1
|
Coutinho-Wolino KS, Brito ML, Trigueira PC, de Menezes LO, do Nascimento CS, Stockler-Pinto MB. Genetic Signature of a Healthy Lifestyle: New Horizons for Preventing Noncommunicable Chronic Diseases by Modulating MicroRNA-155. Nutr Rev 2024:nuae142. [PMID: 39383044 DOI: 10.1093/nutrit/nuae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
The development and progression of several noncommunicable diseases (NCDs) are associated with microRNA (miR) 155 (miR-155) activation, which promotes inflammation and oxidative stress. In particular, miR-155 regulates nuclear transcription factor-kappa B (NF-κB) by silencing gene expression of proteins involved in NF-κB suppression, such as suppressor of cytokine signaling 1 (SOCS1) and SH-2 containing inositol 5' polyphosphate 1 (SHIP1), increases the production of reactive oxygen species, and suppresses gene expression of antioxidant enzymes through nuclear factor erythroid 2-related factor 2 (Nrf2) inhibition. In this context, a healthy lifestyle based on a diet rich in nutrients and bioactive compounds as well as regular physical activity may modulate the activity of several miRs. Following this concept, studies involving nutrients, bioactive compounds, and physical activity have been developed to modulate miR-155 activation. This narrative review aims to discuss how a healthy lifestyle based on a diet rich in nutrients, bioactive compounds, and physical activity may modulate the miR-155 pathway and consequently prevent the development and progression of NCDs. Nutrients and bioactive compounds from food may act by inhibiting pathways that promote miR-155 activation such as NF-κB and promote activation of pathways that are associated with the downregulation of miR-155, such as Nrf2, and SOCS1 pathways. Regular physical activity also seems to influence miR-155 levels through an improvement in the immune system during muscle recovery. There is relevant evidence that shows a positive effect of nutrients, bioactive compounds, and physical activity with the modulation of miR-155, which can potentially provide benefits in the clinical setting in cases of NCDs.
Collapse
Affiliation(s)
- Karen S Coutinho-Wolino
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, 24070-090, Brazil
| | - Michele L Brito
- Postgraduate Program in Pathology, Fluminense Federal University, Niterói, Rio de Janeiro, 24070-090, Brazil
| | - Pricilla C Trigueira
- Postgraduate Program in Pathology, Fluminense Federal University, Niterói, Rio de Janeiro, 24070-090, Brazil
| | - Larissa O de Menezes
- Graduate Program in Nutrition, Faculty of Nutrition, Fluminense Federal University, Niterói, 24020-140, Brazil
| | - Clara S do Nascimento
- Graduate Program in Biomedicine, Faculty of Biomedicine, Fluminense Federal University, Niterói, 24020-140, Brazil
| | - Milena B Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, 24070-090, Brazil
- Postgraduate Program in Pathology, Fluminense Federal University, Niterói, Rio de Janeiro, 24070-090, Brazil
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, 24020-140, Brazil
| |
Collapse
|
2
|
Chi F, Cheng C, Zhang M, Su B, Hou Y, Bai G. Resveratrol targeting NRF2 disrupts the binding between KEAP1 and NRF2-DLG motif to ameliorate oxidative stress damage in mice pulmonary infection. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118353. [PMID: 38762209 DOI: 10.1016/j.jep.2024.118353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Polygonum cuspidatum Sieb. et Zucc (PC), known as 'Huzhang' in the Chinese Pharmacopoeia, has been traditionally employed for its anti-inflammatory, antiviral, antimicrobial, and other biological activities. Polydatin (PD) and its aglycone, resveratrol (RES), are key pharmacologically active components responsible for exerting anti-inflammatory and antioxidant effects. However, its specific targets and action mechanisms remain unclear. AIM OF THE STUDY The equilibrium of the KEAP1-NRF2 system serves as the primary protective response to oxidative and electrophilic stresses within the body, particularly in cases of acute lung injury caused by pathogenic microbial infection. In this study, the precise mechanisms by which RES alleviates oxidative stress damage in conjunction with NRF2 activators are discussed. MATERIALS AND METHODS The active components from PC were screened to evaluate their potential to inhibit reactive oxygen species (ROS) and activate antioxidant activity dependent on antioxidant response elements (ARE). RES was evaluated for its potential to alleviate the oxidative stress caused by pathogenic microbial infection. Functional probes were designed to study the RES distribution and identify its targets. A lipopolysaccharide (LPS)-induced oxidative injury model was used to evaluate the effects of RES on the KEAP1-NRF2/ARE pathway in RAW 264.7 cells. The interaction between RES and NRF2 was elucidated using drug-affinity responsive target stability (DARTS), cellular thermal shift assays (CETSA), co-immunoprecipitation (Co-IP), and microscale thermophoresis (MST) techniques. The key binding sites were predicted using molecular docking and validated in NRF2-knockdownand reconstructed cells. Finally, protective effects against pulmonary stress were verified in a mouse model of pathogenic infection. RESULTS The accumulation of RES in lung macrophages disrupted the binding between KEAP1 and NRF2, thereby preventing the ubiquitination degradation of NRF2 through its interaction with Ile28 on the NRF2-DLG motif. The activation of NRF2 resulted in the upregulation of nuclear transcription, enhances the expression of antioxidant genes dependent on ARE, suppresses ROS generation, and ameliorates oxidative damage both in vivo and in vitro. CONCLUSION These findings shed light on the potential of RES to mitigate oxidative stress damage caused by pathogenic microorganism-induced lung infections and facilitate the discovery of novel small molecule modulators targeting the KEAP1-NRF2 DLG motif interaction.
Collapse
Affiliation(s)
- Fuyun Chi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Chuanjing Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Bo Su
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
3
|
Miteva D, Kitanova M, Velikova T. Biomacromolecules as Immunomodulators: Utilizing Nature’s Tools for Immune Regulation. MACROMOL 2024; 4:610-633. [DOI: 10.3390/macromol4030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Although there are numerous available immunomodulators, those of natural origin would be preferable based on their safety profile and effectiveness. The research and clinical interest in immunomodulators have increased in the last decades, especially in the immunomodulatory properties of plant-based therapies. Innovative technologies and extensive study on immunomodulatory natural products, botanicals, extracts, and active moieties with immunomodulatory potential could provide us with valuable entities to develop as novel immunomodulatory medicines to enhance current chemotherapies. This review focuses on plant-based immunomodulatory drugs that are currently in clinical studies. However, further studies in this area are of utmost importance to obtain complete information about the positive effects of medicinal plants and their chemical components and molecules as an alternative to combatting various diseases and/or prevention.
Collapse
Affiliation(s)
- Dimitrina Miteva
- Faculty of Biology, Sofia University St. Kliment Ohridski, Dragan Tzankov 8 blv., 1164 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria
| | - Meglena Kitanova
- Faculty of Biology, Sofia University St. Kliment Ohridski, Dragan Tzankov 8 blv., 1164 Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria
| |
Collapse
|
4
|
Alsadi N, Yahfoufi N, Nessim C, Matar C. Role of a Polyphenol-Enriched Blueberry Preparation on Inhibition of Melanoma Cancer Stem Cells and Modulation of MicroRNAs. Biomedicines 2024; 12:193. [PMID: 38255297 PMCID: PMC10813708 DOI: 10.3390/biomedicines12010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Melanoma is a type of skin cancer known for its high mortality rate. Cancer stem cells (CSCs) are a subpopulation of cancer cells that significantly contribute to tumour recurrence and differentiation. Epigenetic-specific changes involving miRNAs maintain CSCs. Plant polyphenols have been reported to be involved in cancer chemoprevention and chemotherapy, with miRNAs being the novel effectors in their biological activities. A polyphenol-enriched blueberry preparation (PEBP) derived from fermented blueberries has demonstrated promising chemopreventative properties on breast cancer stem cells by influencing inflammatory pathways and miRNAs. In our current investigation, we seek to unveil the impact of PEBP on inhibiting melanoma development and to elucidate the underlying mechanisms. Our study employs various human cell lines, including an ex vivo cell line derived from a patient's metastatic tumour. We found that it elevates miR-200c, increasing E-cadherin expression and inhibiting miR-210-3p through NF-κB signalling, impacting Epithelial-to-Mesenchymal Transition (EMT), a critical process in cancer progression. PEBP increases the SOCS1 expression, potentially contributing to miR-210-3p inhibition. Experiments involving miRNA manipulation confirm their functional roles. The study suggests that PEBP's anti-inflammatory effects involve regulating miR-200c and miR-210 expression and their targets in EMT-related pathways. The overall aim is to provide evidence-based supportive care and preclinical evaluation of PEBP, offering a promising strategy for skin cancer chemoprevention.
Collapse
Affiliation(s)
- Nawal Alsadi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (N.A.); (N.Y.)
| | - Nour Yahfoufi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (N.A.); (N.Y.)
| | - Carolyn Nessim
- Department of Surgery, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada;
| | - Chantal Matar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (N.A.); (N.Y.)
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
5
|
Ke J, Li MT, Xu S, Ma J, Liu MY, Han Y. Advances for pharmacological activities of Polygonum cuspidatum - A review. PHARMACEUTICAL BIOLOGY 2023; 61:177-188. [PMID: 36620922 PMCID: PMC9833411 DOI: 10.1080/13880209.2022.2158349] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/22/2022] [Accepted: 12/08/2022] [Indexed: 06/01/2023]
Abstract
CONTEXT Polygonum cuspidatum Sieb. et Zucc (Polygonaceae), the root of which is included in the Chinese Pharmcopoeia under the name 'Huzhang', has a long history as a medicinal plant and vegetable. Polygonum cuspidatum has been used in traditional Chinese medicine for the treatment of inflammation, hyperlipemia, etc. OBJECTIVE This article reviews the pharmacological action and the clinical applications of Polygonum cuspidatum and its extracts, whether in vivo or in vitro. We also summarized the main phytochemical constituents and pharmacokinetics of Polygonum cuspidatum and its extracts. METHODS The data were retrieved from major medical databases, such as CNKI, PubMed, and SinoMed, from 2014 to 2022. Polygonum cuspidatum, pharmacology, toxicity, clinical application, and pharmacokinetics were used as keywords. RESULTS The rhizomes, leaves, and flowers of Polygonum cuspidatum have different phytochemical constituents. The plant contains flavonoids, anthraquinones, and stilbenes. Polygonum cuspidatum and the extracts have anti-inflammatory, antioxidation, anticancer, heart protection, and other pharmacological effects. It is used in the clinics to treat dizziness, headaches, traumatic injuries, and water and fire burns. CONCLUSIONS Polygonum cuspidatum has the potential to treat many diseases, such as arthritis, ulcerative colitis, asthma, and cardiac hypertrophy. It has a broad range of medicinal applications, but mainly focused on root medication; its aerial parts should receive more attention. Pharmacokinetics also need to be further investigated.
Collapse
Affiliation(s)
- Jia Ke
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng-Ting Li
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuyang Xu
- Monteverde Academy Shanghai, Shanghai, China
| | - Jianpeng Ma
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Ming-Yuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Gatmaitan JG, Lee JH. Challenges and Future Trends in Atopic Dermatitis. Int J Mol Sci 2023; 24:11380. [PMID: 37511138 PMCID: PMC10380015 DOI: 10.3390/ijms241411380] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Atopic dermatitis represents a complex and multidimensional interaction that represents potential fields of preventive and therapeutic management. In addition to the treatment armamentarium available for atopic dermatitis, novel drugs targeting significant molecular pathways in atopic dermatitis biologics and small molecules are also being developed given the condition's complex pathophysiology. While most of the patients are expecting better efficacy and long-term control, the response to these drugs would still depend on numerous factors such as complex genotype, diverse environmental triggers and microbiome-derived signals, and, most importantly, dynamic immune responses. This review article highlights the challenges and the recently developed pharmacological agents in atopic dermatitis based on the molecular pathogenesis of this condition, creating a specific therapeutic approach toward a more personalized medicine.
Collapse
Affiliation(s)
- Julius Garcia Gatmaitan
- Department of Dermatology, Seoul St. Mary's Hospital, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
- Gatmaitan Medical and Skin Center, Baliuag 3006, Bulacan, Philippines
- Skines Aesthetic and Laser Center, Quezon City 1104, Metro Manila, Philippines
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary's Hospital, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
7
|
Ma S, Zhao M, Chang M, Shi X, Shi Y, Zhang Y. Effects and mechanisms of Chinese herbal medicine on IgA nephropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154913. [PMID: 37307737 DOI: 10.1016/j.phymed.2023.154913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN), is the main cause of end-stage renal disease, that causes serious physical and psychological burden to patients worldwide. Some traditional treatment measures, such as blocking the renin-angiotensin-aldosterone system, controlling blood pressure, and following a low-protein diet, may not achieve satisfactory results. Therefore, more effective and safe therapies for IgAN are urgently needed. PURPOSE The aim of this review is to summarize the clinical efficacy of Chinese herbal medicines (CHMs) and their active ingredients in the treatment and management of IgAN based on the results of clinical trials, systematic reviews, and meta-analyses, to fully understand the advantages and perspectives of CHMs in the treatment of IgAN. STUDY DESIGN AND METHODS For this review, the following electronic databases were consulted: PubMed, ResearchGate, Science Direct, Web of Science, Chinese National Knowledge Infrastructure and Wanfang Data, "IgA nephropathy," "traditional Chinese medicine," "Chinese herbal medicine," "herb," "mechanism," "Meta-analysis," "systematic review," "RCT" and their combinations were the keywords to search the relevant literature. Data were collected from 1990 to 2022. RESULTS This review found that the active ingredients of CHMs commonly act on multiple signaling pathways in the clinical treatment of IgAN, mainly with antioxidant, anti-inflammatory and anti-fibrosis effects, and regulation of autophagy. CONCLUSION Compared with the single-target therapy of modern medicine, CHMs can regulate the corresponding pathways from the aspects of anti-inflammation, anti-oxidation, anti-fibrosis and autophagy to play a multi-target treatment of IgAN through syndrome differentiation and treatment, which has good clinical efficacy and can be used as the first choice or alternative therapy for IgAN treatment. This review provides evidence and research direction for a comprehensive clinical understanding of the protective effect of Chinese herbal medicine on IgAN.
Collapse
Affiliation(s)
- Sijia Ma
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiujie Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yue Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
8
|
Onychiol B attenuates lipopolysaccharide-induced inflammation via MAPK/NF-κB pathways and acute lung injury in vivo. Bioorg Chem 2023; 132:106351. [PMID: 36642022 DOI: 10.1016/j.bioorg.2023.106351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Acute lung injury (ALI) is a devastating respiratory disorder characterized by rapid alveolar injury, uncontrolled inflammatory response, etc. Onychiol B is a cyathane diterpene originally isolated from fern plants. In this study, onychiol B can inhibit the production and secretion of pro-inflammatory cytokines such as NO, iNOS, IL-6 and TNF-α in LPS-stimulated RAW264.7 cells by restraining the NF-κB and the p38 MAPK pathway. In addition, it prevents the production of ROS and reduces the loss of mitochondrial membrane potential in LPS-stimulated RAW264.7 cells. Furthermore, in the acute lung injury mouse model induced by LPS injected into the trachea, onychiol B alleviates pulmonary edema, reverses inflammatory mediator TNF-α, IL-6, and IL-β secretion in lung. In general, our data show that significant anti-ALI effects of onychiol B would render it a potential candidate for the treatment of inflammatory diseases.
Collapse
|
9
|
Wen J, Wu Y, Tian Y, Han J, Wang Q, Liu Y, Man C. Circulating miR-155, a potential regulator of immune responses to different vaccines in chicken. Res Vet Sci 2022; 152:670-677. [DOI: 10.1016/j.rvsc.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/01/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022]
|
10
|
Yang J, Li Z, Wang L, Yun X, Zeng Y, Ng JP, Lo H, Wang Y, Zhang K, Law BYK, Wong VKW. The role of non-coding RNAs (miRNA and lncRNA) in the clinical management of rheumatoid arthritis. Pharmacol Res 2022; 186:106549. [DOI: 10.1016/j.phrs.2022.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
11
|
Kopalli SR, Annamneedi VP, Koppula S. Potential Natural Biomolecules Targeting JAK/STAT/SOCS Signaling in the Management of Atopic Dermatitis. Molecules 2022; 27:molecules27144660. [PMID: 35889539 PMCID: PMC9319717 DOI: 10.3390/molecules27144660] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by the dysregulation of cytokines and other immune mediators. JAK/STAT is a classical signal transduction pathway involved in various biological processes, and its dysregulation contributes to the key aspects of AD pathogenesis. Suppressor of cytokine signaling (SOCS) proteins negatively regulate the immune-related inflammatory responses mediated by the JAK/STAT pathway. JAK/STAT-mediated production of cytokines including IL-4, IL-13, IL-31, and TSLP inhibits the expression of important skin barrier proteins and triggers pruritus in AD. The expression of SOCS proteins regulates the JAK-mediated cytokines and facilitates maintaining the skin barrier disruptions seen in AD. STATs are crucial in dendritic-cell-activated Th2 cell differentiation in the skin, releasing inflammatory cytokines, indicating that AD is a Th2-mediated skin disorder. SOCS proteins aid in balancing Th1/Th2 cells and, moreover, regulate the onset and maintenance of Th2-mediated allergic responses by reducing the Th2 cell activation and differentiation. SOCS proteins play a pivotal role in inflammatory cytokine-signaling events that act via the JAK/STAT pathway. Therapies relying on natural products and derived biomolecules have proven beneficial in AD when compared with the synthetic regimen. In this review, we focused on the available literature on the potential natural-product-derived biomolecules targeting JAK/STAT/SOCS signaling, mainly emphasizing the SOCS family of proteins (SOCS1, SOCS3, and SOCS5) acting as negative regulators in modulating JAK/STAT-mediated responses in AD pathogenesis and other inflammatory disorders.
Collapse
Affiliation(s)
| | - Venkata Prakash Annamneedi
- Convergence Science Research Center, College of Pharmacy and Institute of Chronic Diseases, Sahmyook University, Seoul 01795, Korea;
| | - Sushruta Koppula
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27381, Korea
- Correspondence:
| |
Collapse
|
12
|
Sottero B, Testa G, Gamba P, Staurenghi E, Giannelli S, Leonarduzzi G. Macrophage polarization by potential nutraceutical compounds: A strategic approach to counteract inflammation in atherosclerosis. Free Radic Biol Med 2022; 181:251-269. [PMID: 35158030 DOI: 10.1016/j.freeradbiomed.2022.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
Chronic inflammation represents a main event in the onset and progression of atherosclerosis and is closely associated with oxidative stress in a sort of vicious circle that amplifies and sustains all stages of the disease. Key players of atherosclerosis are monocytes/macrophages. According to their pro- or anti-inflammatory phenotype and biological functions, lesional macrophages can release various mediators and enzymes, which in turn contribute to plaque progression and destabilization or, alternatively, lead to its resolution. Among the factors connected to atherosclerotic disease, lipid species carried by low density lipoproteins and pro-oxidant stimuli strongly promote inflammatory events in the vasculature, also by modulating the macrophage phenotyping. Therapies specifically aimed to balance macrophage inflammatory state are increasingly considered as powerful tools to counteract plaque formation and destabilization. In this connection, several molecules of natural origin have been recognized to be active mediators of diverse metabolic and signaling pathways regulating lipid homeostasis, redox state, and inflammation; they are, thus, considered as promising candidates to modulate macrophage responsiveness to pro-atherogenic stimuli. The current knowledge of the capability of nutraceuticals to target macrophage polarization and to counteract atherosclerotic lesion progression, based mainly on in vitro investigation, is summarized in the present review.
Collapse
Affiliation(s)
- Barbara Sottero
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy.
| |
Collapse
|
13
|
Li J, Zeng X, Yang F, Wang L, Luo X, Liu R, Zeng F, Lu S, Huang X, Lei Y, Lan Y. Resveratrol: Potential Application in Sepsis. Front Pharmacol 2022; 13:821358. [PMID: 35222035 PMCID: PMC8864164 DOI: 10.3389/fphar.2022.821358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/21/2022] [Indexed: 01/02/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction syndrome caused by host response disorders due to infection or infectious factors and is a common complication of patients with clinical trauma, burns, and infection. Resveratrol is a natural polyphenol compound that is a SIRT-1 activator with anti-inflammatory, antiviral, antibacterial, antifungal inhibitory abilities as well as cardiovascular and anti-tumor protective effects. In recent years, some scholars have applied resveratrol in animal models of sepsis and found that it has an organ protective effect and can improve the survival time and reduce the mortality of animals with sepsis. In this study, Medline (Pubmed), embase, and other databases were searched to retrieve literature published in 2021 using the keywords “resveratrol” and “sepsis,” and then the potential of resveratrol for the treatment of sepsis was reviewed and prospected to provide some basis for future clinical research.
Collapse
Affiliation(s)
- Jiajia Li
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoting Zeng
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fuxun Yang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Wang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoxiu Luo
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongan Liu
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fan Zeng
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Sen Lu
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Lei
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunping Lan
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Hu J, Liu X, Chi J, Che K, Ma X, Qiu M, Fu Z, Wang Y, Wang Y, Wang W. Resveratrol Enhances Wound Healing in Type 1 Diabetes Mellitus by Promoting the Expression of Extracellular Vesicle-Carried MicroRNA-129 Derived from Mesenchymal Stem Cells. J Proteome Res 2022; 21:313-324. [PMID: 35076227 DOI: 10.1021/acs.jproteome.1c00248] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent studies have shown the promotive effect of resveratrol on wound healing. This study aims to explore the underlying molecular mechanism of resveratrol in type 1 diabetes mellitus (T1DM) through microRNA (miR)-129-containing extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) based on in silico analysis. The rat model of T1DM was established by intraperitoneal injection of sodium citrate containing streptozotocin, and the wound was made around the deep fascia. Rat MSCs were isolated and treated with resveratrol (SRT501), and the corresponding EVs (SRT501-EVs) were isolated, where the expression of miR-129 was determined. By performing function experiments, the effect of SRT501-EVs and miR-129 on the biological functions of human umbilical vein endothelial cells (HUVECs) was determined. Finally, the binding relationship between miR-129 and tumor necrosis factor receptor-associated factor 6 (TRAF6) was also determined by the dual-luciferase reporter gene assay. miR-129 was shown as a candidate related to both resveratrol and wound healing in T1DM. SRT501-EVs promoted the skin wound healing of T1DM rats and also further improved the proliferative, migratory, and tube formation potentials of HUVECs. Resveratrol inhibited the expression of TRAF6 in HUVECs stimulated by MSC-conditioned medium and promoted the transfer of miR-129 via EVs, while TRAF6 was confirmed as a target gene of miR-129. Furthermore, inhibition of miR-129 attenuated the proangiogenic effect of resveratrol on HUVECs. Resveratrol exerts promotive role in wound healing in T1DM through downregulation of TRAF6 via MSC-EV-carried miR-129, suggesting a regulatory network involved in the wound healing process in T1DM.
Collapse
Affiliation(s)
- Jianxia Hu
- The Laboratory of Thyroid Disease, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Xiaoyi Liu
- The Breast Diseases Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Jingwei Chi
- The Laboratory of Thyroid Disease, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Kui Che
- The Laboratory of Thyroid Disease, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Xiaolong Ma
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Mingyue Qiu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Zhengju Fu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Yahao Wang
- Medical College, Qingdao University, Qingdao 266071, P. R. China
| | - Yangang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Wei Wang
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| |
Collapse
|
15
|
Resveratrol-loaded titania nanotube coatings promote osteogenesis and inhibit inflammation through reducing the reactive oxygen species production via regulation of NF-κB signaling pathway. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112513. [PMID: 34857292 DOI: 10.1016/j.msec.2021.112513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
Although titanium and its alloys are widely used in bone surgeries, the implantation failures caused by sterile inflammation still occur. The excessive reactive oxygen species (ROS) in the peri-implant region are considered to cause inflammation and impede the osseointegration of titanium implants. In this study, a coating of resveratrol-loaded titania nanotube (TNT-Res) for eliminating ROS was fabricated on titanium surface through electrochemical anodization and following surface adsorption of resveratrol. The resveratrol concentration of released from TNT-Res coating was controlled by modulating the loading amount. The ROS production in macrophage cell lineage RAW 264.7 and bone mesenchymal stem cells (BMSCs) were significantly decreased when cultured on TNT-Res coatings. The pro-inflammatory factors, including tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β), and NO produced by RAW 264.7 cells were reduced when cells were cultured on TNT-Res coatings. These results proved that the TNT-Res coating can effectively eliminate ROS and inhibit inflammation. Moreover, the osteogenic indicators, including alkaline phosphatase (ALP) production, extracellular calcium deposition, and osteogenesis-related gene expression, including collagen І (Col-І), osteocalcin (OCN), osteopontin (OPN), and runt-related transcription factor 2 (Runx2), were significantly promoted for TNT-Res groups, which demonstrated that the TNT-Res coating can enhance the osteogenic differentiation of BMSCs. Additionally, the phosphorylation of nuclear factor κ-B (NF-κB) were down-regulated both in RAW 264.7 cells and BMSCs, which indicated that the TNT-Res coating could inhibit inflammation and promote osteogenesis by inhibiting the activation of NF-κB signaling pathway. The TNT-Res coating could be an effective implant surface for improving osseointegration ability of titanium implants.
Collapse
|
16
|
Ma L, Chang E, Ruan X, Zhang B, Tang F, Zhang J. The protective effects of Omarigliptin against Lipopolysaccharide (LPS)- induced inflammatory response and expression of mucin 5AC (MUC5AC) in human bronchial epithelial cells. Mol Immunol 2021; 141:108-115. [PMID: 34871838 DOI: 10.1016/j.molimm.2021.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 01/26/2023]
Abstract
The epidemic of chronic inflammatory lung diseases such as asthma, bronchitis, and chronic obstructive pulmonary disease (COPD) has become a global public health problem. Oxidative stress, inflammation, and overproduction of airway mucus play critical roles in the progression of these diseases. Omarigliptin, an oral dipeptidyl peptidase 4 (DPP-4) inhibitor, has been demonstrated to have anti-inflammatory effects in patients with type II diabetes. However, its role in chronic inflammatory lung diseases remains enigmatic. This study is to investigate whether Omarigliptin possesses a beneficial effect against Lipopolysaccharide (LPS)-induced injuries in human BEAS-2B bronchial epithelial cells. Our results show that Omarigliptin suppressed LPS-induced oxidative stress by attenuating the generation of mitochondrial reactive oxygen species (ROS) and decrease in reduced glutathione (GSH) in BEAS-2B cells. Additionally, Omarigliptin mitigated inflammatory response by inhibiting the expression of pro-inflammatory mediators, including interleukin-1β (IL-1β), interleukin-12 (IL-12), and macrophage chemoattractant protein-1 (MCP-1) in LPS-challenged BEAS-2B cells. Moreover, Omarigliptin mitigated the LPS-induced overproduction of MUC5AC by rescuing the expression of the suppressor of cytokine signaling 1(SOCS1). Importantly, we found that this process is mediated by the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway. Based on these findings, we conclude that Omarigliptin might be a promising agent for the treatment of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Libin Ma
- Department of Anesthesia and Perioperative Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Enqiang Chang
- Department of Anesthesia and Perioperative Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Xiaoguo Ruan
- Department of Anesthesia and Perioperative Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Beibei Zhang
- Department of Anesthesia and Perioperative Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Fudong Tang
- Department of Anesthesia and Perioperative Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Jiaqiang Zhang
- Department of Anesthesia and Perioperative Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
17
|
Zhang LX, Li CX, Kakar MU, Khan MS, Wu PF, Amir RM, Dai DF, Naveed M, Li QY, Saeed M, Shen JQ, Rajput SA, Li JH. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother 2021; 143:112164. [PMID: 34649335 DOI: 10.1016/j.biopha.2021.112164] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (RV) is a well-known polyphenolic compound in various plants, including grape, peanut, and berry fruits, which is quite famous for its association with several health benefits such as anti-obesity, cardioprotective neuroprotective, antitumor, antidiabetic, antioxidants, anti-age effects, and glucose metabolism. Significantly, promising therapeutic properties have been reported in various cancer, neurodegeneration, and atherosclerosis and are regulated by several synergistic pathways that control oxidative stress, cell death, and inflammation. Similarly, RV possesses a strong anti-adipogenic effect by inhibiting fat accumulation processes and activating oxidative and lipolytic pathways, exhibiting their cardioprotective effects by inhibiting platelet aggregation. The RV also shows significant antibacterial effects against various food-borne pathogens (Listeria, Campylobacter, Staphylococcus aureus, and E. coli) by inhibiting an electron transport chain (ETC) and F0F1-ATPase, which decreases the production of cellular energy that leads to the spread of pathogens. After collecting and analyzing scientific literature, it may be concluded that RV is well tolerated and favorably affects cardiovascular, neurological, and diabetic disorders. As such, it is possible that RV can be considered the best nutritional additive and a complementary drug, especially a therapeutic candidate. Therefore, this review would increase knowledge about the blend of RV as well as inspire researchers around the world to consider RV as a pharmaceutical drug to combat future health crises against various inhumane diseases. In the future, this article will be aware of discoveries about the potential of this promising natural compound as the best nutraceuticals and therapeutic drugs in medicine.
Collapse
Affiliation(s)
- Li-Xue Zhang
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Chang-Xing Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal 90150, Balochistan, Pakistan
| | - Muhammad Sajjad Khan
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan.
| | - Pei-Feng Wu
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Rai Muhammad Amir
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Dong-Fang Dai
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qin-Yuan Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Saeed
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Ji-Qiang Shen
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China.
| |
Collapse
|
18
|
Saleh HA, Yousef MH, Abdelnaser A. The Anti-Inflammatory Properties of Phytochemicals and Their Effects on Epigenetic Mechanisms Involved in TLR4/NF-κB-Mediated Inflammation. Front Immunol 2021; 12:606069. [PMID: 33868227 PMCID: PMC8044831 DOI: 10.3389/fimmu.2021.606069] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Innate immune response induces positive inflammatory transducers and regulators in order to attack pathogens, while simultaneously negative signaling regulators are transcribed to maintain innate immune homeostasis and to avoid persistent inflammatory immune responses. The gene expression of many of these regulators is controlled by different epigenetic modifications. The remarkable impact of epigenetic changes in inducing or suppressing inflammatory signaling is being increasingly recognized. Several studies have highlighted the interplay of histone modification, DNA methylation, and post-transcriptional miRNA-mediated modifications in inflammatory diseases, and inflammation-mediated tumorigenesis. Targeting these epigenetic alterations affords the opportunity of attenuating different inflammatory dysregulations. In this regard, many studies have identified the significant anti-inflammatory properties of distinct naturally-derived phytochemicals, and revealed their regulatory capacity. In the current review, we demonstrate the signaling cascade during the immune response and the epigenetic modifications that take place during inflammation. Moreover, we also provide an updated overview of phytochemicals that target these mechanisms in macrophages and other experimental models, and go on to illustrate the effects of these phytochemicals in regulating epigenetic mechanisms and attenuating aberrant inflammation.
Collapse
Affiliation(s)
- Haidy A. Saleh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed H. Yousef
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Public Health, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
19
|
Lee Y, Im E. Regulation of miRNAs by Natural Antioxidants in Cardiovascular Diseases: Focus on SIRT1 and eNOS. Antioxidants (Basel) 2021; 10:antiox10030377. [PMID: 33802566 PMCID: PMC8000568 DOI: 10.3390/antiox10030377] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of morbidity and mortality worldwide. The potential benefits of natural antioxidants derived from supplemental nutrients against CVDs are well known. Remarkably, natural antioxidants exert cardioprotective effects by reducing oxidative stress, increasing vasodilation, and normalizing endothelial dysfunction. Recently, considerable evidence has highlighted an important role played by the synergistic interaction between endothelial nitric oxide synthase (eNOS) and sirtuin 1 (SIRT1) in the maintenance of endothelial function. To provide a new perspective on the role of natural antioxidants against CVDs, we focused on microRNAs (miRNAs), which are important posttranscriptional modulators in human diseases. Several miRNAs are regulated via the consumption of natural antioxidants and are related to the regulation of oxidative stress by targeting eNOS and/or SIRT1. In this review, we have discussed the specific molecular regulation of eNOS/SIRT1-related endothelial dysfunction and its contribution to CVD pathologies; furthermore, we selected nine different miRNAs that target the expression of eNOS and SIRT1 in CVDs. Additionally, we have summarized the alteration of miRNA expression and regulation of activities of miRNA through natural antioxidant consumption.
Collapse
Affiliation(s)
| | - Eunok Im
- Correspondence: ; Tel.: +82-51-510-2812; Fax: +82-51-513-6754
| |
Collapse
|
20
|
El-Sahar AE, Shiha NA, El Sayed NS, Ahmed LA. Alogliptin Attenuates Lipopolysaccharide-Induced Neuroinflammation in Mice Through Modulation of TLR4/MYD88/NF-κB and miRNA-155/SOCS-1 Signaling Pathways. Int J Neuropsychopharmacol 2021; 24:158-169. [PMID: 33125461 PMCID: PMC7883892 DOI: 10.1093/ijnp/pyaa078] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/03/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Endotoxin-induced neuroinflammation plays a crucial role in the pathogenesis and progression of various neurodegenerative diseases. A growing body of evidence supports that incretin-acting drugs possess various neuroprotective effects that can improve learning and memory impairments in Alzheimer's disease models. Thus, the present study aimed to investigate whether alogliptin, a dipeptidyl peptidase-4 inhibitor, has neuroprotective effects against lipopolysaccharide (LPS)-induced neuroinflammation and cognitive impairment in mice as well as the potential mechanisms underlying these effects. METHODS Mice were treated with alogliptin (20 mg/kg/d; p.o.) for 14 days, starting 1 day prior to intracerebroventricular LPS injection (8 μg/μL in 3 μL). RESULTS Alogliptin treatment alleviated LPS-induced cognitive impairment as assessed by Morris water maze and novel object recognition tests. Moreover, alogliptin reversed LPS-induced increases in toll-like receptor 4 and myeloid differentiation primary response 88 protein expression, nuclear factor-κB p65 content, and microRNA-155 gene expression. It also rescued LPS-induced decreases in suppressor of cytokine signaling gene expression, cyclic adenosine monophosphate (cAMP) content, and phosphorylated cAMP response element binding protein expression in the brain. CONCLUSION The present study sheds light on the potential neuroprotective effects of alogliptin against intracerebroventricular LPS-induced neuroinflammation and its associated memory impairment via inhibition of toll-like receptor 4/ myeloid differentiation primary response 88/ nuclear factor-κB signaling, modulation of microRNA-155/suppressor of cytokine signaling-1 expression, and enhancement of cAMP/phosphorylated cAMP response element binding protein signaling.
Collapse
Affiliation(s)
- Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nesma A Shiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Alcoholic and Non-Alcoholic Beer Modulate Plasma and Macrophage microRNAs Differently in a Pilot Intervention in Humans with Cardiovascular Risk. Nutrients 2020; 13:nu13010069. [PMID: 33379359 PMCID: PMC7823561 DOI: 10.3390/nu13010069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Beer is a popular beverage and some beneficial effects have been attributed to its moderate consumption. We carried out a pilot study to test if beer and non-alcoholic beer consumption modify the levels of a panel of 53 cardiometabolic microRNAs in plasma and macrophages. Seven non-smoker men aged 30–65 with high cardiovascular risk were recruited for a non-randomised cross-over intervention consisting of the ingestion of 500 mL/day of beer or non-alcoholic beer for 14 days with a 7-day washout period between interventions. Plasma and urine isoxanthohumol were measured to assess compliance with interventions. Monocytes were isolated and differentiated into macrophages, and plasma and macrophage microRNAs were analysed by quantitative real-time PCR. Anthropometric, biochemistry and dietary parameters were also measured. We found an increase in plasma miR-155-5p, miR-328-3p, and miR-92a-3p after beer and a decrease after non-alcoholic beer consumption. Plasma miR-320a-3p levels decreased with both beers. Circulating miR-320a-3p levels correlated with LDL-cholesterol. We found that miR-17-5p, miR-20a-5p, miR-145-5p, miR-26b-5p, and miR-223-3p macrophage levels increased after beer and decreased after non-alcoholic beer consumption. Functional analyses suggested that modulated microRNAs were involved in catabolism, nutrient sensing, Toll-like receptors signalling and inflammation. We concluded that beer and non-alcoholic beer intake modulated differentially plasma and macrophage microRNAs. Specifically, microRNAs related to inflammation increased after beer consumption and decreased after non-alcoholic beer consumption.
Collapse
|
22
|
Li GS, Cui L, Wang GD. miR-155-5p regulates macrophage M1 polarization and apoptosis in the synovial fluid of patients with knee osteoarthritis. Exp Ther Med 2020; 21:68. [PMID: 33365068 PMCID: PMC7716652 DOI: 10.3892/etm.2020.9500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent degenerative joint diseases that affects millions of individuals worldwide. During OA, proinflammatory factors (including IL-1, IL-6, IL-17 and TNF-α) are released from chondrocytes and proliferating synoviocytes potentiate the proinflammatory microenvironment of the synovial fluid (SF). The altered SF microenvironment affects the infiltration, polarization and apoptosis of macrophages, though the underlying mechanisms are not completely understood. In the present study, the hypothesis that the knee synovial fluid of patients with knee osteoarthritis (KOA SF) promotes the polarization of peripheral blood mononuclear cell (PBMC)-derived M1 macrophages and inhibits PBMC-derived macrophage apoptosis was investigated. KOA SF increased PBMC-derived macrophage M1 polarization via the microRNA (miR)-155-5p/suppressor of cytokine signaling 1 signaling pathway. Caspase-3 (CASP3) was identified as a novel target of miR-155-5p, where KOA SF inhibited macrophage apoptosis via the miR-155-5p/CASP3 signaling pathway. The results suggested that the proinflammatory environment of KOA SF promoted macrophage M1 polarization and reduced macrophage apoptosis via miR-155-5p. The results provided a potential explanation for the increased number of M1 macrophages observed in KOA SF during OA. In addition, the present study suggested that miR-155-5p may serve as a potential therapeutic target for KOA.
Collapse
Affiliation(s)
- Gui-Shi Li
- Department of Joint Orthopaedics, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Lei Cui
- Department of Opthalmology Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Guang-Da Wang
- Department of Joint Orthopaedics, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
23
|
Dinesh P, Kalaiselvan S, Sujitha S, Rasool M. MicroRNA-532-3p Regulates Pro-Inflammatory Human THP-1 Macrophages by Targeting ASK1/p38 MAPK Pathway. Inflammation 2020; 44:229-242. [PMID: 32876895 DOI: 10.1007/s10753-020-01325-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 01/14/2023]
Abstract
Inflammation is a complex biological process which alters the normal physiological function of the immune system resulting in an abnormal microenvironment that leads to several clinical complications. The process of inflammation is mediated through various intracellular signaling factors inside the cells. Apoptosis signal-regulating kinase 1 (ASK1) is an inflammation-derived kinase that controls the activation of other family of kinases such as p38 mitogen-activated protein kinases (p38 MAPKs), which mediates various the inflammatory processes. In this study, we cultured THP-1 macrophage cells to undergo inflammatory proliferation with LPS (1 μg/ml) and TNFα (10 ng/ml) stimulation. Initial in silico analysis was utilized to predict novel microRNAs (miRNAs) that target ASK1 signaling and its expression levels in LPS and TNFα stimulated THP-1 cells were estimated. Among the miRNAs, miR-532-3p showcased the highest binding affinity towards ASK1 kinase. We witnessed that transient transfection of miR-532-3p diminished the levels of ASK1 and downstream phosphorylation/translocation of p38 MAPK. Furthermore, direct targeting of ASK1 resulted in regulation of uncontrolled release of cytokines (TNFα, IL-6, and IL-23) and chemokines (GM-CSF and MIP-2α). Overall, we suggest that miR-532-3p attenuates the pro-inflammatory nature of macrophages by targeting ASK1/p38 MAPK signaling pathway and can be used as a molecular intervention for treating inflammatory diseases.
Collapse
Affiliation(s)
- Palani Dinesh
- SMV 240, Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Sowmiya Kalaiselvan
- SMV 240, Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Sali Sujitha
- SMV 240, Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Mahaboobkhan Rasool
- SMV 240, Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
24
|
Chang Y, Chen X, Tian Y, Gao X, Liu Z, Dong X, Wang L, He F, Zhou J. Downregulation of microRNA-155-5p prevents immune thrombocytopenia by promoting macrophage M2 polarization via the SOCS1-dependent PD1/PDL1 pathway. Life Sci 2020; 257:118057. [PMID: 32634427 DOI: 10.1016/j.lfs.2020.118057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022]
Abstract
AIMS We set about to investigate the potential role of microRNA-155-5p (miR-155-5p) in the development of immune thrombocytopenia (ITP), an idiopathic deficiency of blood platelets. MAIN METHODS Initially, RT-qPCR and Western blot analyses were carried out to determine the expression of miR-155-5p and SOCS1 in peripheral blood mononuclear cells (PBMCs) and macrophages from ITP patients. We undertook gain- and loss- function methods by transfection of macrophages and PBMCs with treated plasmids. The expression patterns of platelet-related factors were measured by ELISA, and the expressions of PD1, PDL1, and macrophage M2 marker CD206 and CD86 were also measured. The relationship between miR-155-5p and SOCS1 was determined using the dual-luciferase reporter gene assay. We also established an ITP mouse model to explore the roles of miR-155-5p and SOCS1 in vivo. KEY FINDINGS miR-155-5p was up-regulated, while SOCS1 was down-regulated in PBMCs and macrophages from ITP patients. SOCS1 was indicated as a target of miR-155-5p. Inhibition of miR-155-5p or up-regulation of SOCS1 facilitated macrophage M2 polarization as demonstrated by an increased M2/M1 ratio and suppressed expression of platelet-related factors. Furthermore, silencing of SOCS1 promoted ITP progression through blocking the PD1/PDL1 pathway, whilst upregulation of miR-155-5p remarkably increased the platelet abundance and suppressed SOCS1 expression in ITP model mice. SIGNIFICANCE Silencing of miR-155-5p could promote PD1/PDL1 pathway-mediated macrophage M2 polarization and prevent ITP via up-regulation of SOCS1, thus relieving ITP.
Collapse
Affiliation(s)
- Yuying Chang
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Xi Chen
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Yaoyao Tian
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Xinyu Gao
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Zhiyu Liu
- Flow Laboratory, the First Affiliated Hospital of Harbin Medical University, Harbin 150007, PR China
| | - Xiushuai Dong
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Lianjie Wang
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Fei He
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Jin Zhou
- Department of Hematology, the First Affiliated Hospital of Harbin Medical University, Harbin 150007, PR China.
| |
Collapse
|
25
|
Rafe T, Shawon PA, Salem L, Chowdhury NI, Kabir F, Bin Zahur SM, Akhter R, Noor HB, Mohib MM, Sagor MAT. Preventive Role of Resveratrol Against Inflammatory Cytokines and Related Diseases. Curr Pharm Des 2020; 25:1345-1371. [PMID: 30968773 DOI: 10.2174/1381612825666190410153307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immunity is the ultimate barrier between foreign stimuli and a host cell. Unwanted immune responses can threaten the host cells and may eventually damage a vital organ. Overproduction of inflammatory cytokines may also lead to autoimmune diseases. Inflammatory cells and pro-inflammatory cytokines can eventually progress to renal, cardiac, brain, hepatic, pancreatic and ocular inflammation that can result in severe damage in the long run. Evidence also suggests that inflammation may lead to atherosclerosis, Alzheimer's, hypertension, stroke, cysts and cancers. METHODS This study was designed to correlate the possible molecular mechanisms for inflammatory diseases and prevent biochemical changes owing to inflammatory cytokines by using Resveratrol. Therefore, we searched and accumulated very recent literature on inflammatory disorders and Resveratrol. We scoured PubMed, Scopus, Science Direct, PLoS One and Google Scholar to gather papers and related information. RESULTS Reports show that inflammatory diseases are very complex, as multiple cascade systems are involved; therefore, they are quite difficult to cure. However, our literature search also correlates some possible molecular interactions by which inflammation can be prevented. We noticed that Resveratrol is a potent lead component and has multiple activities against harmful inflammatory cytokines and related microRNA. Our study also suggests that the anti-inflammatory properties of Resveratrol have been highly studied on animal models, cell lines and human subjects and proven to be very effective in reducing inflammatory cell production and pro-inflammatory cytokine accumulation. Our tables and figures also demonstrate recent findings and possible preventive activities to minimize inflammatory diseases. CONCLUSION This study would outline the role of harmful inflammatory cytokines as well as how they accelerate pathophysiology and progress to an inflammatory disorder. Therefore, this study might show a potential therapeutic value of using Resveratrol by health professionals in preventing inflammatory disorders.
Collapse
Affiliation(s)
- Tanzir Rafe
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Parvez Ahmed Shawon
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Liyad Salem
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Nafij Imtiyaj Chowdhury
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Farjana Kabir
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | | | - Rowshon Akhter
- Department of Pharmacy, East West University, Aftabnagar, Dhaka-1212, Bangladesh
| | - Humaira Binte Noor
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Md Mohabbulla Mohib
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh.,Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Md Abu Taher Sagor
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| |
Collapse
|
26
|
Abdelaziz MH, Abdelwahab SF, Wan J, Cai W, Huixuan W, Jianjun C, Kumar KD, Vasudevan A, Sadek A, Su Z, Wang S, Xu H. Alternatively activated macrophages; a double-edged sword in allergic asthma. J Transl Med 2020; 18:58. [PMID: 32024540 PMCID: PMC7003359 DOI: 10.1186/s12967-020-02251-w] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages are heterogenous phagocytic cells with an important role in the innate immunity. They are, also, significant contributors in the adaptive immune system. Macrophages are the most abundant immune cells in the lung during allergic asthma, which is the most common chronic respiratory disease of both adults and children. Macrophages activated by Th1 cells are known as M1 macrophages while those activated by IL-4 and IL-13 are called alternatively activated macrophages (AAM) or M2 cells. AAM are subdivided into four distinct subtypes (M2a, M2b, M2c and M2d), depending on the nature of inducing agent and the expressed markers. BODY: IL-4 is the major effector cytokine in both alternative activation of macrophages and pathogenesis of asthma. Thus, the role of M2a macrophages in asthma is a major concern. However, this is controversial. Therefore, further studies are required to improve our knowledge about the role of IL-4-induced macrophages in allergic asthma, through precisive elucidation of the roles of specific M2a proteins in the pathogenesis of asthma. In the current review, we try to illustrate the different functions of M2a macrophages (protective and pathogenic roles) in the pathogenesis of asthma, including explanation of how different M2a proteins and markers act during the pathogenesis of allergic asthma. These include surface markers, enzymes, secreted proteins, chemokines, cytokines, signal transduction proteins and transcription factors. CONCLUSIONS AAM is considered a double-edged sword in allergic asthma. Finally, we recommend further studies that focus on increased selective expression or suppression of protective and pathogenic M2a markers.
Collapse
Affiliation(s)
- Mohamed Hamed Abdelaziz
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Sayed F Abdelwahab
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Pharmaceutical Technology, Taif University, College of Pharmacy, Taif, 21974, Kingdom of Saudi Arabia.
| | - Jie Wan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wei Cai
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wang Huixuan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Jianjun
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kesavan Dinesh Kumar
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Aparna Vasudevan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ahmed Sadek
- Department of Microbiology & Immunology, School of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Zhaoliang Su
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shengjun Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaxi Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
27
|
Ge YT, Zhong AQ, Xu GF, Lu Y. Resveratrol protects BV2 mouse microglial cells against LPS-induced inflammatory injury by altering the miR-146a-5p/TRAF6/NF-κB axis. Immunopharmacol Immunotoxicol 2019; 41:549-557. [DOI: 10.1080/08923973.2019.1666406] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yu-Ting Ge
- Department of Nutrition and Food Hygiene, College of Public Health, Nantong University, Nantong, People’s Republic of China
| | - An-Qi Zhong
- Department of Nutrition and Food Hygiene, College of Public Health, Nantong University, Nantong, People’s Republic of China
| | - Guang-Fei Xu
- Department of Nutrition and Food Hygiene, College of Public Health, Nantong University, Nantong, People’s Republic of China
| | - Ying Lu
- Department of Nutrition and Food Hygiene, College of Public Health, Nantong University, Nantong, People’s Republic of China
| |
Collapse
|
28
|
Chen C, Su X, Hu Z. Immune promotive effect of bioactive peptides may be mediated by regulating the expression of SOCS1/miR-155. Exp Ther Med 2019; 18:1850-1862. [PMID: 31410147 DOI: 10.3892/etm.2019.7734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 04/26/2019] [Indexed: 02/06/2023] Open
Abstract
The present study was designed to evaluate the effect of bioactive hepatic peptide (BHP) on the immune function of mice and to examine the mechanism mediated by the related factors cytokine suppressor of cytokine signaling 1 (SOCS1) and microRNA (miR)-155. The mice were divided into eight groups, including a normal mouse group, normal peptide groups (low-dose, mid-dose and high-dose), an immunosuppressed group, and immunosuppressed with peptide groups (low-dose, mid-dose and high-dose). The proliferative ability of splenic lymphocytes was determined in vitro using a Cell Counting kit-8 assay. Wright's staining was used to assess the phagocytic function of macrophages. Histological changes in the spleen were evaluated by hematoxylin-eosin staining. The relevant factors SOCS1/miR-155 were assessed by immunohistochemistry and reverse transcription fluorescence-quantitative polymerase chain reaction analysis. The levels of the cytokines TGF-β1, IL-10 and IL-17A were determined by enzyme-linked immunosorbent assay. First, the organ index, percentage of lymphocytes, phagocytosis experiments and splenic lymphocyte proliferation test results revealed that the immunodeficient mouse model had been successfully established. Second, compared with the control mice, the normal peptide group mice exhibited increased spleen and thymus indices, percentages of lymphocyte subsets, macrophage phagocytosis percentages, phagocytic indices, splenic lymphocyte proliferation and expression of miR-155; however, the expression of SOCS1 was decreased in the normal peptide groups to varying extents. In addition, the expression of SOCS1 was upregulated, whereas that of miR-155 was downregulated in the immunosuppressed group. Compared with the mice in the immunosuppressed group, the mice in the immunosuppressed with peptide groups had increased spleen and thymus indices, percentages of lymphocyte subsets, macrophage phagocytosis percentages, phagocytic indices, splenic lymphocyte proliferation and expression of miR-155; however, the expression of SOCS1 was decreased in the immunosuppressed with peptide groups to varying extents. Following treatment with BHP, the secretion of TGF-β1 in the spleen of the normal mice and immunosuppressed mice was significantly decreased, and the secretion of IL-10 was significantly increased. No significant difference in the expression of IL-17A was observed among the groups. In summary, BHP improved the immune function of the normal mice and immunosuppressed mice. This data provides a scientific basis for the development of bioactive peptide health products.
Collapse
Affiliation(s)
- Caixia Chen
- Clinical Medicine Research Center of The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xiulan Su
- Clinical Medicine Research Center of The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Zhiwei Hu
- Clinical Medicine Research Center of The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China.,Department of Surgery, Division of Surgical Oncology, James Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
29
|
Dong Y, Chen H, Gao J, Liu Y, Li J, Wang J. Bioactive Ingredients in Chinese Herbal Medicines That Target Non-coding RNAs: Promising New Choices for Disease Treatment. Front Pharmacol 2019; 10:515. [PMID: 31178721 PMCID: PMC6537929 DOI: 10.3389/fphar.2019.00515] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Chinese herbal medicines (CHMs) are widely used in China and have long been a powerful method to treat diseases in Chinese people. Bioactive ingredients are the main components extracted from herbs that have therapeutic properties. Since artemisinin was discovered to inhibit malaria by Nobel laureate Youyou Tu, extracts from natural plants, particularly bioactive ingredients, have aroused increasing attention among medical researchers. The bioactive ingredients of some CHMs have been found to target various non-coding RNA molecules (ncRNAs), especially miRNAs, lncRNAs, and circRNAs, which have emerged as new treatment targets in numerous diseases. Here we review the evidence that, by regulating the expression of ncRNAs, these ingredients exert protective effects, including pro-apoptosis, anti-proliferation and anti-migration, anti-inflammation, anti-atherosclerosis, anti-infection, anti-senescence, and suppression of structural remodeling. Consequently, they have potential as treatment agents in diseases such as cancer, cardiovascular disease, nervous system disease, inflammatory bowel disease, asthma, infectious diseases, and senescence-related diseases. Although research has been relatively limited and inadequate to date, the promising choices and new alternatives offered by bioactive ingredients for the treatment of the above diseases warrant serious investigation.
Collapse
Affiliation(s)
- Yan Dong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hengwen Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialiang Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Lu S, Luo Y, Sun GB, Sun XB. Traditional Chinese medicines treating macrophage: A particular strategy for atherosclerosis. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2018.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
31
|
PD-1 immunobiology in systemic lupus erythematosus. J Autoimmun 2018; 97:1-9. [PMID: 30396745 DOI: 10.1016/j.jaut.2018.10.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 01/22/2023]
Abstract
Programmed death (PD)-1 receptors and their ligands have been identified in the pathogenesis and development of systemic lupus erythematosus (SLE). Two key pathways, toll-like receptor and type I interferon, are significant to SLE pathogenesis and modulate the expression of PD-1 and the ligands (PD-L1, PD-L2) through activation of NF-κB and/or STAT1. These cell signals are regulated by tyrosine kinase (Tyro, Axl, Mer) receptors (TAMs) that are aberrantly activated in SLE. STAT1 and NF-κB also exhibit crosstalk with the aryl hydrocarbon receptor (AHR). Ligands to AHR are identified in SLE etiology and pathogenesis. These ligands also regulate the activity of the Epstein-Barr virus (EBV), which is an identified factor in SLE and PD-1 immunobiology. AHR is important in the maintenance of immune tolerance and the development of distinct immune subsets, highlighting a potential role of AHR in PD-1 immunobiology. Understanding the functions of AHR ligands as well as AHR crosstalk with STAT1, NF-κB, and EBV may provide insight into disease development, the PD-1 axis and immunotherapies that target PD-1 and its ligand, PD-L1.
Collapse
|
32
|
Guo G, Zhou J, Yang X, Feng J, Shao Y, Jia T, Huang Q, Li Y, Zhong Y, Nagarkatti PS, Nagarkatti M. Role of MicroRNAs Induced by Chinese Herbal Medicines Against Hepatocellular Carcinoma: A Brief Review. Integr Cancer Ther 2018; 17:1059-1067. [PMID: 30343602 PMCID: PMC6247546 DOI: 10.1177/1534735418805564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are highly conserved, noncoding small RNAs that regulate gene
expression, and consequently several important functions including early embryo
development, cell cycle, programmed cell death, cell differentiation, and
metabolism. While there are no effective treatments available against
hepatocellular carcinoma (HCC), some Chinese herbal medicines have been shown to
regulate growth, differentiation, invasion, and metastasis of HCC. Many studies
have shown that Chinese herbal medicines regulate the expression of miRNAs and
this may be associated with their ability to control the development of HCC. In
this article, the effects of Chinese herbal medicines on the expression of
miRNAs and their functions in the regulation of HCC have been reviewed and
discussed. miRNAs such as miRNA-221 and miRNA-222 mediated by Chinese herbal
medicines may be good biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Ge Guo
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Juhua Zhou
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Xiaogaung Yang
- 2 Hangzhou Hesti Biotechnology Co, Ltd, Hangzhou, Zhejiang, People's Republic of China
| | - Jiang Feng
- 2 Hangzhou Hesti Biotechnology Co, Ltd, Hangzhou, Zhejiang, People's Republic of China
| | - Yanxia Shao
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Tingting Jia
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Qingrong Huang
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Yanmin Li
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Yin Zhong
- 3 University of South Carolina, Columbia, SC, USA
| | | | | |
Collapse
|
33
|
Yu Y, Li X, Mi J, Qu L, Yang D, Guo J, Qiu L. Resveratrol Suppresses Matrix Metalloproteinase-2 Activation Induced by Lipopolysaccharide in Mouse Osteoblasts via Interactions with AMP-Activated Protein Kinase and Suppressor of Cytokine Signaling 1. Molecules 2018; 23:molecules23092327. [PMID: 30213073 PMCID: PMC6225262 DOI: 10.3390/molecules23092327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 12/18/2022] Open
Abstract
Porphyromonas endodontalis (P. endodontalis) lipopolysaccharide (LPS) is associated with the progression of bone resorption in periodontal and periapical diseases. Matrix metalloproteinase-2 (MMP-2) expression and activity are elevated in apical periodontitis and have been suggested to participate in bone resorption. Therefore, inhibiting MMP-2 activation may be considered a therapeutic strategy for treating apical periodontitis. Resveratrol is a natural non-flavonoid polyphenol that has been reported to have antioxidant, anti-cancer, and anti-inflammatory properties. However, the capacity of resveratrol to protect osteoblast cells from P. endodontalis LPS insults and the mechanism of its inhibitory effects on MMP-2 activation is poorly understood. Here, we demonstrate that cell viability is unchanged when 10 mg L−1P. endodontalis LPS is used, and MMP-2 expression is drastically induced by P. endodontalis LPS in a concentration- and time-dependent manner. Twenty micromolar resveratrol did not reduce MC3T3-E1 cell viability. Resveratrol increased AMP-activated protein kinase (AMPK) phosphorylation, and Compound C, a specific AMPK inhibitor, partially abolished the resveratrol-mediated phosphorylation of AMPK. In addition, AMPK inhibition blocked the effects of resveratrol on MMP-2 expression and activity in LPS-induced MC3T3-E1 cells. Treatment with resveratrol also induced suppressor of cytokine signaling 1 (SOCS1) expression in MC3T3-E1 cells. SOCS1 siRNA negated the inhibitory effects of resveratrol on LPS-induced MMP-2 production. Additionally, resveratrol-induced SOCS1 upregulation was reduced by treatment with compound C. These results demonstrate that AMPK and SOCS1 activation are important signaling events during resveratrol-mediated inhibition of MMP-2 production in response to LPS in MC3T3-E1 cells, and there is crosstalk between AMPK and SOCS1 signaling.
Collapse
Affiliation(s)
- Yaqiong Yu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
- Liaoning Province Key Laboratory of Oral Diseases, Shenyang 110002, China.
| | - Xiaolin Li
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
| | - Jing Mi
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
| | - Liu Qu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
| | - Di Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
| | - Jiajie Guo
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
| | - Lihong Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
- Liaoning Province Key Laboratory of Oral Diseases, Shenyang 110002, China.
| |
Collapse
|
34
|
Dietary compounds have potential in controlling atherosclerosis by modulating macrophage cholesterol metabolism and inflammation via miRNA. NPJ Sci Food 2018; 2:13. [PMID: 31304263 PMCID: PMC6550192 DOI: 10.1038/s41538-018-0022-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/12/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis (AS) is a typical example of a widespread fatal cardiovascular disease. Accumulation of cholesterol-laden macrophages in the artery wall forms the starting point of AS. Increased influx of oxidized low-density lipoprotein to macrophages and decreased efflux of free cholesterol out of macrophages constitute major factors promoting the development of AS. Inflammation further aggravates the development of AS along or via interaction with the cholesterol metabolism. Many microRNAs (miRNAs) are related to the regulation of macrophage in AS in aspects of cholesterol metabolism and inflammation signaling. Dietary compounds perform AS inhibitory effects via miRNAs in the cholesterol metabolism (miR-19b, miR-378, miR-10b, miR-33a, and miR-33b) and two miRNAs in the inflammation signaling (miR-155 and miR-146a). The targeted miRNAs in the cholesterol metabolism vary greatly among different food compounds; however, in inflammation signaling, most food compounds target miR-155. Many receptors are involved in macrophages via miRNAs, including ABCA1 and ABCG1 as major receptors in the cholesterol metabolism, while nuclear factor-κB (NF-κB) and Nrf2 signaling and PI3K/AKT signaling pathways are targeted during inflammation. This article reviews current literature to investigate possible AS therapy with dietary compounds via targeting miRNAs. Currently existing problems were also discussed to guide further studies.
Collapse
|
35
|
Rauf A, Imran M, Suleria HAR, Ahmad B, Peters DG, Mubarak MS. A comprehensive review of the health perspectives of resveratrol. Food Funct 2018; 8:4284-4305. [PMID: 29044265 DOI: 10.1039/c7fo01300k] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many natural products present in our diet, including flavonoids, can prevent the progression of cancer and other diseases. Resveratrol, a natural polyphenol present in various fruits and vegetables, plays an important role as a therapeutic and chemopreventive agent used in the treatment of various illnesses. It exhibits effects against different types of cancer through different pathways. It additionally exerts antidiabetic, anti-inflammatory, and anti-oxidant effects in a variety of cell types. Furthermore, the cardiovascular protective capacities of resveratrol are associated with multiple molecular targets and may lead to the development of novel therapeutic strategies for atherosclerosis, ischemia/reperfusion, metabolic syndrome, and heart failure. Accordingly, this article presents an overview of recent developments in the use of resveratrol for the prevention and treatment of different diseases along with various mechanisms. In addition, the present review summarizes the most recent literature pertaining to resveratrol as a chemotherapeutic agent against multiple diseases and provides an assessment of the potential of this natural compound as a complementary or alternative medicine.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | | | | | | | | | | |
Collapse
|
36
|
Chen S, Shan J, Niu W, Lin F, Liu S, Wu P, Sun L, Lu W, Jiang G. Micro RNA-155 inhibitor as a potential therapeutic strategy for the treatment of acute kidney injury (AKI): a nanomedicine perspective. RSC Adv 2018; 8:15890-15896. [PMID: 35542211 PMCID: PMC9080266 DOI: 10.1039/c7ra13440a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 12/18/2022] Open
Abstract
In this study, we have prepared miR-155 inhibitor-loaded liposome vesicles for the effective treatment of acute kidney injury. The efficacy of liposomal miR-155 inhibitor in the expression of miR-155, mortality in animals, the expression of TNF-α-IL6, and the expression of SOCS1–STAT1 were evaluated. The loading of miR-155 inhibitor into liposomes conferred the much needed colloidal stability and efficient delivery to the renal tissues. The study clearly shows that miR-I-LV significantly decreases the expression of miR-155 in kidneys compared to LPS. Administration of miR-I-LV remarkably reduced the pathological concerns of the kidneys with a marked decrease in inflammatory cell infiltration. Scrambled miR-155 did not have any effect on the expression of these markers; however miR-I-LV showed a remarkable ability to decrease the expression of TNF-α and IL-6 in kidney tissues indicating an ability to treat acute kidney infections. Overall, administration of miR-155 inhibitor effectively alleviated LPS-induced kidney injury by significantly suppressing TNF-α and IL-6 in kidney tissue and by remarkably increasing the expression of mRNA of SOCS1 and STAT1. The present results suggest that miR-155 inhibitor could be used in an effective targeting strategy for the treatment of acute kidney injury (AKI). In this study, we have prepared miR-155 inhibitor-loaded liposome vesicles for the effective treatment of acute kidney injury.![]()
Collapse
Affiliation(s)
- Shunjie Chen
- Department of Nephrology
- Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine
- Shanghai
- P. R. China
| | - Jianping Shan
- Department of Nephrology
- Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine
- Shanghai
- P. R. China
| | - Wei Niu
- Department of Nephrology
- Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine
- Shanghai
- P. R. China
| | - Fujun Lin
- Department of Nephrology
- Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine
- Shanghai
- P. R. China
| | - Shuang Liu
- Department of Nephrology
- Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine
- Shanghai
- P. R. China
| | - Ping Wu
- Department of Nephrology
- Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine
- Shanghai
- P. R. China
| | - Lijing Sun
- Department of Nephrology
- Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine
- Shanghai
- P. R. China
| | - Wei Lu
- Department of Nephrology
- Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine
- Shanghai
- P. R. China
| | - Gengru Jiang
- Department of Nephrology
- Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine
- Shanghai
- P. R. China
| |
Collapse
|
37
|
Resveratrol-Induced Changes in MicroRNA Expression in Primary Human Fibroblasts Harboring Carnitine-Palmitoyl Transferase-2 Gene Mutation, Leading to Fatty Acid Oxidation Deficiency. Molecules 2017; 23:molecules23010007. [PMID: 29271911 PMCID: PMC5943968 DOI: 10.3390/molecules23010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/11/2017] [Accepted: 12/16/2017] [Indexed: 12/17/2022] Open
Abstract
Carnitine palmitoyltransferase-2 (CPT2) is a mitochondrial enzyme involved in long-chain fatty acid entry into mitochondria for their β-oxidation and energy production. Two phenotypes are associated with the extremely reduced CPT2 activity in genetically deficient patients: neonatal lethality or, in milder forms, myopathy. Resveratrol (RSV) is a phytophenol produced by grape plant in response to biotic or abiotic stresses that displays anti-oxidant properties, in particular through AP-1, NFκB, STAT-3, and COX pathways. Some beneficiary effects of RSV are due to its modulation of microRNA (miRNA) expression. RSV can enhance residual CPT2 activities in human fibroblasts derived from CPT2-deficient patients and restores normal fatty acid oxidation rates likely through stimulation of mitochondrial biogenesis. Here, we report changes in miRNA expression linked to CPT2-deficiency, and we identify miRNAs whose expression changed following RSV treatment of control or CPT2-deficient fibroblasts isolated from patients. Our findings suggest that RSV consumption might exert beneficiary effects in patients with CPT2-deficiency.
Collapse
|
38
|
Eseberri I, Lasa A, Miranda J, Gracia A, Portillo MP. Potential miRNA involvement in the anti-adipogenic effect of resveratrol and its metabolites. PLoS One 2017; 12:e0184875. [PMID: 28953910 PMCID: PMC5617156 DOI: 10.1371/journal.pone.0184875] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/03/2017] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Scientific research is constantly striving to find molecules which are effective against excessive body fat and its associated complications. Taking into account the beneficial effects that resveratrol exerts on other pathologies through miRNA, the aim of the present work was to analyze the possible involvement of miRNAs in the regulation of adipogenic transcription factors peroxisome proliferator-activated receptor γ (pparγ), CCAAT enhancer-binding proteins α and β (cebpβ and cebpα) induced by resveratrol and its metabolites. METHODS 3T3-L1 maturing pre-adipocytes were treated during differentiation with 25 μM of trans-resveratrol (RSV), trans-resveratrol-3-O-sulfate (3S), trans-resveratrol-3'-O-glucuronide (3G) and trans-resveratrol-4'-O-glucuronide (4G). After computational prediction and bibliographic search of miRNAs targeting pparγ, cebpβ and cebpα, the expression of microRNA-130b-3p (miR-130b-3p), microRNA-155-5p (miR-155-5p), microRNA-27b-3p (miR-27b-3p), microRNA-31-5p (miR-31-5p), microRNA-326-3p (miR-326-3p), microRNA-27a-3p (miR-27a-3p), microRNA-144-3p (miR-144-3p), microRNA-205-5p (miR-205-5p) and microRNA-224-3p (miR-224-3p) was analyzed. Moreover, other adipogenic mediators such as sterol regulatory element binding transcription factor 1 (srebf1), krüppel-like factor 5 (klf5), liver x receptor α (lxrα) and cAMP responding element binding protein 1 (creb1), were measured by Real Time RT-PCR. As a confirmatory assay, cells treated with RSV were transfected with anti-miR-155 in order to measure cebpβ gene and protein expressions. RESULTS Of the miRNAs analyzed only miR-155 was modified after resveratrol and glucuronide metabolite treatment. In transfected cells with anti-miR-155, RSV did not reduce cebpβ gene and protein expression. 3S decreased gene expression of creb1, klf5, srebf1 and lxrα. CONCLUSIONS While RSV and glucuronide metabolites exert their inhibitory effect on adipogenesis through miR-155 up-regulation, the anti-adipogenic effect of 3S is not mediated via miRNAs.
Collapse
Affiliation(s)
- Itziar Eseberri
- Nutrition and Obesity group, Department of Nutrition and Food Science, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Center, Vitoria, Spain
- Centro de Investigación Biomédica en Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Arrate Lasa
- Nutrition and Obesity group, Department of Nutrition and Food Science, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Center, Vitoria, Spain
- Centro de Investigación Biomédica en Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Jonatan Miranda
- Nutrition and Obesity group, Department of Nutrition and Food Science, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Center, Vitoria, Spain
- Centro de Investigación Biomédica en Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Gracia
- Nutrition and Obesity group, Department of Nutrition and Food Science, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Center, Vitoria, Spain
- Centro de Investigación Biomédica en Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria P. Portillo
- Nutrition and Obesity group, Department of Nutrition and Food Science, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Center, Vitoria, Spain
- Centro de Investigación Biomédica en Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
39
|
SOCS molecules: the growing players in macrophage polarization and function. Oncotarget 2017; 8:60710-60722. [PMID: 28948005 PMCID: PMC5601173 DOI: 10.18632/oncotarget.19940] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
The concept of macrophage polarization is defined in terms of macrophage phenotypic heterogeneity and functional diversity. Cytokines signals are thought to be required for the polarization of macrophage populations toward different phenotypes at different stages in development, homeostasis and disease. The suppressors of cytokine signaling family of proteins contribute to the magnitude and duration of cytokines signaling, which ultimately control the subtle adjustment of the balance between divergent macrophage phenotypes. This review highlights the specific roles and mechanisms of various cytokines family and their negative regulators link to the macrophage polarization programs. Eventually, breakthrough in the identification of these molecules will provide the novel therapeutic approaches for a host of diseases by targeting macrophage phenotypic shift.
Collapse
|
40
|
Genistein Protects Against Ox-LDL-Induced Inflammation Through MicroRNA-155/SOCS1-Mediated Repression of NF-ĸB Signaling Pathway in HUVECs. Inflammation 2017; 40:1450-1459. [DOI: 10.1007/s10753-017-0588-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Debnath T, Deb Nath NC, Kim EK, Lee KG. Role of phytochemicals in the modulation of miRNA expression in cancer. Food Funct 2017; 8:3432-3442. [DOI: 10.1039/c7fo00739f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are single-stranded non-coding endogenous RNAs. They act as tumour suppressors and oncogenes in tumorigenesis. Phytochemicals have a unique capability to regulate the expression of miRNAs in various cancers.
Collapse
Affiliation(s)
- Trishna Debnath
- Department of Food Science and Biotechnology
- Dongguk University-Seoul
- Goyang
- Korea
| | | | - Eun-Kyung Kim
- Division of Food Bioscience
- College of Biomedical and Health Sciences
- Konkuk University
- Chungju
- Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology
- Dongguk University-Seoul
- Goyang
- Korea
| |
Collapse
|
42
|
Zhang S, Gao L, Liu X, Lu T, Xie C, Jia J. Resveratrol Attenuates Microglial Activation via SIRT1-SOCS1 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:8791832. [PMID: 28781601 PMCID: PMC5525071 DOI: 10.1155/2017/8791832] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/12/2017] [Indexed: 02/05/2023]
Abstract
Microglial activation is involved in a variety of neurological disorders, and overactivated microglial cells can secrete large amount of proinflammatory factors and induce neuron death. Therefore, reducing microglial activation is believed to be useful in treating the disorders. In this study, we used 10 ng/ml lipopolysaccharide plus 10 U/ml interferon γ (LPS/IFNγ) to induce N9 microglial activation and explored resveratrol- (RSV-) induced effects on microglial activation and the underlying mechanism. We found that LPS/IFNγ exposure for 24 h increased inducible nitric oxide synthase (iNOS) and nuclear factor κB (NF-κB) p65 subunit expressions in the cells and enhanced tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) releases from the cells. RSV of 25 μM reduced the iNOS and NF-κB p65 subunit expressions and the proinflammatory factors' releases; the knockdown of silent information regulator factor 2-related enzyme 1 (SIRT1) or suppressor of cytokine signaling 1 (SOCS1) by using the small interfering RNA, however, significantly abolished the RSV-induced effects on iNOS and NF-κB p65 subunit expressions and the proinflammatory factors' releases. These findings showed that microglial SIRT1-SOCS1 pathway may mediate the RSV-induced inhibition of microglial activation in the LPS/IFNγ-treated N9 microglia.
Collapse
Affiliation(s)
- Shuping Zhang
- Department of Dermatology, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Lu Gao
- Department of Neurosurgery, Xi'an Children's Hospital, Xi'an 710003, China
| | - Xiuying Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510045, China
| | - Tao Lu
- Department of Dermatology, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Chuangbo Xie
- Department of Anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China
| | - Ji Jia
- Department of Anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China
- *Ji Jia:
| |
Collapse
|