1
|
Pan J, Nawaz M, Liu J, Liu H, Lv Z, Yang W, Jiao Z, Zhang Q. Exploring synergistic inhibitory mechanisms of flavonoid mixtures on α-glucosidase by experimental analysis and molecular dynamics simulation. Food Chem 2025; 464:141560. [PMID: 39396467 DOI: 10.1016/j.foodchem.2024.141560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
The study was the first to evaluate the synergistic interaction of luteolin + quercetin, luteolin + 3-O-methylquercetin, and quercetin + 3-O-methylquercetin mixtures on α-glucosidase and the binding mechanisms were explored using both experimental and theoretical approaches. The results showed that three flavonoid mixtures exhibited a mixed type of inhibition and demonstrated the most potent synergistic effects on α-glucosidase inhibition at 6:4 ratio, with interaction index (γ) of 0.85, 0.78 and 0.73, respectively. The three mixtures had a great influence on α-glucosidase secondary structures. Molecular simulation further demonstrated that three flavonoid mixtures formed hydrophobic interactions and hydrogen bonds with amino acid residues at different sites of α-glucosidase. Collectively, luteolin + quercetin, luteolin + 3-O-methylquercetin and quercetin + 3-O-methylquercetin were found to inhibit α-glucosidase in a synergistic manner and can be potentially used for the development of hypoglycemic food products.
Collapse
Affiliation(s)
- Junkun Pan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Muhammad Nawaz
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Jiechao Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Hui Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Zhenzhen Lv
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Wenbo Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Zhonggao Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China.
| | - Qiang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China.
| |
Collapse
|
2
|
Dou B, Zhu Y, Sun M, Wang L, Tang Y, Tian S, Wang F. Mechanisms of Flavonoids and Their Derivatives in Endothelial Dysfunction Induced by Oxidative Stress in Diabetes. Molecules 2024; 29:3265. [PMID: 39064844 PMCID: PMC11279171 DOI: 10.3390/molecules29143265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic complications pose a significant threat to life and have a negative impact on quality of life in individuals with diabetes. Among the various factors contributing to the development of these complications, endothelial dysfunction plays a key role. The main mechanism underlying endothelial dysfunction in diabetes is oxidative stress, which adversely affects the production and availability of nitric oxide (NO). Flavonoids, a group of phenolic compounds found in vegetables, fruits, and fungi, exhibit strong antioxidant and anti-inflammatory properties. Several studies have provided evidence to suggest that flavonoids have a protective effect on diabetic complications. This review focuses on the imbalance between reactive oxygen species and the antioxidant system, as well as the changes in endothelial factors in diabetes. Furthermore, we summarize the protective mechanisms of flavonoids and their derivatives on endothelial dysfunction in diabetes by alleviating oxidative stress and modulating other signaling pathways. Although several studies underline the positive influence of flavonoids and their derivatives on endothelial dysfunction induced by oxidative stress in diabetes, numerous aspects still require clarification, such as optimal consumption levels, bioavailability, and side effects. Consequently, further investigations are necessary to enhance our understanding of the therapeutic potential of flavonoids and their derivatives in the treatment of diabetic complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Furong Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| |
Collapse
|
3
|
Seyydi SM, Tofighi A, Rahmati M, Tolouei Azar J. Exercise and Urtica Dioica extract ameliorate mitochondrial function and the expression of cardiac muscle Nuclear Respiratory Factor 2 and Peroxisome proliferator-activated receptor Gamma Coactivator 1-alpha in STZ-induced diabetic rats. Gene 2022; 822:146351. [PMID: 35189251 DOI: 10.1016/j.gene.2022.146351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Diabetes mellitus can affect and disrupt the levels of PGC1α and NRF2 proteins in the mitochondrial biogenesis pathway. Considering the anti-diabetic properties of Urtica Dioica extract and exercise, this study aimed to investigate the beneficial effects of Urtica Dioica extract and endurance activity on PGC1α and NRF2 protein levels in the streptozotocin-induced diabetic rat heart tissue. MATERIALS AND METHODS 58 male Wistar rats were divided into five groups (N = 12) including: healthy control (HC), diabetes control (DC), diabetes Urtica Dioica (D-UD), diabetes exercise training (DT), and diabetes exercise training Urtica Dioica (DT-UD). Diabetes was induced intraperitoneally by STZ (45 mg/kg) injection. Two weeks after the induction of diabetes, the rats were stimulated to carry out the exercise (moderate intensity/5day/week) and the gavage of UD extract (50 mg/kg/day) was administered to the rats for six weeks. In this study, the western blotting method was used to measure the levels of PGC1α and NRF2 proteins. Moreover, cardiography was used to evaluate the functional parameters of the heart (ejection fraction & fractional shortening). Finally, the bioluminescence and ELISA methods were used to determine the content of adenosine triphosphate and citrate synthase. RESULTS The cardiac function parameters, the mitochondrial ATP and the CS content in DC group mice were impaired in comparison with the other study groups and showed a decreasing trend (P < 0.001). The treatment with EX + UD extract was able to minimize the rate of these disorders and acted as a protector of mitochondrial function. There were significant differences in the expression levels of NRF2 (F = 17.7, P = 0.001) and PGC-1α (F = 43.7, P = 0.001) mitochondrial proteins among the different groups. The levels of these proteins were significantly reduced in the DC group in comparison with the HC group (P < 0.001). The treatment with EX or UD extract increased the expression of PGC-1α and NRF2 proteins in the heart muscle of animals in the DT and D-UD groups in comparison with the DC group (P < 0.05). Moreover, the expression of these proteins was more pronounced in the DT-UD group. There was not a significant difference between the DT-UD group and the HC group regarding the expression of these proteins (P > 0.05). CONCLUSIONS The results of this study showed that treatment with EX and UD extract could treat the disorders which were caused by diabetes in the parameters of cardiac function. Moreover, it was able to improve the expression of the levels of proteins which were involved in mitochondrial biogenesis and its function. Finally, this kind of treatment could attract more attention to the roles of EX and UD extract in the prevention of cardiovascular complications in future studies.
Collapse
Affiliation(s)
- Seyyedeh Masoumeh Seyydi
- Department of Exercise Physiology and Corrective Movements, Faculty of Sports Sciences, Urmia University, Urmia, Iran
| | - Asghar Tofighi
- Department of Exercise Physiology and Corrective Movements, Faculty of Sports Sciences, Urmia University, Urmia, Iran.
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
| | - Javad Tolouei Azar
- Department of Exercise Physiology and Corrective Movements, Faculty of Sports Sciences, Urmia University, Urmia, Iran
| |
Collapse
|
4
|
Faridvand Y, Kazemzadeh H, Vahedian V, Mirzajanzadeh P, Nejabati HR, Safaie N, Maroufi NF, Pezeshkian M, Nouri M, Jodati A. Dapagliflozin attenuates high glucose-induced endothelial cell apoptosis and inflammation through AMPK/SIRT1 activation. Clin Exp Pharmacol Physiol 2022; 49:643-651. [PMID: 35274762 DOI: 10.1111/1440-1681.13638] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/30/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022]
Abstract
Hyperglycemia is a major cause of pathophysiological processes such as oxidative stress, inflammation, and apoptosis in diabetes. Dapagliflozin (DAPA), a novel hypoglycemic drug, has been shown to have anti-apoptotic, anti-inflammatory, and antioxidant effects in multiple experimental studies. In this study, we investigated the protective effects of DAPA in the hyperglycemic condition to identify associated molecular mechanisms. HUVEC endothelial cells were treated with 40 mM glucose for 72h to establish in vitro high glucose (HG) condition model, and then additional groups co-treated with or without DAPA before glucose treatment. Then, cell viability, reactive oxygen species (ROS), proinflammatory cytokines (IL-6 and TNF-α), apoptosis, and SIRT1 expression were measured. The results showed that DAPA pretreatment resulted in increased cell viability. Additionally, DAPA pretreatment decreased endothelial ROS, IL-6, and TNF-α levels in endothelial cells subjected to HG conditions. Moreover, DAPA pretreatment significantly prevented HG-induced apoptosis and caspase-3 activity in HUVECs. Furthermore, DAPA increased the expression of SIRT1, PGC-1α, and increased the phosphorylation levels of AMPK (p-AMPK) in a set of HG conditions in HUVEC cells. However, the endothelial protective effects of DAPA were abolished when cells were subjected to the SIRT1 inhibitor (EX-527) and AMPK inhibitor (Compound C). These findings suggest that DAPA can abrogate HG-induced endothelial cell dysfunction by AMPK/SIRT1 pathway up-regulation. Therefore, suggesting that the activation of AMPK/SIRT1 axis by DAPA may be a novel target for the treatment of HG-induced endothelial cell injury. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Kazemzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Researchers Club of Tums Preclinical Core Facility (TPCF), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pezeshkian
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmadreza Jodati
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Rachubik P, Szrejder M, Audzeyenka I, Rogacka D, Rychłowski M, Angielski S, Piwkowska A. The PKGIα/VASP pathway is involved in insulin- and high glucose-dependent regulation of albumin permeability in cultured rat podocytes. J Biochem 2021; 168:575-588. [PMID: 32484874 PMCID: PMC7763511 DOI: 10.1093/jb/mvaa059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/23/2020] [Indexed: 12/15/2022] Open
Abstract
Podocytes, the principal component of the glomerular filtration barrier, regulate glomerular permeability to albumin via their contractile properties. Both insulin- and high glucose (HG)-dependent activation of protein kinase G type Iα (PKGIα) cause reorganization of the actin cytoskeleton and podocyte disruption. Vasodilator-stimulated phosphoprotein (VASP) is a substrate for PKGIα and involved in the regulation of actin cytoskeleton dynamics. We investigated the role of the PKGIα/VASP pathway in the regulation of podocyte permeability to albumin. We evaluated changes in high insulin- and/or HG-induced transepithelial albumin flux in cultured rat podocyte monolayers. Expression of PKGIα and downstream proteins was confirmed by western blot and immunofluorescence. We demonstrate that insulin and HG induce changes in the podocyte contractile apparatus via PKGIα-dependent regulation of the VASP phosphorylation state, increase VASP colocalization with PKGIα, and alter the subcellular localization of these proteins in podocytes. Moreover, VASP was implicated in the insulin- and HG-dependent dynamic remodelling of the actin cytoskeleton and, consequently, increased podocyte permeability to albumin under hyperinsulinaemic and hyperglycaemic conditions. These results indicate that insulin- and HG-dependent regulation of albumin permeability is mediated by the PKGIα/VASP pathway in cultured rat podocytes. This molecular mechanism may explain podocytopathy and albuminuria in diabetes.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland.,Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland.,Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, Medical University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland.,Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
6
|
Sayed AM, Hassanein EH, Salem SH, Hussein OE, Mahmoud AM. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sci 2020; 259:118173. [DOI: 10.1016/j.lfs.2020.118173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
|
7
|
Li M, Xue Y, Yu H, Mao D. Quercetin alleviated H 2 O 2 -induced apoptosis and steroidogenic impairment in goat luteinized granulosa cells. J Biochem Mol Toxicol 2020; 34:e22527. [PMID: 32410385 DOI: 10.1002/jbt.22527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/25/2020] [Accepted: 04/27/2020] [Indexed: 11/10/2022]
Abstract
Quercetin (Que) is a natural flavonoid in most plants. Luteinized granulosa cell (LGC) culture is necessary for the study of follicle growth/differentiation. In the present study, we analyzed the role of Que in steroid production and apoptosis in hydrogen peroxide (H2 O2 )-treated goat LGCs. The results showed that treatment with H2 O2 induced apoptosis in goat LGCs, and treatment with Que decreased LGC apoptosis induced by H2 O2 (P < .05), accompanied with the different expressions of BAX, BCL-2, Caspase 3, and Cleaved caspase 3. Meanwhile, the messenger RNA expressions of nuclear factor erythroid 2 like 2 (Nrf2) and its downstream genes were upregulated with H2 O2 +Que treatment, accompanied by the increased cellular viability (P < .05). Furthermore, Que alleviated H2 O2 -induced reduction in the secretion of progesterone (P4 ) (P < .05); however, it had no effect on the secretion of estrogen (E2 ). Simultaneously, the expressions of StAR and P450scc were increased when treated with Que +H2 O2 , compared with the group treated with only H2 O2 (P < .05). In conclusion, it is observed that Que could alleviate the H2 O2 -induced apoptosis and steroidogenic impairment in goat LGCs, which might be mediated by the Nrf2 pathway.
Collapse
Affiliation(s)
- Manman Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yang Xue
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Prabhakar PK, Singh K, Kabra D, Gupta J. Natural SIRT1 modifiers as promising therapeutic agents for improving diabetic wound healing. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153252. [PMID: 32505916 DOI: 10.1016/j.phymed.2020.153252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/14/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The occurrence of chronic wounds, account for significant suffering of diabetic people, together with increasing healthcare burden. The chronic wounds associated with diabetes do not undergo the normal healing process rather stagnate into chronic proinflammatory phase as well as declined fibroblast function and impaired cell migration. HYPOTHESIS SIRT1, which is the most studied isoform of the sirtuin family in mammals, has now emerged as a crucial target for improving diabetic wound healing. It is an NAD+ dependent deacetylase, originally characterized to deacetylate histone proteins leading to heterochromatin formation and gene silencing. It is now known to regulate a number of cellular processes like cell proliferation, division, senescence, apoptosis, DNA repair, and metabolism. METHODOLOGY The retrieval of potentially relevant studies was done by systematically searching of three databases (Google Scholar, Web of science and PubMed) in December 2019. The keywords used as search terms were related to SIRT1 and wound healing. The systematic search retrieved 649 papers that were potentially relevant and after selection procedure, 73 studies were included this review and discussed below. RESULTS Many SIRT1 activating compounds (SACs) were found protective and improve diabetic wound healing through regulation of inflammation, cell migration, oxidative stress response and formation of granulation tissue at the wound site. CONCLUSIONS However, contradictory reports describe the opposing role of SACs on the regulation of cell migration and cancer incidence. SACs are therefore subjected to intense research for understanding the mechanisms responsible for controlling cell migration and therefore possess prospective to enter the clinical arena in the foreseeable future.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, Lovely Professional University Punjab, India 144411
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Dhiraj Kabra
- Biological Research Pharmacology Department, Sun Pharma Advanced Research Company Limited, Vadodara, Gujarat, India, 390010
| | - Jeena Gupta
- Department of Biochemistry, Lovely Professional University Punjab, India 144411.
| |
Collapse
|
9
|
Kim GD. SIRT1-Mediated Protective Effect of Aralia elata (Miq.) Seem against High-Glucose-Induced Senescence in Human Umbilical Vein Endothelial Cells. Nutrients 2019; 11:nu11112625. [PMID: 31684006 PMCID: PMC6893469 DOI: 10.3390/nu11112625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Aralia elata (Miq.) Seem (AS) is widely been for treating many diseases, enhancing energy, and boosting immunity; however, its protective effects against high-glucose (HG)-triggered endothelial dysfunction and the potential underlying mechanisms have not been investigated. In this study, we determined the effect of AS on senescence in human umbilical vein endothelial cells (HUVECs) and elucidated the mechanisms underlying its anti-aging effects. The senescence model of endothelial cells (ECs) was established by culturing HUVECs in media containing HG (30 mM). We found that the proportion of senescent (senescence-associated β-galactosidase+) cells in the HG group was significantly higher than that in the control group; however, this increase was suppressed by AS treatment. Moreover, cell cycle analysis revealed that AS (20 μg/mL) significantly recovered HG-induced cell cycle arrest in ECs, and Western blot revealed that AS prevented HG-induced decreases in silent information regulator 1 (SIRT1) level and endothelial nitric oxide synthase (eNOS) phosphorylation. These results show that AS delayed HG-induced senescence in ECs by modulation of the SIRT1/5′ AMP-activated protein kinase and AKT/eNOS pathways.
Collapse
Affiliation(s)
- Gi Dae Kim
- Department of Food and Nutrition, Kyungnam University, Changwon-si 51767, Korea.
| |
Collapse
|
10
|
Carpinus turczaninowii Extract May Alleviate High Glucose-Induced Arterial Damage and Inflammation. Antioxidants (Basel) 2019; 8:antiox8060172. [PMID: 31212679 PMCID: PMC6616550 DOI: 10.3390/antiox8060172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/02/2019] [Accepted: 06/07/2019] [Indexed: 01/06/2023] Open
Abstract
Hyperglycemia-induced oxidative stress triggers severe vascular damage and induces an inflammatory vascular state, and is, therefore, one of the main causes of atherosclerosis. Recently, interest in the natural compound Carpinus turczaninowii has increased because of its reported antioxidant and anti-inflammatory properties. We investigated whether a C. turczaninowii extract was capable of attenuating high glucose-induced inflammation and arterial damage using human aortic vascular smooth muscle cells (hASMCs). mRNA expression levels of proinflammatory response [interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α)], endoplasmic reticulum (ER) stress [CCAAT-enhancer-binding proteins (C/EBP) homologous protein (CHOP)], and adenosine monophosphate (AMP)-protein activated kinase α2 (AMPK α2)], and DNA damage [phosphorylated H2.AX (p-H2.AX)] were measured in hASMCs treated with the C. turczaninowii extracts (1 and 10 μg/mL) after being stimulated by high glucose (25 mM) or not. The C. turczaninowii extract attenuated the increased mRNA expression of IL-6, TNF-α, and CHOP in hASMCs under high glucose conditions. The expression levels of p-H2.AX and AMPK α2 induced by high glucose were also significantly decreased in response to treatment with the C. turczaninowii extract. In addition, 15 types of phenolic compounds including quercetin, myricitrin, and ellagic acid, which exhibit antioxidant and anti-inflammatory properties, were identified in the C. turczaninowii extract through ultra-performance liquid chromatography-quadrupole-time of flight (UPLC-Q-TOF) mass spectrometry. In conclusion, C. turczaninowii may alleviate high glucose-induced inflammation and arterial damage in hASMCs, and may have potential in the treatment of hyperglycemia-induced atherosclerosis.
Collapse
|
11
|
Khadrawy O, Gebremedhn S, Salilew-Wondim D, Taqi MO, Neuhoff C, Tholen E, Hoelker M, Schellander K, Tesfaye D. Endogenous and Exogenous Modulation of Nrf2 Mediated Oxidative Stress Response in Bovine Granulosa Cells: Potential Implication for Ovarian Function. Int J Mol Sci 2019; 20:E1635. [PMID: 30986945 PMCID: PMC6480527 DOI: 10.3390/ijms20071635] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Nrf2 is a redox sensitive transcription factor regulating the expression of antioxidant genes as defense mechanism against various stressors. The aim of this study is to investigate the potential role of noncoding miRNAs as endogenous and quercetin as exogenous regulators of Nrf2 pathway in bovine granulosa cells. For this cultured granulosa cells were used for modulation of miRNAs (miR-28, 153 and miR-708) targeting the bovine Nrf2 and supplementation of quercentin to investigate the regulatory mechanisms of the Nrf2 antioxidant system. Moreover, cultured cells were treated with hydrogen peroxide to induce oxidative stress in those cells. Our results showed that, oxidative stress activated the expression of Nrf2 as a defense mechanism, while suppressing the expression of those miRNAs. Overexpression of those miRNAs resulted in downregulation of Nrf2 expression resulted in higher ROS accumulation, reduced mitochondrial activity and cellular proliferation. Quercetin supplementation showed its protective role against oxidative stress induced by H₂O₂ by inducing the expression of antioxidant enzymes. In conclusion, this study highlighted the involvement of miR-153, miR-28 and miR-708 in regulatory network of Nrf2 mediated antioxidant system in bovine granulosa cells function. Furthermore, quercetin at a low dose played a protective role in bovine granulosa cells against oxidative stress damage.
Collapse
Affiliation(s)
- Omar Khadrawy
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany.
| | - Samuel Gebremedhn
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany.
| | - Dessie Salilew-Wondim
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany.
| | - Mohamed Omar Taqi
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany.
| | - Christiane Neuhoff
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany.
| | - Ernst Tholen
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany.
| | - Michael Hoelker
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany.
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, 53639 Königswinter, Germany.
- Center of Integrated Dairy Research, University of Bonn, 53175 Bonn, Germany.
| | - Karl Schellander
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany.
- Center of Integrated Dairy Research, University of Bonn, 53175 Bonn, Germany.
| | - Dawit Tesfaye
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany.
- Center of Integrated Dairy Research, University of Bonn, 53175 Bonn, Germany.
| |
Collapse
|
12
|
Rezabakhsh A, Rahbarghazi R, Malekinejad H, Fathi F, Montaseri A, Garjani A. Quercetin alleviates high glucose-induced damage on human umbilical vein endothelial cells by promoting autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:183-193. [PMID: 30668339 DOI: 10.1016/j.phymed.2018.11.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/08/2018] [Accepted: 11/07/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Quercetin, a flavonoid antioxidant, has been found to exert therapeutic effects in diabetic condition. Autophagy represents a homeostatic cellular mechanism for the turnover of unfolds proteins and damaged organelles through a lysosome-dependent degradation manner. We speculated that quercetin could protect endothelial cells against high glucose-induced damage by promoting autophagic responses. METHODS HUVECs viability was evaluated by MTT method. Griess and TBARS assays were used to monitor the levels of NO and MDA, respectively. Intracellular ROS generation was determined in DCFDA-stained cells analyzed by flow cytometry. To investigate the role of quercetin in endothelial cell migratory behavior, we used a scratch test. The level of autophagy proteins LC3, Beclin-1 and P62 were measured by western blotting technique. RESULTS Our results showed that quercetin had the potential to increase cell survival after exposure to high glucose (P < 0.05). Total levels of oxidative stress markers were profoundly decreased and the activity of GSH was increased by quercetin (P < 0.05). High glucose suppressed HUVECs migration to the scratched area (P < 0.05). However, a significant stimulation in cell migration was observed after exposure to quercetin (P < 0.05). Based on data, autophagy was blocked at the late stage by high glucose concentration while quercetin enhanced autophagic response by reducing the P62 level coincided with the induction of Beclin-1 and LC3-II to LC3-I ratio (P < 0.05). All these beneficial effects were reversed by 3-methyladenine as an autophagy inhibitor. CONCLUSION Together, our data suggest that quercetin could protect HUVECs from high glucose induced-damage possibly by activation of the autophagy response.
Collapse
Affiliation(s)
- Aysa Rezabakhsh
- Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Farzaneh Fathi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Montaseri
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Garjani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Wang W, Shang C, Zhang W, Jin Z, Yao F, He Y, Wang B, Li Y, Zhang J, Lin R. Hydroxytyrosol NO regulates oxidative stress and NO production through SIRT1 in diabetic mice and vascular endothelial cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:206-215. [PMID: 30599900 DOI: 10.1016/j.phymed.2018.09.208] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Vascular complications are major causes of disability and death in people with diabetes mellitus (DM). Nitric oxide (NO) supplement may help prevent vascular complications and is an attractive treatment option for DM. Hydroxytyrosol (HT) is a major polyphenol in olive oil. It is mainly used as a dietary supplement because of its antioxidant effect. PURPOSE We aimed to determine the effects of hydroxytyrosol nitric oxide (HT-NO) on oxidative stress and NO level as well as related mechanisms. STUDY DESIGN/METHODS The effects of HT-NO on oxidative stress and NO level were examined by using diabetic mouse model and HUVECs. RESULTS Our results showed that HT-NO has antioxidant and NO-releasing activities in vitro and in DM mice. HT-NO not only decreased blood glucose and oxidative stress but also increased NO level and deacetylase Sirtuin 1 (SIRT1) expression in DM mice and high glucose (HG)-stimulated HUVECs. Further studies found that SIRT1 activation augmented the effect of HT-NO on eNOS phosphorylation in HG-stimulated HUVECs. However, the promotive effect of HT-NO on eNOS phosphorylation was abolished by SIRT1 knockdown. Most importantly, HT-NO inhibited reactive oxygen species (ROS) production through SIRT1 in HUVECs. The ROS scavenger enhanced the effect of HT-NO on eNOS phosphorylation. CONCLUSION These results suggest that HT-NO regulates oxidative stress and NO production partly through SIRT1 in DM mice and HG-stimulated HUVECs.
Collapse
Affiliation(s)
- Weirong Wang
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Chenxu Shang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wei Zhang
- Department of Pharmacy, Yangquan Coalmine Group General Hospital, Yangquan 045000, China
| | - Zhen Jin
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Feng Yao
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yanhao He
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Bo Wang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yanan Li
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Medical College, Xi'an 710061, China
| | - Jiye Zhang
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Rong Lin
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
14
|
Shi GJ, Li Y, Cao QH, Wu HX, Tang XY, Gao XH, Yu JQ, Chen Z, Yang Y. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomed Pharmacother 2019; 109:1085-1099. [DOI: 10.1016/j.biopha.2018.10.130] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022] Open
|
15
|
Gao J, Wang Y, Li W, Zhang J, Che Y, Cui X, Sun B, Zhao G. Loss of histone deacetylase 2 inhibits oxidative stress induced by high glucose via the HO-1/SIRT1 pathway in endothelial progenitor cells. Gene 2018; 678:1-7. [DOI: 10.1016/j.gene.2018.07.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022]
|
16
|
Wang H, Jo YJ, Oh JS, Kim NH. Quercetin delays postovulatory aging of mouse oocytes by regulating SIRT expression and MPF activity. Oncotarget 2018; 8:38631-38641. [PMID: 28418847 PMCID: PMC5503559 DOI: 10.18632/oncotarget.16219] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
If no fertilization occurs at an appropriate time after ovulation, oocyte quality deteriorates rapidly as a process called postovulatory aging. Because the postovulatory aging of oocytes has detrimental effects on embryo development and offspring, many efforts have been made to prevent oocyte aging. Here we showed that quercetin prevented the decline in oocyte quality during postovulatory aging of oocytes. Quercetin treatment reduced aging-induced morphological changes and reactive oxygen species accumulation. Moreover, quercetin attenuated the aging-associated abnormalities in spindle organization and mitochondrial distribution, preventing decrease of SIRT expression and histone methylation. Quercetin also ameliorated the decrease in maturation-promoting factor activity and the onset of apoptosis during postovulatory aging. Furthermore, quercetin treatment during postovulatory aging improves early embryo development. Our results demonstrate that quercetin relieves deterioration in oocyte quality and improves subsequent embryo development.
Collapse
Affiliation(s)
- HaiYang Wang
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Yu-Jin Jo
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Jeong Su Oh
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
17
|
Gao J, Zhao G, Li W, Zhang J, Che Y, Song M, Gao S, Zeng B, Wang Y. MiR-155 targets PTCH1 to mediate endothelial progenitor cell dysfunction caused by high glucose. Exp Cell Res 2018; 366:55-62. [PMID: 29545091 DOI: 10.1016/j.yexcr.2018.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 12/31/2022]
Abstract
Endothelial progenitor cells (EPCs) are involved in diabetes-associated complications, including diabetic foot ulcer (DFU). Recent reports showed that miR-155 downregulation promotes wound healing in diabetic rats and ameliorates endothelial injury induced by high glucose, but its role in DFU is unknown. We found that miR-155 was overexpressed in EPCs from patients with DFU and in high glucose-induced EPCs from healthy people. Reductions in cell viability, migration, tube formation and nitric oxide production, as well as increases in lactated hydrogenase, cell apoptosis, and reactive oxygen species induced by high glucose, were enhanced by miR-155 overexpression and restrained by miR-155 inhibition. Additionally, dual-luciferase reporter assay demonstrated that miR-155 directly targeted the 3' untranslated region of patched-1 (PTCH1), a receptor of the sonic hedgehog signaling pathway, and downregulated the mRNA and protein expression of PTCH1. qRT-PCR and Western blot results revealed that the PTCH1 was downregulated in EPCs treated with high glucose. Silencing PTCH1 by PTCH1 siRNA alleviated the protective effect of anti-miR-155 on high glucose-induced EPC dysfunction. Our results indicate that miR-155 worsened high glucose-induced EPC function by downregulating PTCH1. These findings suggest that miR-155 may be a potential therapeutic target for DFU.
Collapse
Affiliation(s)
- Jie Gao
- Department of Peripheral Angiopathy, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 of Heping Road, Harbin, Heilongjiang 150040, China
| | - Gang Zhao
- Department of Peripheral Angiopathy, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 of Heping Road, Harbin, Heilongjiang 150040, China
| | - Wei Li
- Heilongjiang fire hospital, Harbin, Heilongjiang 150026, China
| | - Jiayuan Zhang
- Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Yanling Che
- Department of Peripheral Angiopathy, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 of Heping Road, Harbin, Heilongjiang 150040, China
| | - Meiyu Song
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Shan Gao
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Bin Zeng
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Yuanhong Wang
- Department of Peripheral Angiopathy, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 of Heping Road, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
18
|
D'Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 Signaling Pathways in Cardiovascular Disease Protection. Antioxid Redox Signal 2018; 28:711-732. [PMID: 28661724 PMCID: PMC5824538 DOI: 10.1089/ars.2017.7178] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Oxidative stress represents the common hallmark of pathological conditions associated with cardiovascular disease (CVD), including atherosclerosis, heart failure, hypertension, aging, diabetes, and other vascular system-related diseases. The sirtuin (SIRT) family, comprising seven proteins (SIRT1-SIRT7) sharing a highly conserved nicotinamide adenine dinucleotide (NAD+)-binding catalytic domain, attracted a great attention for the past few years as stress adaptor and epigenetic enzymes involved in the cellular events controlling aging-related disorder, cancer, and CVD. Recent Advances: Among sirtuins, SIRT1 and SIRT6 are the best characterized for their protective roles against inflammation, vascular aging, heart disease, and atherosclerotic plaque development. This latest role has been only recently unveiled for SIRT6. Of interest, in recent years, complex signaling networks controlled by SIRT1 and SIRT6 common to stress resistance, vascular aging, and CVD have emerged. CRITICAL ISSUES We provide a comprehensive overview of recent developments on the molecular signaling pathways controlled by SIRT1 and SIRT6, two post-translational modifiers proven to be valuable tools to dampen inflammation and oxidative stress at the cardiovascular level. FUTURE DIRECTIONS A deeper understanding of the epigenetic mechanisms through which SIRT1 and SIRT6 act in the signalings responsible for onset and development CVD is a prime scientific endeavor of the upcoming years. Multiple "omic" technologies will have widespread implications in understanding such mechanisms, speeding up the achievement of selective and efficient pharmacological modulation of sirtuins for future applications in the prevention and treatment of CVD. Antioxid. Redox Signal. 28, 711-732.
Collapse
Affiliation(s)
- Nunzia D'Onofrio
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Università degli Studi della Campania , Naples, Italy
| | - Luigi Servillo
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Università degli Studi della Campania , Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Università degli Studi della Campania , Naples, Italy
| |
Collapse
|
19
|
Song X, Yang B, Qiu F, Jia M, Fu G. High glucose and free fatty acids induce endothelial progenitor cell senescence via PGC-1α/SIRT1 signaling pathway. Cell Biol Int 2017; 41:1146-1159. [PMID: 28786152 DOI: 10.1002/cbin.10833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/28/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaoxiao Song
- The Department of Endocrinology; Second Affiliated Hospital, College of Medicine, Zhejiang University; Hangzhou 310009 Zhejiang Province China
- The Department of Cardiology; Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University; Hangzhou 310016 Zhejiang Province China
| | - Boyun Yang
- The Department of Endocrinology; Second Affiliated Hospital, College of Medicine, Zhejiang University; Hangzhou 310009 Zhejiang Province China
| | - Fuyu Qiu
- The Department of Cardiology; Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University; Hangzhou 310016 Zhejiang Province China
| | - Minyue Jia
- The Department of Endocrinology; Second Affiliated Hospital, College of Medicine, Zhejiang University; Hangzhou 310009 Zhejiang Province China
| | - Guosheng Fu
- The Department of Cardiology; Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University; Hangzhou 310016 Zhejiang Province China
| |
Collapse
|
20
|
Spaulding HR, Ballmann CG, Quindry JC, Selsby JT. Long-Term Quercetin Dietary Enrichment Partially Protects Dystrophic Skeletal Muscle. PLoS One 2016; 11:e0168293. [PMID: 27977770 PMCID: PMC5158046 DOI: 10.1371/journal.pone.0168293] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) results from a genetic lesion in the dystrophin gene and leads to progressive muscle damage. PGC-1α pathway activation improves muscle function and decreases histopathological injury. We hypothesized that mild disease found in the limb muscles of mdx mice may be responsive to quercetin-mediated protection of dystrophic muscle via PGC-1α pathway activation. To test this hypothesis muscle function was measured in the soleus and EDL from 14 month old C57, mdx, and mdx mice treated with quercetin (mdxQ; 0.2% dietary enrichment) for 12 months. Quercetin reversed 50% of disease-related losses in specific tension and partially preserved fatigue resistance in the soleus. Specific tension and resistance to contraction-induced injury in the EDL were not protected by quercetin. Given some functional gain in the soleus it was probed with histological and biochemical approaches, however, in dystrophic muscle histopathological outcomes were not improved by quercetin and suppressed PGC-1α pathway activation was not increased. Similar to results in the diaphragm from these mice, these data suggest that the benefits conferred to dystrophic muscle following 12 months of quercetin enrichment were underwhelming. Spontaneous activity at the end of the treatment period was greater in mdxQ compared to mdx indicating that quercetin fed mice were more active in addition to engaging in more vigorous activity. Hence, modest preservation of muscle function (specific tension) and elevated spontaneous physical activity largely in the absence of tissue damage in mdxQ suggests dietary quercetin may mediate protection.
Collapse
Affiliation(s)
- Hannah R. Spaulding
- Department of Animal Science, Iowa State University, Ames, IA, United States of America
| | | | - John C. Quindry
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Joshua T. Selsby
- Department of Animal Science, Iowa State University, Ames, IA, United States of America
- * E-mail:
| |
Collapse
|
21
|
Kashyap D, Mittal S, Sak K, Singhal P, Tuli HS. Molecular mechanisms of action of quercetin in cancer: recent advances. Tumour Biol 2016; 37:12927-12939. [PMID: 27448306 DOI: 10.1007/s13277-016-5184-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
In the last few decades, the scientific community has discovered an immense potential of natural compounds in the treatment of dreadful diseases such as cancer. Besides the availability of a variety of natural bioactive molecules, efficacious cancer therapy still needs to be developed. So, to design an efficacious cancer treatment strategy, it is essential to understand the interactions of natural molecules with their respective cellular targets. Quercetin (Quer) is a naturally occurring flavonol present in many commonly consumed food items. It governs numerous intracellular targets, including the proteins involved in apoptosis, cell cycle, detoxification, antioxidant replication, and angiogenesis. The weight of available synergistic studies vigorously fortifies the utilization of Quer as a chemoprevention drug. This extensive review covers various therapeutic interactions of Quer with their recognized cellular targets involved in cancer treatment.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, 160012, India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Katrin Sak
- Department of Hematology and Oncology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Paavan Singhal
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, 133203, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, 133203, India.
| |
Collapse
|
22
|
Abstract
AbstractThe endothelium, a thin single sheet of endothelial cells, is a metabolically active layer that coats the inner surface of blood vessels and acts as an interface between the circulating blood and the vessel wall. The endothelium through the secretion of vasodilators and vasoconstrictors serves as a critical mediator of vascular homeostasis. During the development of the vascular system, it regulates cellular adhesion and vessel wall inflammation in addition to maintaining vasculogenesis and angiogenesis. A shift in the functions of the endothelium towards vasoconstriction, proinflammatory and prothrombic states characterise improper functioning of these cells, leading to endothelial dysfunction (ED), implicated in the pathogenesis of many diseases including diabetes. Major mechanisms of ED include the down-regulation of endothelial nitric oxide synthase levels, differential expression of vascular endothelial growth factor, endoplasmic reticulum stress, inflammatory pathways and oxidative stress. ED tends to be the initial event in macrovascular complications such as coronary artery disease, peripheral arterial disease, stroke and microvascular complications such as nephropathy, neuropathy and retinopathy. Numerous strategies have been developed to protect endothelial cells against various stimuli, of which the role of polyphenolic compounds in modulating the differentially regulated pathways and thus maintaining vascular homeostasis has been proven to be beneficial. This review addresses the factors stimulating ED in diabetes and the molecular mechanisms of natural polyphenol antioxidants in maintaining vascular homeostasis.
Collapse
|
23
|
Selsby JT, Ballmann CG, Spaulding HR, Ross JW, Quindry JC. Oral quercetin administration transiently protects respiratory function in dystrophin-deficient mice. J Physiol 2016; 594:6037-6053. [PMID: 27094343 DOI: 10.1113/jp272057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/12/2016] [Indexed: 01/23/2023] Open
Abstract
KEY POINT PGC-1α pathway activation has been shown to decrease disease severity and can be driven by quercetin. Oral quercetin supplementation protected respiratory function for 4-6 months during a 12 month dosing regimen. This transient protection was probably due to a failure to sustain elevated SIRT1 activity and downstream PGC-1α signalling. Quercetin supplementation may be a beneficial treatment as part of a cocktail provided continued SIRT1 activity elevation is achieved. ABSTRACT Duchenne muscular dystrophy (DMD) impacts 1 : 3500 boys and leads to muscle dysfunction culminating in death due to respiratory or cardiac failure. There is an urgent need for effective therapies with the potential for immediate application for this patient population. Quercetin, a flavonoid with an outstanding safety profile, may provide therapeutic relief to DMD patients as the wait for additional therapies continues. This study evaluated the capacity of orally administered quercetin (0.2%) in 2 month old mdx mice to improve respiratory function and end-point functional and histological outcomes in the diaphragm following 12 months of treatment. Respiratory function was protected for the first 4-6 months of treatment but appeared to become insensitive to quercetin thereafter. Consistent with this, end-point functional measures were decreased and histopathological measures were more severe in dystrophic muscle compared to C57 and similar between control-fed and quercetin-fed mdx mice. To better understand the transient nature of improved respiratory function, we measured PGC-1α pathway activity, which is suggested to be up-regulated by quercetin supplementation. This pathway was largely suppressed in dystrophic muscle compared to healthy muscle, and at the 14 month time point dietary quercetin enrichment did not increase expression of downstream effectors. These data support the efficacy of quercetin as an intervention for DMD in skeletal muscle, and also indicate the development of age-dependent quercetin insensitivity when continued supplementation fails to drive the PGC-1α pathway. Continued study is needed to determine if this is related to disease severity, age or other factors.
Collapse
Affiliation(s)
- Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA. .,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA.
| | - Christopher G Ballmann
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | - Hannah R Spaulding
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | - John C Quindry
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
24
|
Forte L, Torricelli P, Boanini E, Gazzano M, Rubini K, Fini M, Bigi A. Antioxidant and bone repair properties of quercetin-functionalized hydroxyapatite: An in vitro osteoblast-osteoclast-endothelial cell co-culture study. Acta Biomater 2016; 32:298-308. [PMID: 26689470 DOI: 10.1016/j.actbio.2015.12.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/12/2015] [Accepted: 12/09/2015] [Indexed: 11/28/2022]
Abstract
Quercetin (3,3',4',5,7-pentahydroxy-flavone) is a flavonoid known for its pharmacological activities, which include antioxidant and anti-inflammatory properties, as well as possible beneficial action on diseases involving bone loss. In this work, we explored the possibility to functionalize hydroxyapatite (HA) with quercetin in order to obtain new materials for bone repair through local administration of the flavonoid. HA was synthesized in presence of different concentrations of quercetin according to two different procedures: direct synthesis and phase transition from monetite. Direct synthesis lead to composite nanocrystals containing up to 3.1 wt% quercetin, which provokes a reduction of the crystals mean dimensions and of the length of the coherently scattering domains. Synthesis conditions provoke a partial oxidation of quercetin and, as a consequence, a significant reduction of its radical scavenging activity (RSA). On the other hand, synthesis through phase transition yields samples containing up to 1.3 wt% of quercetin incorporated into hydroxyapatite, with minor structural modifications, which exhibit relevant anti-oxidant activities, as testified by their high RSA levels, (slightly lower than that of pure quercetin). The biological response to these materials was tested using an innovative triculture model involving osteoblast, osteoclast and endothelial cells, in order to mimic bone microenvironment. The results show that the presence of quercetin in the composite materials enhances human osteoblast-like MG63 proliferation and differentiation, whereas it downregulates osteoclastogenesis of osteoclast precursors 2T-110, and supports proliferation and differentiation of human umbilical vein endothelial cells (HUVEC). STATEMENT OF SIGNIFICANCE The pharmacological activities of the flavonoid quercetin include anti-oxidant and antiinflammatory properties, as well as capability to prevent bone loss. In this paper, we demonstrate that it is possible to synthesize hydroxyapatite functionalized with different amounts of quercetin and obtain new composite materials which display both the good bioactivity of the inorganic phase and the therapeutic properties of the flavonoid. The innovative in vitro model developed in this study, which involves co-culture of osteoblast, osteoclast and endothelial cells, allows to state that the new materials exert a beneficial action onto bone repair microenvironment, stimulating osteoblast proliferation and activity, downregulating osteoclastogenesis, and supporting microangiogenetic processes necessary for new bone formation.
Collapse
Affiliation(s)
- Lucia Forte
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Paola Torricelli
- Laboratory of Preclinical and Surgical Studies, Research Institute Codivilla Putti - Rizzoli Orthopaedic Institute, via di Barbiano, 40126 Bologna, Italy
| | - Elisa Boanini
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy.
| | - Massimo Gazzano
- ISOF-CNR, c/o Department of Chemistry "G. Ciamician", Bologna, Italy
| | - Katia Rubini
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Research Institute Codivilla Putti - Rizzoli Orthopaedic Institute, via di Barbiano, 40126 Bologna, Italy
| | - Adriana Bigi
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
25
|
Yu P, Zhang Z, Li S, Wen X, Quan W, Tian Q, Chen J, Zhang J, Jiang R. Progesterone modulates endothelial progenitor cell (EPC) viability through the CXCL12/CXCR4/PI3K/Akt signalling pathway. Cell Prolif 2016; 49:48-57. [PMID: 26818151 DOI: 10.1111/cpr.12231] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/06/2015] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Progesterone treatment can effectively increase levels of circulating endothelial progenitor cells (EPCs) and improve neurological functional outcome in a traumatic brain injury (TBI) rat model. However, the mechanisms of progesterone's effects on EPC viability remain elusive. The CXCL12/CXCR4 (CXC chemokine ligand 12/CXC chemokine receptor 4) signalling pathway regulates cell proliferation; we hypothesize that it mediates progesterone-induced EPC viability. MATERIALS AND METHODS EPCs were isolated from bone marrow-derived mononuclear cells (BM-MNCs) and treated with progesterone (5, 10 and 100 nm). MTS assay was used to investigate EPC viability. Protein expression was examined by Western blotting, ELISA assay and flow cytometry. Cell membrane and cytoplasm proteins were extracted with membrane and cytoplasm protein extraction kits. CXCR4 antagonist (AMD3100) and phosphatidylinositol 3-kinases (PI3K) antagonist (LY294002) were used to characterize underlying mechanisms. RESULTS Progesterone-induced EPC viability was time- and dose-dependent. Administration of progesterone facilitated EPC viability and increased expression of CXCL12 and phosphorylated Akt (also known as protein kinase B, pAkt) activity (P < 0.05). Progesterone did not regulate CXCR4 protein expression in cultured EPC membranes or cytoplasm. However, progesterone-induced EPC viability was significantly attenuated by AMD3100 or LY294002. Inhibition of the signalling pathway with AMD3100 and LY294002 subsequently reduced progesterone-induced CXCL12/CXCR4/PI3K/pAkt signalling activity. CONCLUSIONS The CXCL12/CXCR4/PI3K/pAkt signalling pathway increased progesterone-induced EPC viability.
Collapse
Affiliation(s)
- Peng Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Zhifei Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Shengjie Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Xiaolong Wen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Wei Quan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Qilong Tian
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, 48202, USA
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| |
Collapse
|
26
|
Smith AJ, Oertle J, Warren D, Prato D. Quercetin: A Promising Flavonoid with a Dynamic Ability to Treat Various Diseases, Infections, and Cancers. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jct.2016.72010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
The Mediterranean Lifestyle as a Non-Pharmacological and Natural Antioxidant for Healthy Aging. Antioxidants (Basel) 2015; 4:719-36. [PMID: 26783955 PMCID: PMC4712942 DOI: 10.3390/antiox4040719] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress has been suggested to affect age-associated physiological dysfunction. Therefore, it is speculated that antioxidant supplements could have a potential role in preventing age-related diseases and death. Among different dietary habits, the highly antioxidant Mediterranean dietary pattern, which includes high vegetable and fruit intake, consumption of legumes, cereals, and fish, low intake of meat and dairy derivatives, moderate red wine consumption, and use of extra-virgin olive oil, is characterized by other aspects than food, such as conviviality, sensory stimulation, socialization, biodiversity, and seasonality that can reinforce the Mediterranean diet’s (MeD) beneficial effects on wellbeing, quality of life, and healthy aging. The present review aims to discuss available data on the relationship between oxidative stress and aging, biomarkers of oxidative stress status, protective effects of the MeD, and the adoption of the Mediterranean lifestyle as a non-pharmacological and natural tool to cope with oxidative stress damage for a longer life span, and—even more important—healthy aging beyond the biological, psychological, and social challenges that old age entails.
Collapse
|
28
|
Gomes IBS, Porto ML, Santos MCLFS, Campagnaro BP, Gava AL, Meyrelles SS, Pereira TMC, Vasquez EC. The protective effects of oral low-dose quercetin on diabetic nephropathy in hypercholesterolemic mice. Front Physiol 2015; 6:247. [PMID: 26388784 PMCID: PMC4557109 DOI: 10.3389/fphys.2015.00247] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/17/2015] [Indexed: 11/25/2022] Open
Abstract
Aims: Diabetic nephropathy (DN) is one of the most important causes of chronic renal disease, and the incidence of DN is increasing worldwide. Considering our previous report (Gomes et al., 2014) indicating that chronic treatment with oral low-dose quercetin (10 mg/Kg) demonstrated anti-oxidative, anti-apoptotic and renoprotective effects in the C57BL/6J model of DN, we investigated whether this flavonoid could also have beneficial effects in concurrent DN and spontaneous atherosclerosis using the apolipoprotein E-deficient mouse (apoE−/−). Methods: Streptozotocin was used to induce diabetes (100 mg/kg/day, 3 days) in male apoE−/− mice (8 week-old). After 6 weeks, the mice were randomly separated into DQ: diabetic apoE−/− mice treated with quercetin (10 mg/kg/day, 4 weeks, n = 8), DV: diabetic ApoE−/− mice treated with vehicle (n = 8) and ND: non-treated non-diabetic mice (n = 8). Results: Quercetin treatment diminished polyuria (~30%; p < 0.05), glycemia (~25%, p < 0.05), normalized the hypertriglyceridemia. Moreover, this bioflavonoid diminished creatininemia (~30%, p < 0.01) and reduced proteinuria but not to normal levels. We also observed protective effects on the renal structural changes, including normalization of the index of glomerulosclerosis and kidney weight/body weight. Conclusions: Our data revealed that quercetin treatment significantly reduced DN in hypercholesterolemic mice by inducing biochemical changes (decrease in glucose and triglycerides serum levels) and reduction of glomerulosclerosis. Thus, this study highlights the relevance of quercetin as an alternative therapeutic option for DN, including in diabetes associated with dyslipidemia.
Collapse
Affiliation(s)
- Isabele B S Gomes
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo Vitoria, Brazil
| | - Marcella L Porto
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo Vitoria, Brazil
| | - Maria C L F S Santos
- Pharmaceutical Sciences Graduate Program, Vila Velha University Vila Velha, Brazil
| | - Bianca P Campagnaro
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo Vitoria, Brazil ; Pharmaceutical Sciences Graduate Program, Vila Velha University Vila Velha, Brazil
| | - Agata L Gava
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo Vitoria, Brazil
| | - Silvana S Meyrelles
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo Vitoria, Brazil
| | - Thiago M C Pereira
- Pharmaceutical Sciences Graduate Program, Vila Velha University Vila Velha, Brazil ; Department of Biotechnology, Federal Institute of Education, Science and Technology (IFES) Vila Velha, Brazil
| | - Elisardo C Vasquez
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo Vitoria, Brazil ; Pharmaceutical Sciences Graduate Program, Vila Velha University Vila Velha, Brazil ; Emescam School of Health Sciences Vitoria, Brazil
| |
Collapse
|
29
|
Sirtuins in vascular diseases: Emerging roles and therapeutic potential. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1311-22. [PMID: 25766107 DOI: 10.1016/j.bbadis.2015.03.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/20/2015] [Accepted: 03/04/2015] [Indexed: 11/20/2022]
Abstract
Silent information regulator-2 (Sir-2) proteins, or sirtuins, are a highly conserved protein family of histone deacetylases that promote longevity by mediating many of the beneficial effects of calorie restriction which extends life span and reduces the incidence of cancer, cardiovascular disease (CVD), and diabetes. Here, we review the role of sirtuins (SIRT1-7) in vascular homeostasis and diseases by providing an update on the latest knowledge about their roles in endothelial damage and vascular repair mechanisms. Among all sirtuins, in the light of the numerous functions reported on SIRT1 in the vascular system, herein we discuss its roles not only in the control of endothelial cells (EC) functionality but also in other cell types beyond EC, including endothelial progenitor cells (EPC), smooth muscle cells (SMC), and immune cells. Furthermore, we also provide an update on the growing field of compounds under clinical evaluation for the modulation of SIRT1 which, at the state of the art, represents the most promising target for the development of novel drugs against CVD, especially when concomitant with type 2 diabetes.
Collapse
|
30
|
Yuan Q, Hu CP, Gong ZC, Bai YP, Liu SY, Li YJ, Jiang JL. Accelerated onset of senescence of endothelial progenitor cells in patients with type 2 diabetes mellitus: Role of dimethylarginine dimethylaminohydrolase 2 and asymmetric dimethylarginine. Biochem Biophys Res Commun 2015; 458:869-76. [DOI: 10.1016/j.bbrc.2015.02.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/10/2015] [Indexed: 11/17/2022]
|