1
|
Chouikh N, Benguedouar L, Chaabani H, Abid Essefi S, Haouas Z, Mehdi M, Safta Skhiri S, Sifour M. Ameliorative effect of aqueous leaf extract of Pistacia lentiscus L. against oxaliplatin-induced hepatic injury, oxidative stress, and DNA damage in vitro and in vivo. Med Oncol 2025; 42:54. [PMID: 39843633 DOI: 10.1007/s12032-025-02599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
The current study aimed to assess the preventive effects of aqueous leaf extract of Pistacia lentiscus (ALEPL) against Oxaliplatin (OXA)-induced DNA damage, hepatic injury, and oxidative stress. The in vitro cytotoxic and genotoxic effects of OXA and ALEPL on HCT116 colon cancer cells were evaluated using the MTT (Tetrazolium salt reduction) assay and comet assay. The in vivo study involved 24 female NMRI (Naval Medical Research Institute) mice that were equally divided into four groups as follows: Control group, ALEPL-treated group (100 mg/kg), OXA-treated group (7 mg/kg), and ALEPL-treated group (100mg/kg) + OXA (7mg/kg). All animals were sacrificed 48 h after OXA treatment. Samples of liver and blood were collected for histopathological, micronucleus, and biochemical analyses. Oxidative stress parameters were also evaluated through non-enzymatic and enzymatic antioxidant activities. Our findings demonstrated that ALEPL contains high phenolic compounds. In the MTT assay, OXA exerted the most potent cytotoxic effect, but ALEPL alone showed no toxic effect in HCT116 cells. Furthermore, OXA administration caused significant DNA fragmentation both in vitro and in vivo, elevated serum biochemical parameters, and confirmed acute liver damage through histopathological observations compared to the control group. OXA exposure also led to a decrease in hepatic glutathione (GSH) and an increase in lipid peroxidation and antioxidant enzyme activities. From the results of our study, ALEPL pretreatment significantly restored the hepatic toxicity and DNA damage as well as the oxidative stress profile induced by OXA.
Collapse
Affiliation(s)
- Nesrine Chouikh
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, 18000, Jijel, Algeria.
| | - Lamia Benguedouar
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, 18000, Jijel, Algeria
| | - Hanen Chaabani
- Laboratory of Research On Biologically Compatible Compounds, LR01SE17 University of Monastir, Faculty of Dental Medicine, 5019, Monastir, Tunisia
- Higher institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Salwa Abid Essefi
- Laboratory of Research On Biologically Compatible Compounds, LR01SE17 University of Monastir, Faculty of Dental Medicine, 5019, Monastir, Tunisia
| | - Zohra Haouas
- Laboratory of Histology Embryology (LR18ES40), Faculty of Medicine of Monastir, University of Monastir, Avicenne Sreet, Monastir, 5019, Tunisia
| | - Meriem Mehdi
- Laboratory of Cytogenetics and Reproducive Biology, Center of Maternity and Neonnatology, Monastir, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia
| | - Sihem Safta Skhiri
- University of Monastir, ABCDF Laboratory, Faculty of Dental Medicine, Monastir, 5000, Tunisia
| | - Mohamed Sifour
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, 18000, Jijel, Algeria
| |
Collapse
|
2
|
Cheng X, Zhu C, Chen Y, Li M, Li G, Zu Y, Gao Q, Shang T, Liu D, Zhang C, Ren X. Huaier relieves oxaliplatin-induced hepatotoxicity through activation of the PI3K/AKT/Nrf2 signaling pathway in C57BL/6 mice. Heliyon 2024; 10:e37010. [PMID: 39286172 PMCID: PMC11402744 DOI: 10.1016/j.heliyon.2024.e37010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatotoxicity caused by the anticancer medication oxaliplatin (OXA) significantly restricts its clinical use and raises the risk of liver damage. Huaier, a fungus found in China, has been demonstrated to have various beneficial effects in adjuvant therapy for cancer. However, the preventive impact of Huaier against OXA-induced hepatotoxicity is still unknown. The potential molecular pathways behind the hepatoprotective activity of Huaier against OXA-induced hepatotoxicity were investigated in the current study Mice were intraperitoneally injected with 10 mg/kg of OXA once a week for six consecutive weeks to establish a liver injury model. Huaier (2 g/kg, 4 g/kg, and 8 g/kg) was administered weekly to mice by gavage for six weeks. Commercial kits were used to determine the contents of glutathione, catalase, superoxide dismutase, and malondialdehyde. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to assess the impact of Huaier therapy on the expression of the PI3K pathway. Huaier exhibited a good protective effect on OXA-induced hepatotoxicity in a dose-dependent manner, which was connected to the suppression of oxidative stress, according to the results of biochemical index detection and histological staining analysis. In addition, Huaier could counteract the OXA-induced suppression of the PI3K/AKT signaling pathway. Moreover, the hepatoprotective effect and PI3K activation of Huaier were eradicated by LY294002. These findings imply that by decreasing oxidative stress, Huaier can minimize OXA-induced liver injury, establishing the groundwork for Huaier to lessen chemotherapy-induced hepatotoxicity in clinical practice.
Collapse
Affiliation(s)
- Xinwei Cheng
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Zhu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunzhou Chen
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guodong Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Zu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianyan Gao
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianze Shang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuhua Ren
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Efficacy of salmeterol and magnesium isoglycyrrhizinate combination treatment in rats with chronic obstructive pulmonary disease. Sci Rep 2022; 12:12334. [PMID: 35853985 PMCID: PMC9296643 DOI: 10.1038/s41598-022-16775-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022] Open
Abstract
The most classic treatment recommended in the current chronic obstructive pulmonary disease (COPD) guidelines is glucocorticoid and β2 receptor agonist combination, such as salmeterol xinafoate and fluticasone propionate (Sal/Flu), causing many adverse reactions due to hormones. Magnesium isoglycyrrhizinate (MgIG) is an anti-inflammatory glycyrrhizic acid preparation for treating chronic inflammation, contributing to its structure is similar to steroidal anti-inflammatory drugs. In this study, we successfully established COPD rat model by endotracheal-atomized lipopolysaccharide exposure and cigarette smoke induction, as characterized by lung function decline. We discovered that salmeterol xinafoate/MgIG combination could alleviated lung inflammation infiltration, airway wall thickness (AWT) and the secretion of bronchial mucin MUC5AC of COPD rats more than salmeterol xinafoate, MgIG, or salmeterol xinafoate and fluticasone propionate treatment did, as well as reduced inflammatory cells (white blood cells, neutrophils and lymphocytes) accumulation in bronchoalveolar lavage fluid and decreased TNF-α, IL-6 and IL-1β production in the serum of COPD rats. Finally, we found that Moreover, the mechanism involved might be related to the suppression of JAK/STAT signaling pathway. Overall, our studies suggested that MgIG might be a potential alternative adjuvant drug for fluticasone propionate for the clinical treatment of patients with COPD.
Collapse
|
4
|
Xia Y, Shi H, Qian C, Han H, Lu K, Tao R, Gu R, Zhao Y, Wei Z, Lu Y. Modulation of Gut Microbiota by Magnesium Isoglycyrrhizinate Mediates Enhancement of Intestinal Barrier Function and Amelioration of Methotrexate-Induced Liver Injury. Front Immunol 2022; 13:874878. [PMID: 35634319 PMCID: PMC9134347 DOI: 10.3389/fimmu.2022.874878] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
Background The gut–liver axis plays a crucial role in various liver diseases. Therefore, targeting this crosstalk may provide a new treatment strategy for liver diseases. However, the exact mechanism underlying this crosstalk and its impact on drug-induced liver injury (DILI) requires clarification. Aim This study aimed to investigate the potential mechanism and therapeutic effect of MgIG on MTX-induced liver injury, which is associated with the gut–liver axis and gut microbiota. Methods An MTX-induced liver injury model was generated after 20-mg/kg/3d MTX application for 30 days. Meanwhile, the treatment group was treated with 40-mg/kg MgIG daily. Histological examination, aminotransferase, and aspartate aminotransferase enzyme levels were estimated to evaluate liver function. Immune cells infiltration and inflammatory cytokines were detected to indicate inflammation levels. Colon histological score, intestinal barrier leakage, and expression of tight junctions were employed to assess the intestinal injury. Bacterial translocation was observed using fluorescent in situ hybridisation, colony-forming unit counting, and lipopolysaccharide detection. Alterations in gut microbial composition were analysed using 16s rDNA sequencing and relative quantitative polymerase chain reaction. Short-chain-fatty-acids and lactic acid concentrations were then utilized to validate changes in metabolites of specific bacteria. Lactobacillus sp. supplement and fecal microbiota transplantation were used to evaluate gut microbiota contribution. Results MTX-induced intestinal and liver injuries were significantly alleviated using MgIG treatment. Bacterial translocation resulting from the intestinal barrier disruption was considered a crucial cause of MTX-induced liver injury and the therapeutic target of MgIG. Moreover, MgIG was speculated to have changed the gut microbial composition by up-regulating probiotic Lactobacillus and down-regulating Muribaculaceae, thereby remodelling the intestinal barrier and inhibiting bacterial translocation. Conclusion The MTX-induced intestinal barrier was protected owing to MgIG administration, which reshaped the gut microbial composition and inhibited bacterial translocation into the liver, thus attenuating MTX-related DILI.
Collapse
Affiliation(s)
- Yawen Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hang Shi
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongkuan Han
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Keqin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruizhi Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Renjun Gu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Second Chinese Medicine Hospital, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Zhonghong Wei, ; Yin Lu,
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Zhonghong Wei, ; Yin Lu,
| |
Collapse
|
5
|
Chen H, Li G, Liu Y, Lang Y, Yang W, Zhang W, Liang X. Jiegeng Decoction Potentiates the Anticancer Efficacy of Paclitaxel in vivo and in vitro. Front Pharmacol 2022; 13:827520. [PMID: 35281908 PMCID: PMC8914467 DOI: 10.3389/fphar.2022.827520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
Paclitaxel (PTX) has been the first-line treatment for lung cancer; however, its clinical use is limited due to multidrug resistance (MDR) and adverse effects. Thus, there is an urgent need to explore agents that can enhance the anticancer efficacy of PTX by reducing drug resistance and adverse reactions. Jiegeng decoction (JG) was used as the meridian guide drug and adjuvant drug in treatment of lung cancer. However, the mechanism of adjuvant effect was unclear. The aim of this study was to determine whether JG could potentiate the anticancer effect of PTX. Tissue distribution of PTX was detected using HPLC-MS/MS. The anti-lung cancer effect of the combination of PTX and JG in Lewis lung cancer C57BL/6J mice was evaluated based on the body weight and tumor-inhibition rate. PTX concentration in tumors was determined using HPLC-MS and in vivo imaging. Biochemical indices were detected using biochemical analyzer and ELISA. The anticancer mechanism of the PTX-JG combination in A549/PTX cells was elucidated based on cell proliferation, annexin V-FITC apoptosis assay, and western blotting. Tissue distribution analysis showed that the distribution of PTX increased in the lungs, liver, and heart upon administering the combination of PTX and JG. JG remarkably enhanced the anticancer effect of PTX by increasing the red blood cell and platelet counts; increasing hemoglobin, interleukin (IL)-2, and tumor necrosis factor-α levels; increasing CD4+T cells and the CD4+/CD8+ ratio; and decreasing IL-10 levels. JG administration led to the increased distribution of PTX at the tumor lesion sites and also potentiated the anticancer effect of PTX by inhibiting tumor cell proliferation and promoting apoptosis. Moreover, JG reversed PTX resistance by inhibiting the expression of lung resistance-related proteins, multiresistance protein 1, P-glycoprotein, and breast cancer-resistant protein. Furthermore, the combination of JG and PTX decreased alanine aminotransferase and aspartate aminotransferase levels and did not affect creatine kinase-MB levels. Therefore, our discovery suggests that JG increased the anticancer effect of PTX by downregulating the MDR-related protein and demonstrated a synergistic enhancement of immunity. Thus, the combination of PTX with JG shows potential in the management of lung cancer owing to its synergistic and detoxifying effects.
Collapse
Affiliation(s)
- Haifang Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guofeng Li
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ye Liu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yifan Lang
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wuliang Yang
- Jiangxi University of Chinese Medicine, Nanchang, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wugang Zhang
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xinli Liang
- Jiangxi University of Chinese Medicine, Nanchang, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
6
|
Benić MS, Nežić L, Vujić-Aleksić V, Mititelu-Tartau L. Novel Therapies for the Treatment of Drug-Induced Liver Injury: A Systematic Review. Front Pharmacol 2022; 12:785790. [PMID: 35185538 PMCID: PMC8847672 DOI: 10.3389/fphar.2021.785790] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022] Open
Abstract
Many drugs with different mechanisms of action and indications available on the market today are capable of inducing hepatotoxicity. Drug-induced liver injury (DILI) has been a treatment challenge nowadays as it was in the past. We searched Medline (via PubMed), CENTRAL, Science Citation Index Expanded, clinical trials registries and databases of DILI and hepatotoxicity up to 2021 for novel therapies for the management of adult patients with DILI based on the combination of three main search terms: 1) treatment, 2) novel, and 3) drug-induced liver injury. The mechanism of action of novel therapies, the potential of their benefit in clinical settings, and adverse drug reactions related to novel therapies were extracted. Cochrane Risk of bias tool and Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessment approach was involved in the assessment of the certainty of the evidence for primary outcomes of included studies. One thousand three hundred seventy-two articles were identified. Twenty-eight articles were included in the final analysis. Eight randomized controlled trials (RCTs) were detected and for six the available data were sufficient for analysis. In abstract form only we found six studies which were also anaylzed. Investigated agents included: bicyclol, calmangafodipir, cytisin amidophospate, fomepizole, livina-polyherbal preparation, magnesium isoglycyrrhizinate (MgIG), picroliv, plasma exchange, radix Paeoniae Rubra, and S-adenosylmethionine. The primary outcomes of included trials mainly included laboratory markers improvement. Based on the moderate-certainty evidence, more patients treated with MgIG experienced alanine aminotransferase (ALT) normalization compared to placebo. Low-certainty evidence suggests that bicyclol treatment leads to a reduction of ALT levels compared to phosphatidylcholine. For the remaining eight interventions, the certainty of the evidence for primary outcomes was assessed as very low and we are very uncertain in any estimate of effect. More effort should be involved to investigate the novel treatment of DILI. Well-designed RCTs with appropriate sample sizes, comparable groups and precise, not only surrogate outcomes are urgently welcome.
Collapse
Affiliation(s)
- Mirjana Stanić Benić
- Department of Clinical Pharmacology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Vesna Vujić-Aleksić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
- The Republic of Srpska Agency for Certification, Accreditation and Quality Improvement in Health Care, Banja Luka, Bosnia and Herzegovina
| | | |
Collapse
|
7
|
Yang Y, Huang L, Tian C, Qian B. Magnesium isoglycyrrhizinate inhibits airway inflammation in rats with chronic obstructive pulmonary disease. BMC Pulm Med 2021; 21:371. [PMID: 34775946 PMCID: PMC8590971 DOI: 10.1186/s12890-021-01745-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a kind of chronic lung diseases with the characteristics of airway remodeling and airflow obstruction. Magnesium isoglycyrrhizinate (MgIG) is an anti-inflammatory glycyrrhizic acid preparation for treating hepatitis. However, whether MgIG can treat other diseases and its action mechanism is still obscure. In this study, we evaluated the anti-inflammatory effect of MgIG in rats with COPD and investigated the underlying mechanisms. Methods Rat model of COPD was constructed by endotracheal-atomized lipopolysaccharide exposure and cigarette smoke induction. Rats were randomly divided into 5 groups: control group, COPD model group, salmeterol fluticasone comparator group, low dose of MgIG group, and high dose of MgIG group. Except for normal control group, the other four groups received sensitization treatment by cigarette smoking and endotracheal-atomization of endotoxin lipopolysaccharide to construct COPD rats model. After model established successfully, the COPD rats in each group received corresponding dose of endotracheal-atomized normal saline, salmeterol fluticasone, and MgIG every day prior to exposure of cigarette smoke from days 30 to 45. Normal control group were treated with normal saline. Finally, All rats were euthanatized. Pulmonary function was measured. Cells in bronchoalveolar lavage fluid were classified, inflammatory factors IL-6 and TNF-α were determined, histopathological analysis was performed by HE staining, and expression of NLRP3 and cleaved caspase-1 in the lung tissue was also determined by Western blotting. Results It showed that MgIG treatment (0.40 or 0.80 mg/kg/day) could recover the weight and the clinical symptoms of rats with COPD, accompanied with lung inflammation infiltration reduction, airway wall attenuation, bronchial mucus secretion reduction. Additionally, MgIG administration reduced inflammatory cells (white blood cells, neutrophils, lymphocytes and monocytes) accumulation in bronchoalveolar lavage fluid and decreased IL-6 and TNF-α production in the serum of COPD rats. Furthermore, MgIG treatment also reduced the expression level of NLRP3 and cleaved caspase-1. Conclusion It indicate that MgIG might be an alternative for COPD treatment, and its mechanism of action might be related to the suppression of NLRP3 inflammasome. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01745-7.
Collapse
Affiliation(s)
- Ye Yang
- Department of Pharmacology and Medicinal Chemistry, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Lei Huang
- Department of Pharmacology and Medicinal Chemistry, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Chongchong Tian
- Department of Pharmacology and Medicinal Chemistry, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Bingjun Qian
- Department of Pharmacology and Medicinal Chemistry, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Lu L, Hao K, Hong Y, Liu J, Zhu J, Jiang W, Zhu Z, Wang G, Peng Y. Magnesium Isoglycyrrhizinate Reduces Hepatic Lipotoxicity through Regulating Metabolic Abnormalities. Int J Mol Sci 2021; 22:ijms22115884. [PMID: 34070938 PMCID: PMC8198484 DOI: 10.3390/ijms22115884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/22/2023] Open
Abstract
The excessive accumulation of lipids in hepatocytes induces a type of cytotoxicity called hepatic lipotoxicity, which is a fundamental contributor to liver metabolic diseases (such as NAFLD). Magnesium isoglycyrrhizinate (MGIG), a magnesium salt of the stereoisomer of natural glycyrrhizic acid, is widely used as a safe and effective liver protectant. However, the mechanism by which MGIG protects against NAFLD remains unknown. Based on the significant correlation between NAFLD and the reprogramming of liver metabolism, we aimed to explore the beneficial effects of MGIG from a metabolic viewpoint in this paper. We treated HepaRG cells with palmitic acid (PA, a saturated fatty acid of C16:0) to induce lipotoxicity and then evaluated the antagonistic effect of MGIG on lipotoxicity by investigating the cell survival rate, DNA proliferation rate, organelle damage, and endoplasmic reticulum stress (ERS). Metabolomics, lipidomics, and isotope tracing were used to investigate changes in the metabolite profile, lipid profile, and lipid flux in HepaRG cells under different intervention conditions. The results showed that MGIG can indeed protect hepatocytes against PA-induced cytotoxicity and ERS. In response to the metabolic abnormality of lipotoxicity, MGIG curtailed the metabolic activation of lipids induced by PA. The content of total lipids and saturated lipids containing C16:0 chains increased significantly after PA stimulation and then decreased significantly or even returned to normal levels after MGIG intervention. Lipidomic data show that glycerides and glycerophospholipids were the two most affected lipids. For excessive lipid accumulation in hepatocytes, MGIG can downregulate the expression of the metabolic enzymes (GPATs and DAGTs) involved in triglyceride biosynthesis. In conclusion, MGIG has a positive regulatory effect on the metabolic disorders that occur in hepatocytes under lipotoxicity, and the main mechanisms of this effect are in lipid metabolism, including reducing the total lipid content, reducing lipid saturation, inhibiting glyceride and glycerophospholipid metabolism, and downregulating the expression of metabolic enzymes in lipid synthesis.
Collapse
Affiliation(s)
- Li Lu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (L.L.); (K.H.); (Y.H.); (J.L.); (J.Z.); (W.J.)
| | - Kun Hao
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (L.L.); (K.H.); (Y.H.); (J.L.); (J.Z.); (W.J.)
| | - Yu Hong
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (L.L.); (K.H.); (Y.H.); (J.L.); (J.Z.); (W.J.)
| | - Jie Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (L.L.); (K.H.); (Y.H.); (J.L.); (J.Z.); (W.J.)
| | - Jinwei Zhu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (L.L.); (K.H.); (Y.H.); (J.L.); (J.Z.); (W.J.)
| | - Wenjiao Jiang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (L.L.); (K.H.); (Y.H.); (J.L.); (J.Z.); (W.J.)
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University Park Campus, The University of Nottingham, Nottingham NG7 2RD, UK;
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (L.L.); (K.H.); (Y.H.); (J.L.); (J.Z.); (W.J.)
- Correspondence: (G.W.); (Y.P.); Tel.: +86-25-83271128 (G.W.); +86-25-83271176 (Y.P.); Fax: +86-25-83271060 (G.W. & Y.P.)
| | - Ying Peng
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; (L.L.); (K.H.); (Y.H.); (J.L.); (J.Z.); (W.J.)
- Correspondence: (G.W.); (Y.P.); Tel.: +86-25-83271128 (G.W.); +86-25-83271176 (Y.P.); Fax: +86-25-83271060 (G.W. & Y.P.)
| |
Collapse
|
9
|
Lemos BB, Motta KPD, Paltian JJ, Reis AS, Blödorn GB, Soares MP, Alves D, Luchese C, Wilhelm EA. Role of 7-chloro-4-(phenylselanyl) quinoline in the treatment of oxaliplatin-induced hepatic toxicity in mice. Can J Physiol Pharmacol 2021; 99:378-388. [PMID: 32810410 DOI: 10.1139/cjpp-2020-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is an increasing incidence of hepatotoxicity induced by oxaliplatin (OXA); therefore, researchers' attention has been drawn to therapeutic alternatives that may decrease OXA-induced hepatotoxicity. Studies indicate that oxidative stress plays a major role in OXA-induced liver injury. As several pharmacological effects of 7-chloro-4-(phenylselanyl) quinole (4-PSQ) involve its antioxidant action, the hypothesis that this organoselenium compound could be promising for the treatment or prevention of hepatotoxicity induced by treatment with OXA was investigated. To test this hypothesis, male Swiss mice received OXA (10 mg·kg-1) on days 0 and 2, followed by oral administration of 4-PSQ (1 mg·kg-1) on days 2 to 14. 4-PSQ reduced the plasma aspartate, and alanine aminotransferase activity increased by exposure to OXA. The histopathological examination of the liver showed that 4-PSQ markedly improved OXA-induced hepatic injury. In addition, treatment with 4-PSQ reduced the oxidation of lipids and proteins (thiobarbituric acid reactive species levels and protein carbonyl content) and attenuated the increase of hepatic catalase and glutathione peroxidase activity caused by OXA. The inhibition of hepatic δ-aminolevulinic dehydratase activity induced by OXA was reverted by 4-PSQ. In conclusion, results indicate that 4-PSQ may be a good therapeutic strategy for attenuating OXA-induced liver damage.
Collapse
Affiliation(s)
- Briana B Lemos
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, Pelotas, 96010-900, RS, Brazil
- Curso de Bacharelado em Química Forense, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, 96010-900, RS, Brazil
| | - Ketlyn P da Motta
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, Pelotas, 96010-900, RS, Brazil
- Curso de Bacharelado em Química Forense, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, 96010-900, RS, Brazil
| | - Jaini J Paltian
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, Pelotas, 96010-900, RS, Brazil
| | - Angélica S Reis
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, Pelotas, 96010-900, RS, Brazil
| | - Gustavo B Blödorn
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, Pelotas, 96010-900, RS, Brazil
| | - Mauro P Soares
- Laboratório Regional de Diagnóstico Faculdade de Veterinária, Universidade Federal de Pelotas (UFPel), Pelotas, 96010-900, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, Pelotas, 96010-900, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, Pelotas, 96010-900, RS, Brazil
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, Pelotas, 96010-900, RS, Brazil
- Curso de Bacharelado em Química Forense, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, 96010-900, RS, Brazil
| |
Collapse
|
10
|
Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol Ther 2020; 214:107618. [PMID: 32592716 PMCID: PMC7311916 DOI: 10.1016/j.pharmthera.2020.107618] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Safe and efficient drugs to combat the current COVID-19 pandemic are urgently needed. In this context, we have analyzed the anti-coronavirus potential of the natural product glycyrrhizic acid (GLR), a drug used to treat liver diseases (including viral hepatitis) and specific cutaneous inflammation (such as atopic dermatitis) in some countries. The properties of GLR and its primary active metabolite glycyrrhetinic acid are presented and discussed. GLR has shown activities against different viruses, including SARS-associated Human and animal coronaviruses. GLR is a non-hemolytic saponin and a potent immuno-active anti-inflammatory agent which displays both cytoplasmic and membrane effects. At the membrane level, GLR induces cholesterol-dependent disorganization of lipid rafts which are important for the entry of coronavirus into cells. At the intracellular and circulating levels, GLR can trap the high mobility group box 1 protein and thus blocks the alarmin functions of HMGB1. We used molecular docking to characterize further and discuss both the cholesterol- and HMG box-binding functions of GLR. The membrane and cytoplasmic effects of GLR, coupled with its long-established medical use as a relatively safe drug, make GLR a good candidate to be tested against the SARS-CoV-2 coronavirus, alone and in combination with other drugs. The rational supporting combinations with (hydroxy)chloroquine and tenofovir (two drugs active against SARS-CoV-2) is also discussed. Based on this analysis, we conclude that GLR should be further considered and rapidly evaluated for the treatment of patients with COVID-19.
Collapse
|
11
|
Lu Y, Wu S, Xiang B, Li L, Lin Y. Curcumin Attenuates Oxaliplatin-Induced Liver Injury and Oxidative Stress by Activating the Nrf2 Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:73-85. [PMID: 32021093 PMCID: PMC6956999 DOI: 10.2147/dddt.s224318] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022]
Abstract
Purpose Oxaliplatin (OXA)-induced liver injury is one of the main limiting factors affecting the efficacy of OXA-based chemotherapy in patients with colorectal liver metastases. In addition, oxidative stress is an important pathophysiological mechanism of OXA-induced liver injury. Therefore, dietary antioxidants may decrease or prevent hepatic toxicity in vivo and be beneficial to OXA-based chemotherapy. Methods An experimental OXA-induced liver injury animal model was established, and the protective effects of curcumin (CUR) against OXA-induced liver injury were investigated. ELISA was used to determine the levels of MDA, SOD, CAT, and GSH in liver tissue. The effect of CUR treatment on the expression of cytokines and the Nrf2 pathway was determined by real-time PCR and Western blotting. Results CUR treatment alleviated OXA-induced hepatic pathological damage and splenomegaly. The protective effect of CUR was demonstrated to be correlated with inhibition of oxidative stress, inflammation, and the coagulation system. Furthermore, Western blotting revealed that CUR treatment reverses the suppression of Nrf2 nuclear translocation and increases the expression of HO-1 and NOQ1 in mice with OXA-induced liver injury. Moreover, the Nrf2 activation and hepatoprotective effect of CUR were abolished by brusatol. Conclusion Curcumin attenuates oxaliplatin-induced liver injury and oxidative stress by activating the Nrf2 pathway, which suggests that CUR may be potentially used in the prevention and treatment of OXA-induced liver injury.
Collapse
Affiliation(s)
- Yulei Lu
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Shengming Wu
- Departments of Pathology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Bangde Xiang
- Departments of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Lequn Li
- Departments of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Youzhi Lin
- Departments of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| |
Collapse
|
12
|
Lu Y, Lin Y, Huang X, Wu S, Wei J, Yang C. Oxaliplatin aggravates hepatic oxidative stress, inflammation and fibrosis in a non‑alcoholic fatty liver disease mouse model. Int J Mol Med 2019; 43:2398-2408. [PMID: 30942432 PMCID: PMC6488186 DOI: 10.3892/ijmm.2019.4154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Oxaliplatin (OXA)-based chemotherapy is widely used in the treatment of gastrointestinal tumors; however, it is associated with chemotherapy-associated liver injury. Whether OXA induces liver injury and aggravates the already existing hepatic oxidative stress, inflammation and fibrosis in non-alcoholic fatty liver disease (NAFLD), and whether these effects can be alleviated by reduced glutathione (GSH) treatment, remains unclear. In the present study, OXA induced acute liver injury in NAFLD mice. Moreover, OXA increased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and decreased the levels of superoxide dismutase and GSH peroxidase in the livers of NAFLD mice. OXA also induced the upregulation of hepatic inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-17, in NAFLD mice. Furthermore, collagen fiber deposition in liver tissues was increased and the expression of transforming growth factor (TGF)-β, α-smooth muscle actin (SMA) and tissue inhibitor of metallopeptidase (TIMP)-1 was upregulated in the livers of OXA-treated NAFLD mice. Treatment with exogenous GSH alleviated OXA-induced acute liver injury in NAFLD mice, and significantly reduced the levels of ROS, MDA and TNF-α. However, GSH treatment did not inhibit collagen fiber deposition, although it reduced the levels of IFN-γ, IL-17, TGF-β, α-SMA and TIMP-1 in the livers of OXA-treated NAFLD mice. In conclusion, OXA chemotherapy may induce acute liver injury and aggravate the existing hepatic oxidative stress, inflammation and fibrosis in NAFLD. Treatment of NAFLD mice with exogenous GSH alleviated OXA-induced liver injury, possibly by ameliorating OXA-aggravated hepatic oxidative stress and inflammation; it did not, however, attenuate OXA-aggravated liver fibrosis.
Collapse
Affiliation(s)
- Yulei Lu
- Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Youzhi Lin
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoqing Huang
- Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shengming Wu
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian Wei
- Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chun Yang
- Department of Experimental Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|