1
|
Mesnage R, Bowyer RCE, El Balkhi S, Saint-Marcoux F, Gardere A, Ducarmon QR, Geelen AR, Zwittink RD, Tsoukalas D, Sarandi E, Paramera EI, Spector T, Steves CJ, Antoniou MN. Impacts of dietary exposure to pesticides on faecal microbiome metabolism in adult twins. Environ Health 2022; 21:46. [PMID: 35501856 PMCID: PMC9063241 DOI: 10.1186/s12940-022-00860-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/27/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Dietary habits have a profound influence on the metabolic activity of gut microorganisms and their influence on health. Concerns have been raised as to whether the consumption of foodstuffs contaminated with pesticides can contribute to the development of chronic disease by affecting the gut microbiome. We performed the first pesticide biomonitoring survey of the British population, and subsequently used the results to perform the first pesticide association study on gut microbiome composition and function from the TwinsUK registry. METHODS Dietary exposure of 186 common insecticide, herbicide, or fungicide residues and the faecal microbiome in 65 twin pairs in the UK was investigated. We evaluated if dietary habits, geographic location, or the rural/urban environment, are associated with the excretion of pesticide residues. The composition and metabolic activity of faecal microbiota was evaluated using shotgun metagenomics and metabolomics respectively. We performed a targeted urine metabolomics analysis in order to evaluate whether pesticide urinary excretion was also associated with physiological changes. RESULTS Pyrethroid and/or organophosphorus insecticide residues were found in all urine samples, while the herbicide glyphosate was found in 53% of individuals. Food frequency questionnaires showed that residues from organophosphates were higher with increased consumption of fruit and vegetables. A total of 34 associations between pesticide residue concentrations and faecal metabolite concentrations were detected. Glyphosate excretion was positively associated with an overall increased bacterial species richness, as well as to fatty acid metabolites and phosphate levels. The insecticide metabolite Br2CA, reflecting deltamethrin exposure, was positively associated with the phytoestrogens enterodiol and enterolactone, and negatively associated with some N-methyl amino acids. Urine metabolomics performed on a subset of samples did not reveal associations with the excretion of pesticide residues. CONCLUSIONS The consumption of conventionally grown fruit and vegetables leads to higher ingestion of pesticides with unknown long-term health consequences. Our results highlight the need for future dietary intervention studies to understand effects of pesticide exposure on the gut microbiome and possible health consequences.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| | - Ruth C E Bowyer
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Souleiman El Balkhi
- Service de pharmacologie, toxicologie et pharmacovigilance, UF Toxicologie analytique environnementale et santé au travail, CHU de Limoges, Limoges, France
| | - Franck Saint-Marcoux
- Service de pharmacologie, toxicologie et pharmacovigilance, UF Toxicologie analytique environnementale et santé au travail, CHU de Limoges, Limoges, France
| | - Arnaud Gardere
- Service de pharmacologie, toxicologie et pharmacovigilance, UF Toxicologie analytique environnementale et santé au travail, CHU de Limoges, Limoges, France
| | - Quinten Raymond Ducarmon
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anoecim Robecca Geelen
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Romy Daniëlle Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dimitris Tsoukalas
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674, Athens, Greece
| | - Evangelia Sarandi
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674, Athens, Greece
| | | | - Timothy Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
2
|
Kohler I, Verhoeven M, Haselberg R, Gargano AF. Hydrophilic interaction chromatography – mass spectrometry for metabolomics and proteomics: state-of-the-art and current trends. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Jin L, Zhang T, Zeng J, Zhang C. Laboratory practice of organic acid analysis based on gas chromatography–mass spectrometry in China. J LAB MED 2021. [DOI: 10.1515/labmed-2021-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Objectives
The aim of this study is to investigate the status of laboratory practice of organic acid (OA) analysis using gas chromatography–mass spectrometry in China.
Methods
A survey, investigating details of laboratory practice of OA analysis, was issued on the website of the National Center for Clinical Laboratories of China. Nationwide external quality assessment participating laboratories of OA assay were informed to participate in this survey.
Results
A total of 36 laboratories completed this survey. Most laboratories started OA analysis during 2016–2020. Most (100%) labs reported semi-quantitative results, in which 79.4% of labs adopted the form of the ratio of peak area of OA and quantitative internal standard. Rare labs reported quantitative results. Few labs released reports in three days, most in 5–7 days. The source of control materials varied, 64.5% of labs adapted self-made materials. A total of 43.8% of laboratories directly used reference intervals (RIs) from published literature, 43.8% of laboratories established RIs themselves, but 21.2% of laboratories reported they didn’t verify RIs.
Conclusions
Appropriate supervision for the organic acid assay is needed in the aspect of the turnaround time of reporting results, the establishment validation and verification of reference ranges, and the quantification of results.
Collapse
Affiliation(s)
- Lizi Jin
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College. No. 1 Dahua Road , Dongcheng District , Beijing 100730, P. R. China
| | - Tianjiao Zhang
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College. No. 1 Dahua Road , Dongcheng District , Beijing 100730, P. R. China
| | - Jie Zeng
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College. No. 1 Dahua Road , Dongcheng District , Beijing 100730, P. R. China
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College. No. 1 Dahua Road , Dongcheng District , Beijing 100730, P. R. China
| |
Collapse
|
4
|
Zhang MJ, Chou J, Sun ZW, Zhao JH, Guo J, Yu JY, Gao SQ, Tang YS, Liu LY. Gas chromatography/mass spectrometry analysis of organic acid profiles in human serum: A protocol of direct ultrasound-assisted derivatization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9149. [PMID: 34156734 DOI: 10.1002/rcm.9149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Low-molecular-weight organic acids that generally contain one to three carboxyl groups are involved in many important biological processes; therefore, it is important to develop a quantitative method for analyzing organic acids in serum in order to allow an evaluation of metabolic changes. In this study, we evaluated a protocol for detecting 26 organic acids in serum based on ultrasound-assisted derivatization by gas chromatography/mass spectrometry (GC/MS). METHODS Serum samples were prepared using ultrasound-assisted silane derivatization before GC/MS analysis to quantify concentrations of organic acids. Additionally, we investigated the variables affecting derivatization yields, including the extraction solvent, derivatization reagents, and derivatization conditions (reaction temperature, duration, and sonication parameters). The protocol was ultimately applied to detect organic acid profiles related to obesity. RESULTS We used acetone as the extraction solvent and determined suitable derivatization conditions, as follows: BSTFA + 1% TMCS, 50°C, 10 min, and 100% ultrasound power. The protocol showed satisfactory linearity (r = 0.9958-0.9996), a low limit of detection (0.04-0.42 μmol/L), good reproducibility (coefficient of variation (CV) %: 0.32-13.76%), acceptable accuracy (recovery: 82.97-114.96%), and good stability within 5 days (CV%: 1.35-12.01% at room temperature, 1.24-14.09% at 4°C, and 1.01-11.67% at -20°C). Moreover, the protocol was successfully applied to obtain the organic acid profiles from obese and healthy control subjects. CONCLUSIONS We identified and validated a protocol for ultrasound-assisted derivatization prior to GC/MS analysis for detecting 26 kinds of organic acids in serum. The results suggest the efficacy of this protocol for clinical applications to determine metabolic changes related to fluctuations in organic acid profiles.
Collapse
Affiliation(s)
- Ming-Jia Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| | - Jing Chou
- PingHu Hospital, Health Science Center, Shenzhen University, Shenzhen, P.R. China
| | - Zhi-Wei Sun
- Harbin University of Commerce, Harbin, P.R. China
| | - Jin-Hui Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| | - Jing Guo
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| | - Jia-Ying Yu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| | - Si-Qi Gao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| | - Ying-Shu Tang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| | - Li-Yan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| |
Collapse
|
5
|
Zheng Y, Zhang X, Liu X, Qin N, Xu K, Zeng R, Liu J, Song Y. Nitrogen Supply Alters Rice Defense Against the Striped Stem Borer Chilo suppressalis. FRONTIERS IN PLANT SCIENCE 2021; 12:691292. [PMID: 34381479 PMCID: PMC8351598 DOI: 10.3389/fpls.2021.691292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/24/2021] [Indexed: 05/08/2023]
Abstract
Plant nutrition status is closely associated with plant defense against insect herbivores. However, the way nitrogen supply regulates rice anti-herbivore is not clear. This study investigated the effects of low (LN, 0.3 mM) and high (HN, 3 mM) nitrate levels on rice resistance against the striped stem borer Chilo suppressalis (SSB), one of the major destructive rice pests. Seven-day-old rice seedlings were cultured with different nitrate levels for 30 days and then inoculated with third instars of SSB. LN significantly enhanced rice anti-herbivore defense and lowered the total nitrogen content in the plants, but increased the content of free amino acids after SSB infestation. Additionally, LN significantly increased the accumulation of phenolic acids and flavonoids, especially lignin, resulting in enhanced constitutive defense in SSB-infested plants. SSB feeding led to a rapid accumulation of secondary metabolites. HN application led to the accumulation of metabolites derived from cinnamic acid, p-coumaric acid, p-coumaric CoA, feruloyl CoA, and apigenin, while LN led to the accumulation of metabolites derived from 3-dehydroquinic acid, phenylalanine, acetyl CoA, and aspartic acid. Collectively, our finding suggests that nitrogen deficiency enhances rice anti-herbivore defense via constitutive defense by the accumulation of phenolic acids and flavonoids.
Collapse
Affiliation(s)
- Yueqin Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiyong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ningning Qin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kaifang Xu
- Institute of Crop Resistance and Chemical Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Institute of Crop Resistance and Chemical Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian Liu
- Institute of Crop Resistance and Chemical Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Jian Liu,
| | - Yuanyuan Song
- Institute of Crop Resistance and Chemical Ecology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Yuanyuan Song,
| |
Collapse
|
6
|
Tsoukalas D, Fragoulakis V, Papakonstantinou E, Antonaki M, Vozikis A, Tsatsakis A, Buga AM, Mitroi M, Calina D. Prediction of Autoimmune Diseases by Targeted Metabolomic Assay of Urinary Organic Acids. Metabolites 2020; 10:E502. [PMID: 33302528 PMCID: PMC7764183 DOI: 10.3390/metabo10120502] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases (ADs) are chronic disorders characterized by the loss of self-tolerance, and although being heterogeneous, they share common pathogenic mechanisms. Self-antigens and inflammation markers are established diagnostic tools; however, the metabolic imbalances that underlie ADs are poorly described. The study aimed to employ metabolomics for the detection of disease-related changes in autoimmune diseases that could have predictive value. Quantitative analysis of 28 urine organic acids was performed using Gas Chromatography-Mass Spectrometry in a group of 392 participants. Autoimmune thyroiditis, inflammatory bowel disease, psoriasis and rheumatoid arthritis were the most prevalent autoimmune diseases of the study. Statistically significant differences were observed in the tricarboxylate cycle metabolites, succinate, methylcitrate and malate, the pyroglutamate and 2-hydroxybutyrate from the glutathione cycle and the metabolites methylmalonate, 4-hydroxyphenylpyruvate, 2-hydroxyglutarate and 2-hydroxyisobutyrate between the AD group and the control. Artificial neural networks and Binary logistic regression resulted in the highest predictive accuracy scores (66.7% and 74.9%, respectively), while Methylmalonate, 2-Hydroxyglutarate and 2-hydroxybutyrate were proposed as potential biomarkers for autoimmune diseases. Urine organic acid levels related to the mechanisms of energy production and detoxification were associated with the presence of autoimmune diseases and could be an adjunct tool for early diagnosis and prediction.
Collapse
Affiliation(s)
- Dimitris Tsoukalas
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece;
- European Institute of Nutritional Medicine (E.I.Nu.M.), 00198 Rome, Italy
| | | | | | - Maria Antonaki
- Laboratory of Health Economics & Management, Economics Department, University of Piraeus, 18534 Piraeus, Greece; (M.A.); (A.V.)
| | - Athanassios Vozikis
- Laboratory of Health Economics & Management, Economics Department, University of Piraeus, 18534 Piraeus, Greece; (M.A.); (A.V.)
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece;
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119991 Moscow, Russia
| | - Ana Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mihaela Mitroi
- ENT Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
7
|
Chen B, Guo H, Liu C, Shang L, Ye X, Chen L, Feng C, Hayashi K. Molecularly imprinted sol-gel/Au@Ag core-shell nano-urchin localized surface plasmon resonance sensor designed in reflection mode for detection of organic acid vapors. Biosens Bioelectron 2020; 169:112639. [PMID: 32979590 DOI: 10.1016/j.bios.2020.112639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/03/2020] [Accepted: 09/17/2020] [Indexed: 01/01/2023]
Abstract
A molecularly imprinted sol-gel (MISG)/Au@Ag core-shell NU sensor is proposed for organic vapor detection in an optical fiber-based reflection mode. The compact structure design of the system in the reflection model is promising for practical use as a portable and rapid responsivity sensing probe. Volatile organic acids (OAs) are analogs to biogenetic volatile organic vapors related to specific human diseases. Here, Au@Ag core-shell nano-urchins exhibiting branched tips were synthesized and deposited on indium tin oxide (ITO) glass in small dimer and trimmer clusters to generate an enhanced electric field. A MISG solution was then spin-coated on the substrate to fabricate MISG-LSPR sensors, and three types of MISGs were developed for the detection of hexanoic acid, heptanoic acid and octanoic acid. The normalized spectral response indicated selectivity of the MISG-LSPR sensors for the corresponding template OAs. With Native Bayes and linear discriminant analysis of the sensor responses, where the latter were detected by the proposed system, single- and mixed-OA vapors could be classified into separate clusters. This signified that the proposed MISG-LSPR sensor can be applied toward pattern recognition of single vapors or multiple vapor mixtures.
Collapse
Affiliation(s)
- Bin Chen
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Hao Guo
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Chuanjun Liu
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Liang Shang
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Xiao Ye
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Lin Chen
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Changhao Feng
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, 400715, PR China
| | - Kenshi Hayashi
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
8
|
Metabolic profiling of organic acids in urine samples of Cri Du Chat syndrome individuals by gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1153:122267. [DOI: 10.1016/j.jchromb.2020.122267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/11/2020] [Accepted: 07/08/2020] [Indexed: 01/07/2023]
|
9
|
Sarandi E, Thanasoula M, Anamaterou C, Papakonstantinou E, Geraci F, Papamichael MM, Itsiopoulos C, Tsoukalas D. Metabolic profiling of organic and fatty acids in chronic and autoimmune diseases. Adv Clin Chem 2020; 101:169-229. [PMID: 33706889 DOI: 10.1016/bs.acc.2020.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolomics is a powerful tool of omics that permits the simultaneous identification of metabolic perturbations in several autoimmune and chronic diseases. Several parameters can affect a metabolic profile, from the population characteristics to the selection of the analytical method. In the current chapter, we summarize the main analytical methods and results of the metabolic profiling of fatty and organic acids performed in human metabolomic studies for asthma, COPD, psoriasis and Hashimoto's thyroiditis. We discuss the most significant metabolic alterations associated with these diseases, after comparison of either a single patient's group with healthy controls or several patient's subgroups of different disease severity and phenotype with healthy controls or of a patient's group before and after treatment. Finally, we present critical metabolic patterns that are associated with each disease and their potency for the unraveling of disease pathogenesis, prediction, diagnosis, patient stratification and treatment selection.
Collapse
Affiliation(s)
- Evangelia Sarandi
- Metabolomic Medicine Clinic, Athens, Greece; Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Maria Thanasoula
- Metabolomic Medicine Clinic, Athens, Greece; European Institute of Nutritional Medicine, E.I.Nu.M, Rome, Italy
| | | | | | - Francesco Geraci
- European Institute of Nutritional Medicine, E.I.Nu.M, Rome, Italy
| | - Maria Michelle Papamichael
- Department of Rehabilitation, Nutrition & Sport, La Trobe University, School of Allied Health, Melbourne, VIC, Australia
| | - Catherine Itsiopoulos
- Department of Rehabilitation, Nutrition & Sport, La Trobe University, School of Allied Health, Melbourne, VIC, Australia
| | - Dimitris Tsoukalas
- Metabolomic Medicine Clinic, Athens, Greece; European Institute of Nutritional Medicine, E.I.Nu.M, Rome, Italy.
| |
Collapse
|
10
|
Petrakis D, Margină D, Tsarouhas K, Tekos F, Stan M, Nikitovic D, Kouretas D, Spandidos DA, Tsatsakis A. Obesity ‑ a risk factor for increased COVID‑19 prevalence, severity and lethality (Review). Mol Med Rep 2020; 22:9-19. [PMID: 32377709 PMCID: PMC7248467 DOI: 10.3892/mmr.2020.11127] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are a group of viruses that cause infections in the human respiratory tract, which can be characterized clinically from mild to fatal. The severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is the virus responsible. The global spread of COVID‑19 can be described as the worst pandemic in humanity in the last century. To date, COVID‑19 has infected more than 3,000,000 people worldwide and killed more than 200,000 people. All age groups can be infected from the virus, but more serious symptoms that can possibly result in death are observed in older people and those with underlying medical conditions such as cardiovascular and pulmonary disease. Novel data report more severe symptoms and even a negative prognosis for the obese patients. A growing body of evidence connects obesity with COVID‑19 and a number of mechanisms from immune system activity attenuation to chronic inflammation are implicated. Lipid peroxidation creates reactive lipid aldehydes which in a patient with metabolic disorder and COVID‑19 will affect its prognosis. Finally, pregnancy‑associated obesity needs to be studied further in connection to COVID‑19 as this infection could pose high risk both to pregnant women and the fetus.
Collapse
Affiliation(s)
- Demetrios Petrakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - Denisa Margină
- ‘Carol Davila’ University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, 020956 Bucharest, Romania
| | | | - Fotios Tekos
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Miriana Stan
- ‘Carol Davila’ University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, 020956 Bucharest, Romania
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71110 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| |
Collapse
|
11
|
Margină D, Ungurianu A, Purdel C, Tsoukalas D, Sarandi E, Thanasoula M, Tekos F, Mesnage R, Kouretas D, Tsatsakis A. Chronic Inflammation in the Context of Everyday Life: Dietary Changes as Mitigating Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4135. [PMID: 32531935 PMCID: PMC7312944 DOI: 10.3390/ijerph17114135] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
The lifestyle adopted by most people in Western societies has an important impact on the propensity to metabolic disorders (e.g., diabetes, cancer, cardiovascular disease, neurodegenerative diseases). This is often accompanied by chronic low-grade inflammation, driven by the activation of various molecular pathways such as STAT3 (signal transducer and activator of transcription 3), IKK (IκB kinase), MMP9 (matrix metallopeptidase 9), MAPK (mitogen-activated protein kinases), COX2 (cyclooxigenase 2), and NF-Kβ (nuclear factor kappa-light-chain-enhancer of activated B cells). Multiple intervention studies have demonstrated that lifestyle changes can lead to reduced inflammation and improved health. This can be linked to the concept of real-life risk simulation, since humans are continuously exposed to dietary factors in small doses and complex combinations (e.g., polyphenols, fibers, polyunsaturated fatty acids, etc.). Inflammation biomarkers improve in patients who consume a certain amount of fiber per day; some even losing weight. Fasting in combination with calorie restriction modulates molecular mechanisms such as m-TOR, FOXO, NRF2, AMPK, and sirtuins, ultimately leads to significantly reduced inflammatory marker levels, as well as improved metabolic markers. Moving toward healthier dietary habits at the individual level and in publicly-funded institutions, such as schools or hospitals, could help improving public health, reducing healthcare costs and improving community resilience to epidemics (such as COVID-19), which predominantly affects individuals with metabolic diseases.
Collapse
Affiliation(s)
- Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Carmen Purdel
- Department of Toxicology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Dimitris Tsoukalas
- European Institute of Nutritional Medicine EINuM, 00198 Rome , Italy
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Evangelia Sarandi
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Maria Thanasoula
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, School of Health Sciences, 41500 Larisa, Greece
| | - Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences and Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, School of Health Sciences, 41500 Larisa, Greece
| | - Aristidis Tsatsakis
- Department Forensic Sciences and Toxicology, University of Crete, Faculty of Medicine, 71003 Heraklion, Greece
| |
Collapse
|
12
|
Hagenbeek FA, Roetman PJ, Pool R, Kluft C, Harms AC, van Dongen J, Colins OF, Talens S, van Beijsterveldt CEM, Vandenbosch MMLJZ, de Zeeuw EL, Déjean S, Fanos V, Ehli EA, Davies GE, Hottenga JJ, Hankemeier T, Bartels M, Vermeiren RRJM, Boomsma DI. Urinary Amine and Organic Acid Metabolites Evaluated as Markers for Childhood Aggression: The ACTION Biomarker Study. Front Psychiatry 2020; 11:165. [PMID: 32296350 PMCID: PMC7138132 DOI: 10.3389/fpsyt.2020.00165] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/21/2020] [Indexed: 01/05/2023] Open
Abstract
Biomarkers are of interest as potential diagnostic and predictive instruments in personalized medicine. We present the first urinary metabolomics biomarker study of childhood aggression. We aim to examine the association of urinary metabolites and neurotransmitter ratios involved in key metabolic and neurotransmitter pathways in a large cohort of twins (N = 1,347) and clinic-referred children (N = 183) with an average age of 9.7 years. This study is part of ACTION (Aggression in Children: Unraveling gene-environment interplay to inform Treatment and InterventiON strategies), in which we developed a standardized protocol for large-scale collection of urine samples in children. Our analytical design consisted of three phases: a discovery phase in twins scoring low or high on aggression (N = 783); a replication phase in twin pairs discordant for aggression (N = 378); and a validation phase in clinical cases and matched twin controls (N = 367). In the discovery phase, 6 biomarkers were significantly associated with childhood aggression, of which the association of O-phosphoserine (β = 0.36; SE = 0.09; p = 0.004), and gamma-L-glutamyl-L-alanine (β = 0.32; SE = 0.09; p = 0.01) remained significant after multiple testing. Although non-significant, the directions of effect were congruent between the discovery and replication analyses for six biomarkers and two neurotransmitter ratios and the concentrations of 6 amines differed between low and high aggressive twins. In the validation analyses, the top biomarkers and neurotransmitter ratios, with congruent directions of effect, showed no significant associations with childhood aggression. We find suggestive evidence for associations of childhood aggression with metabolic dysregulation of neurotransmission, oxidative stress, and energy metabolism. Although replication is required, our findings provide starting points to investigate causal and pleiotropic effects of these dysregulations on childhood aggression.
Collapse
Affiliation(s)
- Fiona A. Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Peter J. Roetman
- Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | | | - Amy C. Harms
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- The Netherlands Metabolomics Centre, Leiden, Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Olivier F. Colins
- Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, Netherlands
- Department Special Needs Education, Ghent University, Ghent, Belgium
| | | | | | | | - Eveline L. de Zeeuw
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Sébastien Déjean
- Toulouse Mathematics Institute, University of Toulouse, CNRS, Toulouse, France
| | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, Cagliari, Italy
| | - Erik A. Ehli
- Avera Institute for Human Genetics, Sioux Falls, SD, United States
| | - Gareth E. Davies
- Avera Institute for Human Genetics, Sioux Falls, SD, United States
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- The Netherlands Metabolomics Centre, Leiden, Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
- Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Robert R. J. M. Vermeiren
- Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
- Amsterdam Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
13
|
Tear Organic Acid Analysis After Corneal Collagen Crosslinking in Keratoconus. Eye Contact Lens 2020; 46 Suppl 2:S122-S128. [DOI: 10.1097/icl.0000000000000644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Caterino M, Ruoppolo M, Villani GRD, Marchese E, Costanzo M, Sotgiu G, Dore S, Franconi F, Campesi I. Influence of Sex on Urinary Organic Acids: A Cross-Sectional Study in Children. Int J Mol Sci 2020; 21:ijms21020582. [PMID: 31963255 PMCID: PMC7013514 DOI: 10.3390/ijms21020582] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
The characterization of urinary metabolome, which provides a fingerprint for each individual, is an important step to reach personalized medicine. It is influenced by exogenous and endogenous factors; among them, we investigated sex influences on 72 organic acids measured through GC-MS analysis in the urine of 291 children (152 males; 139 females) aging 1–36 months and stratified in four groups of age. Among the 72 urinary metabolites, in all age groups, 4-hydroxy-butirate and homogentisate are found only in males, whereas 3-hydroxy-dodecanoate, methylcitrate, and phenylacetate are found only in females. Sex differences are still present after age stratification being more numerous during the first 6 months of life. The most relevant sex differences involve the mitochondria homeostasis. In females, citrate cycle, glyoxylate and dicarboxylate metabolism, alanine, aspartate, glutamate, and butanoate metabolism had the highest impact. In males, urinary organic acids were involved in phenylalanine metabolism, citrate cycle, alanine, aspartate and glutamate metabolism, butanoate metabolism, and glyoxylate and dicarboxylate metabolism. In addition, age specifically affected metabolic pathways, the phenylalanine metabolism pathway being affected by age only in males. Relevantly, the age-influenced ranking of metabolic pathways varied in the two sexes. In conclusion, sex deeply influences both quantitatively and qualitatively urinary organic acids levels, the effect of sex being age dependent. Importantly, the sex effects depend on the single organic acid; thus, in some cases the urinary organic acid reference values should be stratified according the sex and age.
Collapse
Affiliation(s)
- Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II’, 80131 Napoli, Italy; (M.C.); (G.R.D.V.); (M.C.)
- CEINGE—Biotecnologie Avanzate Scarl, 80145 Naples, Italy;
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II’, 80131 Napoli, Italy; (M.C.); (G.R.D.V.); (M.C.)
- CEINGE—Biotecnologie Avanzate Scarl, 80145 Naples, Italy;
- Correspondence: (M.R.); (I.C.); Tel.: +39-08-1373-7850 (M.R.); +39-0-7922-8518 (I.C.)
| | - Guglielmo Rosario Domenico Villani
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II’, 80131 Napoli, Italy; (M.C.); (G.R.D.V.); (M.C.)
- CEINGE—Biotecnologie Avanzate Scarl, 80145 Naples, Italy;
| | - Emanuela Marchese
- CEINGE—Biotecnologie Avanzate Scarl, 80145 Naples, Italy;
- Department of Mental and Physical Health, Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II’, 80131 Napoli, Italy; (M.C.); (G.R.D.V.); (M.C.)
- CEINGE—Biotecnologie Avanzate Scarl, 80145 Naples, Italy;
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (G.S.); (S.D.)
| | - Simone Dore
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (G.S.); (S.D.)
| | - Flavia Franconi
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy;
| | - Ilaria Campesi
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (M.R.); (I.C.); Tel.: +39-08-1373-7850 (M.R.); +39-0-7922-8518 (I.C.)
| |
Collapse
|
15
|
Tsoukalas D, Sarandi E, Thanasoula M, Docea AO, Tsilimidos G, Calina D, Tsatsakis A. Metabolic Fingerprint of Chronic Obstructive Lung Diseases: A New Diagnostic Perspective. Metabolites 2019; 9:E290. [PMID: 31779131 PMCID: PMC6949962 DOI: 10.3390/metabo9120290] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive lung disease (COLD) is a group of airway diseases, previously known as emphysema and chronic bronchitis. The heterogeneity of COLD does not allow early diagnosis and leads to increased morbidity and mortality. The increasing number of COLD incidences stresses the need for precision medicine approaches that are specific to the patient. Metabolomics is an emerging technology that allows for the discrimination of metabolic changes in the cell as a result of environmental factors and specific genetic background. Thus, quantification of metabolites in human biofluids can provide insights into the metabolic state of the individual in real time and unravel the presence of, or predisposition to, a disease. In this article, the advantages of and potential barriers to putting metabolomics into clinical practice for COLD are discussed. Today, metabolomics is mostly lab-based, and research studies with novel COLD-specific biomarkers are continuously being published. Several obstacles in the research and the market field hamper the translation of these data into clinical practice. However, technological and computational advances will facilitate the clinical interpretation of data and provide healthcare professionals with the tools to prevent, diagnose, and treat COLD with precision in the coming decades.
Collapse
Affiliation(s)
- Dimitris Tsoukalas
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece; (E.S.); (M.T.); (G.T.)
| | - Evangelia Sarandi
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece; (E.S.); (M.T.); (G.T.)
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Maria Thanasoula
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece; (E.S.); (M.T.); (G.T.)
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Gerasimos Tsilimidos
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece; (E.S.); (M.T.); (G.T.)
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Aristides Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece;
| |
Collapse
|
16
|
|
17
|
Tsoukalas D, Fragoulakis V, Sarandi E, Docea AO, Papakonstaninou E, Tsilimidos G, Anamaterou C, Fragkiadaki P, Aschner M, Tsatsakis A, Drakoulis N, Calina D. Targeted Metabolomic Analysis of Serum Fatty Acids for the Prediction of Autoimmune Diseases. Front Mol Biosci 2019; 6:120. [PMID: 31737644 PMCID: PMC6839420 DOI: 10.3389/fmolb.2019.00120] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/16/2019] [Indexed: 01/12/2023] Open
Abstract
Autoimmune diseases (ADs) are rapidly increasing worldwide and accumulating data support a key role of disrupted metabolism in ADs. This study aimed to identify an improved combination of Total Fatty Acids (TFAs) biomarkers as a predictive factor for the presence of autoimmune diseases. A retrospective nested case-control study was conducted in 403 individuals. In the case group, 240 patients diagnosed with rheumatoid arthritis, thyroid disease, multiple sclerosis, vitiligo, psoriasis, inflammatory bowel disease, and other AD were included and compared to 163 healthy individuals. Targeted metabolomic analysis of serum TFAs was performed using GC-MS, and 28 variables were used as input for the predictive models. The primary analysis identified 12 variables that were statistically significantly different between the two groups, and metabolite-metabolite correlation analysis revealed 653 significant correlation coefficients with 90% level of significance (p < 0.05). Three predictive models were developed, namely (a) a logistic regression based on Principal Component Analysis (PCA), (b) a straightforward logistic regression model and (c) an Artificial Neural Network (ANN) model. PCA and straightforward logistic regression analysis, indicated reasonably well adequacy (74.7 and 78.9%, respectively). For the ANN, a model using two hidden layers and 11 variables was developed, resulting in 76.2% total predictive accuracy. The models identified important biomarkers: lauric acid (C12:0), myristic acid (C14:0), stearic acid (C18:0), lignoceric acid (C24:0), palmitic acid (C16:0) and heptadecanoic acid (C17:0) among saturated fatty acids, Cis-10-pentadecanoic acid (C15:1), Cis-11-eicosenoic acid (C20:1n9), and erucic acid (C22:1n9) among monounsaturated fatty acids and the Gamma-linolenic acid (C18:3n6) polyunsaturated fatty acid. The metabolic pathways of the candidate biomarkers are discussed in relation to ADs. The findings indicate that the metabolic profile of serum TFAs is associated with the presence of ADs and can be an adjunct tool for the early diagnosis of ADs.
Collapse
Affiliation(s)
- Dimitris Tsoukalas
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy, Craiova, Romania.,Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, Athens, Greece.,E.INu.M, European Institute of Nutritional Medicine, Rome, Italy
| | | | - Evangelia Sarandi
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, Athens, Greece.,Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Anca Oana Docea
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy, Craiova, Romania
| | | | - Gerasimos Tsilimidos
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, Athens, Greece
| | - Chrysanthi Anamaterou
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, Athens, Greece
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Aristidis Tsatsakis
- E.INu.M, European Institute of Nutritional Medicine, Rome, Italy.,Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Daniela Calina
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy, Craiova, Romania
| |
Collapse
|
18
|
Radke JB, Kingery JM, Maakestad J, Krasowski MD. Diagnostic pitfalls and laboratory test interference after hydroxychloroquine intoxication: A case report. Toxicol Rep 2019; 6:1040-1046. [PMID: 31673506 PMCID: PMC6816131 DOI: 10.1016/j.toxrep.2019.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 02/03/2023] Open
Abstract
Hydroxychloroquine overdose can cause hypokalemia. Hydroxychloroquine overdose can result in electrocardiographic abnormalities. Hydroxychloroquine can interfere with urine chemistry and drug screening assays. Urine concentrations of hydroxychloroquine can exceed 500 mg/L in acute overdose.
Hydroxychloroquine is a medication used to treat autoimmune conditions. Overdoses of hydroxychloroquine are uncommon, with most recommendations on monitoring drawing from experience with more common overdoses of the related drug chloroquine. We present a case of an adolescent with intentional overdose of approximately 12 g of hydroxychloroquine. The prominent clinical features were hypokalemia and widened QRS and QT intervals on the electrocardiogram. Therapy included epinephrine by intravenous drip and bicarbonate infusions along with supportive care and cardiac monitoring. The patient recovered without sequelae. Urine drug testing showed an absorbance alarm for one of the components of the institution drug of abuse screening panel, an oxycodone screen using an enzyme immunoassay. Analysis of two urine specimens collected during the hospitalization revealed hydroxychloroquine concentrations of greater than 500 mg/L (approximately 7.5 h after ingestion) and 130 mg/L (approximately 14 h after ingestion). Only the urine with greater than 500 mg/L hydroxychloroquine produced absorbance alarms on the drug of abuse testing. We separately analyzed the impact on 24 urine assays of varying concentrations of hydroxychloroquine spiked into de-identified pooled urine samples. For 6 of the assays (buprenorphine, cotinine, oxycodone, and tetrahydrocannabinol qualitative drug screens; microalbumin and urine myoglobin quantitative assays), hydroxychloroquine produced significant bias and/or instrument alarms. Overall, our study demonstrates that urine concentrations of hydroxychloroquine can reach very high concentrations (exceeding 500 mg/L) following overdose, with the potential to interfere with a range of urine assays including drug of abuse screening and microalbumin. Similar to previous reports, hydroxychloroquine overdose can produce hypokalemia and electrocardiographic abnormalities.
Collapse
Affiliation(s)
- Joshua B Radke
- Department of Emergency Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Jennie M Kingery
- Department of Pathology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Jon Maakestad
- Department of Pathology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Matthew D Krasowski
- Department of Pathology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| |
Collapse
|
19
|
Sun Y, Saito K, Iiji R, Saito Y. Application of Ion Chromatography Coupled with Mass Spectrometry for Human Serum and Urine Metabolomics. SLAS DISCOVERY 2019; 24:778-786. [DOI: 10.1177/2472555219850082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Biomarkers that indicate the presence or severity of organ damage caused by diseases and toxicities are useful diagnostic tools. Metabolomics platforms using chromatography coupled with mass spectrometry (MS) have been widely used for biomarker screening. In this study, we aimed to establish a novel metabolomics platform using ion chromatography coupled with MS (IC-MS) for human biofluids. We found that ethylenediaminetetraacetic acid (EDTA) plasma is not suitable for IC-MS metabolomics platforms because of the desensitization of MS. IC-MS enabled detection of 131 polar metabolites in human serum and urine from healthy volunteers. Pathway analysis demonstrated that the metabolites detectable using our platform were composed of a broad spectrum of organic acids with carboxylic moieties. These metabolites were significantly associated with pathways such as the tricarboxylic acid (TCA) cycle; glyoxylate and dicarboxylate metabolism; alanine, aspartate, and glutamate metabolism; butanoate metabolism; and the pentose phosphate pathway. Moreover, comparison of serum and urine samples showed that four metabolites (4-hydroxybutyric acid, aspartic acid, lactic acid, and γ-glutamyl glutamine) were abundant in serum, whereas 62 metabolites, including phosphoric acid, vanillylmandelic acid, and N-tiglylglycine, were abundant in urine. In addition, allantoin and uric acid were abundant in male serum, whereas no gender-associated differences were found for polar metabolites in urine. Our results demonstrate that the present established IC-MS metabolomics platform can be applied for analysis of human serum and urine as well as detection of a broad spectrum of polar metabolites in human biofluids.
Collapse
Affiliation(s)
- Yuchen Sun
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, Japan
| | - Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, Japan
| | - Ryota Iiji
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, Japan
| | - Yoshiro Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, Japan
| |
Collapse
|
20
|
Carneiro G, Radcenco AL, Evaristo J, Monnerat G. Novel strategies for clinical investigation and biomarker discovery: a guide to applied metabolomics. Horm Mol Biol Clin Investig 2019; 38:/j/hmbci.ahead-of-print/hmbci-2018-0045/hmbci-2018-0045.xml. [PMID: 30653466 DOI: 10.1515/hmbci-2018-0045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/13/2018] [Indexed: 01/16/2023]
Abstract
Metabolomics is an emerging technology that is increasing both in basic science and in human applications, providing a physiological snapshot. It has been highlighted as one of the most wide ranging and reliable tools for the investigation of physiological status, the discovery of new biomarkers and the analysis of metabolic pathways. Metabolomics uses innovative mass spectrometry (MS) allied to chromatography or nuclear magnetic resonance (NMR). The recent advances in bioinformatics, databases and statistics, have provided a unique perception of metabolites interaction and the dynamics of metabolic pathways at a system level. In this context, several studies have applied metabolomics in physiology- and disease-related works. The application of metabolomics includes, physiological and metabolic evaluation/monitoring, individual response to different exercise, nutritional interventions, pathological processes, responses to pharmacological interventions, biomarker discovery and monitoring for distinct aspects, such as: physiological capacity, fatigue/recovery and aging among other applications. For metabolomic analyses, despite huge improvements in the field, several complex methodological steps must be taken into consideration. In this regard, the present article aims to summarize the novel aspects of metabolomics and provide a guide for metabolomics for professionals related to physiologist and medical applications.
Collapse
Affiliation(s)
- Gabriel Carneiro
- Proteomics Laboratoy, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andres Lopez Radcenco
- Departamento de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Montevideo, Uruguay
| | - Joseph Evaristo
- Proteomics Laboratoy, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Monnerat
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, IBCCF-UFRJ, Av. Carlos Chagas Filho 373 - CCS - Bloco G, Rio de Janeiro 21941-902, Brazil, Phone/Fax: +55 21 25626555
| |
Collapse
|
21
|
Tsoukalas D, Alegakis AK, Fragkiadaki P, Papakonstantinou E, Tsilimidos G, Geraci F, Sarandi E, Nikitovic D, Spandidos DA, Tsatsakis A. Application of metabolomics part II: Focus on fatty acids and their metabolites in healthy adults. Int J Mol Med 2018; 43:233-242. [PMID: 30431095 PMCID: PMC6257830 DOI: 10.3892/ijmm.2018.3989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/02/2018] [Indexed: 12/30/2022] Open
Abstract
Fatty acids (FAs) play critical roles in health and disease. The detection of FA imbalances through metabolomics can provide an overview of an individual’s health status, particularly as regards chronic inflammatory disorders. In this study, we aimed to establish sensitive reference value ranges for targeted plasma FAs in a well-defined population of healthy adults. Plasma samples were collected from 159 participants admitted as outpatients. A total of 24 FAs were analyzed using gas chromatography-mass spectrometry, and physiological values and 95% reference intervals were calculated using an approximate method of analysis. The differences among the age groups for the relative levels of stearic acid (P=0.005), the omega-6/omega-3 ratio (P=0.027), the arachidonic acid/eicosapentaenoic acid ratio (P<0.001) and the linoleic acid-produced dihomo-gamma-linolenic acid (P=0.046) were statistically significant. The majority of relative FA levels were higher in males than in females. The levels of myristic acid (P=0.0170) and docosahexaenoic acid (P=0.033) were signifi-cantly different between the sexes. The reference values for the FAs examined in this study represent a baseline for further studies examining the reproducibility of this methodology and sensitivities for nutrient deficiency detection and investigating the biochemical background of pathological conditions. The application of these values to clinical practice will allow for the discrimination between health and disease and contribute to early prevention and treatment.
Collapse
Affiliation(s)
- Dimitrios Tsoukalas
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Athanasios K Alegakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | | | - Franco Geraci
- European Institute of Nutritional Medicine, E.I.Nu.M, 00198 Rome, Italy
| | - Evangelia Sarandi
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy‑Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristides Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
22
|
Papamichael MM, Katsardis C, Erbas B, Itsiopoulos C, Tsoukalas D. Urinary organic acids as biomarkers in the assessment of pulmonary function in children with asthma. Nutr Res 2018; 61:31-40. [PMID: 30683437 DOI: 10.1016/j.nutres.2018.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022]
Abstract
Childhood asthma prevalence continues to rise despite advancements in prevention and medical management strategies. The purpose of this study was to investigate correlations between urinary organic acids and pulmonary diagnostic tests, asthma control in Greek asthmatic children. We hypothesized that urinary organic acids are positively associated with poor pulmonary function in children with asthma. Seventy-two children, 5 to 12 years old with asthma were recruited from a pediatric asthma clinic in Athens, Greece. Pulmonary function was assessed using spirometry and exhaled nitric oxide analysis. Asthma control was measured qualitatively using the Asthma Control Questionnaire. Targeted metabolomic analysis of 34 urinary organic acids in children was conducted by gas chromatography-mass spectrometry. A statistically significant difference between girls and boys was found for asthma control score (P = .02), lactic acid (P = .03), but not for any other organic acids (P > .05). Statistically significant correlations were found between lactic acid and Forced Expiratory Volume in 1 second (FEV1) (P = .02), Forced Vital Capacity (FVC) (P = .03); 4- hydroxyphenylacetic acid and FEV1 (P = .01), FVC (P = .01); 5-hydroxyindoleacetic acid and FEV1/FVC (P = .03), eNO (P = .05); glycolic acid with Peak Expiratory Flow (PEF) (P = .03); and malic acid with asthma control (P = .02). In conclusion, metabolomics was used to determine correlations between urinary organic acids and conventional pulmonary diagnostic tests in Greek asthmatic children. Metabolomics could be a promising approach for asthma research and in detection of novel biomarkers for asthma monitoring and therapeutic targets for childhood asthma. This study contributes towards a better understanding of the biochemical pathways involved in asthma.
Collapse
Affiliation(s)
- Maria Michelle Papamichael
- La Trobe University, School of Allied Health, Department of Rehabilitation, Nutrition & Sport, Melbourne, Australia.
| | | | - Bircan Erbas
- La Trobe University, School of Psychology & Public Health, Department of Public Health, Melbourne, Australia.
| | - Catherine Itsiopoulos
- La Trobe University, School of Allied Health, Department of Rehabilitation, Nutrition & Sport, Melbourne, Australia.
| | | |
Collapse
|
23
|
Mesnage R, Antoniou MN, Tsoukalas D, Goulielmos GN, Tsatsakis A. Gut microbiome metagenomics to understand how xenobiotics impact human health. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2019.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|