1
|
Lv W, Hu S, Yang F, Lin D, Zou H, Zhang W, Yang Q, Li L, Chen X, Wu Y. Heme oxygenase-1: potential therapeutic targets for periodontitis. PeerJ 2024; 12:e18237. [PMID: 39430558 PMCID: PMC11488498 DOI: 10.7717/peerj.18237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Periodontitis is one of the most prevalent inflammatory disease worldwide, which affects 11% of the global population and is a major cause of tooth loss. Recently, oxidative stress (OS) has been found to be the pivital pathophysiological mechanism of periodontitis, and overactivated OS will lead to inflammation, apoptosis, pyroptosis and alveolar bone resorption. Interestingly, heme oxygenase-1 (HO-1), a rate-limiting enzyme in heme degradation, can exert antioxidant activites through its products-carbon monoxide (CO), Fe2+, biliverdin and bilirubin in the inflammatory microenvironment, thus exhibiting anti-inflammatory, anti-apoptotic, anti-pyroptosis and bone homeostasis-regulating properties. In this review, particular focus is given to the role of HO-1 in periodontitis, including the spatial-temporal expression in periodental tissues and pathophysiological mechanisms of HO-1 in periodontitis, as well as the current therapeutic applications of HO-1 targeted drugs for periodontitis. This review aims to elucidate the potential applications of various HO-1 targeted drug therapy in the management of periodontitis, investigate the influence of diverse functional groups on HO-1 and periodontitis, and pave the way for the development of a new generation of therapeutics that will benefit patients suffering from periodontitis.
Collapse
Affiliation(s)
- Weiwei Lv
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shichen Hu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fei Yang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dong Lin
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Haodong Zou
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Wanyan Zhang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qin Yang
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lihua Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaowen Chen
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Wu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
2
|
Huang Q, Gu Y, Wu J, Zhan Y, Deng Z, Chen S, Peng M, Yang R, Chen J, Xie J. DACH1 Attenuates Airway Inflammation in Chronic Obstructive Pulmonary Disease by Activating NRF2 Signaling. Am J Respir Cell Mol Biol 2024; 71:121-132. [PMID: 38587806 DOI: 10.1165/rcmb.2023-0337oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/05/2024] [Indexed: 04/09/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease of the airways characterized by impaired lung function induced by cigarette smoke (CS). Reduced DACH1 (dachshund homolog 1) expression has a detrimental role in numerous disorders, but its role in COPD remains understudied. This study aimed to elucidate the role and underlying mechanism of DACH1 in airway inflammation in COPD by measuring DACH1 expression in lung tissues of patients with COPD. Airway epithelium-specific DACH1-knockdown mice and adenoassociated virus-transfected DACH1-overexpressing mice were used to investigate the role of DACH1 and the potential for therapeutic targeting in experimental COPD caused by CS. Furthermore, we discovered a potential mechanism of DACH1 in inflammation induced by CS extract stimulation in vitro. Compared with nonsmokers and smokers without COPD, patients with COPD had reduced DACH1 expression, especially in the airway epithelium. Airway epithelium-specific DACH1 knockdown aggravated airway inflammation and lung function decline caused by CS in mice, whereas DACH1 overexpression protected mice from airway inflammation and lung function decline. DACH1 knockdown and overexpression promoted and inhibited IL-6 and IL-8 secretion, respectively, in 16HBE human bronchial epidermal cells after CS extract stimulation. NRF2 (nuclear factor erythroid 2-related factor 2) was discovered to be a novel downstream target of DACH1, which binds directly to its promoter. By activating NRF2 signaling, DACH1 induction reduced inflammation. DACH1 levels are lower in smokers and nonsmoking patients with COPD than in nonsmokers. DACH1 has protective effects against inflammation induced by CS by activating the NRF2 signaling pathway. Targeting DACH1 is a potentially viable therapeutic approach for COPD treatment.
Collapse
Affiliation(s)
- Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Jixing Wu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Zhesong Deng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Shanshan Chen
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Maocuo Peng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Ruonan Yang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Jinkun Chen
- Department of Science, Western University, London, Ontario, Canada
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| |
Collapse
|
3
|
Estarreja J, Caldeira G, Silva I, Mendes P, Mateus V. The Pharmacological Effect of Hemin in Inflammatory-Related Diseases: A Systematic Review. Biomedicines 2024; 12:898. [PMID: 38672251 PMCID: PMC11048114 DOI: 10.3390/biomedicines12040898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Hemin is clinically used in acute attacks of porphyria; however, recent evidence has also highlighted its capability to stimulate the heme oxygenase enzyme, being associated with cytoprotective, antioxidant, and anti-inflammatory effects. Indeed, current preclinical evidence emphasizes the potential anti-inflammatory role of hemin through its use in animal models of disease. Nevertheless, there is no consensus about the underlying mechanism(s) and the most optimal therapeutic regimens. Therefore, this review aims to summarize, analyze, and discuss the current preclinical evidence concerning the pharmacological effect of hemin. METHODS Following the application of the search expression and the retrieval of the articles, only nonclinical studies in vivo written in English were considered, where the potential anti-inflammatory effect of hemin was evaluated. RESULTS Forty-nine articles were included according to the eligibility criteria established. The results obtained show the preference of using 30 to 50 mg/kg of hemin, administered intraperitoneally, in both acute and chronic contexts. This drug demonstrates significant anti-inflammatory and antioxidant activities considering its capacity for reducing the expression of proinflammatory and oxidative markers. CONCLUSIONS This review highlighted the significant anti-inflammatory and antioxidant effects of hemin, providing a clearer vision for the medical community about the use of this drug in several human diseases.
Collapse
Affiliation(s)
- João Estarreja
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
| | - Gonçalo Caldeira
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
| | - Inês Silva
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Priscila Mendes
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
| | - Vanessa Mateus
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
4
|
Chen Y, Wu M. Exploration of molecular mechanism underlying protective effect of astragaloside IV against radiation-induced lung injury by suppressing ferroptosis. Arch Biochem Biophys 2023; 745:109717. [PMID: 37573925 DOI: 10.1016/j.abb.2023.109717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
In this study, we aimed to investigate the pharmacological effects and underlying mechanisms of astragaloside IV (AS IV) against radiation-induced lung injury. We established experimental models of radiation-induced lung injury and observed the effect of AS IV on cell viability, cell death, inflammatory responses and ferroptosis. Accordingly, we found that AS IV restored the suppressed cell viability and promoted cell death induced by X-ray irradiation. Moreover, radiation-induced up-regulation of lactate dehydrogenase (LDH) release, ferroptosis, reactive oxygen species (ROS) and inflammatory responses were also restored by AS IV in a dose-dependent manner. Besides, in radiation-induced lung injury C57BL/6 mice, AS IV evidently alleviated lung injury and promoted the survival rate of lung-injured mice. And the ferroptosis level in mice lung tissues were also alleviated by the administration of AS IV in a dose-dependent manner. As a conclusion, by comparing the changes of ferroptosis, ROS and inflammatory responses in the experimental models, we validated that AS IV could inhibit inflammatory responses and cell injury in the treatment of radiation-induced lung injury by suppressing ferroptosis. This finding not only find potentially effective treatments to mitigate radiation-induced lung injury, but also provides supporting evidence for clinical application of AS IV to improve the management of radiation-treated patients and minimize the associated lung complications or other adverse effects. Moreover, as inflammation and ROS are key contributors to tissue damage in various diseases, our study suggested the potential application of AS IV in the treatments for other diseases.
Collapse
Affiliation(s)
- Yunlong Chen
- Department of Oncology, Rudong County Hospital of Traditional Chinese Medicine, Rudong, Jiangsu, 226400, China
| | - Mianhua Wu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China.
| |
Collapse
|
5
|
Racanelli AC, Choi AMK. CEACAM6: A Novel Marker of Chronic Obstructive Pulmonary Disease Susceptibility? Am J Respir Crit Care Med 2023; 207:1546-1548. [PMID: 37219336 PMCID: PMC10273108 DOI: 10.1164/rccm.202303-0610ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Affiliation(s)
- Alexandra C Racanelli
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I Weill Department of Medicine, Weill Cornell Medicine New York, New York, USA and New York Presbyterian Hospital-Weill Cornell Medical Center New York, New York, USA
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I Weill Department of Medicine, Weill Cornell Medicine New York, New York, USA and New York Presbyterian Hospital-Weill Cornell Medical Center New York, New York, USA
| |
Collapse
|
6
|
Metabolism-Related Gene TXNRD1 Regulates Inflammation and Oxidative Stress Induced by Cigarette Smoke through the Nrf2/HO-1 Pathway in the Small Airway Epithelium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7067623. [PMID: 36578523 PMCID: PMC9792251 DOI: 10.1155/2022/7067623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Chronic obstructive pulmonary disease (COPD), a small airway disease, is regarded as a metabolic disorder. To further uncover the metabolic profile of COPD patients, it is necessary to identify metabolism-related differential genes in small airway epithelium (SAE) of COPD. Metabolism-related differential genes in SAE between COPD patients and nonsmokers were screened from GSE128708 and GSE20257 datasets. KEGG, GO, and PPI analyses were performed to evaluate the pathway enrichment, term enrichment, and protein interaction of candidate metabolism-related differential genes, respectively. RT-PCR was used to verify the mRNA expression of the top ten differential genes. Western blotting was used to evaluate the protein expression of TXNRD1. TXNRD1 inhibitor auranofin (AUR) was used to assess the impact of TXNRD1 on oxidative stress and inflammation induced by cigarette smoke extraction (CSE). Twenty-four metabolism-related differential genes were selected. ALDH3A1, AKR1C3, CYP1A1, AKC1C1, CPY1B1, and TXNRD1 in the top ten genes were significantly upregulated after CSE simulation for 24 h in human bronchial epithelial (16HBE) cells. Among them, CYP1A1 and TXNRD1 also have a significant upregulation in primary SAE after simulation of CSE for 24 h. The overexpression of protein TXNRD1 has also been detected in 16HBE cells, primary SAE stimulated with CSE, and mouse lung exposed to cigarette smoke (CS). Additionally, inhibition of TXNRD1 with 0.1 μM AUR alleviated the expression of IL-6 and reactive oxygen species (ROS) induced by CSE by activating the Nrf2/HO-1 pathway in 16HBE cells. This study identified twenty-four metabolism-related differential genes associated with COPD. TXNRD1 might participate in the oxidative stress and inflammation induced by CS by regulating the activation of the Nrf2/HO-1 pathway.
Collapse
|
7
|
Huang D, Su L, He C, Chen L, Huang D, Peng J, Yang F, Cao Y, Luo X. Pristimerin alleviates cigarette smoke-induced inflammation in chronic obstructive pulmonary disease via inhibiting NF-κB pathway. Biochem Cell Biol 2022; 100:223-235. [PMID: 35833632 DOI: 10.1139/bcb-2021-0251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cigarette smoke (CS) is a risk factor for chronic obstructive pulmonary disease (COPD), which can exacerbate inflammation and oxidative stress. Pristimerin (Pris) is a natural compound with antioxidant and anti-inflammatory effects. We managed to evaluate the protective effects of Pris on CS-induced COPD. The CS-induced COPD mice model and cell model were constructed. The effects of Pris treatment on lung function, inflammatory cell infiltration, myeloperoxidase (MPO), and pathological changes of lung tissues in mice model were evaluated. The impacts of Pris treatment on inflammatory factors, chemokines, and oxidative stress parameters in mice lung tissues and cells were determined by kits. The viability of human bronchial epithelial cells after Pris treatment was tested by CCK-8. The activation of NF-κB pathway was confirmed by Western blot and immunofluorescence. CS treatment impaired lung function, reduced weight of mice, and enhanced inflammatory cell infiltration, MPO, and lung tissue damage, but these effects of CS were reversed by Pris treatment. Furthermore, Pris treatment downregulated the levels of malondialdehyde, IL-6, IL-1β, TNF-α, CXCL1, and CXLC2, but upregulated superoxide dismutase and catalase levels. Pris treatment could overturn CS-induced activation of the NF-κB pathway. Pris alleviates CS-induced COPD by inactivating NF-κB pathway.
Collapse
Affiliation(s)
- Dongsheng Huang
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen City 518110, Guangdong Province, China
| | - Lianhui Su
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen City 518110, Guangdong Province, China
| | - Chaowen He
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen City 518110, Guangdong Province, China
| | - Licheng Chen
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen City 518110, Guangdong Province, China
| | - Dongxuan Huang
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen City 518110, Guangdong Province, China
| | - Jianfeng Peng
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen City 518110, Guangdong Province, China
| | - Fan Yang
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen City 518110, Guangdong Province, China
| | - Yahui Cao
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen City 518110, Guangdong Province, China
| | - Xiaohua Luo
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen City 518110, Guangdong Province, China
| |
Collapse
|
8
|
Ali FF, Mokhemer SA, Elroby Ali DM. Administration of hemin ameliorates ovarian ischemia reperfusion injury via modulation of heme oxygenase-1 and p-JNK/p-NF-κBp65/iNOS signaling pathway. Life Sci 2022; 296:120431. [PMID: 35218766 DOI: 10.1016/j.lfs.2022.120431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022]
Abstract
AIMS Ovarian torsion is the fifth common gynecological emergency that can affect females of all ages particularly during reproductive age and its management by detorsion leads to ovarian ischemia reperfusion (IR) injury. Therefore, prophylactic measures are required to protect the ovarian function after detorsion. So that, our study aimed to assess the effect and underlying mechanisms of heme oxygenase-1 (HO-1) inducer; hemin against ovarian damage induced by IR injury in rats. MAIN METHODS Female rats were divided into: sham group, hemin group, ovarian IR (OIR) groups with and without hemin treatment. Serum levels of reduced glutathione (GSH) and interleukin 1 β (IL-1β) were measured in addition to ovarian levels of malondialdehyde (MDA), nitric oxide (NO) and superoxide dismutase (SOD). Ovarian phospho-Janus kinase (p-JNK) levels and gene expressions of HO-1 and inducible nitric oxide synthase (iNOS) were determined. Moreover, histopathological changes and expressions of phospho-nuclear factor kappa B p65 (p-NF-κB p65) and cleaved caspase-3 were done. KEY FINDINGS Treatment of OIR rats with hemin led to significant attenuation of ovarian damage through histological examination which was associated with significant increase in ovarian expression of HO-1, ovarian SOD and serum GSH levels with significant decrease in ovarian p-JNK levels, expressions of p-NF-κB p65, iNOS and cleaved caspase-3 in addition to serum IL-1β levels. SIGNIFICANCE The protective effect of hemin can be attributed to the increased expression of HO-1 which showed antioxidant, anti-inflammatory and anti-apoptotic effects. Therefore, hemin can be administered to prevent ovarian IR injury which occurs after detorsion.
Collapse
Affiliation(s)
- Fatma F Ali
- Medical Physiology Department, Faculty of Medicine, Minia University, Minia, Egypt.
| | - Sahar A Mokhemer
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Doaa M Elroby Ali
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| |
Collapse
|
9
|
Hoseinynejad K, Radan M, Dianat M, Nejaddehbashi F. Adipose-derived mesenchymal stem cells protects renal function in a rat model of emphysema. Tissue Cell 2021; 73:101613. [PMID: 34364156 DOI: 10.1016/j.tice.2021.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVE The link between lung disease and kidney disorders has already been confirmed. Previous studies have documented that obstructive pulmonary disease is an independent predictor of decreased renal function, which reduces glomerular filtration rate. Recently, mesenchymal stem cells are the most important cell used in cell therapy. Accordingly, the present experiment was designed to evaluate the efficacy of adipose-derived mesenchymal stem cells (AMSCs) on improvement of renal function in elastase induced-pulmonary emphysema rats. MATERIALS AND METHODS Thirty male Sprague-Dawley rats divided into the 3 groups. Following intra-tracheal administration of elastase, the in vivo emphysema model established and confirmed according to the specific markers. Subsequently, systemic AMSCs injection was developed. the kidney injuries markers such as Blood urea nitrogen (BUN), creatinine, sodium and potassium as well as the kidney histopathologic parameters were assessed in all groups. Moreover, the oxidative stress markers levels including Malondialdehyde (MDA), Total antioxidant capacity (TAC), Catalase (CAT) and Glutathione peroxidase (GPx) were measured in kidney tissue and also inflammatory cytokines including IL-10, IL-6, and IFN-Ƴ were assessed in serum samples. RESULTS The marked rise in kidney injuries markers were observed which showed by enhancement of BUN and Creatinine levels in emphysema rats compared to the control. Furthermore, the results demonstrated increases in MDA levels and decreases in antioxidant activity which was in line with increases in inflammation cytokines in renal tissue. Conversely, AMSCs treatment improved renal function as shown by the decreases BUN, Creatinine and proteinuria. Furthermore, renal histological assay demonstrate improvement in glomerular and tubular damage and inflammatory cells accumulation. CONCLUSIONS Our results documented the promising kidney-protective properties of Adipose-Derived Mesenchymal Stem Cells in the kidney injuries induced by emphysema.
Collapse
Affiliation(s)
- Khojasteh Hoseinynejad
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Radan
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshteh Nejaddehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Refaie MMM, Shehata S, Ibrahim RA, Bayoumi AMA, Abdel-Gaber SA. Dose-Dependent Cardioprotective Effect of Hemin in Doxorubicin-Induced Cardiotoxicity Via Nrf-2/HO-1 and TLR-5/NF-κB/TNF-α Signaling Pathways. Cardiovasc Toxicol 2021; 21:1033-1044. [PMID: 34510376 DOI: 10.1007/s12012-021-09694-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022]
Abstract
Doxorubicin (DOX) is one of the most widely used chemotherapeutic drugs, but its cardiotoxicity has been shown to be a dose-restricting factor during therapy. Finding new agents for reducing these complications is still in critical need. The current study aimed to evaluate the possible cardioprotective effect of hemin (HEM) in DOX-induced cardiotoxicity and exploring the role of toll like receptor-5/nuclear factor kappa-B/tumor necrosis factor-alpha (TLR-5/NF-κB/TNF-α) and nuclear factor erythroid 2-related factor-2/hemeoxygenase-1 (Nrf-2/HO-1) signaling pathways in mediating such effect. Wistar albino rats were randomly divided into five groups. They were administered DOX by interaperitoneal (i.p.) injection (15 mg/kg) on the 5th day of the experiment with or without HEM in different doses (2.5, 5, 10 mg/kg/day) i.p. for 7 days. Results showed that the DOX group had cardiotoxicity as manifested by a significant increase in cardiac enzymes, malondialdehyde (MDA), TLR-5, NF-κB, TNF-α, and cleaved caspase-3 levels with toxic histopathological changes. Based on these findings, HEM succeeded in reducing DOX-induced cardiotoxicity in a dose-dependent effect by stimulation of Nrf-2/HO-1 and inhibition of TLR-5/NF-κB/TNF-α pathways with subsequent antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Marwa M M Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt.
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| | - Randa Ahmed Ibrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| | - Asmaa M A Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511, Egypt
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Seham A Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| |
Collapse
|
11
|
Sohrabi F, Dianat M, Badavi M, Radan M, Mard SA. Gallic acid suppresses inflammation and oxidative stress through modulating Nrf2-HO-1-NF-κB signaling pathways in elastase-induced emphysema in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56822-56834. [PMID: 34080114 DOI: 10.1007/s11356-021-14513-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/17/2021] [Indexed: 05/16/2023]
Abstract
Emphysema is associated with an abnormal airspace enlargement distal to the terminal bronchioles accompanied by destructive changes in the alveolar walls and chronic inflammation. Air pollution can cause respiratory diseases such as chronic obstructive pulmonary disease (COPD) and emphysema in urban areas. As a natural antioxidant compound, gallic acid may be effective in controlling inflammation and preventing disease progression. In this research, we investigated the protective role of gallic acid in the inflammatory process and the possible signaling pathway in the elastase-induced emphysema. Forty-eight rats were divided into six different groups including the following: control, gallic acid (7.5, 15, and 30 mg/kg), porcine pancreatic elastase (PPE), and PPE+gallic acid 30 mg/kg. Oxidative stress indexes such as malondialdehyde and antioxidant enzyme activity were measured in all groups. The gene expression levels of heme oxygenase-1 (HO-1), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were determined as key regulators of antioxidant and inflammation system. The PPE group showed pulmonary edema and a significant change in arterial blood gas values, which was associated with decreased antioxidant activity of enzymes and changes in NF-κB, HO-1, and Nrf2 gene expression in comparison to the control group. Co-treatment with gallic acid preserved all these changes approximately to the normal levels. The results confirmed that elastase-induced emphysema leads to lung injuries, which are associated with oxidative stress and inflammation. Also, the results suggested that gallic acid as a natural antioxidant agent can modulate the Nrf2 signaling pathway to protect the lung against elastase-induced emphysema. Therefore, we documented the evidence for the importance of NF-κB inhibitors and Nrf2 activators as a target for new treatments in respiratory dysfunction caused by oxidative agents.
Collapse
Affiliation(s)
- Farzaneh Sohrabi
- Persian Gulf Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Persian Gulf Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Persian Gulf Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Physiology, Faculty of Medicine, Persian Gulf Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad Badavi
- Persian Gulf Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Persian Gulf Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Radan
- Persian Gulf Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Persian Gulf Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Persian Gulf Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Persian Gulf Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Yu X, Cai T, Fan L, Liang Z, Du Q, Wang Q, Yang Z, Vlahos R, Wu L, Lin L. The traditional herbal formulation, Jianpiyifei II, reduces pulmonary inflammation induced by influenza A virus and cigarette smoke in mice. Clin Sci (Lond) 2021; 135:1733-1750. [PMID: 34236078 DOI: 10.1042/cs20210050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a worldwide chronic inflammatory lung disease, and influenza A virus (IAV) infection is a common cause of acute exacerbations of COPD (AECOPD). Therefore, targeting viral infections represents a promising strategy to prevent the occurrence and development of inflammatory flare ups in AECOPD. Jianpiyifei II (JPYFII) is a traditional herbal medicine used in China to treat patients with COPD, and its clinical indications are not well understood. However, investigation of the anti-inflammatory effects and underlying mechanism using an animal model of smoking have been reported in a previous study by our group. In addition, some included herbs, such as Radix astragali and Radix aupleuri, were reported to exhibit antiviral effects. Therefore, the aim of the present study was to investigate whether JPYFII formulation relieved acute inflammation by clearing the IAV in a mouse model that was exposed to cigarette smoke experimentally. JPYFII formulation treatment during smoke exposure and IAV infection significantly reduced the number of cells observed in bronchoalveolar lavage fluid (BALF), expression of proinflammatory cytokines, chemokines, superoxide production, and viral load in IAV-infected and smoke-exposed mice. However, JPYFII formulation treatment during smoke exposure alone did not reduce the number of cells in BALF or the expression of Il-6, Tnf-a, and Il-1β. The results demonstrated that JPYFII formulation exerted an antiviral effect and reduced the exacerbation of lung inflammation in cigarette smoke (CS)-exposed mice infected with IAV. Our results suggested that JPYFII formulation could potentially be used to treat patients with AECOPD associated with IAV infection.
Collapse
Affiliation(s)
- Xuhua Yu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Tiantian Cai
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Long Fan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Ziyao Liang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Qiuling Du
- Guangdong Key laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510180, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510180, China
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Lei Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Lin Lin
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
13
|
Zhang C, Yuan Y, Ou M. Mangiferin attenuates cigarette smoke-induced chronic obstructive pulmonary disease in male albino rats. Microvasc Res 2021; 138:104208. [PMID: 34139206 DOI: 10.1016/j.mvr.2021.104208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022]
Abstract
We analyzed the ability of mangiferin to suppress cigarette smoke-induced chronic obstructive pulmonary disease. Control rats showed a marked decrease in the ratio of the forced expiratory volume at 0.1 s to forced vital capacity. The decreases in the peak expiratory flow and maximal mid-expiratory flow indicated airway remodeling and enlargement. The expression levels of superoxide dismutase (SOD), heme oxygenase-1 (HO-1), γ-glutamylcysteine synthetase, nuclear factor erythroid 2-related factor 2, and activating transcription factor 4 were increased in the control rats. The levels of oxidative stress, malondialdehyde, and reactive oxygen species peaked after 24 weeks, whereas the SOD and HO-1 levels and the total antioxidant capacity were reduced in control rats. Mangiferin restored the levels of reactive oxygen species, malondialdehyde, SOD, HO-1, and T-AOC to near normal. Increased numbers of infiltrating inflammatory cells were observed in control rats but were significantly reduced by mangiferin. In addition, edema and airway inflammation were reduced by mangiferin.
Collapse
Affiliation(s)
- Chao Zhang
- The Sixth Department of Health Care, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100048, China
| | - Yi Yuan
- Beijing Academy of Food Sciences, Beijing 100068, China
| | - Min Ou
- The Sixth Department of Health Care, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
14
|
Yang CC, Yang CM. Chinese Herbs and Repurposing Old Drugs as Therapeutic Agents in the Regulation of Oxidative Stress and Inflammation in Pulmonary Diseases. J Inflamm Res 2021; 14:657-687. [PMID: 33707963 PMCID: PMC7940992 DOI: 10.2147/jir.s293135] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Several pro-inflammatory factors and proteins have been characterized that are involved in the pathogenesis of inflammatory diseases, including acute respiratory distress syndrome, chronic obstructive pulmonary disease, and asthma, induced by oxidative stress, cytokines, bacterial toxins, and viruses. Reactive oxygen species (ROS) act as secondary messengers and are products of normal cellular metabolism. Under physiological conditions, ROS protect cells against oxidative stress through the maintenance of cellular redox homeostasis, which is important for proliferation, viability, cell activation, and organ function. However, overproduction of ROS is most frequently due to excessive stimulation of either the mitochondrial electron transport chain and xanthine oxidase or reduced nicotinamide adenine dinucleotide phosphate (NADPH) by pro-inflammatory cytokines, such as interleukin-1β and tumor necrosis factor α. NADPH oxidase activation and ROS overproduction could further induce numerous inflammatory target proteins that are potentially mediated via Nox/ROS-related transcription factors triggered by various intracellular signaling pathways. Thus, oxidative stress is considered important in pulmonary inflammatory processes. Previous studies have demonstrated that redox signals can induce pulmonary inflammatory diseases. Thus, therapeutic strategies directly targeting oxidative stress may be effective for pulmonary inflammatory diseases. Therefore, drugs with anti-inflammatory and anti-oxidative properties may be beneficial to these diseases. Recent studies have suggested that traditional Chinese medicines, statins, and peroxisome proliferation-activated receptor agonists could modulate inflammation-related signaling processes and may be beneficial for pulmonary inflammatory diseases. In particular, several herbal medicines have attracted attention for the management of pulmonary inflammatory diseases. Therefore, we reviewed the pharmacological effects of these drugs to dissect how they induce host defense mechanisms against oxidative injury to combat pulmonary inflammation. Moreover, the cytotoxicity of oxidative stress and apoptotic cell death can be protected via the induction of HO-1 by these drugs. The main objective of this review is to focus on Chinese herbs and old drugs to develop anti-inflammatory drugs able to induce HO-1 expression for the management of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan, 33302, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, 33302, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan.,Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung, 40402, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
15
|
Fukuzaki S, Righetti RF, Santos TMD, Camargo LDN, Aristóteles LRCRB, Souza FCR, Garrido AC, Saraiva-Romanholo BM, Leick EA, Prado CM, Martins MDA, Tibério IDFLC. Preventive and therapeutic effect of anti-IL-17 in an experimental model of elastase-induced lung injury in C57Bl6 mice. Am J Physiol Cell Physiol 2020; 320:C341-C354. [PMID: 33326311 DOI: 10.1152/ajpcell.00017.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an important health care issue, and IL-17 can modulate inflammatory responses. We evaluated preventive and therapeutic effect of anti-interleukin (IL)-17 in a model of lung injury induced by elastase, using 32 male C57Bl6 mice, divided into 4 groups: SAL, ELASTASE CONTROL (EC), ELASTASE + PREVENTIVE ANTI-IL-17 (EP), and ELASTASE + THERAPEUTIC ANTI-IL-17 (ET). On the 29th day, animals were anesthetized with thiopental, tracheotomized, and placed on a ventilator to evaluate lung mechanical, exhaled nitric oxide (eNO), and total cells of bronchoalveolar lavage fluid was collected. We performed histological techniques, and linear mean intercept (Lm) was analyzed. Both treatments with anti-IL-17 decreased respiratory resistance and elastance, airway resistance, elastance of pulmonary parenchyma, eNO, and Lm compared with EC. There was reduction in total cells and macrophages in ET compared with EC. Both treatments decreased nuclear factor-кB, inducible nitric oxide synthase, matrix metalloproteinase (MMP)-9, MMP-12, transforming growth factor-β, tumor necrosis factor-α, neutrophils, IL-1β, isoprostane, and IL-17 in airways and alveolar septa; collagen fibers, decorin and lumican in airways; and elastic fibers and fibronectin in alveolar septa compared with EC. There was reduction of collagen fibers in alveolar septa and biglycan in airways in EP and a reduction of eNO synthase in airways in ET. In conclusion, both treatments with anti-IL-17 contributed to improve most of parameters evaluated in inflammation and extracellular matrix remodeling in this model of lung injury.
Collapse
Affiliation(s)
- Silvia Fukuzaki
- School of Medicine-Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Renato Fraga Righetti
- School of Medicine-Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil.,Hospital Sírio-Libanês, São Paulo, Brazil
| | - Tabata Maruyama Dos Santos
- School of Medicine-Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil.,Hospital Sírio-Libanês, São Paulo, Brazil
| | - Leandro do Nascimento Camargo
- School of Medicine-Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil.,Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Flavia C R Souza
- School of Medicine-Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Aurelio C Garrido
- School of Medicine-Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Beatriz Mangueira Saraiva-Romanholo
- School of Medicine-Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil.,Department of Medicine (LIM 20), Hospital Public Employee of São Paulo (Instituto de Assistência Médica ao Servidor Público Estadual de São Paulo), University City of São Paulo, São Paulo, Brazil
| | - Edna Aparecida Leick
- School of Medicine-Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Carla Máximo Prado
- School of Medicine-Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil.,Department of Bioscience, Federal University of São Paulo, Santos, São Paulo, Brazil
| | | | | |
Collapse
|
16
|
Chew S, Lampinen R, Saveleva L, Korhonen P, Mikhailov N, Grubman A, Polo JM, Wilson T, Komppula M, Rönkkö T, Gu C, Mackay-Sim A, Malm T, White AR, Jalava P, Kanninen KM. Urban air particulate matter induces mitochondrial dysfunction in human olfactory mucosal cells. Part Fibre Toxicol 2020; 17:18. [PMID: 32487172 PMCID: PMC7268298 DOI: 10.1186/s12989-020-00352-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The adverse effects of air pollutants including particulate matter (PM) on the central nervous system is increasingly reported by epidemiological, animal and post-mortem studies in the last decade. Oxidative stress and inflammation are key consequences of exposure to PM although little is known of the exact mechanism. The association of PM exposure with deteriorating brain health is speculated to be driven by PM entry via the olfactory system. How air pollutants affect this key entry site remains elusive. In this study, we investigated effects of urban size-segregated PM on a novel cellular model: primary human olfactory mucosal (hOM) cells. RESULTS Metabolic activity was reduced following 24-h exposure to PM without evident signs of toxicity. Results from cytometric bead array suggested a mild inflammatory response to PM exposure. We observed increased oxidative stress and caspase-3/7 activity as well as perturbed mitochondrial membrane potential in PM-exposed cells. Mitochondrial dysfunction was further verified by a decrease in mitochondria-dependent respiration. Transient suppression of the mitochondria-targeted gene, neuronal pentraxin 1 (NPTX1), was carried out, after being identified to be up-regulated in PM2.5-1 treated cells via RNA sequencing. Suppression of NPTX1 in cells exposed to PM did not restore mitochondrial defects resulting from PM exposure. In contrast, PM-induced adverse effects were magnified in the absence of NPTX1, indicating a critical role of this protein in protection against PM effects in hOM cells. CONCLUSION Key mitochondrial functions were perturbed by urban PM exposure in a physiologically relevant cellular model via a mechanism involving NPTX1. In addition, inflammatory response and early signs of apoptosis accompanied mitochondrial dysfunction during exposure to PM. Findings from this study contribute to increased understanding of harmful PM effects on human health and may provide information to support mitigation strategies targeted at air pollution.
Collapse
Affiliation(s)
- Sweelin Chew
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riikka Lampinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Liudmila Saveleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nikita Mikhailov
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alexandra Grubman
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Trevor Wilson
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | | | - Teemu Rönkkö
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Cheng Gu
- School of the Environment, Nanjing University, Nanjing, China
| | - Alan Mackay-Sim
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anthony R White
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
17
|
Sheng W, Yang H, Niu Z, Yin H. Anti-apoptosis effect of heme oxygenase-1 on lung injury after cardiopulmonary bypass. J Thorac Dis 2020; 12:1393-1403. [PMID: 32395277 PMCID: PMC7212168 DOI: 10.21037/jtd.2020.03.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background This study aimed to investigate the anti-apoptosis effects of heme oxygenase-1 (HO-1) on lung injury (LI) after cardiopulmonary bypass (CPB) and its probable mechanisms. Methods One hundred and forty-four male Wistar rats were divided into 3 groups randomly: group A (control group), group B (cobalt protoporphyrin, CoPP), and group C [CoPP plus zinc protoporphyrin (ZnPP)]. Lung tissues were harvested at different time: before CPB (T0), 0 min after CPB (T1), 2 h after CPB (T2), 6 h (T3), 12 h (T4), and 24 h (T5). Results The HO-1 protein expressions in lung tissue in group B were higher than those in group A and group C in any given time, and the same as HO-1 activity (P<0.05). The expressions of Bcl-2 protein in group B at all time point after bypass were higher than those in group A and group C, and the difference was statistically significant (P<0.05). Apoptosis index (AI) in group B at any time point after bypass were lower than those in group A and group C (P<0.05). Conclusions CoPP can significantly increase the expression of HO-1 protein in lung tissue. HO-1 is still highly expressed after CPB, so as to play an important part in anti-apoptosis, and reduce LI.
Collapse
Affiliation(s)
- Wei Sheng
- Department of Cardiovascular Surgery, Qingdao Municipal Hospital, Medical College of Qingdao University, Qingdao 266071, China
| | - Haiqin Yang
- Department of Mental Intervention, Qingdao Preferential Hospital, Qingdao 266071, China
| | - Zhaozhuo Niu
- Department of Cardiovascular Surgery, Qingdao Municipal Hospital, Medical College of Qingdao University, Qingdao 266071, China
| | - Hong Yin
- Department of Cardiovascular Surgery, Qingdao Municipal Hospital, Medical College of Qingdao University, Qingdao 266071, China
| |
Collapse
|
18
|
Ali FF, Abdelzaher WY, Ibrahim RA, Elroby Ali DM. Amelioration of estrogen-induced endometrial hyperplasia in female rats by hemin via heme-oxygenase-1 expression, suppression of iNOS, p38 MAPK, and Ki67. Can J Physiol Pharmacol 2019; 97:1159-1168. [PMID: 31505119 DOI: 10.1139/cjpp-2019-0287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although heme oxygenase-1 (HO-1) is part of an endogenous defense system implicated in the homeostatic response, its role in cell proliferation and tumor progression is still controversial. Endometrial hyperplasia (EH) is associated with high risk of endometrial cancer (EC). Therefore, we aimed to evaluate the effect of hemin, a HO-1 inducer, against EH. Thirty-two female rats (60-70 days old) were divided into 4 groups treated for 1 week: vehicle control group, hemin group (25 mg/kg; i.p. 3 times/week), estradiol valerate (EV) group (2 mg/kg per day, p.o.), and hemin plus EV group. Sera were obtained for reduced glutathione level. Uterine malondialdehyde, superoxide dismutase, total nitrite/nitrate, and interleukin-1β levels were estimated. HO-1 and p38 mitogen-activated protein kinase expressions were obtained in uterine tissue. Uterine histological and immunohistochemical assessment of iNOS and Ki67 were also done. Results demonstrated that upregulation of HO-1 expression in hemin plus EV rats led to amelioration of EH which was confirmed with histological examination. This was associated with significant decrease in oxidative stress parameters, p38 mitogen-activated protein kinase expression, and interleukin-1β level. Also, uterine iNOS and Ki67 expressions were markedly suppressed. In conclusion, upregulation of HO-1 expression via hemin has ameliorative effect against EH through its antioxidant, anti-inflammatory, and antiproliferative actions.
Collapse
Affiliation(s)
- Fatma F Ali
- Department of Medical Physiology, Faculty of Medicine, Minia University, Egypt
| | | | - Randa Ahmed Ibrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Egypt
| | | |
Collapse
|
19
|
Li D, Liu Y, Xu R, Jia X, Li X, Huo C, Wang X. RETRACTED ARTICLE: Astragalus polysaccharide alleviates H2O2-triggered oxidative injury in human umbilical vein endothelial cells via promoting KLF2. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2188-2195. [PMID: 31159593 DOI: 10.1080/21691401.2019.1621886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Dongtao Li
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yan Liu
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Rong Xu
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xin Jia
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xing Li
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Cong Huo
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
20
|
Caffeic acid phenethyl ester protects against oxidative stress and dampens inflammation via heme oxygenase 1. Int J Oral Sci 2019; 11:6. [PMID: 30783082 PMCID: PMC6381107 DOI: 10.1038/s41368-018-0039-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/18/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
Periodontal disease is associated with chronic oxidative stress and inflammation. Caffeic acid phenethyl ester (CAPE), which is a potent inducer of heme oxygenase 1 (HO1), is a central active component of propolis, and the application of propolis improves periodontal status in diabetic patients. Here, primary murine macrophages were exposed to CAPE. Target gene expression was assessed by whole-genome microarray, RT-PCR and Western blotting. The antioxidative and anti-inflammatory activities of CAPE were examined by exposure of the cells to hydrogen peroxide, saliva and periodontal pathogens. The involvement of HO1 was investigated with the HO1 inhibitor tin protoporphyrin (SnPP) and knockout mice for Nrf2, which is a transcription factor for detoxifying enzymes. CAPE increased HO1 and other heat shock proteins in murine macrophages. A p38 MAPK inhibitor and Nrf2 knockout attenuated CAPE-induced HO1 expression in macrophages. CAPE exerted strong antioxidative activity. Additionally, CAPE reduced the inflammatory response to saliva and periodontal pathogens. Blocking HO1 decreased the antioxidative activity and attenuated the anti-inflammatory activity of CAPE. In conclusion, CAPE exerted its antioxidative effects through the Nrf2-mediated HO1 pathway and its anti-inflammatory effects through NF-κB inhibition. However, preclinical models evaluating the use of CAPE in periodontal inflammation are necessary in future studies. Propolis, also known as ‘honeybee glue,’ may protect teeth and gums against periodontal disease. In periodontal disease, chronic inflammation and oxidative damage harm gum tissue and lead to tooth loss; propolis has been shown to improve periodontal health for patients with diabetes. Bees make propolis by mixing beeswax, honey, plant resins and their own saliva, and use it to patch honeycomb and prevent growth of microbes in the hive. Reinhard Gruber of the Department of Oral Biology at the Medical University of Vienna and of the Department of Periodontology, University of Bern and co-workers investigated the effects of one of propolis’ active ingredients, caffeic acid phenethyl ester (CAPE), on oxidative stress and inflammation. They found that CAPE reduced oxidative damage and dampened inflammation; further investigation revealed the genetic basis of the beneficial effects, paving the way for future clinical studies. These results may help identify alternative treatments for periodontal disease.
Collapse
|
21
|
de Groot LES, van der Veen TA, Martinez FO, Hamann J, Lutter R, Melgert BN. Oxidative stress and macrophages: driving forces behind exacerbations of asthma and chronic obstructive pulmonary disease? Am J Physiol Lung Cell Mol Physiol 2018; 316:L369-L384. [PMID: 30520687 DOI: 10.1152/ajplung.00456.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress is a common feature of obstructive airway diseases like asthma and chronic obstructive pulmonary disease (COPD). Lung macrophages are key innate immune cells that can generate oxidants and are known to display aberrant polarization patterns and defective phagocytic responses in these diseases. Whether these characteristics are linked in one way or another and whether they contribute to the onset and severity of exacerbations in asthma and COPD remain poorly understood. Insight into oxidative stress, macrophages, and their interactions may be important in fully understanding acute worsening of lung disease. This review therefore highlights the current state of the art regarding the role of oxidative stress and macrophages in exacerbations of asthma and COPD. It shows that oxidative stress can attenuate macrophage function, which may result in impaired responses toward exacerbating triggers and may contribute to exaggerated inflammation in the airways.
Collapse
Affiliation(s)
- Linsey E S de Groot
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands
| | - T Anienke van der Veen
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen , Groningen , The Netherlands.,Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Fernando O Martinez
- Department of Biochemical Sciences, University of Surrey , Guildford , United Kingdom
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands
| | - René Lutter
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam , Amsterdam , The Netherlands
| | - Barbro N Melgert
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen , Groningen , The Netherlands.,Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
22
|
Baicalin Exerts Anti-Airway Inflammation and Anti-Remodelling Effects in Severe Stage Rat Model of Chronic Obstructive Pulmonary Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7591348. [PMID: 30402133 PMCID: PMC6196890 DOI: 10.1155/2018/7591348] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a worldwide epidemic. Current approaches are disappointing due to limited improvement of the disease development. The present study established 36-week side stream cigarette smoke induced rat model of COPD with advanced stage feature and evaluted the effects of baicalin on the model. Fifty-four Sprague–Dawley rats were randomly divided into six groups including room air control, cigarette smoke exposure, baicalin (40 mg/kg, 80 mg/kg, and 160 mg/kg), and budesonide used as a positive control. Rats were exposed to cigarette smoke from 3R4F research cigarettes. Pulmonary function was evaluated and pathological changes were also observed. Cytokine level related to airway inflammation and remodelling in blood serum, bronchoalveolar lavage fluid, and lung tissue was determined. Blood gases and HPA axis function were also examined, and antioxidant levels were quantified. Results showed that, after treatment with baicalin, lung function was improved and histopathological changes were ameliorated. Baicalin also regulated proinflammatory and anti-inflammatory balance and also airway remodelling and anti-airway remodelling factors in blood serum, bronchoalveolar lavage fluid, and lung tissue. Antioxidant capacity was also increased after treatment with baicalin in COPD rat model. HPA axis function was improved in baicalin treated groups as compared to model group. Therefore, baicalin exerts lung function protection, proinflammatory and anti-inflammatory cytokine regulation, anti-airway remodelling, and antioxidant role in long term CS induced COPD model.
Collapse
|
23
|
Dai Y, Cheng X, Yu J, Chen X, Xiao Y, Tang F, Li Y, Wan S, Su W, Liang D. Hemin Promotes Corneal Allograft Survival Through the Suppression of Macrophage Recruitment and Activation. ACTA ACUST UNITED AC 2018; 59:3952-3962. [DOI: 10.1167/iovs.17-23327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ye Dai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaokang Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yichen Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fen Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yingqi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shangtao Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Liu J, Guo L, Zhang K, Song Q, Wei Q, Bian Q, Liang T, Niu J, Luo B. The probable roles of valsartan in alleviating chronic obstructive pulmonary disease following co-exposure to cold stress and fine particulate matter. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:230-236. [PMID: 29775776 DOI: 10.1016/j.etap.2018.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Angiotensin II (ANG II) might play an important role in the co-effects of cold stress and fine particulate matter (PM2.5) on chronic obstructive pulmonary disease (COPD). The purpose of this study is to evaluate the roles of valsartan in alleviating COPD following co-exposure to cold stress and PM2.5. Both the two intervention factors are carried out upon COPD rats with the intervention of valsartan. Blockade of angiotensin receptor by valsartan decreases the levels of malondialdehyde in the normal temperature and tumor necrosis factor-α under cold stress significantly. When treated with valsartan and PM2.5 simultaneously, the expression of 8-hydroxy-2-deoxyguanosine, nuclear factor kappa B and heme oxygenase-1 decrease significantly in the group of cold stress. In conclusion, these results indicate that valsartan might relieve the co-effects of cold stress and PM2.5 on COPD rat lung to some degree.
Collapse
Affiliation(s)
- Jiangtao Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Lei Guo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Kai Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Quanquan Song
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Qiaozhen Wei
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Qin Bian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Tingting Liang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jingping Niu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
25
|
Wiest EF, Walsh-Wilcox MT, Walker MK. Omega-3 Polyunsaturated Fatty Acids Protect Against Cigarette Smoke-Induced Oxidative Stress and Vascular Dysfunction. Toxicol Sci 2018; 156:300-310. [PMID: 28115642 DOI: 10.1093/toxsci/kfw255] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In cigarette smokers endothelial dysfunction, measured by flow-mediated dilation (FMD), precedes cardiovascular disease (CVD) and can be improved by supplementation with n - 3 polyunsaturated fatty acids (PUFAs). We developed a mouse model of cigarette smoke (CS)-induced endothelial dysfunction that resembles impaired FMD observed in human cigarette smokers and investigated the mechanism by which n - 3 PUFAs mediate vasoprotection. We hypothesized that loss of nitric oxide (NO)-dependent vasodilation in CS-exposed mice would be prevented by dietary n - 3 PUFAs via a decrease in oxidative stress. C57BL/6 mice were fed a chow or n - 3 PUFA diet for 8 weeks and then exposed to mainstream CS or filtered air for 5 days, 2 h/day. Mesenteric arterioles were preconstricted with U46619 and dilated by stepwise increases in pressure (0-40 mmHg), resulting in increases in flow, ± inhibitor of NO production or antioxidant, Tempol. Markers of oxidative stress were measured in lung and heart. CS-exposed mice on a chow diet had impaired FMD, resulting from loss of NO-dependent dilation, compared with air exposed mice. Tempol restored FMD by normalizing NO-dependent dilation and increasing NO-independent dilation. CS-exposed mice on the n - 3 PUFA diet had normal FMD, resulting from a significant increase in NO-independent dilation, compared with CS-exposed mice on a chow diet. Furthermore, n - 3 PUFAs decreased two CS-induced markers of oxidative stress, 8-epiprostaglandin-F2α levels and heme oxygenase-1 mRNA, and significantly attenuated CS-induced cytochrome P4501A1 mRNA expression. These data demonstrate that dietary n - 3 PUFAs can protect against CS-induced vascular dysfunction via multiple mechanisms, including increasing NO-independent vasodilation and decreasing oxidative stress.
Collapse
Affiliation(s)
- Elani F Wiest
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131
| | - Mary T Walsh-Wilcox
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131
| | - Mary K Walker
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
26
|
Reactive Oxygen Species in Chronic Obstructive Pulmonary Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5730395. [PMID: 29599897 PMCID: PMC5828402 DOI: 10.1155/2018/5730395] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/23/2017] [Accepted: 01/01/2018] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) includes chronic bronchitis and emphysema. Environmental exposure, primarily cigarette smoking, can cause high oxidative stress and is the main factor of COPD development. Cigarette smoke also contributes to the imbalance of oxidant/antioxidant due to exogenous reactive oxygen species (ROS). Moreover, endogenously released ROS during the inflammatory process and mitochondrial dysfunction may contribute to this disease progression. ROS and reactive nitrogen species (RNS) can oxidize different biomolecules such as DNA, proteins, and lipids leading to epithelial cell injury and death. Various detoxifying enzymes and antioxidant defense systems can be involved in ROS removal. In this review, we summarize the main findings regarding the biological role of ROS, which may contribute to COPD development, and cytoprotective mechanisms against this disease progression.
Collapse
|
27
|
Park HA, Lee JW, Kwon OK, Lee G, Lim Y, Kim JH, Paik JH, Choi S, Paryanto I, Yuniato P, Kim DY, Ryu HW, Oh SR, Lee SJ, Ahn KS. Physalis peruviana L. inhibits airway inflammation induced by cigarette smoke and lipopolysaccharide through inhibition of extracellular signal-regulated kinase and induction of heme oxygenase-1. Int J Mol Med 2017; 40:1557-1565. [PMID: 28949372 DOI: 10.3892/ijmm.2017.3139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/08/2017] [Indexed: 11/06/2022] Open
Abstract
Physalis peruviana L. (PP) is a medicinal herb that has been confirmed to have several biological activities, including anticancer, antioxidant and anti-inflammatory properties. The aim of the present study was to evaluate the protective effect of PP on cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced pulmonary inflammation. Treatment with PP significantly reduced the influx of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and lung of mice with CS- and LPS-induced pulmonary inflammation. PP also decreased the levels of reactive oxygen species (ROS) and pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the BALF. PP effectively attenuated the expression of monocyte chemoattractant protein-1 (MCP-1) and the activation of extracellular signal-regulated kinase (ERK) in the lung. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) activation and heme oxygenase-1 (HO-1) expression were increased by PP treatment. In an in vitro experiment, PP reduced the mRNA expression of TNF-α and MCP-1, and the activation of ERK in CS extract-stimulated A549 epithelial cells. Furthermore, PP increased the activation of Nrf2 and the expression of HO-1 in A549 cells. These findings suggest that PP has a therapeutic potential for the treatment of pulmonary inflammatory diseases, such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Hyun Ah Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Gilhye Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Yourim Lim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Jung Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Imam Paryanto
- Center for Pharmaceutical and Medical Technology, The Agency for the Assessment and Application of Technology (BPPT), Tangerang, Banten 15314, Indonesia
| | - Prasetyawan Yuniato
- Center for Pharmaceutical and Medical Technology, The Agency for the Assessment and Application of Technology (BPPT), Tangerang, Banten 15314, Indonesia
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Seung Jin Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| |
Collapse
|
28
|
Cui Y, Liu KW, Liang Y, Ip MS, Mak JC. Inhibition of monoamine oxidase-B by selegiline reduces cigarette smoke-induced oxidative stress and inflammation in airway epithelial cells. Toxicol Lett 2017; 268:44-50. [DOI: 10.1016/j.toxlet.2017.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 01/14/2023]
|
29
|
Lee JW, Park HA, Kwon OK, Jang YG, Kim JY, Choi BK, Lee HJ, Lee S, Paik JH, Oh SR, Ahn KS, Lee HJ. Asiatic acid inhibits pulmonary inflammation induced by cigarette smoke. Int Immunopharmacol 2016; 39:208-217. [PMID: 27494684 DOI: 10.1016/j.intimp.2016.07.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 01/04/2023]
Abstract
Asiatic acid (AA) is one of the major components of Titrated extract of Centella asiatica (TECA), which has been reported to possess antioxidant and anti-inflammatory activities. The purpose of this study was to investigate the protective effect of AA on pulmonary inflammation induced by cigarette smoke (CS). AA significantly attenuated the infiltration of inflammatory cells in bronchoalveolar lavage fluid (BALF) of CS exposure mice. AA also decreased ROS production and NE activity, and inhibited the release of proinflammatory cytokines in BALF. AA reduced the recruitment of inflammatory cells and MCP-1 expression in lung tissue of CS exposure mice. AA also attenuated mucus overproduction, and decreased the activation of MAPKs and NF-kB in lung tissue. Furthermore, AA increased HO-1 expression and inhibited the reduced expression of SOD3 in lung tissue. These findings indicate that AA effectively inhibits pulmonary inflammatory response, which is an important process in the development of chronic obstructive pulmonary disease (COPD) via suppression of inflammatory mediators and induction of HO-1. Therefore, we suggest that AA has the potential to treat inflammatory disease such as COPD.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Hyun Ah Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea; College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea; Department of Toxicology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Yin-Gi Jang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Ju Yeong Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Bo Kyung Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea; College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Kangwon 200-701, Republic of Korea
| | - Sangwoo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea.
| | - Hyun-Jun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea.
| |
Collapse
|
30
|
Marine natural products with anti-inflammatory activity. Appl Microbiol Biotechnol 2015; 100:1645-1666. [DOI: 10.1007/s00253-015-7244-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022]
|