference chromosomes and the altered amino acid was completely conserved evolutionarily across species. Functional analyses revealed that the GATA5 mutant was associated with significantly diminished transcriptional activity. This study firstly links GATA5 mutation to DCM, which provides novel insight into the molecular mechanisms of DCM, suggesting a potential molecular target for the prenatal prophylaxis and allele-specific treatment of DCM.
Collapse
Affiliation(s)
- Xian-Ling Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Neng Dai
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yan-Qing Chen
- Department of Emergency Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Wei Chen
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Juan Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Fang Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ya-Wei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
36
|
Wang J, Mao JH, Ding KK, Xu WJ, Liu XY, Qiu XB, Li RG, Qu XK, Xu YJ, Huang RT, Xue S, Yang YQ. A novel NKX2.6 mutation associated with congenital ventricular septal defect. Pediatr Cardiol 2015; 36:646-56. [PMID: 25380965 DOI: 10.1007/s00246-014-1060-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 10/31/2014] [Indexed: 12/18/2022]
Abstract
Congenital heart disease (CHD) is the most common birth defect and is the most prevalent non-infectious cause of infant death. Aggregating evidence demonstrates that genetic defects are involved in the pathogenesis of CHD. However, CHD is genetically heterogeneous and the genetic determinants for CHD in an overwhelming majority of patients remain unknown. In this study, the coding regions and splice junctions of the NKX2.6 gene, which encodes a homeodomain transcription factor crucial for cardiovascular development, were sequenced in 210 unrelated CHD patients. As a result, a novel heterozygous NKX2.6 mutation, p.K152Q, was identified in an index patient with ventricular septal defect (VSD). Genetic analysis of the proband's available family members showed that the mutation cosegregated with VSD transmitted as an autosomal dominant trait with complete penetrance. The missense mutation was absent in 400 control chromosomes and the altered amino acid was completely conserved evolutionarily across species. Due to unknown transcriptional targets of NKX2.6, the functional characteristics of the identified mutation at transcriptional activity were analyzed by using NKX2.5 as a surrogate. Alignment between human NKX2.6 and NKX2.5 proteins displayed that K152Q-mutant NKX2.6 was equivalent to K158Q-mutant NKX2.5, and introduction of K158Q into NKX2.5 significantly reduced its transcriptional activating function when compared with its wild-type counterpart. This study firstly links NKX2.6 loss-of-function mutation with increased susceptibility to isolated VSD, providing novel insight into the molecular mechanism underpinning VSD and contributing to the development of new preventive and therapeutic strategies for this common form of CHD.
Collapse
Affiliation(s)
- Juan Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang XL, Qiu XB, Yuan F, Wang J, Zhao CM, Li RG, Xu L, Xu YJ, Shi HY, Hou XM, Qu XK, Xu YW, Yang YQ. TBX5 loss-of-function mutation contributes to familial dilated cardiomyopathy. Biochem Biophys Res Commun 2015; 459:166-71. [DOI: 10.1016/j.bbrc.2015.02.094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 02/17/2015] [Indexed: 12/29/2022]
|
38
|
Zhou M, Liao Y, Tu X. The role of transcription factors in atrial fibrillation. J Thorac Dis 2015; 7:152-8. [PMID: 25713730 DOI: 10.3978/j.issn.2072-1439.2015.01.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
Abstract
Atrial fibrillation (AF) is a complex disease that results from genetic and environmental factors and their interactions. In recent years, genome-wide association studies (GWAS) and family-based linkage analysis have found amounts of genetic variants associated with AF. Some of them lie in coding sequences and thus mediate the encoded proteins, some in non-coding regions and influence the expression of adjacent genes. These variants exert influence on the development of cardiovascular system and normal cardiac electrical activity in different levels, and eventually contribute to the occurrence of AF. Among these affected genes, as a crucial means of transcriptional regulation, several transcription factors play important roles in the pathogenesis of AF. In this review, we will focus on the potential role of PITX2, PRRX1, ZHFX3, TBX5, and NKX2.5 in AF.
Collapse
Affiliation(s)
- Mengchen Zhou
- 1 Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China ; 2 Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yuhua Liao
- 1 Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China ; 2 Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xin Tu
- 1 Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China ; 2 Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
39
|
The regulation of troponins I, C and ANP by GATA4 and Nkx2-5 in heart of hibernating thirteen-lined ground squirrels, Ictidomys tridecemlineatus. PLoS One 2015; 10:e0117747. [PMID: 25679215 PMCID: PMC4334527 DOI: 10.1371/journal.pone.0117747] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/02/2015] [Indexed: 02/06/2023] Open
Abstract
Hibernation is an adaptive strategy used by various mammals to survive the winter under situations of low ambient temperatures and limited or no food availability. The heart of hibernating thirteen-lined ground squirrels (Ictidomys tridecemlineatus) has the remarkable ability to descend to low, near 0°C temperatures without falling into cardiac arrest. We hypothesized that the transcription factors GATA4 and Nkx2-5 may play a role in cardioprotection by facilitating the expression of key downstream targets such as troponin I, troponin C, and ANP (atrial natriuretic peptide). This study measured relative changes in transcript levels, protein levels, protein post-translational modifications, and transcription factor binding over six stages: euthermic control (EC), entrance into torpor (EN), early torpor (ET), late torpor (LT), early arousal (EA), and interbout arousal (IA). We found differential regulation of GATA4 whereby transcript/protein expression, post-translational modification (phosphorylation of serine 261), and DNA binding were enhanced during the transitory phases (entrance and arousal) of hibernation. Activation of GATA4 was paired with increases in cardiac troponin I, troponin C and ANP protein levels during entrance, while increases in p-GATA4 DNA binding during early arousal was paired with decreases in troponin I and no changes in troponin C and ANP protein levels. Unlike its binding partner, the relative mRNA/protein expression and DNA binding of Nkx2-5 did not change during hibernation. This suggests that either Nkx2-5 does not play a substantial role or other regulatory mechanisms not presently studied (e.g. posttranslational modifications) are important during hibernation. The data suggest a significant role for GATA4-mediated gene transcription in the differential regulation of genes which aid cardiac-specific challenges associated with torpor-arousal.
Collapse
|
40
|
PAN YUN, GENG RUI, ZHOU NING, ZHENG GUIFEN, ZHAO HONG, WANG JUAN, ZHAO CUIMEI, QIU XINGBIAO, YANG YIQING, LIU XINGYUAN. TBX20 loss-of-function mutation contributes to double outlet right ventricle. Int J Mol Med 2015; 35:1058-66. [DOI: 10.3892/ijmm.2015.2077] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/20/2015] [Indexed: 11/05/2022] Open
|
41
|
A novel NKX2.5 loss-of-function mutation associated with congenital bicuspid aortic valve. Am J Cardiol 2014; 114:1891-5. [PMID: 25438918 DOI: 10.1016/j.amjcard.2014.09.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 01/08/2023]
Abstract
Bicuspid aortic valve (BAV) is the most common form of congenital cardiovascular defect in humans and is associated with substantial morbidity and mortality. Emerging evidence demonstrates that genetic risk factors play an important role in the pathogenesis of BAV. However, BAV is a genetically heterogenous disorder, and the genetic defects underpinning BAV in most patients remain to be identified. In the present study, the coding exons and flanking introns of the NKX2.5 gene, which encodes a homeodomain-containing transcription factor essential for the normal development of the aortic valve, were sequenced in 142 unrelated patients with BAV. The available relatives of the mutation carrier and 200 unrelated healthy subjects used as controls were also genotyped for NKX2.5. The functional characteristics of the mutation were delineated by using a dual-luciferase reporter assay system. As a result, a novel heterozygous NKX2.5 mutation, p.K192X, was identified in a family with BAV transmitted in an autosomal dominant pattern. The nonsense mutation was absent in 400 control chromosomes. Functional analyses revealed that the mutant NKX2.5 had no transcriptional activity compared with its wild-type counterpart. Furthermore, the mutation abolished the synergistic transcriptional activation between NKX2.5 and GATA5, another transcription factor crucial for the aortic valvular morphogenesis. In conclusion, this study is the first to link an NKX2.5 loss-of-function mutation to enhanced susceptibility to human BAV, providing novel insight into the molecular mechanism of BAV and suggesting potential implications for genetic counseling and clinical care of families presenting with BAV.
Collapse
|
42
|
Yuan F, Qiu XB, Li RG, Qu XK, Wang J, Xu YJ, Liu X, Fang WY, Yang YQ, Liao DN. A novel NKX2-5 loss-of-function mutation predisposes to familial dilated cardiomyopathy and arrhythmias. Int J Mol Med 2014; 35:478-86. [PMID: 25503402 DOI: 10.3892/ijmm.2014.2029] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 12/05/2014] [Indexed: 01/08/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is the most prevalent type of primary myocardial disease, which is the third most common cause of heart failure and the most frequent reason for heart transplantation. Aggregating evidence demonstrates that genetic risk factors are involved in the pathogenesis of idiopathic DCM. Nevertheless, DCM is of remarkable genetic heterogeneity and the genetic defects underpinning DCM in an overwhelming majority of patients remain unknown. In the present study, the whole coding exons and splice junction sites of the NKX2-5 gene, which encodes a homeodomain transcription factor crucial for cardiac development and structural remodeling, were sequenced in 130 unrelated patients with idiopathic DCM. The available relatives of the index patient harboring an identified mutation and 200 unrelated ethnically matched healthy individuals used as controls were genotyped for the NKX2-5 gene. The functional effect of the mutant NKX2-5 was characterized in contrast to its wild-type counterpart using a dual-luciferase reporter assay system. As a result, a novel heterozygous NKX2-5 mutation, p.S146W, was identified in a family with DCM inherited as an autosomal dominant trait, which co-segregated with DCM in the family with complete penetrance. Notably, the mutation carriers also had arrhythmias, such as paroxysmal atrial fibrillation and atrioventricular block. The missense mutation was absent in 400 reference chromosomes and the altered amino acid was completely conserved evolutionarily among species. Functional analysis revealed that the NKX2-5 mutant was associated with a significantly reduced transcriptional activity. The findings expand the mutational spectrum of NKX2-5 linked to DCM and provide novel insight into the molecular mechanisms underlying DCM, contributing to the antenatal prophylaxis and allele-specific management of DCM.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Juan Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Wei-Yi Fang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - De-Ning Liao
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
43
|
Wang J, Zhang DF, Sun YM, Li RG, Qiu XB, Qu XK, Liu X, Fang WY, Yang YQ. NKX2-6 mutation predisposes to familial atrial fibrillation. Int J Mol Med 2014; 34:1581-90. [PMID: 25319568 DOI: 10.3892/ijmm.2014.1971] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/10/2014] [Indexed: 12/29/2022] Open
Abstract
Atrial fibrillation (AF) is the most common form of sustained cardiac arrhythmia and is associated with substantially increased morbidity and mortality rates. Aggregating evidence demonstrates that genetic defects are involved in the pathogenesis of AF and a number of AF-associated genes have been identified. Nevertheless, AF is a genetically heterogeneous disorder and the genetic components underpinning AF in an overwhelming majority of patients remain unclear. In this study, the entire coding exons and splice junction sites of the NK2 homeobox 6 (NKX2-6) gene, which encodes a homeodomain transcription factor important for cardiovascular development, were sequenced in 150 unrelated patients with lone AF, and a novel heterozygous NKX2-6 mutation, p.Q175H, was identified in an index patient. Genetic analysis of the available family members of the mutation carrier revealed that the mutation co-segregated with AF transmitted in an autosomal dominant pattern. The missense mutation was absent in the 200 unrelated ethnically matched healthy individuals used as controls and the altered amino acid was completely conserved evolutionarily among species. Due to unknown transcriptional targets of NKX2-6, the functional characteristics of the mutation as regards transcriptional activity were analyzed using NKX2-5 as a surrogate. Alignment between human NKX2-6 and NKX2-5 proteins displayed that the Q175H-mutant NKX2-6 was equivalent to the Q181H-mutant NKX2-5, and the introduction of Q181H into NKX2-5 significantly decreased its transcriptional activity at the atrial natriuretic factor promoter. The present study firstly associates genetically defective NKX2-6 with enhanced susceptibility to AF, providing novel insight into the molecular mechanisms underlying AF and suggesting potential strategies for the antenatal prophylaxis and personalized treatment of AF.
Collapse
Affiliation(s)
- Jun Wang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Dai-Fu Zhang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yu-Min Sun
- Department of Cardiology, Jing-An District Central Hospital, Shanghai 200040, P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Wei-Yi Fang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
44
|
Xu L, Zhao L, Yuan F, Jiang WF, Liu H, Li RG, Xu YJ, Zhang M, Fang WY, Qu XK, Yang YQ, Qiu XB. GATA6 loss-of-function mutations contribute to familial dilated cardiomyopathy. Int J Mol Med 2014; 34:1315-22. [PMID: 25119427 DOI: 10.3892/ijmm.2014.1896] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 08/08/2014] [Indexed: 11/05/2022] Open
Abstract
Dilated cardiomyopathy (DCM), the most prevalent form of primary heart muscle disease, is the third most common cause of heart failure and the most frequent reason for cardiac transplantation. Mounting evidence has demonstrated that genetic risk factors are crucial in the pathogenesis of DCM. However, DCM is genetically heterogeneous, and the genetic basis of DCM in a large majority of cases remains unclear. In the current study, the coding exons and flanking introns of the GATA6 gene, which encodes a zinc‑finger transcription factor essential for cardiogenesis, was sequenced in 140 unrelated patients with DCM, and two novel heterozygous mutations, p.C447Y and p.H475R, were identified in two index patients with DCM, respectively. Analysis of the pedigrees showed that in each family the mutation co-segregated with DCM transmitted in an autosomal-dominant pattern, with complete penetrance. The missense mutations were absent in 400 control chromosomes and predicted to be disease-causing by MutationTaster or probably damaging by PolyPhen-2. The alignment of multiple GATA6 proteins across species revealed that the altered amino acids were completely conserved evolutionarily. The functional assays showed that the mutated GATA6 proteins were associated with significantly reduced transcriptional activation in comparison with their wild-type counterpart. To the best of our knowledge, this is the first study on the association of GATA6 loss-of-function mutations with enhanced susceptibility to familial DCM, which provides novel insight into the molecular mechanism of DCM and suggests potential implications for the antenatal prophylaxis and allele-specific treatment of DCM.
Collapse
Affiliation(s)
- Lei Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Lan Zhao
- Department of Cardiology, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Fang Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Hua Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Wei-Yi Fang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
45
|
Abstract
Atrial fibrillation (AF) is the most common arrhythmia and is associated with increased morbidity. As the population ages and the prevalence of AF continues to rise, the socioeconomic consequences of AF will become increasingly burdensome. Although there are well-defined clinical risk factors for AF, a significant heritable component is also recognized. To identify the molecular basis for the heritability of AF, investigators have used a combination of classical Mendelian genetics, candidate gene screening, and genome-wide association studies. However, these avenues have, as yet, failed to define the majority of the heritability of AF. The goal of this review is to describe the results from both candidate gene and genome-wide studies, as well as to outline potential future avenues for creating a more complete understanding of AF genetics. Ultimately, a more comprehensive view of the genetic underpinnings for AF will lead to the identification of novel molecular pathways and improved risk prediction of this complex arrhythmia.
Collapse
Affiliation(s)
- Nathan R Tucker
- From the Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | | |
Collapse
|
46
|
|
47
|
Wei D, Gong XH, Qiu G, Wang J, Yang YQ. Novel PITX2c loss-of-function mutations associated with complex congenital heart disease. Int J Mol Med 2014; 33:1201-8. [PMID: 24604414 DOI: 10.3892/ijmm.2014.1689] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 02/27/2014] [Indexed: 11/06/2022] Open
Abstract
Congenital heart disease (CHD) is the most common form of birth defect in humans and is the leading non-infectious cause of infant mortality. Emerging evidence strongly suggests that genetic risk factors play an important role in the pathogenesis of CHD. However, CHD is of pronounced genetic heterogeneity, and the genetic defects responsible for CHD in an overwhelming majority of patients remain unclear. In this study, the entire coding region and splice junction sites of the PITX2c gene, which encodes a paired-like homeodomain transcription factor crucial for proper cardiovascular morphogenesis, was sequenced in 170 unrelated neonates with CHD. The available relatives of the mutation carriers and 200 unrelated ethnically matched healthy individuals were genotyped. The disease-causing potential of the PITX2c sequence variations was predicted by MutationTaster and PolyPhen-2. The functional effect of the mutations was characterized using a luciferase reporter assay system. As a result, 2 novel heterozygous PITX2c mutations, p.R91Q and p.T129S, were identified in 2 unrelated newborns with transposition of the great arteries and ventricular septal defect, respectively. A genetic scan of the pedigrees revealed that each mutation co-segregated with CHD transmitted in an autosomal dominant pattern with complete penetrance. The mutations, which altered the amino acids completely conserved evolutionarily, were absent in 400 normal chromosomes and were predicted to be causative. Functional analysis revealed that the PITX2c mutations were both associated with significantly diminished transcriptional activity compared with their wild-type counterpart. This study demonstrates the association between PITX2c loss-of-function mutations and the transposition of the great arteries and ventricular septal defect in humans, providing further insight into the molecular mechanisms responsible for CHD.
Collapse
Affiliation(s)
- Dong Wei
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Xiao-Hui Gong
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Gang Qiu
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Juan Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Cardiovascular Research Laboratory and Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
48
|
Huang RT, Xue S, Xu YJ, Zhou M, Yang YQ. Somatic GATA5 mutations in sporadic tetralogy of Fallot. Int J Mol Med 2014; 33:1227-35. [PMID: 24573614 DOI: 10.3892/ijmm.2014.1674] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/11/2014] [Indexed: 11/06/2022] Open
Abstract
Tetralogy of Fallot (TOF) is the most common form of cyanotic congenital heart disease, with high morbidity and mortality rates. Accumulating evidence has demonstrated that genetic defects play an important role in the pathogenesis of TOF. However, the molecular basis of TOF in the majority of patients remains to be determined. In the present study, sequence analysis of the coding exons and exon-intron boundaries of GATA5, a gene encoding a zinc finger‑containing transcriptional factor crucial for cardiogenesis, was performed on genomic DNA isolated from resected cardiac tissue and matched blood samples of 85 unrelated patients who underwent surgical repair of TOF. Genotyping was performed on the cardiac tissue and matched blood samples from 63 unrelated patients who underwent cardiac valve replacement due to rheumatic heart disease as well as the blood samples obtained from 200 unrelated healthy individuals. The functional effect of the mutations was evaluated by using a luciferase reporter assay system. As a result, the novel heterozygous GATA5 mutations, p.D203E and p.Y208X, were found in the cardiac tissues of two TOF patients, respectively. There were no mutations in the cardiac tissues obtained from 63 patients with rheumatic heart disease nor in the blood samples obtained from the 348 subjects. Functional analysis revealed that the GATA5 mutants were consistently associated with significantly decreased transcriptional activity compared with their wild-type counterpart. Thus, results of this study showed an association of somatic GATA5 mutations with TOF, providing further insight into the underlying molecular mechanism of TOF.
Collapse
Affiliation(s)
- Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Min Zhou
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
49
|
Wang J, Zhang DF, Sun YM, Yang YQ. A novel PITX2c loss-of-function mutation associated with familial atrial fibrillation. Eur J Med Genet 2014; 57:25-31. [PMID: 24333117 DOI: 10.1016/j.ejmg.2013.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/25/2013] [Indexed: 01/21/2023]
Abstract
Atrial fibrillation (AF) represents the most prevalent form of sustained cardiac arrhythmia and contributes substantially to cardiovascular morbidity and mortality. Aggregating evidence demonstrates that genetic risk factors play an important role in the pathogenesis of AF. However, AF is a genetically heterogeneous disease and the genetic defects responsible for AF in an overwhelming majority of patients remain unclear. In the present study, the whole coding region and splice junction sites of the PITX2c gene, which encodes a paired-like homeobox transcription factor essential for normal cardiovascular development, were sequenced in 160 unrelated patients with lone AF, and a novel heterozygous mutation, c.349C > T equivalent to p.P117S, was identified in a patient with positive family history of AF. The missense mutation, which co-segregated with AF in the family with complete penetrance and was absent in 700 unrelated ethnically matched healthy individuals, altered the amino acid completely conserved evolutionarily across species and was predicted to be pathogenic by MutationTaster and PolyPhen-2. Biological assays revealed that the mutant PITX2c protein was associated with significantly decreased transcriptional activity when compared with its wild-type counterpart. The findings implicate PITX2c loss-of-function mutation in familial AF for the first time, providing novel insight into the molecular pathology of AF.
Collapse
Affiliation(s)
- Jun Wang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Dai-Fu Zhang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China.
| | - Yu-Min Sun
- Department of Cardiology, Jing-An District Central Hospital, 259 Xikang Road, Shanghai 200040, China
| | - Yi-Qing Yang
- Department of Cardiology, Cardiovascular Research Laboratory and Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China.
| |
Collapse
|
50
|
Yu H, Xu JH, Song HM, Zhao L, Xu WJ, Wang J, Li RG, Xu L, Jiang WF, Qiu XB, Jiang JQ, Qu XK, Liu X, Fang WY, Jiang JF, Yang YQ. Mutational spectrum of the NKX2-5 gene in patients with lone atrial fibrillation. Int J Med Sci 2014; 11:554-63. [PMID: 24782644 PMCID: PMC4003540 DOI: 10.7150/ijms.8407] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/07/2014] [Indexed: 12/16/2022] Open
Abstract
Atrial fibrillation (AF) is the most common form of sustained cardiac arrhythmia in humans and is responsible for substantial morbidity and mortality worldwide. Emerging evidence indicates that abnormal cardiovascular development is involved in the pathogenesis of AF. In this study, the coding exons and splice sites of the NKX2-5 gene, which encodes a homeodomain-containing transcription factor essential for cardiovascular genesis, were sequenced in 146 unrelated patients with lone AF as well as the available relatives of the mutation carriers. A total of 700 unrelated ethnically matched healthy individuals used as controls were genotyped. The disease-causing potential of the identified NKX2-5 variations was predicted by MutationTaster and PolyPhen-2. The functional characteristics of the mutant NKX2-5 proteins were analyzed using a dual-luciferase reporter assay system. As a result, two heterozygous NKX2-5 mutations, including a previously reported p.E21Q and a novel p.T180A mutation, were identified in two families with AF transmitted in an autosomal dominant pattern. The mutations co-segregated with AF in the families with complete penetrance. The detected substitutions, which altered the amino acids highly conserved evolutionarily across species, were absent in 700 control individuals and were both predicted to be causative. Functional analyses demonstrated that the NKX2-5 mutants were associated with significantly decreased transcriptional activity compared with their wild-type counterpart. The findings expand the spectrum of NKX2-5 mutations linked to AF and provide additional evidence that dysfunctional NKX2-5 may confer vulnerability to AF, suggesting the potential benefit for the early prophylaxis and personalized treatment of AF.
Collapse
Affiliation(s)
- Hong Yu
- 1. Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China
| | - Jia-Hong Xu
- 1. Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China
| | - Hao-Ming Song
- 1. Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China
| | - Lan Zhao
- 2. Department of Cardiology, Yantaishan Hospital, 91 Jiefang Road, Yantai 264001, Shandong, China
| | - Wen-Jun Xu
- 1. Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China
| | - Juan Wang
- 1. Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China
| | - Ruo-Gu Li
- 3. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Lei Xu
- 3. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Wei-Feng Jiang
- 3. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Xing-Biao Qiu
- 3. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Jin-Qi Jiang
- 4. Department of Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Xin-Kai Qu
- 3. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Xu Liu
- 3. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Wei-Yi Fang
- 3. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Jin-Fa Jiang
- 1. Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China
| | - Yi-Qing Yang
- 3. Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China; ; 5. Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China; ; 6. Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| |
Collapse
|