1
|
Zhu Z, Zhu K, Zhang J, Zhou Y, Zhang Q. Elucidating the evolving role of cuproptosis in breast cancer progression. Int J Biol Sci 2024; 20:4872-4887. [PMID: 39309446 PMCID: PMC11414396 DOI: 10.7150/ijbs.98806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Breast cancer (BC) persists as a highly prevalent malignancy in females, characterized by diverse molecular signatures and necessitating personalized therapeutic approaches. The equilibrium of copper within the organism is meticulously maintained through regulated absorption, distribution, and elimination, underpinning not only cellular equilibrium but also various essential biological functions. The process of cuproptosis is initiated by copper's interaction with lipoylases within the tricarboxylic acid (TCA) cycle, which triggers the conglomeration of lipoylated proteins and diminishes the integrity of Fe-S clusters, culminating in cell demise through proteotoxic stress. In BC, aberrations in cuproptosis are prominent and represent a crucial molecular incident that contributes to the disease progression. It influences BC cell metabolism and affects critical traits such as proliferation, invasiveness, and resistance to chemotherapy. Therapeutic strategies that target cuproptosis have shown promising antitumor efficacy. Moreover, a plethora of cuproptosis-centric genes, including cuproptosis-related genes (CRGs), CRG-associated non-coding RNAs (ncRNAs), and cuproptosis-associated regulators, have been identified, offering potential for the development of risk assessment models or diagnostic signatures. In this review, we provide a comprehensive exposition of the fundamental principles of cuproptosis, its influence on the malignant phenotypes of BC, the prognostic implications of cuproptosis-based markers, and the substantial prospects of exploiting cuproptosis for BC therapy, thereby laying a theoretical foundation for targeted interventions in this domain.
Collapse
Affiliation(s)
- Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Keyu Zhu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, China
| | - Yunhua Zhou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430062, Hubei Province, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, 437000, Hubei, China
| |
Collapse
|
2
|
Wathoni N, Suhandi C, Elamin KM, Lesmana R, Hasan N, Mohammed AFA, El-Rayyes A, Wilar G. Advancements and Challenges of Nanostructured Lipid Carriers for Wound Healing Applications. Int J Nanomedicine 2024; 19:8091-8113. [PMID: 39161361 PMCID: PMC11332415 DOI: 10.2147/ijn.s478964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
The current treatments for wound healing still exhibit drawbacks due to limited availability at the action sites, susceptibility to degradation, and immediate drug release, all of which are detrimental in chronic conditions. Nano-modification strategies, offering various advantages that can enhance the physicochemical properties of drugs, have been employed in efforts to maximize the efficacy of wound healing medications. Nowadays, nanostructured lipid carriers (NLCs) provide drug delivery capabilities that can safeguard active compounds from environmental influences and enable controlled release profiles. Consequently, NLCs are considered an alternative therapy to address the challenges encountered in wound treatment. This review delves into the application of NLCs in drug delivery for wound healing, encompassing discussions on their composition, preparation methods, and their impact on treatment effectiveness. The modification of drugs into the NLC model can be facilitated using relatively straightforward technologies such as pressure-based processes, emulsification techniques, solvent utilization methods, or phase inversion. Moreover, NLC production with minimal material compositions can accommodate both single and combination drug delivery. Through in vitro, in vivo, and clinical studies, it has been substantiated that NLCs can enhance the therapeutic potential of various drug types in wound healing treatments. NLCs enhance efficacy by reducing the active substance particle size, increasing solubility and bioavailability, and prolonging drug release, ensuring sustained dosage at the wound site for chronic wounds. In summary, NLCs represent an effective nanocarrier system for optimizing the bioavailability of active pharmacological ingredients in the context of wound healing.
Collapse
Affiliation(s)
- Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Khaled M Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Bandung, Indonesia
| | - Nurhasni Hasan
- Department of Pharmacy Science and Technology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, 90245, Indonesia
| | | | - Ali El-Rayyes
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| |
Collapse
|
3
|
Guo Y, Que H, Chen B, Chao C, Li S, Guo S, Yin Y, Wang H, Zhu M, Li P. Citronellal improves endothelial dysfunction by affecting the stability of the GCH1 protein. Acta Biochim Biophys Sin (Shanghai) 2024; 56:963-972. [PMID: 38993132 PMCID: PMC11322867 DOI: 10.3724/abbs.2024086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 07/13/2024] Open
Abstract
Endothelial dysfunction (ED) serves as the pathological basis for various cardiovascular diseases. Guanosine triphosphate cyclopyrrolone 1 (GCH1) emerges as a pivotal protein in sustaining nitric oxide (NO) production within endothelial cells, yet it undergoes degradation under oxidative stress, contributing to endothelial cell dysfunction. Citronellal (CT), a monoterpenoid, has been shown to ameliorate endothelial dysfunction induced by in atherosclerosis rats. However, whether CT can inhibit the degradation of GCH1 protein is not clear. It has been reported that ubiquitination may play a crucial role in regulating GCH1 protein levels and activities. However, the specific E3 ligase for GCH1 and the molecular mechanism of GCH1 ubiquitination remain unclear. Using data-base exploration analysis, we find that the levels of the E3 ligase Smad-ubiquitination regulatory factor 2 (Smurf2) negatively correlate with those of GCH1 in vascular tissues and HUVECs. We observe that Smurf2 interacts with GCH1 and promotes its degradation via the proteasome pathway. Interestingly, ectopic Smurf2 expression not only decreases GCH1 levels but also reduces cell proliferation and reactive oxygen species (ROS) levels, mostly because of increased GCH1 accumulation. Furthermore, we identify BH 4/eNOS as downstream of GCH1. Taken together, our results indicate that CT can obviously improve vascular endothelial injury in Type 1 diabetes mellitus (T1DM) rats and reverse the expressions of GCH1 and Smurf2 proteins in aorta of T1DM rats. Smurf2 promotes ubiquitination and degradation of GCH1 through proteasome pathway in HUVECs. We conclude that the Smurf2-GCH1 interaction might represent a potential target for improving endothelial injury.
Collapse
Affiliation(s)
- Yaqi Guo
- SanQuan Medical CollegeSino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Huadong Que
- SanQuan Medical CollegeSino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Bulei Chen
- SanQuan Medical CollegeSino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Chunyan Chao
- SanQuan Medical CollegeSino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
- Huang Huai UniversityZhumadian463000China
| | - Shanshan Li
- SanQuan Medical CollegeSino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianning437100China
| | - Yaling Yin
- SanQuan Medical CollegeSino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Huanhuan Wang
- SanQuan Medical CollegeSino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Moli Zhu
- SanQuan Medical CollegeSino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Peng Li
- SanQuan Medical CollegeSino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianning437100China
| |
Collapse
|
4
|
Mei W, Mei B, Chang J, Liu Y, Zhou Y, Zhu N, Hu M. Role and regulation of FOXO3a: new insights into breast cancer therapy. Front Pharmacol 2024; 15:1346745. [PMID: 38505423 PMCID: PMC10949727 DOI: 10.3389/fphar.2024.1346745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Breast cancer is the most common malignancy in the world, particularly affecting female cancer patients. Enhancing the therapeutic strategies for breast cancer necessitates identifying molecular drug targets that effectively eliminate tumor cells. One of these prominent targets is the forkhead and O3a class (FOXO3a), a member of the forkhead transcription factor subfamily. FOXO3a plays a pivotal role in various cellular processes, including apoptosis, proliferation, cell cycle regulation, and drug resistance. It acts as a tumor suppressor in multiple cancer types, although its specific role in cancer remains unclear. Moreover, FOXO3a shows promise as a potential marker for tumor diagnosis and prognosis in breast cancer patients. In addition, it is actively influenced by common anti-breast cancer drugs like paclitaxel, simvastatin, and gefitinib. In breast cancer, the regulation of FOXO3a involves intricate networks, encompassing post-translational modification post-translational regulation by non-coding RNA (ncRNA) and protein-protein interaction. The specific mechanism of FOXO3a in breast cancer urgently requires further investigation. This review aims to systematically elucidate the role of FOXO3a in breast cancer. Additionally, it reviews the interaction of FOXO3a and its upstream and downstream signaling pathway-related molecules to uncover potential therapeutic drugs and related regulatory factors for breast cancer treatment by regulating FOXO3a.
Collapse
Affiliation(s)
- Wenqiu Mei
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Department of Neurology, Ezhou Central Hospital, Ezhou, China
| | - Bingyin Mei
- Department of Neurology, Ezhou Central Hospital, Ezhou, China
| | - Jing Chang
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yifei Liu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanhong Zhou
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ni Zhu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
5
|
Su J, Huo M, Xu F, Ding L. Molecular mechanism of lycorine in the treatment of glioblastoma based on network pharmacology and molecular docking. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1551-1559. [PMID: 37668687 DOI: 10.1007/s00210-023-02702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Lycorine is a naturally active alkaloid that has been shown to have inhibitory effects on a variety of cancers. However, the underlying mechanism of lycorine in the treatment of glioblastoma (GBM) is unclear. In this study, we investigated the mechanism of lycorine in the treatment of GBM based on network pharmacology and molecular docking. Lycorine-related targets overlapped with GBM-related targets to obtain intersections that represent potential anti-GBM targets for lycorine. The protein-protein interaction (PPI) network was constructed using the STRING online database and analyzed by Cytoscape software, and 10 key target genes (AKT1, SRC, HSP90AA1, HRAS, MMP9, BCL2L1, IGF1, MAPK14, STAT1, and KDR) were obtained, which played an important role in the therapeutic effect of lycorine on GBM. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that lycorine acts on GBM by multiple pathways, including inducing apoptosis and reactive oxygen species production. The molecular docking results showed that lycorine had strong binding efficiency with the 10 key genes. In addition, we found that the use of lycorine-induced apoptosis in U-87 MG glioblastoma cells. Here, the mechanism of action of lycorine against GBM was elucidated and verified by experiments, which provided evidence support for its clinical application.
Collapse
Affiliation(s)
- Jie Su
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Mengmeng Huo
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Fengnan Xu
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Liqiong Ding
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science and Technology, Xianning, China.
| |
Collapse
|
6
|
Pan G, Cui B, Han M, Lin L, Li Y, Wang L, Guo S, Yin Y, Zhan H, Li P. Puerarin inhibits NHE1 activity by interfering with the p38 pathway and attenuates mitochondrial damage induced by myocardial calcium overload in heart failure rats. Acta Biochim Biophys Sin (Shanghai) 2024; 56:270-279. [PMID: 38282474 PMCID: PMC10984851 DOI: 10.3724/abbs.2023269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/11/2023] [Indexed: 01/30/2024] Open
Abstract
Previous studies have shown that puerarin plays a key role in protecting humans and animals from cardiovascular diseases. The exact mechanism of the therapeutic effect of puerarin on various cardiovascular diseases (protective effect on cardiomyocytes) is still unclear. In the present study, we identify the role of puerarin in an animal model of experimental heart failure (HF) and explore its underlying mechanisms. The HF rat model is induced by intraperitoneal injection of adriamycin (ADR), and puerarin is administered intragastrically at low, medium, and high concentrations. We demonstrate that puerarin significantly improves myocardial fibrosis and inflammatory infiltration and, as a result, improves cardiac function in ADR-induced HF rats. Mechanistically, we find for the first time that puerarin inhibits overactivated Na +/H + exchange isoform 1 (NHE1) in HF, which may improve HF by decreasing Na + and Ca 2+ ion concentrations and attenuating mitochondrial damage caused by calcium overload; on the other hand, puerarin inhibits the activation of the p38 pathway in HF, reduces the expressions of TGF-β and proinflammatory cytokines, and suppresses myocardial fibrosis. In conclusion, our results suggest that Puerarin is an effective drug against HF and may play a protective role in the myocardium by inhibiting the activation of p38 and its downstream NHE1.
Collapse
Affiliation(s)
- Guopin Pan
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Baoyue Cui
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
- Nanyang Second General HospitalNanyang473001China
| | - Mingming Han
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Laibiao Lin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Yinlan Li
- College of PharmacyHeilongjiang University of Chinese MedicineHarbin150040China
| | - Ling Wang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianning437100China
| | - Yaling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Heqin Zhan
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Peng Li
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianning437100China
| |
Collapse
|
7
|
Gauttam VK, Munjal K, Chopra H, Ahmad A, Rana MK, Kamal MA. A Mechanistic Review on Therapeutic Potential of Medicinal Plants and their Pharmacologically Active Molecules for Targeting Metabolic Syndrome. Curr Pharm Des 2024; 30:10-30. [PMID: 38155468 DOI: 10.2174/0113816128274446231220113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023]
Abstract
Metabolic syndrome (MetS) therapy with phytochemicals is an emerging field of study with therapeutic potential. Obesity, insulin resistance, high blood pressure, and abnormal lipid profiles are all components of metabolic syndrome, which is a major public health concern across the world. New research highlights the promise of phytochemicals found in foods, including fruits, vegetables, herbs, and spices, as a sustainable and innovative method of treating this illness. Anti-inflammatory, antioxidant, and insulin-sensitizing qualities are just a few of the many positive impacts shown by bioactive substances. Collectively, they alleviate the hallmark symptoms of metabolic syndrome by modulating critical metabolic pathways, boosting insulin sensitivity, decreasing oxidative stress, and calming chronic low-grade inflammation. In addition, phytochemicals provide a multimodal strategy by targeting not only adipose tissue but also the liver, skeletal muscle, and vascular endothelium, all of which have a role in the pathogenesis of MetS. Increasing evidence suggests that these natural chemicals may be useful in controlling metabolic syndrome as a complementary treatment to standard medication or lifestyle changes. This review article emphasizes the therapeutic potential of phytochemicals, illuminating their varied modes of action and their ability to alleviate the interconnected causes of metabolic syndrome. Phytochemical-based interventions show promise as a novel and sustainable approach to combating the rising global burden of metabolic syndrome, with the ultimate goal of bettering public health and quality of life.
Collapse
Affiliation(s)
- Vinod Kumar Gauttam
- Department of Pharmacognosy, Shiva Institute of Pharmacy, Bilaspur, Hmachal Pradesh, India
| | - Kavita Munjal
- Department of Pharmacognosy, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Aftab Ahmad
- Department of Pharmacology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahesh Kumar Rana
- Department of Agriculture, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|
8
|
Su Y, Guo Y, Guo J, Zeng T, Wang T, Liu W. Study of FOXO1-interacting proteins using TurboID-based proximity labeling technology. BMC Genomics 2023; 24:146. [PMID: 36964488 PMCID: PMC10039511 DOI: 10.1186/s12864-023-09238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Protein‒protein interactions (PPIs) are the foundation of the life activities of cells. TurboID is a biotin ligase with higher catalytic efficiency than BioID or APEX that reduces the required labeling time from 18 h to 10 min. Since many proteins participate in binding and catalytic events that are very short-lived, it is theoretically possible to find relatively novel binding proteins using the TurboID technique. Cell proliferation, apoptosis, autophagy, oxidative stress and metabolic disorders underlie many diseases, and forkhead box transcription factor 1 (FOXO1) plays a key role in these physiological and pathological processes. RESULTS The FOXO1-TurboID fusion gene was transfected into U251 astrocytes, and a cell line stably expressing FOXO1 was constructed. While constructing the FOXO1 overexpression plasmid, we also added the gene sequence of TurboID to perform biotin labeling experiments in the successfully fabricated cell line to look for FOXO1 reciprocal proteins. Label-free mass spectrometry analysis was performed, and 325 interacting proteins were found. A total of 176 proteins were identified in the FOXO1 overexpression group, and 227 proteins were identified in the Lipopolysaccharide -treated group (Lipopolysaccharide, LPS). Wild-type U251 cells were used to exclude interference from nonspecific binding. The FOXO1-interacting proteins hnRNPK and RBM14 were selected for immunoprecipitation and immunofluorescence verification. CONCLUSION The TurboID technique was used to select the FOXO1-interacting proteins, and after removing the proteins identified in the blank group, a large number of interacting proteins were found in both positive groups. This study lays a foundation for further study of the function of FOXO1 and the regulatory network in which it is involved.
Collapse
Affiliation(s)
- Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Yuanyuan Guo
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Jieyu Guo
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Ting Zeng
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Ting Wang
- Department of Pediatric Neurology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430000, China.
| | - Wu Liu
- Medicine Research Institute, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437000, China.
| |
Collapse
|
9
|
Rajput A, Sharma P, Singh D, Singh S, Kaur P, Attri S, Mohana P, Kaur H, Rashid F, Bhatia A, Jankowski J, Arora V, Tuli HS, Arora S. Role of polyphenolic compounds and their nanoformulations: a comprehensive review on cross-talk between chronic kidney and cardiovascular diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:901-924. [PMID: 36826494 DOI: 10.1007/s00210-023-02410-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 02/25/2023]
Abstract
Chronic kidney disease (CKD) affects a huge portion of the world's population and frequently leads to cardiovascular diseases (CVDs). It might be because of common risk factors between chronic kidney disease and cardiovascular diseases. Renal dysfunction caused by chronic kidney disease creates oxidative stress which in turn leads to cardiovascular diseases. Oxidative stress causes endothelial dysfunction and inflammation in heart which results in atherosclerosis. It ends in clogging of veins and arteries that causes cardiac stroke and myocardial infarction. To develop an innovative therapeutic approach and new drugs to treat these diseases, it is important to understand the pathophysiological mechanism behind the CKD and CVDs and their interrelationship. Natural phytoconstituents of plants such as polyphenolic compounds are well known for their medicinal value. Polyphenols are plant secondary metabolites with immense antioxidant properties, which can protect from free radical damage. Nowadays, polyphenols are generating a lot of buzz in the scientific community because of their potential health benefits especially in the case of heart and kidney diseases. This review provides a detailed account of the pathophysiological link between CKD and CVDs and the pharmacological potential of polyphenols and their nanoformulations in promoting cardiovascular and renal health.
Collapse
Affiliation(s)
- Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Palvi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pallvi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Vanita Arora
- Sri Sukhmani Dental College & Hospital, Derabassi, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
10
|
Cheng DW, Yue YF, Chen CX, Hu YD, Tang Q, Xie M, Liu L, Li D, Zhu HL, Cheng ML. Emodin alleviates arthritis pain through reducing spinal inflammation and oxidative stress. Mol Pain 2022; 18:17448069221146398. [PMID: 36474308 PMCID: PMC9772972 DOI: 10.1177/17448069221146398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic pain is the predominant problem for rheumatoid arthritis patients, and negatively affects quality of life. Arthritis pain management remains largely inadequate, and developing new treatment strategies are urgently needed. Spinal inflammation and oxidative stress contribute to arthritis pain and represent ideal targets for the treatment of arthritis pain. In the present study, collagen-induced arthritis (CIA) mouse model was established by intradermally injection of type II collagen (CII) in complete Freund's adjuvant (CFA) solution, and exhibited as paw and ankle swelling, pain hypersensitivity and motor disability. In spinal cord, CIA inducement triggered spinal inflammatory reaction presenting with inflammatory cells infiltration, increased Interleukin-1β (IL-1β) expression, and up-regulated NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and cleaved caspase-1 levels, elevated spinal oxidative level presenting as decreased nuclear factor E2-related factor 2 (Nrf2) expression and Superoxide dismutase (SOD) activity. To explore potential therapeutic options for arthritis pain, emodin was intraperitoneally injected for 3 days on CIA mice. Emodin treatment statistically elevated mechanical pain sensitivity, suppressed spontaneous pain, recovered motor coordination, decreased spinal inflammation score and IL-1β expression, increased spinal Nrf2 expression and SOD activity. Further, AutoDock data showed that emodin bind to Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) through two electrovalent bonds. And emodin treatment increased the phosphorylated AMPK at threonine 172. In summary, emodin treatment activates AMPK, suppresses NLRP3 inflammasome response, elevates antioxidant response, inhibits spinal inflammatory reaction and alleviates arthritis pain.
Collapse
Affiliation(s)
- Ding-Wen Cheng
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuan-Fen Yue
- Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Chun-Xi Chen
- Xishui Affiliated Hospital of Hubei University of Science and Technology, Huanggang, China
| | - Yin-Di Hu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qiong Tang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Min Xie
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ling Liu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Dai Li
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hai-Li Zhu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China,Hai-Li Zhu, Xianning Medical College, Hubei University of Science and Technology, No. 88 Xianning Road, Xianning, Hubei 437100, China.
| | - Meng-Lin Cheng
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China,Meng-Lin Cheng, Xianning Medical College, Hubei University of Science and Technology, No. 88 Xianning Road, Xianning, Hubei 437100, China.
| |
Collapse
|
11
|
Lee JH, Kim DH, Kim M, Jung KH, Lee KH. Mitochondrial ROS-Mediated Metabolic and Cytotoxic Effects of Isoproterenol on Cardiomyocytes Are p53-Dependent and Reversed by Curcumin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041346. [PMID: 35209134 PMCID: PMC8877017 DOI: 10.3390/molecules27041346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022]
Abstract
Acute β-adrenergic stimulation contributes to heart failure. Here, we investigated the role of p53 in isoproterenol (ISO)-mediated metabolic and oxidative stress effects on cardiomyocytes and explored the direct protective effects offered by the antioxidant nutraceutical curcumin. Differentiated H9C2 rat cardiomyocytes treated with ISO were assayed for glucose uptake, lactate release, and mitochondrial reactive oxygen species (ROS) generation. Survival was assessed by sulforhodamine B assays. Cardiomyocytes showed significantly decreased glucose uptake and lactate release, as well as increased cellular toxicity by ISO treatment. This was accompanied by marked dose-dependent increases of mitochondria-derived ROS. Scavenging with N-acetyl-L-cysteine (NAC) effectively lowered ROS levels, which completely recovered glycolytic metabolism and survival suppressed by ISO. Mechanistically, ISO reduced extracellular-signal-regulated kinase (ERK) activation, whereas it upregulated p53 expression in an ROS-dependent manner. Silencing of p53 with siRNA blocked the ability of ISO to stimulate mitochondrial ROS and suppress glucose uptake, and partially recovered cell survival. Finally, curcumin completely reversed the metabolic and ROS-stimulating effects of ISO. Furthermore, curcumin improved survival of cardiomyocytes exposed to ISO. Thus, ISO suppresses cardiomyocyte glycolytic metabolism and survival by stimulating mitochondrial ROS in a p53-dependent manner. Furthermore, curcumin can efficiently rescue cardiomyocytes from these adverse effects.
Collapse
Affiliation(s)
- Jin Hee Lee
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (J.H.L.); (D.H.K.); (M.K.)
- Samsung Advanced Institute for Health and Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Da Hae Kim
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (J.H.L.); (D.H.K.); (M.K.)
| | - MinA Kim
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (J.H.L.); (D.H.K.); (M.K.)
- Samsung Advanced Institute for Health and Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Kyung-Ho Jung
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (J.H.L.); (D.H.K.); (M.K.)
- Samsung Advanced Institute for Health and Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (K.-H.J.); (K.-H.L.); Tel.: +82-2-3410-2649 (K.-H.J.); +82-2-3410-2630 (K.-H.L.); Fax: +82-2-3410-2639 (K.-H.J. & K.-H.L.)
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (J.H.L.); (D.H.K.); (M.K.)
- Samsung Advanced Institute for Health and Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (K.-H.J.); (K.-H.L.); Tel.: +82-2-3410-2649 (K.-H.J.); +82-2-3410-2630 (K.-H.L.); Fax: +82-2-3410-2639 (K.-H.J. & K.-H.L.)
| |
Collapse
|
12
|
Heidary Moghaddam R, Samimi Z, Asgary S, Mohammadi P, Hozeifi S, Hoseinzadeh-Chahkandak F, Xu S, Farzaei MH. Natural AMPK Activators in Cardiovascular Disease Prevention. Front Pharmacol 2022; 12:738420. [PMID: 35046800 PMCID: PMC8762275 DOI: 10.3389/fphar.2021.738420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVD), as a life-threatening global disease, is receiving worldwide attention. Seeking novel therapeutic strategies and agents is of utmost importance to curb CVD. AMP-activated protein kinase (AMPK) activators derived from natural products are promising agents for cardiovascular drug development owning to regulatory effects on physiological processes and diverse cardiometabolic disorders. In the past decade, different therapeutic agents from natural products and herbal medicines have been explored as good templates of AMPK activators. Hereby, we overviewed the role of AMPK signaling in the cardiovascular system, as well as evidence implicating AMPK activators as potential therapeutic tools. In the present review, efforts have been made to compile and update relevant information from both preclinical and clinical studies, which investigated the role of natural products as AMPK activators in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Reza Heidary Moghaddam
- Clinical Research Development Center, Imam Ali and Taleghani Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Samimi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute,.Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Hozeifi
- School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Suowen Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
13
|
Wei DZ, Li D, Zheng DM, An ZN, Xing XJ, Jiang DW, Mei XF, Liu C. Curcumin Conjugated Gold Nanoclusters as Perspective Therapeutics for Diabetic Cardiomyopathy. Front Chem 2021; 9:763892. [PMID: 34765588 PMCID: PMC8576376 DOI: 10.3389/fchem.2021.763892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Accumulation of lipids in the myocardium contributes to the development of cardiac dysfunctions and various chronic diseases, such as diabetic cardiomyopathy (DCM). Curcumin (Cur) can relieve lipid accumulation problems, but its efficiency is limited by poor water solubility and biocompatibility. Herein, gold nanoclusters (AuNCs) were used to improve the efficiency of Cur, and the conjugates Curcumin-AuNCs (AuCur) were developed. In the treatment of high-fat-induced myocardial cell damage, we found that AuCur could effectively reduce intracellular lipid accumulation, the increase of reactive oxygen species (ROS), the increase of mitochondrial division, and the increase of apoptosis compared with Cur. AuCur decreased the expression of the peroxisome proliferator-activated receptors-α subtype (PPARα), and the therapeutic effect of AuCur was canceled when the expression of PPARα was enhanced. For the above reasons, AuCur treated the toxic effect of high lipid on cardiomyocytes by regulating PPARα, providing a new idea and method for the treatment of DCM.
Collapse
Affiliation(s)
- Dong-Zhuo Wei
- Clinical Discipline of Chinese and Western Integrative Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Dan Li
- Public Basic Academy, Jinzhou Medical University, Jinzhou, China
| | - Dan-Meng Zheng
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhen-Ni An
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xue-Jiao Xing
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ding-Wen Jiang
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xi-Fan Mei
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chang Liu
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
14
|
Hesari M, Mohammadi P, Khademi F, Shackebaei D, Momtaz S, Moasefi N, Farzaei MH, Abdollahi M. Current Advances in the Use of Nanophytomedicine Therapies for Human Cardiovascular Diseases. Int J Nanomedicine 2021; 16:3293-3315. [PMID: 34007178 PMCID: PMC8123960 DOI: 10.2147/ijn.s295508] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Considering the high prevalence of cardiovascular diseases (CVDs), the primary cause of death during the last several decades, it is necessary to develop proper strategies for the prevention and treatment of CVDs. Given the excessive side effects of current therapies, alternative therapeutic approaches like medicinal plants and natural products are preferred. Lower toxicity, chemical diversity, cost-effectiveness, and proven therapeutic potentials make natural products superior compared to other products. Nanoformulation methods improve the solubility, bioavailability, circulation time, surface area-to-volume ratio, systemic adverse side effects, and drug delivery efficiency of these medications. This study intended to review the functionality of the most recent nanoformulated medicinal plants and/or natural products against various cardiovascular conditions such as hypertension, atherosclerosis, thrombosis, and myocardial infarction. Literature review revealed that curcumin, quercetin, and resveratrol were the most applied natural products, respectively. Combination therapy, conjugation, or fabrication of nanoparticles and nanocarriers improved the applications and therapeutic efficacy of herbal- or natural-based nanoformulations. In the context of CVDs prevention and/or treatment, available data suggest that natural-based nanoformulations are considerably efficient, alone or in blend with other herbal/synthetic medicines. However, clinical trials are mandatory to elucidate the safety, cardioprotective effect, and mechanism of actions of nanophytomedicines.
Collapse
Affiliation(s)
- Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khademi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Narges Moasefi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Yang Z, Chen Y, Yan Z, Xu TT, Wu X, Pi A, Liu Q, Chai H, Li S, Dou X. Inhibition of TLR4/MAPKs Pathway Contributes to the Protection of Salvianolic Acid A Against Lipotoxicity-Induced Myocardial Damage in Cardiomyocytes and Obese Mice. Front Pharmacol 2021; 12:627123. [PMID: 33762947 PMCID: PMC7982403 DOI: 10.3389/fphar.2021.627123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
The occurrence of lipotoxicity during obesity-associated cardiomyopathy is detrimental to health. Salvianolic acid A (SAA), a natural polyphenol extract of Salvia miltiorrhiza Bunge (Danshen in China), is known to be cardioprotective. However, its clinical benefits against obesity-associated cardiomyocyte injuries are unclear. This study aimed at evaluating the protective effects of SAA against lipotoxicity-induced myocardial injury and its underlying mechanisms in high fat diet (HFD)-fed mice and in palmitate-treated cardiomyocyte cells (H9c2). Our analysis of aspartate aminotransferase and creatine kinase isoenzyme-MB (CM-KB) levels revealed that SAA significantly reversed HFD-induced myocardium morphological changes and improved myocardial damage. Salvianolic acid A pretreatment ameliorated palmitic acid-induced myocardial cell death and was accompanied by mitochondrial membrane potential and intracellular reactive oxygen species improvement. Analysis of the underlying mechanisms showed that SAA reversed myocardial TLR4 induction in HFD-fed mice and H9c2 cells. Palmitic acid-induced cell death was significantly reversed by CLI-95, a specific TLR4 inhibitor. TLR4 activation by LPS significantly suppressed SAA-mediated lipotoxicity protection. Additionally, SAA inhibited lipotoxicity-mediated expression of TLR4 target genes, including MyD88 and p-JNK/MAPK in HFD-fed mice and H9c2 cells. However, SAA did not exert any effect on palmitic acid-induced SIRT1 suppression and p-AMPK induction. In conclusion, our data shows that SAA protects against lipotoxicity-induced myocardial damage through a TLR4/MAPKs mediated mechanism.
Collapse
Affiliation(s)
- Zhen Yang
- College of Basic Medicine and Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanli Chen
- College of Basic Medicine and Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaoyuan Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tian Tian Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangyao Wu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aiwen Pi
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingsheng Liu
- Hangzhou Hospital of Traditional Chinese Medicine, Guangxing Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Hui Chai
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songtao Li
- College of Basic Medicine and Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaobing Dou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
16
|
Pechanova O, Dayar E, Cebova M. Therapeutic Potential of Polyphenols-Loaded Polymeric Nanoparticles in Cardiovascular System. Molecules 2020; 25:molecules25153322. [PMID: 32707934 PMCID: PMC7435870 DOI: 10.3390/molecules25153322] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous studies document an increased production of reactive oxygen species (ROS) with a subsequent decrease in nitric oxide (NO) bioavailability in different cardiovascular diseases, including hypertension, atherosclerosis, and heart failure. Many natural polyphenols have been demonstrated to decrease ROS generation and/or to induce the endogenous antioxidant enzymatic defense system. Moreover, different polyphenolic compounds have the ability to increase the activity/expression of endothelial nitric oxide synthase (eNOS) with a subsequent enhancement of NO generation. However, as a result of low absorption and bioavailability of natural polyphenols, the beneficial effects of these substances are very limited. Recent progress in delivering polyphenols to the targeted tissues revealed new possibilities for the use of polymeric nanoparticles in increasing the efficiency and reducing the degradability of natural polyphenols. This review focuses on the effects of different natural polyphenolic substances, especially resveratrol, quercetin, curcumin, and cherry extracts, and their ability to bind to polymeric nanoparticles, and summarizes the effects of polyphenol-loaded nanoparticles, mainly in the cardiovascular system.
Collapse
|
17
|
Therapeutic Applications of Curcumin Nanomedicine Formulations in Cardiovascular Diseases. J Clin Med 2020; 9:jcm9030746. [PMID: 32164244 PMCID: PMC7141226 DOI: 10.3390/jcm9030746] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases (CVD) compromises a group of heart and blood vessels disorders with high impact on human health and wellbeing. Curcumin (CUR) have demonstrated beneficial effects on these group of diseases that represent a global burden with a prevalence that continues increasing progressively. Pre- and clinical studies have demonstrated the CUR effects in CVD through its anti-hypercholesterolemic and anti-atherosclerotic effects and its protective properties against cardiac ischemia and reperfusion. However, the CUR therapeutic limitation is its bioavailability. New CUR nanomedicine formulations are developed to solve this problem. The present article aims to discuss different studies and approaches looking into the promising role of nanotechnology-based drug delivery systems to deliver CUR and its derivatives in CVD treatment, with an emphasis on their formulation properties, experimental evidence, bioactivity, as well as challenges and opportunities in developing these systems.
Collapse
|