1
|
Kumarathasan P, Nazemof N, Blais E, Syama KP, Breznan D, Dirieh Y, Aoki H, Phanse S, Tayabali A, Babu M. In Vitro Exposure of A549 and J774A.1 Cells to SiO 2 and TiO 2 Nanoforms and Related Cellular- and Molecular-Level Effects: Application of Proteomics. J Proteome Res 2025. [PMID: 40036262 DOI: 10.1021/acs.jproteome.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
There is an emerging interest in incorporating proteomic data for environmental health risk assessments. Meanwhile, the production and use of engineered nanomaterials (ENMs) with attractive physicochemical properties are expanding with the potential for exposure, thus necessitating toxicity information on these materials for health risk analysis, where proteomic data can be informative. Here, cells (A549 human lung epithelial and J774A.1 mouse monocyte/macrophage cells) were exposed to ENMs (nanoforms of SiO2and TiO2) of different sizes and surface chemistries (dose: 0-100 μg/cm2, 24 h) for in vitro toxicity data. Cytotoxicity (CTB, ATP, and LDH), oxidative stress (GSH oxidation), and proteomic analysis (MS- and antibody-based) were conducted post-nanoparticle (NP) exposure to determine the relative potency and identify perturbed cellular pathways. Dose-, nanoform-, and cell type-specific cytotoxicity changes were observed upon exposure to both nanoSiO2 and nanoTiO2. Size, agglomeration, surface modification, and metal impurities appeared to be the determinants of cytotoxicity. Proteomic analysis identified some enriched mechanistic pathways and biological processes relevant to cell defense/phagocytosis, stress, metabolism, apoptosis, and inflammatory processes in J774A.1 cells exposed to these NPs. A549 cells exhibited enriched pathway/biological processes relevant to transport/endocytosis, stress, metabolism, and inflammatory processes post-NP exposures. Concordance was observed between the nanoform exposure- and cell type-related cytotoxicity responses, notably cellular ATP, which is critical for cell viability, oxidative stress, and cellular pathways/biological processes. These findings demonstrate the application of proteomics in regulatory toxicology and warrant further research in this direction.
Collapse
Affiliation(s)
- Premkumari Kumarathasan
- Environmental Health Science and Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9
- Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Nazila Nazemof
- Environmental Health Science and Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9
- Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Erica Blais
- Environmental Health Science and Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Krishna Priya Syama
- Environmental Health Science and Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Dalibor Breznan
- Environmental Health Science and Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Yasmine Dirieh
- Environmental Health Science and Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
| | - Azam Tayabali
- Environmental Health Science and Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
| |
Collapse
|
2
|
He XN, Zeng ZZ, Jiang WD, Wu P, Liu Y, Kuang SY, Tang L, Li SW, Feng L, Zhou XQ. Aflatoxin B1 decreased flesh flavor and inhibited muscle development in grass carp ( Ctenopharyngodon idella). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:27-38. [PMID: 39026602 PMCID: PMC11254537 DOI: 10.1016/j.aninu.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/12/2024] [Accepted: 03/28/2024] [Indexed: 07/20/2024]
Abstract
In nature, aflatoxins, especially aflatoxin B1 (AFB1), are the common mycotoxins, which cause serious health problems for humans and animals. This paper aimed to study the effects of AFB1 on flesh flavor and muscle development of grass carp (Ctenopharyngodon idella) and its mechanism. There were 1440 individual fish in total, with 6 treatments and each treatment replicated 3 times. The 6 treatments were fed a control diet with different doses of AFB1 (0.04, 29.48, 58.66, 85.94, 110.43 and 146.92 μg/kg diet) for 60 d. AFB1 increased myofiber diameter, as well as decreased myofiber density of grass carp muscle (P < 0.05). The contents of free amino acid decreased gradually (P < 0.05) as dietary AFB1 increased in the muscle of grass carp. The levels of reactive oxygen species, malonaldehyde and protein carbonyl (PC) were increased (P < 0.05) with the dietary AFB1 increased. The levels of antioxidant enzyme (glutathione peroxidase, glutathione, glutathione reductase, total antioxidant capacity, anti-superoxide anion, and anti-hydroxyl radical) were decreased (P < 0.05) with the dietary AFB1 increased. In addition, dietary AFB1 decreased the content of collagen, and downregulated the mRNA and protein levels of transforming growth factor-β (TGF-β)/Smads signaling pathway in grass carp muscle (P < 0.05). The mRNA and protein levels of myogenic regulatory factors were downregulated in grass carp muscle (P < 0.05). Furthermore, the activities of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) were increased (P < 0.05), and the protein levels of phosphorylate-38 mitogen-activated protein kinase (p-p38MAPK), phosphorylate-c-Jun N-terminal kinase, urokinase-type plasminogen activator (uPA), MMP-2 and MMP-9 were upregulated (P < 0.05), but collagen Ⅰ, laminin β1 and fibronectin were downregulated (P < 0.05) with the dietary AFB1 increased in the muscle of grass carp. Based on the results of this study, we can draw the following conclusion: dietary AFB1 might damage flesh flavor and inhibit the muscle development through MAPK/uPA/MMP/extracellular matrix (ECM) signaling pathway in grass carp. Moreover, the recommended safe limit of AFB1 in feed is no more than 26.77 μg/kg diet according to the PC levels in grass carp muscle.
Collapse
Affiliation(s)
- Xiang-Ning He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen-Zhen Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
3
|
Mahdipour R, Ebrahimi V, Hosseini M, Soukhtanloo M, Rastegar-Moghaddam SH, Malvandi AM, Mohammadipour A. Grape seed extract protects rat offspring hippocampus from the silicon dioxide nanoparticles' neurotoxicity. Metab Brain Dis 2024; 39:1027-1038. [PMID: 38900359 DOI: 10.1007/s11011-024-01373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Silicon dioxide nanoparticles (SiO2-NPs) can be found in many products, such as composites, paints, ceramics, consumer products, and food additives. We recently demonstrated that via breastfeeding, SiO2-NPs transfer to the offspring's brain, interfering negatively with hippocampus development. In this work, we evaluated the protective effect of grape seed extract (GSE) against the adverse effects of SiO2-NPs. After delivery, animals were administered 25 mg/kg SiO2-NPs with/without GSE (300 mg/kg) for 20 days (from 2nd to 21st days post-delivery) by gavage. SiO2-NPs increased malondialdehyde concentration and decreased antioxidant activity in the offspring's hippocampi. The mean number of dark neurons (DNs) was significantly higher in the hippocampi of the SiO2-NPs group, whereas the mean number of DCX + cells was significantly lower than in the control group. The offspring in the SiO2-NPs groups had a weak cognitive performance in adulthood. Interestingly, these adverse effects of SiO2-NPs were alleviated in the GSE-treated groups. Therefore, GSE can attenuate the damaging effects of maternal exposure to SiO2-NPs during lactation.
Collapse
Affiliation(s)
- Ramin Mahdipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq, Vakilabad Blvd, Mashhad, Iran
| | - Vahid Ebrahimi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq, Vakilabad Blvd, Mashhad, Iran
- Department of Anatomical Sciences and Pathology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed HamidReza Rastegar-Moghaddam
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq, Vakilabad Blvd, Mashhad, Iran
| | - Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4 - 20161, Milan, Italy.
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Azadi Sq, Vakilabad Blvd, Mashhad, Iran.
| |
Collapse
|
4
|
Majumdar S, Tiwari A, Mallick D, Patel DK, Trigun SK, Krishnamurthy S. Oral Release Kinetics, Biodistribution, and Excretion of Dopants from Barium-Containing Bioactive Glass in Rats. ACS OMEGA 2024; 9:7188-7205. [PMID: 38371771 PMCID: PMC10870265 DOI: 10.1021/acsomega.3c09250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/20/2024]
Abstract
Background: Inorganic biomaterials are biologically active and are used as implants and drug delivery system. They have therapeutically active elements present in their framework that are released in the physiological milieu. Release of these dopants above the supraphysiological limit may produce adverse effects and physicochemical interactions with the loaded drugs. Therefore, this necessitates evaluating the in vivo release kinetics, biodistribution, and excretion profiles of dopants from barium-doped bioglass (BaBG) that has potential anti-inflammatory, antiulcer, and regenerative properties. Methods: In vitro leaching of Ca, Si, and Ba from BaBG was analyzed in simulated body fluid. Release kinetics post single-dose oral administration (1, 5, and 10 mg/kg) was performed in rats. Blood was collected at different time points, and pharmacokinetic parameters of released elements were calculated. The routes of excretion and biodistribution in major organs were evaluated using ICP-MS. Results: Elements were released after the oral administration of BaBG into the plasma. They showed dose-dependent release kinetics and mean residence time. Cmax was observed at 24 h for all elements, followed by a downhill fall. There was also a dose-dependent increase in the volume of distribution, and the clearance of dopants was mostly through feces. Ba and Si were biodistributed significantly in the liver, spleen, and kidneys. However, by the end of day 7, there was a leveling-off effect observed for all elements. Conclusion: All of the dopants exhibited a dose-dependent increase in release kinetics and biodistribution in vital organs. This study will help in dose optimization and understanding of various physicochemical and pharmacokinetic interactions when BaBG is used for future pharmacological studies.
Collapse
Affiliation(s)
- Shreyasi Majumdar
- Neurotherapeutics
Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Anshul Tiwari
- Analytical
Sciences and Accredited Testing Services, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
| | - Debasmit Mallick
- Department
of Zoology, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Devendra K. Patel
- Analytical
Sciences and Accredited Testing Services, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
| | - Surendra Kumar Trigun
- Department
of Zoology, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics
Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
5
|
Chaudhary KR, Singh K, Singh C. Recent Updates in Inhalable Drug Delivery System against Various Pulmonary Diseases: Challenges and Future Perspectives. Curr Drug Deliv 2024; 21:1320-1345. [PMID: 37870055 DOI: 10.2174/0115672018265571231011093546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
In the current scenario, pulmonary disease has become a prime burden for morbidity and mortality alongside tremendous social and economic crises throughout the world. Numerous conventional drug delivery system and treatment approach targeting the respiratory region has been driven out. However, effective and accurate recovery has not been achieved yet. In this regard, nanotechnological- based inhalable drug delivery strategy including polymeric, lipidic, or metallic-based respirable microparticles plays an indispensable role in circumventing numerous challenges faced during traditional treatment. Excellent aerodynamic performance leads to enhanced lung targetability, reduced dosing frequency and hence systemic toxicities, as well as improved pharmaceutical attributes, and therefore pharmacokinetic profiles are interminable factors associated with nanotechnologicalbased inhalable delivery. In this review, we comprehensively explored recent advancements in nanotechnologically engineered inhalable formulations targeting each of the mentioned pulmonary diseases. Moreover, we systematically discussed possible respiratory or systemic toxicities about the indeterminate and undefined physicochemical characteristics of inhaled particles.
Collapse
Affiliation(s)
- Kabi Raj Chaudhary
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
- Department of Research and Development, United Biotech [P] Ltd. Bagbania, Nalagarh, Solan, Himachal Pradesh, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
- Department of Pharmaceutical Sciences HNB Garhwal University, Madhi Chauras, Srinagar, Uttarakhand 246174, India
| |
Collapse
|
6
|
Zhang X, Wang Z, Wang B, Li J, Yuan H. lncRNA OIP5-AS1 attenuates the osteoarthritis progression in IL-1β-stimulated chondrocytes. Open Med (Wars) 2023; 18:20230721. [PMID: 37333451 PMCID: PMC10276615 DOI: 10.1515/med-2023-0721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/18/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
In view of the association between long noncoding RNA OIP5-AS1 and osteoarthritis (OA) pathology, the corresponding potential mechanism is worthy of exploration. Primary chondrocytes were identified by morphological observation and immunohistochemical staining of collagen II. The association between OIP5-AS1 and miR-338-3p was analyzed by StarBase and dual-luciferase reporter assay. After the expression of OIP5-AS1 or miR-338-3p in interleukin (IL)-1β-stimulated primary chondrocytes and CHON-001 cells was manipulated, cell viability, proliferation, apoptosis rate, apoptosis-related protein (cleaved caspase-9, Bax) expressions, extracellular matrix (ECM) (matrix metalloproteinase (MMP)-3, MMP-13, aggrecan, and collagen II), PI3K/AKT pathway, and mRNA expressions of inflammatory factors (IL-6 and IL-8), OIP5-AS1, and miR-338-3p were determined by cell counting kit-8, EdU, flow cytometry, Western blot, and quantitative reverse transcription-polymerase chain reaction. As a result, the expression of OIP5-AS1 was downregulated in IL-1β-activated chondrocytes, while miR-338-3p was overexpressed. OIP5-AS1 overexpression reversed the effects of IL-1β on viability, proliferation, apoptosis, ECM degradation, and inflammation in chondrocytes. However, OIP5-AS1 knockdown exhibited opposite effects. Interestingly, the effects of OIP5-AS1 overexpression were partially offset by miR-338-3p overexpression. Furthermore, OIP5-AS1 overexpression blocked the PI3K/AKT pathway by modulating miR-338-3p expression. In sum, OIP5-AS1 promotes viability and proliferation, and inhibits apoptosis and ECM degradation in IL-1β-activated chondrocytes by targeting miR-338-3p through blocking the PI3K/AKT pathway, indicating an attractive strategy for OA treatment.
Collapse
Affiliation(s)
- Xuefeng Zhang
- The First Clinical Medical College, Jinan University, Guangzhou, Guangdong 510632, P.R. China
- Department of Pain, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong 523326, P.R. China
| | - Zhikun Wang
- Department of Orthopedics, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong 523326, P.R. China
| | - Binbin Wang
- Department of Pain, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong 523326, P.R. China
| | - Jingyi Li
- Department of Pain, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong 523326, P.R. China
| | - Hui Yuan
- Department of Pain, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong 523326, P.R. China
| |
Collapse
|
7
|
Liu JY, Sayes CM. A toxicological profile of silica nanoparticles. Toxicol Res (Camb) 2022; 11:565-582. [PMID: 36051665 PMCID: PMC9424711 DOI: 10.1093/toxres/tfac038] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/16/2022] [Accepted: 05/29/2022] [Indexed: 08/02/2023] Open
Abstract
Humans are regularly exposed to silica nanoparticles in environmental and occupational contexts, and these exposures have been implicated in the onset of adverse health effects. Existing reviews on silica nanoparticle toxicity are few and not comprehensive. There are natural and synthetic sources by which crystalline and amorphous silica nanoparticles are produced. These processes influence physiochemical properties, which are factors that can dictate toxicological effects. Toxicological assessment includes exposure scenario (e.g. environmental, occupational), route of exposure, toxicokinetics, and toxicodynamics. Broader considerations include pathology, risk assessment, regulation, and treatment after injury. This review aims to consolidate the most relevant and up-to-date research in these areas to provide an exhaustive toxicological profile of silica nanoparticles.
Collapse
Affiliation(s)
- James Y Liu
- Department of Environmental Science, Baylor University, One Bear Place # 97266, Waco, TX 76798-7266, United States
| | - Christie M Sayes
- Corresponding author: Department of Environmental Science, Baylor University, One Bear Place # 97266, Waco, TX 76798-7266, United States.
| |
Collapse
|
8
|
Wong HS, Wiputra H, Tulzer A, Tulzer G, Yap CH. Fluid Mechanics of Fetal Left Ventricle During Aortic Stenosis with Evolving Hypoplastic Left Heart Syndrome. Ann Biomed Eng 2022; 50:1158-1172. [PMID: 35731342 PMCID: PMC9363377 DOI: 10.1007/s10439-022-02990-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022]
Abstract
In cases of fetal aortic stenosis and evolving Hypoplastic Left Heart Syndrome (feHLHS), aortic stenosis is associated with specific abnormalities such as retrograde or bidirectional systolic transverse arch flow. Many cases progressed to hypoplastic left heart syndrome (HLHS) malformation at birth, but fetal aortic valvuloplasty can prevent the progression in many cases. Since both disease and intervention involve drastic changes to the biomechanical environment, in-vivo biomechanics likely play a role in inducing and preventing disease progression. However, the fluid mechanics of feHLHS is not well-characterized. Here, we conduct patient-specific echocardiography-based flow simulations of normal and feHLHS left ventricles (LV), to understand the essential fluid dynamics distinction between the two cohorts. We found high variability across feHLHS cases, but also the following unifying features. Firstly, feHLHS diastole mitral inflow was in the form of a narrowed and fast jet that impinged onto the apical region, rather than a wide and gentle inflow in normal LVs. This was likely due to a malformed mitral valve with impaired opening dynamics. This altered inflow caused elevated vorticity dynamics and wall shear stresses (WSS) and reduced oscillatory shear index at the apical zone rather than mid-ventricle. Secondly, feHLHS LV also featured elevated systolic and diastolic energy losses, intraventricular pressure gradients, and vortex formation numbers, suggesting energy inefficiency of flow and additional burden on the LV. Thirdly, feHLHS LV had poor blood turnover, suggesting a hypoxic environment, which could be associated with endocardial fibroelastosis that is often observed in these patients.
Collapse
Affiliation(s)
- Hong Shen Wong
- Department of Bioengineering, Imperial College London, London, UK
| | - Hadi Wiputra
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | - Andreas Tulzer
- Department of Pediatric Cardiology, Children's Heart Center Linz, Kepler University Hospital, Linz, Austria
| | - Gerald Tulzer
- Department of Pediatric Cardiology, Children's Heart Center Linz, Kepler University Hospital, Linz, Austria
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
9
|
Aouey B, Boukholda K, Gargouri B, Bhatia HS, Attaai A, Kebieche M, Bouchard M, Fetoui H. Silica Nanoparticles Induce Hepatotoxicity by Triggering Oxidative Damage, Apoptosis, and Bax-Bcl2 Signaling Pathway. Biol Trace Elem Res 2022; 200:1688-1698. [PMID: 34110565 DOI: 10.1007/s12011-021-02774-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
The increase in the usage of silica nanoparticles (SiNPs) in the industrial and medical fields has raised concerns about their possible adverse effects on human health. The present study aimed to investigate the potential adverse effects of SiNPs at daily doses of 25 and 100 mg/kg body weight intraperitoneally (i.p.) for 28 consecutive days on markers of liver damage in adult male rats. Results revealed that SiNPs induced a marked increase in serum markers of liver damage, including lactate dehydrogenase (LDH), alanine aminotransferase (ALAT), and aspartate aminotransferase (ASAT). SiNPs also induced an elevation of reactive oxygen species (ROS) production in liver, along with an increase in oxidative stress markers (NO, MDA, PCO, and H2O2), and a decrease in antioxidant enzyme activities (CAT, SOD, and GPx). Quantitative real-time PCR showed that SiNPs also induced upregulation of pro-apoptotic gene expression (including Bax, p53, Caspase-9/3) and downregulation of anti-apoptotic factors Bcl-2. Moreover, histopathological analysis revealed that SiNPs induced hepatocyte alterations, which was accompanied by sinusoidal dilatation, Kupffer cell hyperplasia, and the presence of inflammatory cells in the liver. Taken together, these data showed that SiNPs trigger hepatic damage through ROS-activated caspase signaling pathway, which plays a fundamental role in SiNP-induced apoptosis in the liver.
Collapse
Affiliation(s)
- Bakhta Aouey
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia
| | - Khadija Boukholda
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia
| | - Brahim Gargouri
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia
| | - Harsharan S Bhatia
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum Der Universität München, Ludwig Maximilian University of Munich (LMU), 81377, Munich, Germany
| | - Abdelraheim Attaai
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mohamed Kebieche
- Laboratory of Cellular and Molecular Biology, University of Mohamed Seddik Ben Yahia, Jijel, Algeria
- Faculty of Natural and Life Sciences, LBMBPC, University of Batna 2, 05078, Fesdis, Batna2, Algeria
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U424Main Station, P.O. Box 6128, Montreal, Quebec, H3C 3J7, Canada
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| |
Collapse
|
10
|
Ma J, Jin Y, Gong B, Li L, Zhao Q. Pan-cancer analysis of necroptosis-related gene signature for the identification of prognosis and immune significance. Discov Oncol 2022; 13:17. [PMID: 35312867 PMCID: PMC8938586 DOI: 10.1007/s12672-022-00477-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Necroptosis is a novel programmed cell death mode independent on caspase. A number of studies have revealed that the induction of necroptosis could act as an alternative therapeutic strategy for drug-resistant tumors as well as affect tumor immune microenvironment. METHODS Gene expression profiles and clinical data were downloaded from XENA-UCSC (including The Cancer Genome Atlas and Genotype-Tissue Expression), Gene Expression Omnibus, International Cancer Genome Consortium and Chinese Glioma Genome Atlas. We used non-negative matrix factorization method to conduct tumor classification. The least absolute shrinkage and selection operator regression was applied to establish risk models, whose prognostic effectiveness was examined in both training and testing sets with Kaplan-Meier analysis, time-dependent receiver operating characteristic curves as well as uni- and multi-variate survival analysis. Principal Component Analysis, t-distributed Stochastic Neighbor Embedding and Uniform Manifold Approximation and Projection were conducted to check the risk group distribution. Gene Set Enrichment Analyses, immune infiltration analysis based on CIBERSORT, EPIC, MCPcounter, ssGSEA and ESTIMATE, gene mutation and drug sensitivity between the risk groups were also taken into consideration. RESULTS There were eight types of cancer with at least ten differentially expressed necroptosis-related genes which could influence patients' prognosis, namely, adrenocortical carcinoma (ACC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), acute myeloid leukemia (LAML), brain lower grade glioma (LGG), pancreatic adenocarcinoma (PAAD), liver hepatocellular carcinoma (LIHC), skin cutaneous melanoma (SKCM) and thymoma (THYM). Patients could be divided into different clusters with distinct overall survival in all cancers above except for LIHC. The risk models could efficiently predict prognosis of ACC, LAML, LGG, LIHC, SKCM and THYM patients. LGG patients from high-risk group had a higher infiltration level of M2 macrophages and cancer-associated fibroblasts. There were more CD8+ T cells, Th1 cells and M1 macrophages in low-risk SKCM patients' tumor microenvironment. Gene mutation status and drug sensitivity are also different between low- and high-risk groups in the six cancers. CONCLUSIONS Necroptosis-related genes can predict clinical outcomes of ACC, LAML, LGG, LIHC, SKCM and THYM patients and help to distinguish immune infiltration status for LGG and SKCM.
Collapse
Affiliation(s)
- Jincheng Ma
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yan Jin
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Baocheng Gong
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Long Li
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Department of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Qiang Zhao
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
11
|
Wan J, Yu X, Niu JQ, Qiu L, Wang F, Chen XL. Inhibition of Bruton's Tyrosine Kinase Protects Against Burn Sepsis-Induced Intestinal Injury. Front Med (Lausanne) 2022; 9:809289. [PMID: 35280898 PMCID: PMC8907476 DOI: 10.3389/fmed.2022.809289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/31/2022] [Indexed: 11/18/2022] Open
Abstract
This study aimed to investigate the role and molecular mechanisms of Bruton's tyrosine kinase (BTK), a member of the Tec family in burn sepsis-induced intestinal injury. Eighty C57BL/6 mice were randomly divided into four groups: the sham group, the burn group, the burn + sepsis group, and the burn + sepsis + LFM-A13 (a selective BTK inhibitor) group. The dynamic expression profiles of BTK and p-BTK in the intestine were measured by Western blot analysis. Intestinal histopathological changes and cellular apoptosis were determined. Inflammatory cytokines in serum and intestinal tissue were examined through enzyme-linked immunosorbent assay. Myeloperoxidase (MPO) activity was determined via a colorimetric assay. Intestinal p-BTK expression in the burn+sepsis group was significantly increased compared with that in the sham and burn groups. In the burn + sepsis group, the p-BTK expression level increased over time, peaked at 12, and then decreased at 24 h. LFM-A13 administration significantly inhibited p-BTK expression in the intestine. In contrast to the sham and burn groups, the burn + sepsis group exhibited obvious histopathological changes, which gradually aggravated over time. LFM-A13 also reduced the histopathological changes and cellular apoptosis in intestinal tissues, inhibited the inflammatory cytokines IL-4, IL-6, and TNF-α in serum and intestinal tissues, and significantly inhibited the increase in intestinal MPO activity induced by burn sepsis. BTK activation is one important aspect of the signaling event that may mediate the release of the anti-inflammatory cytokine IL-4 and the pro-inflammatory cytokines IL-6 and TNF-α; oxidative stress; and intestinal cell apoptosis. Thus, it contributes to burn sepsis-induced intestinal injury.
Collapse
|
12
|
Esmaeili A, Hosseini S, Baghaban Eslaminejad M. Engineered-extracellular vesicles as an optimistic tool for microRNA delivery for osteoarthritis treatment. Cell Mol Life Sci 2021; 78:79-91. [PMID: 32601714 PMCID: PMC11072722 DOI: 10.1007/s00018-020-03585-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Worldwide, osteoarthritis (OA) is one of the most common chronic diseases. In OA, profiling gene expression changes occur and cartilage tissue homeostasis is lost. Suggestions for OA treatment include regulation of gene expressions via the use of microRNAs (miRNAs). However, problems exist with the use of miRNAs, the most important of which is the delivery of sufficient amounts of effective miRNAs to save cartilage tissue. The engineering of extracellular vesicles (EVs) with the use of advanced techniques would be an efficient OA treatment. Therefore, we discuss the importance of miRNAs in terms of cartilage tissue regeneration and review recent advances in production of enriched EVs and miRNA delivery by EVs for future clinical applications.
Collapse
Affiliation(s)
- Abazar Esmaeili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
13
|
Chakraborty P, Isser HS, Arava SK, Madan K, Bhatia M, Jahangir A. Ventricular Tachycardia: A Rare Case of Myocardial Silicosis. JACC Case Rep 2020; 2:2256-2259. [PMID: 34317152 PMCID: PMC8299841 DOI: 10.1016/j.jaccas.2020.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 11/27/2022]
Abstract
Chronic exposure to silica is a recognized health hazard. Manifestations of pulmonary and extrapulmonary silicosis are well described. Secondary pulmonary arterial hypertension and pericardial involvement are described, but myocardial involvement has not been reported. In this case of newly diagnosed pulmonary silicosis, ventricular tachycardia results are shown from pathological involvement of ventricular myocardium. (Level of Difficulty: Beginner.).
Collapse
Affiliation(s)
- Praloy Chakraborty
- Department of Cardiology, Toronto General Hospital, Toronto, Ontario, Canada
| | | | - Sudheer Kumar Arava
- Department of Pathology, All India Institute of Medical Sciences, Delhi, India
| | - Karan Madan
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, Delhi, India
| | - Mona Bhatia
- Department of Radiology and Imaging, Fortis Escorts Heart Institute, New Delhi, India
| | - Arshad Jahangir
- Aurora Center for Advanced Atrial Fibrillation Therapies, Aurora Cardiovascular and Thoracic Services, Aurora St. Luke's Medical Center, Advocate Aurora Health, Milwaukee, Wisconsin
| |
Collapse
|
14
|
Feng X, Zhang Y, Zhang C, Lai X, Zhang Y, Wu J, Hu C, Shao L. Nanomaterial-mediated autophagy: coexisting hazard and health benefits in biomedicine. Part Fibre Toxicol 2020; 17:53. [PMID: 33066795 PMCID: PMC7565835 DOI: 10.1186/s12989-020-00372-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Widespread biomedical applications of nanomaterials (NMs) bring about increased human exposure risk due to their unique physicochemical properties. Autophagy, which is of great importance for regulating the physiological or pathological activities of the body, has been reported to play a key role in NM-driven biological effects both in vivo and in vitro. The coexisting hazard and health benefits of NM-mediated autophagy in biomedicine are nonnegligible and require our particular concerns. MAIN BODY We collected research on the toxic effects related to NM-mediated autophagy both in vivo and in vitro. Generally, NMs can be delivered into animal models through different administration routes, or internalized by cells through different uptake pathways, exerting varying degrees of damage in tissues, organs, cells, and organelles, eventually being deposited in or excreted from the body. In addition, other biological effects of NMs, such as oxidative stress, inflammation, necroptosis, pyroptosis, and ferroptosis, have been associated with autophagy and cooperate to regulate body activities. We therefore highlight that NM-mediated autophagy serves as a double-edged sword, which could be utilized in the treatment of certain diseases related to autophagy dysfunction, such as cancer, neurodegenerative disease, and cardiovascular disease. Challenges and suggestions for further investigations of NM-mediated autophagy are proposed with the purpose to improve their biosafety evaluation and facilitate their wide application. Databases such as PubMed and Web of Science were utilized to search for relevant literature, which included all published, Epub ahead of print, in-process, and non-indexed citations. CONCLUSION In this review, we focus on the dual effect of NM-mediated autophagy in the biomedical field. It has become a trend to use the benefits of NM-mediated autophagy to treat clinical diseases such as cancer and neurodegenerative diseases. Understanding the regulatory mechanism of NM-mediated autophagy in biomedicine is also helpful for reducing the toxic effects of NMs as much as possible.
Collapse
Affiliation(s)
- Xiaoli Feng
- Stomatological Hospital, Southern Medical University, 366 South Jiangnan Road, Guangzhou, 510280, China
| | - Yaqing Zhang
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Chao Zhang
- Orthodontic Department, Stomatological Hospital, Southern Medical University, 366 South Jiangnan Road, Guangzhou, 510280, China
| | - Xuan Lai
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, 366 South Jiangnan Road, Guangzhou, 510280, China
| | - Junrong Wu
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Chen Hu
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Astrocytes Are More Vulnerable than Neurons to Silicon Dioxide Nanoparticle Toxicity in Vitro. TOXICS 2020; 8:toxics8030051. [PMID: 32751182 PMCID: PMC7560395 DOI: 10.3390/toxics8030051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 11/29/2022]
Abstract
Some studies have shown that silicon dioxide nanoparticles (SiO2-NPs) can reach different regions of the brain and cause toxicity; however, the consequences of SiO2-NPs exposure on the diverse brain cell lineages is limited. We aimed to investigate the neurotoxic effects of SiO2-NP (0–100 µg/mL) on rat astrocyte-rich cultures or neuron-rich cultures using scanning electron microscopy, Attenuated Total Reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR), FTIR microspectroscopy mapping (IQ mapping), and cell viability tests. SiO2-NPs were amorphous particles and aggregated in saline and culture media. Both astrocytes and neurons treated with SiO2-NPs showed alterations in cell morphology and changes in the IR spectral regions corresponding to nucleic acids, proteins, and lipids. The analysis by the second derivative revealed a significant decrease in the signal of the amide I (α-helix, parallel β-strand, and random coil) at the concentration of 10 µg/mL in astrocytes but not in neurons. IQ mapping confirmed changes in nucleic acids, proteins, and lipids in astrocytes; cell death was higher in astrocytes than in neurons (10–100 µg/mL). We conclude that astrocytes were more vulnerable than neurons to SiO2-NPs toxicity. Therefore, the evaluation of human exposure to SiO2-NPs and possible neurotoxic effects must be followed up.
Collapse
|
16
|
Wang DP, Wang ZJ, Zhao R, Lin CX, Sun QY, Yan CP, Zhou X, Cao JM. Silica nanomaterials induce organ injuries by Ca 2+-ROS-initiated disruption of the endothelial barrier and triggering intravascular coagulation. Part Fibre Toxicol 2020; 17:12. [PMID: 32293491 PMCID: PMC7087393 DOI: 10.1186/s12989-020-00340-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/06/2020] [Indexed: 11/23/2022] Open
Abstract
Background The growing use of silica nanoparticles (SiNPs) in many fields raises human toxicity concerns. We studied the toxicity of SiNP-20 (particle diameter 20 nm) and SiNP-100 (100 nm) and the underlying mechanisms with a focus on the endothelium both in vitro and in vivo. Methods The study was conducted in cultured human umbilical vein endothelial cells (HUVECs) and adult female Balb/c mice using several techniques. Results In vitro, both SiNP-20 and SiNP-100 decreased the viability and damaged the plasma membrane of cultured HUVECs. The nanoparticles also inhibited HUVECs migration and tube formation in a concentration-dependent manner. Both SiNPs induced significant calcium mobilization and generation of reactive oxygen species (ROS), increased the phosphorylation of vascular endothelial (VE)-cadherin at the site of tyrosine 731 residue (pY731-VEC), decreased the expression of VE-cadherin expression, disrupted the junctional VE-cadherin continuity and induced F-actin re-assembly in HUVECs. The injuries were reversed by blocking Ca2+ release activated Ca2+ (CRAC) channels with YM58483 or by eliminating ROS with N-acetyl cysteine (NAC). In vivo, both SiNP-20 and SiNP-100 (i.v.) induced multiple organ injuries of Balb/c mice in a dose (range 7–35 mg/kg), particle size, and exposure time (4–72 h)-dependent manner. Heart injuries included coronary endothelial damage, erythrocyte adhesion to coronary intima and coronary coagulation. Abdominal aorta injury exhibited intimal neoplasm formation. Lung injuries were smaller pulmonary vein coagulation, bronchiolar epithelial edema and lumen oozing and narrowing. Liver injuries included multifocal necrosis and smaller hepatic vein congestion and coagulation. Kidney injuries involved glomerular congestion and swelling. Macrophage infiltration occurred in all of the observed organ tissues after SiNPs exposure. SiNPs also decreased VE-cadherin expression and altered VE-cadherin spatial distribution in multiple organ tissues in vivo. The largest SiNP (SiNP-100) and longest exposure time exerted the greatest toxicity both in vitro and in vivo. Conclusions SiNPs, administrated in vivo, induced multiple organ injuries, including endothelial damage, intravascular coagulation, and secondary inflammation. The injuries are likely caused by upstream Ca2+-ROS signaling and downstream VE-cadherin phosphorylation and destruction and F-actin remodeling. These changes led to endothelial barrier disruption and triggering of the contact coagulation pathway.
Collapse
Affiliation(s)
- De-Ping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zhao-Jun Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Rong Zhao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Cai-Xia Lin
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Qian-Yu Sun
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Cai-Ping Yan
- Center of Translational Medicine, Shanxi Medical University, Taiyuan, China
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, China.
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
17
|
Mendez-Fernandez A, Cabrera-Fuentes HA, Velmurugan B, Irei J, Boisvert WA, Lu S, Hausenloy DJ. Nanoparticle delivery of cardioprotective therapies. CONDITIONING MEDICINE 2020; 3:18-30. [PMID: 34268485 PMCID: PMC8279025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acute myocardial infarction (AMI), and the heart failure (HF) that often follows, are leading causes of death and disability worldwide. Crucially, there are currently no effective treatments, other than myocardial reperfusion, for reducing myocardial infarct (MI) size and preventing HF following AMI. Thus, there is an unmet need to discover novel cardioprotective therapies to reduce MI size, and prevent HF in AMI patients. Although a large number of therapies have been shown to reduce MI size in experimental studies, the majority have failed to benefit AMI patients. Failure to deliver cardioprotective therapy to the ischemic heart in sufficient concentrations following AMI is a major factor for the lack of success observed in previous clinical cardioprotection studies. Therefore, new strategies are needed to improve the delivery of cardioprotective therapies to the ischemic heart following AMI. In this regard, nanoparticles have emerged as drug delivery systems for improving the bioavailability, delivery, and release of cardioprotective therapies, and should result in improved efficacy in terms of reducing MI size and preventing HF. In this article, we provide a review of currently available nanoparticles, some of which have been FDA-approved, in terms of their use as drug delivery systems in cardiovascular disease and cardioprotection.
Collapse
Affiliation(s)
- Abraham Mendez-Fernandez
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
- National Heart Research Institute Singapore, National Heart Centre, Singapore
| | - Hector A Cabrera-Fuentes
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Russian Federation
- Institute of Physiology, Medical School, Justus-Liebig-University, Germany
| | - Bhaarathy Velmurugan
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Jason Irei
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, USA
| | - William A. Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, USA
| | - Shengjie Lu
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, UK
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| |
Collapse
|