1
|
Maccora I, Altaye M, Greis KD, Brunner HI, Duell A, Haffey WD, Nguyen T, Quinlan-Waters M, Schulert GS, Sproles A, Utz VM, Thornton S, Angeles-Han ST. Candidate Tear-Based Uveitis Biomarkers in Children with JIA Based on Arthritis Activity and Topical Corticosteroid Use. Ocul Immunol Inflamm 2024:1-10. [PMID: 39586039 DOI: 10.1080/09273948.2024.2428846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Uveitis is an inflammatory ocular disease secondary to disruption of the retinal pigmented epithelium (RPE) and blood retinal barrier (BRB). Known clinical factors do not accurately predict uveitis risk in Juvenile Idiopathic Arthritis (JIA). Tear fluid is easily obtained for biomarker study. We aim to identify tear-based markers associated with the presence of uveitis in children with JIA. METHODS In a cross-sectional comparative cohort study, tears were collected by Schirmer strips from children with oligoarticular JIA-associated uveitis (JIA-U) and JIA without uveitis (JIA-no-U). A tandem isotope tagging (iTRAQ and TMT) strategy was used for relative quantitation via nanoLC-MS/MS to quantify proteins in the affected eye. Log transformed relative protein abundance of protein levels was compared between groups using Wilcoxon exact test. We explored the influence of arthritis activity and topical corticosteroids (CS) use on protein levels. STRING analysis was performed. RESULTS Tear samples of 14 JIA-U and 14 JIA-no-U patients were analyzed. Thirteen proteins were differentially expressed between both groups. Stratified analysis based on arthritis activity (inactive arthritis) and topical CS (off CS) showed that alpha-2-macroglobulin (p = 0.012), apolipoprotein A1 (p = 0.036), S100A9 (p = 0.05), haptoglobin (p = 0.066), and transthyretin (p = 0.066) consistently differentiated between both groups. On STRING analysis, these proteins were associated with the RPE, BRB, and inflammation. CONCLUSION Importantly, we identified proteins involved in the RPE, BRB, and immune response that were differentially abundant in the tears of children with JIA-U compared to JIA-no-U, regardless of arthritis activity or topical CS. Candidate tear-based biomarkers may represent a non-invasive means to detect uveitis.
Collapse
Affiliation(s)
- Ilaria Maccora
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Rheumatology Unit, ERN ReCONNET Center, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kenneth D Greis
- Proteomics and Mass Spectrometry Laboratory, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hermine I Brunner
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Alexandra Duell
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Wendy D Haffey
- Proteomics and Mass Spectrometry Laboratory, University of Cincinnati, Cincinnati, Ohio, USA
| | - Tiffany Nguyen
- School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Megan Quinlan-Waters
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Alyssa Sproles
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Virginia Miraldi Utz
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sherry Thornton
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sheila T Angeles-Han
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Rajan A, Vishnu J, Shankar B. Tear-Based Ocular Wearable Biosensors for Human Health Monitoring. BIOSENSORS 2024; 14:483. [PMID: 39451696 PMCID: PMC11506517 DOI: 10.3390/bios14100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Wearable tear-based biosensors have garnered substantial interest for real time monitoring with an emphasis on personalized health care. These biosensors utilize major tear biomarkers such as proteins, lipids, metabolites, and electrolytes for the detection and recording of stable biological signals in a non-invasive manner. The present comprehensive review delves deep into the tear composition along with potential biomarkers that can identify, monitor, and predict certain ocular diseases such as dry eye disease, conjunctivitis, eye-related infections, as well as diabetes mellitus. Recent technologies in tear-based wearable point-of-care medical devices, specifically the state-of-the-art and prospects of glucose, pH, lactate, protein, lipid, and electrolyte sensing from tear are discussed. Finally, the review addresses the existing challenges associated with the widespread application of tear-based sensors, which will pave the way for advanced scientific research and development of such non-invasive health monitoring devices.
Collapse
Affiliation(s)
- Arunima Rajan
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
| | - Jithin Vishnu
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Balakrishnan Shankar
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| |
Collapse
|
3
|
Fucito M, Spedicato M, Felletti S, Yu AC, Busin M, Pasti L, Franchina FA, Cavazzini A, De Luca C, Catani M. A Look into Ocular Diseases: The Pivotal Role of Omics Sciences in Ophthalmology Research. ACS MEASUREMENT SCIENCE AU 2024; 4:247-259. [PMID: 38910860 PMCID: PMC11191728 DOI: 10.1021/acsmeasuresciau.3c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 06/25/2024]
Abstract
Precision medicine is a new medical approach which considers both population characteristics and individual variability to provide customized healthcare. The transition from traditional reactive medicine to personalized medicine is based on a biomarker-driven process and a deep knowledge of biological mechanisms according to which the development of diseases occurs. In this context, the advancements in high-throughput omics technologies represent a unique opportunity to discover novel biomarkers and to provide an unbiased picture of the biological system. One of the medical fields in which omics science has started to be recently applied is that of ophthalmology. Ocular diseases are very common, and some of them could be highly disabling, thus leading to vision loss and blindness. The pathogenic mechanism of most ocular diseases may be dependent on various genetic and environmental factors, whose effect has not been yet completely understood. In this context, large-scale omics approaches are fundamental to have a comprehensive evaluation of the whole system and represent an essential tool for the development of novel therapies. This Review summarizes the recent advancements in omics science applied to ophthalmology in the last ten years, in particular by focusing on proteomics, metabolomics and lipidomics applications from an analytical perspective. The role of high-efficiency separation techniques coupled to (high-resolution) mass spectrometry ((HR)MS) is also discussed, as well as the impact of sampling, sample preparation and data analysis as integrating parts of the analytical workflow.
Collapse
Affiliation(s)
- Maurine Fucito
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Matteo Spedicato
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Simona Felletti
- Department
of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Angeli Christy Yu
- Department
of Translational Medicine and for Romagna, University of Ferrara, via Aldo Moro 8, 44124 Ferrara, Italy
| | - Massimo Busin
- Department
of Translational Medicine and for Romagna, University of Ferrara, via Aldo Moro 8, 44124 Ferrara, Italy
| | - Luisa Pasti
- Department
of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Flavio A. Franchina
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Alberto Cavazzini
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
- Council
for Agricultural Research and Economics, via della Navicella 2/4, Rome 00184, Italy
| | - Chiara De Luca
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Martina Catani
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
4
|
Thomas KM, Ajithaprasad S, N M, Pavithran M S, Chidangil S, Lukose J. Raman spectroscopy assisted tear analysis: A label free, optical approach for noninvasive disease diagnostics. Exp Eye Res 2024; 243:109913. [PMID: 38679225 DOI: 10.1016/j.exer.2024.109913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/25/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
In recent times, tear fluid analysis has garnered considerable attention in the field of biomarker-based diagnostics due to its noninvasive sample collection method. Tears encompass a reservoir of biomarkers that assist in diagnosing not only ocular disorders but also a diverse list of systemic diseases. This highlights the necessity for sensitive and dependable screening methods to employ tear fluid as a potential noninvasive diagnostic specimen in clinical environments. Considerable research has been conducted to investigate the potential of Raman spectroscopy-based investigations for tear analysis in various diagnostic applications. Raman Spectroscopy (RS) is a highly sensitive and label free spectroscopic technique which aids in investigating the molecular structure of samples by evaluating the vibrational frequencies of molecular bonds. Due to the distinct chemical compositions of different samples, it is possible to obtain a sample-specific spectral fingerprint. The distinctive spectral fingerprints obtained from Raman spectroscopy enable researchers to identify specific compounds or functional groups present in a sample, aiding in diverse biomedical applications. Its sensitivity to changes in molecular structure or environment provides invaluable insights into subtle alterations associated with various diseases. Thus, Raman Spectroscopy has the potential to assist in diagnosis and treatment as well as prognostic evaluation. Raman spectroscopy possesses several advantages, such as the non-destructive examination of samples, remarkable sensitivity to structural variations, minimal prerequisites for sample preparation, negligible interference from water, and the aptness for real-time investigation of tear samples. The purpose of this review is to highlight the potential of Raman spectroscopic technique in facilitating the clinical diagnosis of various ophthalmic and systemic disorders through non-invasive tear analysis. Additionally, the review delves into the advancements made in Raman spectroscopy with regards to paper-based sensing substrates and tear analysis methods integrated into contact lenses. Furthermore, the review also addresses the obstacles and future possibilities associated with implementing Raman spectroscopy as a routine diagnostic tool based on tear analysis in clinical settings.
Collapse
Affiliation(s)
- Keziah Mary Thomas
- Dr. Agarwal's Eye Hospital and Eye Research Centre, Chennai, Tamil Nadu, India
| | - Sreeprasad Ajithaprasad
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Mithun N
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanoop Pavithran M
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
5
|
Shiju TM, Yuan A. Extracellular vesicle biomarkers in ocular fluids associated with ophthalmic diseases. Exp Eye Res 2024; 241:109831. [PMID: 38401855 DOI: 10.1016/j.exer.2024.109831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Extracellular vesicles (EVs) are released as highly stable lipid bilayer particles carrying proteins, lipids, glycans and miRNAs. The contents of EVs vary based on the cellular origin, biogenesis route and the functional state of the cell suggesting certain diseased conditions. A growing body of evidence show that EVs carry important molecules implicated in the development and progression of ophthalmic diseases. EVs associated with ophthalmic diseases are mainly carried by one of the three ocular biofluids which include tears, aqueous humor and vitreous humor. This review summarizes the list of EV derived biomarkers identified thus far in ocular fluids for ophthalmic disease diagnosis. Further, the methods used for sample collection, sample volume and the sample numbers used in these studies have been highlighted. Emphasis has been given to describe the EV isolation and the characterization methods used, EV size profiled and the EV concentrations analyzed by these studies, thus providing a roadmap for future EV biomarker studies in ocular fluids.
Collapse
Affiliation(s)
| | - Alex Yuan
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
6
|
Jones G, Altman J, Ahmed S, Lee TJ, Zhi W, Sharma S, Sharma A. Unraveling the Intraday Variations in the Tear Fluid Proteome. Invest Ophthalmol Vis Sci 2024; 65:2. [PMID: 38441890 PMCID: PMC10916888 DOI: 10.1167/iovs.65.3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Purpose Tear fluid is a complex and dynamic biological fluid that plays essential roles in maintaining ocular homeostasis and protecting against the external environment. Owing to the small sample volume, studying the tear proteome is challenging. However, advances in high-resolution mass spectrometry have expanded tear proteome profiling, revealing >500 unique proteins. Tears are emerging as a noninvasive source of biomarkers for both ocular and systemic diseases; nevertheless, intraday variability of proteins in tear fluid remains questionable. This study investigates intraday variations in the tear fluid proteome to identify stable proteins that could act as candidate biomarkers. Methods Tear samples from 15 individuals at four time points (10 am, 12 pm, 2 pm, and 4 pm) were analyzed using mass spectrometry to evaluate protein variation during these intervals. Technical variation was assessed by analyzing pooled samples and was subtracted from the total variation to isolate biological variability. Results Owing to high technical variation, low-abundant proteins were filtered, and only 115 proteins met the criteria for further analysis. These criteria include being detected at all four time points in at least eight subjects, having a mean peptide-spectrum match count greater than 5, and having a technical variation less than 0.10. Lactotransferrin, lipocalin-1, and several immunoglobulins were among the 51 stable proteins (mean biological coefficient of variation < 0.10). Additionally, 43 proteins displayed significant slopes across the 4 time points, with 17 increasing and 26 decreasing over time. Conclusions These findings contribute to the understanding of tear fluid dynamics and further expand our knowledge of the tear proteome.
Collapse
Affiliation(s)
- Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jeremy Altman
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Saleh Ahmed
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
7
|
Akkurt Arslan M, Rabut G, Chardonnet S, Pionneau C, Kobal A, Gratas Pelletier M, Harfouche N, Réaux La Goazigo A, Baudouin C, Brignole-Baudouin F, Kessal K. Expanded biochemical analyses of human tear fluid: Polyvalent faces of the schirmer strip. Exp Eye Res 2023; 237:109679. [PMID: 37858607 DOI: 10.1016/j.exer.2023.109679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The tear film forms a protective barrier between the ocular surface and the external environment. Despite its small volume, recent advancements in preanalytical and analytical procedures have enabled its in-depth analysis using multiple approaches. However, the diversity of tear film collection methods and the lack of standardization in pre-analytical methods represent the main obstacles to reproducible results and comparison among different studies. In this study, we first improved the pre-analytical procedures for the extraction of various molecular entities from Schirmer strips (ScS). Subsequently, our investigation focused on analyzing the molecular variances that might occur between two primary tear collection methods: capillary tube (CT) and ScS. Additionally, we examined different parts of the ScS to underscore these variations, which could serve as crucial factors for developing a standardized, optimized protocol for sample processing. Our results show that the inclusion of surfactants in the extraction process enhanced both the yield of protein extraction and the number of proteins identified in ScS, by effectively lysing the cells and improving the solubility of several intracellular proteins. In addition to proteins, nucleic acids could also be recovered for gene expression analyses, particularly from the bulb region of the ScS which is placed in the cul-de-sac. Despite their diluted nature, extracts from ScS remain a suitable material for retrieving tear proteins such as IL-17A at levels as low as the fg/mL range, thanks to highly sensitive immunoassays. Collection methods can affect measured tear protein levels. Lactoferrin is found in higher percentages in capillary electrophoresis analysis of tears collected using ScS compared to tears collected by CT (39.6 ± 4.8% versus 31 ± 4.4%).
Collapse
Affiliation(s)
- Murat Akkurt Arslan
- Institut National de La Santé et de La Recherche Médicale INSERM UMRS 968, CNRS, UMR 7210, Institut de La Vision, IHU ForeSight, Sorbonne Université UM80, 75012, Paris, France.
| | - Ghislaine Rabut
- Hôpital National de La Vision des 15-20, Service 3, 75012, Paris, France.
| | - Solenne Chardonnet
- Sorbonne Université, INSERM, UMS Production et Analyse des Données en Sciences de La Vie et en Santé, PASS, Plateforme Post-génomique de La Pitié-Salpêtrière, P3S, 75013, Paris, France.
| | - Cédric Pionneau
- Sorbonne Université, INSERM, UMS Production et Analyse des Données en Sciences de La Vie et en Santé, PASS, Plateforme Post-génomique de La Pitié-Salpêtrière, P3S, 75013, Paris, France.
| | - Alfred Kobal
- Hôpital National de La Vision des 15-20, Laboratoire d'Ophtalmobiologie, 75012, Paris, France.
| | | | - Nouara Harfouche
- Hôpital National de La Vision des 15-20, Laboratoire d'Ophtalmobiologie, 75012, Paris, France.
| | - Annabelle Réaux La Goazigo
- Institut National de La Santé et de La Recherche Médicale INSERM UMRS 968, CNRS, UMR 7210, Institut de La Vision, IHU ForeSight, Sorbonne Université UM80, 75012, Paris, France.
| | - Christophe Baudouin
- Institut National de La Santé et de La Recherche Médicale INSERM UMRS 968, CNRS, UMR 7210, Institut de La Vision, IHU ForeSight, Sorbonne Université UM80, 75012, Paris, France; Hôpital National de La Vision des 15-20, Service 3, 75012, Paris, France; Hôpital National de La Vision des 15-20, INSERM-DGOS CIC 1423, IHU FOReSIGHT, 75012, Paris, France; Hôpital Ambroise Paré, Assistance Publique-Hôpitaux de Paris APHP, Service d'Ophtalmologie, Université Versailles Saint-Quentin-en-Yvelines, Paris Saclay, 92100, Boulogne, France.
| | - Françoise Brignole-Baudouin
- Institut National de La Santé et de La Recherche Médicale INSERM UMRS 968, CNRS, UMR 7210, Institut de La Vision, IHU ForeSight, Sorbonne Université UM80, 75012, Paris, France; Hôpital National de La Vision des 15-20, Laboratoire d'Ophtalmobiologie, 75012, Paris, France; Hôpital National de La Vision des 15-20, INSERM-DGOS CIC 1423, IHU FOReSIGHT, 75012, Paris, France; Faculté de Pharmacie de Paris, Université Paris Cité, 75006 Paris, France.
| | - Karima Kessal
- Institut National de La Santé et de La Recherche Médicale INSERM UMRS 968, CNRS, UMR 7210, Institut de La Vision, IHU ForeSight, Sorbonne Université UM80, 75012, Paris, France; Hôpital National de La Vision des 15-20, Laboratoire d'Ophtalmobiologie, 75012, Paris, France; Hôpital National de La Vision des 15-20, INSERM-DGOS CIC 1423, IHU FOReSIGHT, 75012, Paris, France.
| |
Collapse
|
8
|
Cross T, Øvstebø R, Brusletto BS, Trøseid AMS, Olstad OK, Aspelin T, Jackson CJ, Chen X, Utheim TP, Haug KBF. RNA Profiles of Tear Fluid Extracellular Vesicles in Patients with Dry Eye-Related Symptoms. Int J Mol Sci 2023; 24:15390. [PMID: 37895069 PMCID: PMC10607363 DOI: 10.3390/ijms242015390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Currently, diagnosing and stratifying dry eye disease (DED) require multiple tests, motivating interest in a single definitive test. The purpose of this study was to investigate the potential for using tear fluid extracellular vesicle (EV)-RNA in DED diagnostics. With a role in intercellular communication, nanosized EVs facilitate the protected transport of diverse bioactive molecules in biofluids, including tears. Schirmer strips were used to collect tears from 10 patients presenting with dry eye-related symptoms at the Norwegian Dry Eye Clinic. The samples comprised two groups, five from patients with a tear film break-up time (TBUT) of 2 s and five from patients with a TBUT of 10 s. Tear fluid EV-RNA was isolated using a Qiagen exoRNeasy Midi Kit, and the RNA was characterized using Affymetrix ClariomTM D microarrays. The mean signal values of the two groups were compared using a one-way ANOVA. A total of 26,639 different RNA transcripts were identified, comprising both mRNA and ncRNA subtypes. Approximately 6% of transcripts showed statistically significant differential abundance between the two groups. The mRNA sodium channel modifier 1 (SCNM1) was detected at a level 3.8 times lower, and the immature microRNA-130b was detected at a level 1.5 times higher in the group with TBUT 2 s compared to the group with TBUT 10 s. This study demonstrates the potential for using tear fluid EV-RNA in DED diagnostics.
Collapse
Affiliation(s)
- Tanya Cross
- The Regenerative Medicine Unit, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (T.C.)
| | - Reidun Øvstebø
- Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (R.Ø.)
| | - Berit Sletbakk Brusletto
- Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (R.Ø.)
| | - Anne-Marie Siebke Trøseid
- Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (R.Ø.)
| | - Ole Kristoffer Olstad
- Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (R.Ø.)
| | - Trude Aspelin
- Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (R.Ø.)
| | - Catherine Joan Jackson
- The Regenerative Medicine Unit, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (T.C.)
| | - Xiangjun Chen
- The Regenerative Medicine Unit, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (T.C.)
- Department of Ophthalmology, Sørlandet Hospital Arendal, 4838 Arendal, Norway
| | - Tor Paaske Utheim
- The Regenerative Medicine Unit, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (T.C.)
- Department of Ophthalmology, Sørlandet Hospital Arendal, 4838 Arendal, Norway
- The Norwegian Dry Eye Clinic, 0369 Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway
- Department of Ophthalmology, Vestfold Hospital Trust, 3103 Tønsberg, Norway
| | - Kari Bente Foss Haug
- Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (R.Ø.)
| |
Collapse
|
9
|
Shorey-Kendrick LE, Crosland BA, Spindel ER, McEvoy CT, Wilmarth PA, Reddy AP, Zientek KD, Roberts VHJ, D'Mello RJ, Ryan KS, Olyaei AF, Hagen OL, Drake MG, McCarty OJT, Scottoline BP, Lo JO. The amniotic fluid proteome changes across gestation in humans and rhesus macaques. Sci Rep 2023; 13:17039. [PMID: 37814009 PMCID: PMC10562452 DOI: 10.1038/s41598-023-44125-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
Amniotic fluid is a complex biological medium that offers protection to the fetus and plays a key role in normal fetal nutrition, organogenesis, and potentially fetal programming. Amniotic fluid is also critically involved in longitudinally shaping the in utero milieu during pregnancy. Yet, the molecular mechanism(s) of action by which amniotic fluid regulates fetal development is ill-defined partly due to an incomplete understanding of the evolving composition of the amniotic fluid proteome. Prior research consisting of cross-sectional studies suggests that the amniotic fluid proteome changes as pregnancy advances, yet longitudinal alterations have not been confirmed because repeated sampling is prohibitive in humans. We therefore performed serial amniocenteses at early, mid, and late gestational time-points within the same pregnancies in a rhesus macaque model. Longitudinally-collected rhesus amniotic fluid samples were paired with gestational-age matched cross-sectional human samples. Utilizing LC-MS/MS isobaric labeling quantitative proteomics, we demonstrate considerable cross-species similarity between the amniotic fluid proteomes and large scale gestational-age associated changes in protein content throughout pregnancy. This is the first study to compare human and rhesus amniotic fluid proteomic profiles across gestation and establishes a reference amniotic fluid proteome. The non-human primate model holds promise as a translational platform for amniotic fluid studies.
Collapse
Affiliation(s)
- Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - B Adam Crosland
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Cindy T McEvoy
- Division of Neonatology. Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resources, Oregon Health & Science University, Portland, OR, USA
| | - Ashok P Reddy
- Proteomics Shared Resources, Oregon Health & Science University, Portland, OR, USA
| | - Keith D Zientek
- Proteomics Shared Resources, Oregon Health & Science University, Portland, OR, USA
| | - Victoria H J Roberts
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Rahul J D'Mello
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kimberly S Ryan
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Amy F Olyaei
- Division of Neonatology. Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Olivia L Hagen
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Brian P Scottoline
- Division of Neonatology. Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Jamie O Lo
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA.
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| |
Collapse
|
10
|
Akkurt Arslan M, Brignole-Baudouin F, Chardonnet S, Pionneau C, Blond F, Baudouin C, Kessal K. Profiling tear film enzymes reveals major metabolic pathways involved in the homeostasis of the ocular surface. Sci Rep 2023; 13:15231. [PMID: 37709789 PMCID: PMC10502076 DOI: 10.1038/s41598-023-42104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023] Open
Abstract
The ocular surface (OS) enzymes are of great interest due to their potential for novel ocular drug development. We aimed first to profile and classify the enzymes of the OS to describe major biological processes and pathways that are involved in the maintenance of homeostasis. Second, we aimed to compare the enzymatic profiles between the two most common tear collection methods, capillary tubes (CT) and Schirmer strips (ScS). A comprehensive tear proteomic dataset was generated by pooling all enzymes identified from nine tear proteomic analyses of healthy subjects using mass spectrometry. In these studies, tear fluid was collected using CT (n = 4), ScS (n = 4) or both collection methods (n = 1). Classification and functional analysis of the enzymes was performed using a combination of bioinformatic tools. The dataset generated identified 1010 enzymes. The most representative classes were hydrolases (EC 3) and transferases (EC 2). Phosphotransferases, esterases and peptidases were the most represented subclasses. A large portion of the identified enzymes was common to both collection methods (n = 499). More enzymes were specifically detected in the ScS-extracted proteome. The major pathways in which the identified enzymes participate are related to the immune system and protein, carbohydrate and lipid metabolism. Metabolic processes for nucleosides, cellular amides, sugars and sulfur compounds constituted the most enriched biological processes. Knowledge of these molecules highly susceptible to pharmacological manipulation might help to predict the metabolism of ophthalmic medications and develop novel prodrug strategies as well as new drug delivery systems. Combining such extensive knowledge of the OS enzymes with new analytical approaches and techniques might create new prospects for understanding, predicting and manipulating the metabolism of ocular pharmaceuticals. Our study reports new, essential data on OS enzymes while also comparing the enzyme profiles obtained via the two most popular methods of tear collection, capillary tubes and Schirmer strips.
Collapse
Affiliation(s)
- Murat Akkurt Arslan
- Institut National de la Santé et de la Recherche Médicale INSERM UMRS 968, CNRS UMR 7210, Institut de la Vision, IHU ForeSight, Sorbonne Université UM80, 75012, Paris, France
| | - Françoise Brignole-Baudouin
- Institut National de la Santé et de la Recherche Médicale INSERM UMRS 968, CNRS UMR 7210, Institut de la Vision, IHU ForeSight, Sorbonne Université UM80, 75012, Paris, France
- Hôpital National de la Vision des 15-20, INSERM-DGOS CIC 1423, IHU ForeSight, 75012, Paris, France
- Hôpital National de la Vision des 15-20, Laboratoire d'Ophtalmobiologie, 75012, Paris, France
- Faculté de Pharmacie de Paris, Université de Paris Cité, 75006, Paris, France
| | - Solenne Chardonnet
- INSERM, UMS Production et Analyse des donnees en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, Sorbonne Université, 75013, Paris, France
| | - Cédric Pionneau
- INSERM, UMS Production et Analyse des donnees en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, Sorbonne Université, 75013, Paris, France
| | - Frédéric Blond
- Institut National de la Santé et de la Recherche Médicale INSERM UMRS 968, CNRS UMR 7210, Institut de la Vision, IHU ForeSight, Sorbonne Université UM80, 75012, Paris, France
| | - Christophe Baudouin
- Institut National de la Santé et de la Recherche Médicale INSERM UMRS 968, CNRS UMR 7210, Institut de la Vision, IHU ForeSight, Sorbonne Université UM80, 75012, Paris, France
- Hôpital National de la Vision des 15-20, INSERM-DGOS CIC 1423, IHU ForeSight, 75012, Paris, France
- Ambroise Paré, Assistance Publique-Hôpitaux de Paris APHP, Service d'Ophtalmologie, Université Versailles Saint-Quentin-en-Yvelines, 92100, Boulogne, France
| | - Karima Kessal
- Institut National de la Santé et de la Recherche Médicale INSERM UMRS 968, CNRS UMR 7210, Institut de la Vision, IHU ForeSight, Sorbonne Université UM80, 75012, Paris, France.
- Hôpital National de la Vision des 15-20, INSERM-DGOS CIC 1423, IHU ForeSight, 75012, Paris, France.
- Hôpital National de la Vision des 15-20, Laboratoire d'Ophtalmobiologie, 75012, Paris, France.
| |
Collapse
|
11
|
Lépine M, Zambito O, Sleno L. Targeted Workflow Investigating Variations in the Tear Proteome by Liquid Chromatography Tandem Mass Spectrometry. ACS OMEGA 2023; 8:31168-31177. [PMID: 37663498 PMCID: PMC10468840 DOI: 10.1021/acsomega.3c03186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023]
Abstract
Proteins in tears have an important role in eye health and have been shown as a promising source of disease biomarkers. The goal of this study was to develop a robust, sensitive, and targeted method for profiling tear proteins to examine the variability within a group of healthy volunteers over three days. Inter-individual and inter-day variabilities were examined to contribute to understanding the normal variations in the tear proteome, as well as to establish which proteins may be better candidates as eventual biomarkers of specific diseases. Tear samples collected on Schirmer strips were subjected to bottom-up proteomics, and resulting peptides were analyzed using an optimized targeted method measuring 226 proteins by liquid chromatography-scheduled multiple reaction monitoring. This method was developed using an in-house database of identified proteins from tears compiled from high-resolution data-dependent liquid chromatography tandem mass spectrometry data. The measurement of unique peptide signals can help better understand the dynamics of each of these proteins in tears. Some interesting trends were seen in specific pathways or protein classes, including higher variabilities for those involved in glycolysis, glutathione metabolism, and cytoskeleton proteins and lower variation for those involving the degradation of the extracellular matrix. The overall aim of this study was to contribute to the field of tear proteomics with the development of a novel and targeted method that is highly amenable to the clinical laboratory using high flow LC and commonly used triple quadrupole mass spectrometry while ensuring that protein quantitation was reported based on unique peptides for each protein and robust peak areas with data normalization. These results report on variabilities on over 200 proteins that are robustly detected in tear samples from healthy volunteers with a simple sample preparation procedure.
Collapse
Affiliation(s)
- Maggy Lépine
- Chemistry Department, Université du Québec à Montréal, PO Box 8888 Downtown Station, Montreal, Quebec H3C 3P8, Canada
| | - Oriana Zambito
- Chemistry Department, Université du Québec à Montréal, PO Box 8888 Downtown Station, Montreal, Quebec H3C 3P8, Canada
| | - Lekha Sleno
- Chemistry Department, Université du Québec à Montréal, PO Box 8888 Downtown Station, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
12
|
Vergouwen DPC, Schotting AJ, Endermann T, van de Werken HJG, Grashof DGB, Arumugam S, Nuijts RMMA, Ten Berge JC, Rothova A, Schreurs MWJ, Gijs M. Evaluation of pre-processing methods for tear fluid proteomics using proximity extension assays. Sci Rep 2023; 13:4433. [PMID: 36932139 PMCID: PMC10023677 DOI: 10.1038/s41598-023-31227-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Tear fluid forms a potential source for biomarker identification, and can be minimal invasively collected via Schirmer strips. The lack of knowledge on the processing of Schirmer strips however complicates the analysis and between-study comparisons. We studied two different pre-processing methods, specifically the use of punches of the strip versus elution of the strip in a buffer. Tear fluid filled Schirmer strips were collected from 5 healthy participants, and divided into two halves over the length of the strip. In either part, punches or eluates were obtained from 4 different locations, from the first part touching the eye (head) to the end, to assess the protein distribution along the strips. The levels of 92 inflammatory proteins were measured in the punches/eluates using proximity extension assays. The punch method yielded higher protein detectability compared to the elution method (76% vs 66%; p ≤ 0.001). Protein expression level was found to be slightly higher in the head of the strip, however, 3 out of 5 punches from the head failed quality control. Protein expression levels over the remaining parts of the strips were similar. Our study showed beneficial use of punches of any part of the strip except the head in future biomarker research.
Collapse
Affiliation(s)
- Daphne P C Vergouwen
- Department of Ophthalmology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Amber J Schotting
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Harmen J G van de Werken
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dwin G B Grashof
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sinthuja Arumugam
- University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Josianne C Ten Berge
- Department of Ophthalmology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Aniki Rothova
- Department of Ophthalmology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marco W J Schreurs
- Department of Ophthalmology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marlies Gijs
- University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
13
|
Morphological alterations in corneal nerves of patients with dry eye and associated biomarkers. Exp Eye Res 2023; 230:109438. [PMID: 36933693 DOI: 10.1016/j.exer.2023.109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
The purposes of the present study were to (1) identify the relationship between dry eye symptoms and morphological changes in corneal subbasal nerves/ocular surfaces, and (2) discover tear film biomarkers indicating morphological changes in the subbasal nerves. This was a prospective cross-sectional study conducted between October and November 2017. Adults with dry eye disease (DED, n = 43) and healthy eyes (n = 16) were evaluated based on their subjective symptoms and ophthalmological findings. Corneal subbasal nerves were observed using confocal laser scanning microscopy. Nerve lengths, densities, branch numbers, and nerve fiber tortuosity were analyzed using ACCMetrics and CCMetrics image analysis systems; tear proteins were quantified by mass spectroscopy. Compared with the control group, the DED group had significantly lower tear breakup times (TBUT) and pain tolerance capacity, and significantly higher corneal nerve branch density (CNBD) and corneal nerve total branch density (CTBD). CNBD and CTBD showed significant negative correlations with TBUT. Six biomarkers (cystatin-S, immunoglobulin kappa constant, neutrophil gelatinase-associated lipocalin, profilin-1, protein S100-A8, and protein S100-A9) showed significant positive correlations with CNBD and CTBD. The significantly higher CNBD and CTBD in the DED group suggests that DED is associated with morphological alterations in corneal nerves. The correlation of TBUT with CNBD and CTBD further supports this inference. Six candidate biomarkers that correlate with morphological changes were identified. Thus, morphological changes in corneal nerves are a hallmark of DED, and confocal microscopy may help in the diagnosis and treatment of dry eyes.
Collapse
|
14
|
Qin G, Chao C, Lattery LJ, Lin H, Fu W, Richdale K, Cai C. Tear proteomic analysis of young glasses, orthokeratology, and soft contact lens wearers. J Proteomics 2023; 270:104738. [PMID: 36191803 DOI: 10.1016/j.jprot.2022.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 02/01/2023]
Abstract
Contact lens-related ocular surface complications occur more often in teenagers and young adults. The purpose of this study was to determine changes in tear proteome of young patients wearing glasses (GL), orthokeratology lenses (OK), and soft contact lenses (SCL). Twenty-two young subjects (10-26 years of age) who were established GL, OK, and SCL wearers were recruited. Proteomic data were collected using a data-independent acquisition-parallel accumulation serial fragmentation workflow. In total, 3406 protein groups were identified, the highest number of proteins identified in Schirmer strip tears to date. Eight protein groups showed higher abundance, and 11 protein groups showed lower abundance in the SCL group compared to the OK group. In addition, the abundance of 82 proteins significantly differed in children compared to young adult GL wearers, among which 67 proteins were higher, and 15 proteins were lower in children. These 82 proteins were involved in inflammation, immune, and glycoprotein metabolic biological processes. In summary, this work identified over 3000 proteins in Schirmer Strip tears. The results indicated that tear proteomes were altered by orthokeratology and soft contact wear and age, which warrants further larger-scale study on the ocular surface responses of teenagers and young adults separately to contact lens wear. SIGNIFICANCE: In this work, we examined the tear proteomes of young patients wearing glasses, orthokeratology lenses, and soft contact lenses using a data-independent acquisition-parallel accumulation serial fragmentation (diaPASEF) workflow and identified 3406 protein groups in Schirmer strip tears. Nineteen protein groups showed significant abundance changes between orthokeratology and soft contact lens wearers. Moreover, eighty-two protein groups significantly differed in abundance in children and young adult glasses wearers. As a pilot study, this work provides a deep coverage of tear proteome and suggests the need to investigate ocular responses to contact lens wear separately for children and young adults.
Collapse
Affiliation(s)
- Guoting Qin
- College of Optometry, University of Houston, Houston, TX 77204, United States of America; Mass Spectrometry Laboratory, Department of Chemistry, University of Houston, Houston, TX 77204, United States of America.
| | - Cecilia Chao
- College of Optometry, University of Houston, Houston, TX 77204, United States of America; School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2023, Australia
| | - Lauren J Lattery
- College of Optometry, University of Houston, Houston, TX 77204, United States of America
| | - Hong Lin
- Department of Computer Science & Engineering Technology, University of Houston - Downtown, Houston, TX 77002, United States of America
| | - Wenjiang Fu
- Department of Mathematics, University of Houston, Houston, TX 77204, United States of America
| | - Kathryn Richdale
- College of Optometry, University of Houston, Houston, TX 77204, United States of America
| | - Chengzhi Cai
- Mass Spectrometry Laboratory, Department of Chemistry, University of Houston, Houston, TX 77204, United States of America.
| |
Collapse
|
15
|
Ritchoo S, Havanapan PO, Phungthanom N, Rucksaken R, Muikaew R, Sussadee M. Analysis and comparison of tear protein profiles in dogs using different tear collection methods. BMC Vet Res 2022; 18:442. [PMID: 36539822 PMCID: PMC9768899 DOI: 10.1186/s12917-022-03543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Tear proteomic analysis has become an important tool in medical and veterinary research. The tear collection method could influence the tear protein profile. This study aims to evaluate the protein profiles of dog tears collected using microcapillary tubes (MT), Schirmer tear strips (ST), and ophthalmic sponges (OS). METHODS The tear samples were collected using MT, ST, and OS. Tear protein profiles were analyzed using two-dimensional electrophoresis (2-DE) and the different protein spots' expression was compared. Fourteen protein spots were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS Tear protein concentrations ranged from 2.80 to 4.03 μg/μL, with no statistically significant differences among collection methods. Protein expression in each collection method differed in terms of both the number and intensity of the spots. There were 249, 327, and 330 protein spots found from tears collected with MT, ST, and OS, respectively. The proteins albumin, haptoglobin, and lactoferrin identified from OS were found to have higher spot intensities than other methods of collection. The use of MT demonstrated the downregulation of nine proteins. CONCLUSIONS The recent study supported that tear protein analysis is affected by different tear collection methods. Although ST is commonly used for tear collection, it provides insufficient information to study particular tear proteins.
Collapse
Affiliation(s)
- Sudpatchara Ritchoo
- grid.9723.f0000 0001 0944 049XDepartment of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Phattara-orn Havanapan
- grid.10223.320000 0004 1937 0490Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhonpathom, Thailand
| | - Nuanwan Phungthanom
- grid.10223.320000 0004 1937 0490Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhonpathom, Thailand
| | - Rucksak Rucksaken
- grid.9723.f0000 0001 0944 049XDepartment of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Rattana Muikaew
- grid.9723.f0000 0001 0944 049XDepartment of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Metita Sussadee
- grid.9723.f0000 0001 0944 049XDepartment of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
16
|
Tear Proteome Revealed Association of S100A Family Proteins and Mesothelin with Thrombosis in Elderly Patients with Retinal Vein Occlusion. Int J Mol Sci 2022; 23:ijms232314653. [PMID: 36498980 PMCID: PMC9736253 DOI: 10.3390/ijms232314653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/03/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Tear samples collected from patients with central retinal vein occlusion (CRVO; n = 28) and healthy volunteers (n = 29) were analyzed using a proteomic label-free absolute quantitative approach. A large proportion (458 proteins with a frequency > 0.6) of tear proteomes was found to be shared between the study groups. Comparative proteomic analysis revealed 29 proteins (p < 0.05) significantly differed between CRVO patients and the control group. Among them, S100A6 (log (2) FC = 1.11, p < 0.001), S100A8 (log (2) FC = 2.45, p < 0.001), S100A9 (log2 (FC) = 2.08, p < 0.001), and mesothelin ((log2 (FC) = 0.82, p < 0.001) were the most abundantly represented upregulated proteins, and β2-microglobulin was the most downregulated protein (log2 (FC) = −2.13, p < 0.001). The selected up- and downregulated proteins were gathered to customize a map of CRVO-related critical protein interactions with quantitative properties. The customized map (FDR < 0.01) revealed inflammation, impairment of retinal hemostasis, and immune response as the main set of processes associated with CRVO ischemic condition. The semantic analysis displayed the prevalence of core biological processes covering dysregulation of mitochondrial organization and utilization of improperly or topologically incorrect folded proteins as a consequence of oxidative stress, and escalating of the ischemic condition caused by the local retinal hemostasis dysregulation. The most significantly different proteins (S100A6, S100A8, S100A9, MSLN, and β2-microglobulin) were applied for the ROC analysis, and their AUC varied from 0.772 to 0.952, suggesting probable association with the CRVO.
Collapse
|
17
|
An Extensive Study of Phenol Red Thread as a Novel Non-Invasive Tear Sampling Technique for Proteomics Studies: Comparison with Two Commonly Used Methods. Int J Mol Sci 2022; 23:ijms23158647. [PMID: 35955782 PMCID: PMC9369290 DOI: 10.3390/ijms23158647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Tear samples are considered in recent publications as easily, noninvasively collectible information sources for precision medicine. Their complex composition may aid the identification of biomarkers and the monitoring of the effectiveness of treatments for the eye and systemic diseases. Sample collection and processing are key steps in any analytical method, especially if subtle personal differences need to be detected. In this work, we evaluate the usability of a novel sample collection technique for human tear samples using phenol red threads (cotton thread treated with the pH indicator phenol red), which are efficiently used to measure tear volume in clinical diagnosis. The low invasiveness and low discomfort to the patients have already been demonstrated, but their applicability for proteomic sample collection has not yet been compared to other methods. We have shown, using various statistical approaches, the qualitative and quantitative differences in proteomic samples collected with this novel and two traditional methods using either glass capillaries or Schirmer’s paper strips. In all parameters studied, the phenol red threads proved to be equally or even more suitable than traditional methods. Based on detectability using different sampling methods, we have classified proteins in tear samples.
Collapse
|
18
|
Nättinen J, Aapola U, Nukareddy P, Uusitalo H. Clinical Tear Fluid Proteomics—A Novel Tool in Glaucoma Research. Int J Mol Sci 2022; 23:ijms23158136. [PMID: 35897711 PMCID: PMC9331117 DOI: 10.3390/ijms23158136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Tear fluid forms the outermost layer of the ocular surface and its characteristics and composition have been connected to various ocular surface diseases. As tear proteomics enables the non-invasive investigation of protein levels in the tear fluid, it has become an increasingly popular approach in ocular surface and systemic disease studies. Glaucoma, which is a set of multifactorial diseases affecting mainly the optic nerve and retinal ganglion cells, has also been studied using tear proteomics. In this condition, the complete set of pathophysiological changes occurring in the eye is not yet fully understood, and biomarkers for early diagnosis and accurate treatment selection are needed. More in-depth analyses of glaucoma tear proteomics have started to emerge only more recently with the implementation of LC-MS/MS and other modern technologies. The aim of this review was to examine the published data of the tear protein changes occurring during glaucoma, its topical treatment, and surgical interventions.
Collapse
Affiliation(s)
- Janika Nättinen
- Eye and Vision Research, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (U.A.); (P.N.); (H.U.)
- Tays Eye Centre, Tampere University Hospital, 33520 Tampere, Finland
- Correspondence:
| | - Ulla Aapola
- Eye and Vision Research, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (U.A.); (P.N.); (H.U.)
- Tays Eye Centre, Tampere University Hospital, 33520 Tampere, Finland
| | - Praveena Nukareddy
- Eye and Vision Research, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (U.A.); (P.N.); (H.U.)
| | - Hannu Uusitalo
- Eye and Vision Research, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (U.A.); (P.N.); (H.U.)
- Tays Eye Centre, Tampere University Hospital, 33520 Tampere, Finland
| |
Collapse
|
19
|
Dayon L, Cominetti O, Affolter M. Proteomics of Human Biological Fluids for Biomarker Discoveries: Technical Advances and Recent Applications. Expert Rev Proteomics 2022; 19:131-151. [PMID: 35466824 DOI: 10.1080/14789450.2022.2070477] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Biological fluids are routine samples for diagnostic testing and monitoring. Blood samples are typically measured because of their moderate collection invasiveness and high information content on health and disease. Several body fluids, such as cerebrospinal fluid (CSF), are also studied and suited to specific pathologies. Over the last two decades proteomics has quested to identify protein biomarkers but with limited success. Recent technologies and refined pipelines have accelerated the profiling of human biological fluids. AREAS COVERED We review proteomic technologies for the identification of biomarkers. Those are based on antibodies/aptamers arrays or mass spectrometry (MS), but new ones are emerging. Advances in scalability and throughput have allowed to better design studies and cope with the limited sample size that had until now prevailed due to technological constraints. With these enablers, plasma/serum, CSF, saliva, tears, urine, and milk proteomes have been further profiled; we provide a non-exhaustive picture of some recent highlights (mainly covering literature from last five years in the Scopus database) using MS-based proteomics. EXPERT OPINION While proteomics has been in the shadow of genomics for years, proteomic tools and methodologies have reached a certain maturity. They are better suited to discover innovative and robust biofluid biomarkers.
Collapse
Affiliation(s)
- Loïc Dayon
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland.,Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ornella Cominetti
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Michael Affolter
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Gavrylyak IV. PROTEIN MARKERS OF HYPOXIA AND ANGIOGENESIS IN TEAR FLUID OF PATIENTS WITH TRAUMATIC CORNEAL INJURY. BIOTECHNOLOGIA ACTA 2022. [DOI: 10.15407/biotech15.02.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of our study was to evaluate tear levels of some protein endpoints that can reflect intensities of hypoxia, angiogenesis and tissue remodeling in wounded cornea. Methods. We examined 21 patients (21 eyes) with nonpenetrating corneal injuries. The patients underwent standard ophthalmological examination including previous history and ocular symptoms, visual acuity test, complete anterior and posterior eye segments examination using slit lamp biomicroscopy, evaluation of corneal staining with fluorescein, ophthalmoscopy. Healthy volunteers (n = 10) served as a control. Tear fluid was collected from patients and control volunteers with the use of a disposable tip micropipette. From the lower arch of the conjunctiva without instillation of anesthetic, tears were collected in a sterile plastic Eppendorf tube and frozen at -20 oC before laboratory examination. Proteins of tear fluids were separated by SDS-PAGE (loading 50 µg total protein per track). Then, levels of hypoxia inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF), and angiostatins were measured by western blot. Active MMP-9 levels were evaluated by gelatin zymography. The results of blot and zymography assays were processed by densitometric software and then analyzed statistically with the use of Mann-Whitney U-test. Results. Elevated HIF-1α (P<0.001) and angiostatins (P<0.05) levels were revealed by western blot in tear fluid samples collected from patients with injured cornea in comparison with the control group. It is noteworthy that extremely low amounts of VEGF were detected in tear fluid from injured eyes, in spite of abundance of its transcription inducer HIF-1α. Dramatically increased levels of active MMP-9 were found in the tear fluids of patients with corneal wounds, while no significant collagenolytic activity was observed in tears from healthy eyes. There is a strong correlation between extent of corneal lesions and changes in markers expression. Conclusions. Tear levels of HIF-1α and angiostatin as well as MMP-9 activity could represent valuable biomarkers of corneal injury severity in traumatic eye.
Collapse
|
21
|
Aqueous Lumican Correlates with Central Retinal Thickness in Patients with Idiopathic Epiretinal Membrane: A Proteome Study. DISEASE MARKERS 2022; 2022:9886846. [PMID: 35571611 PMCID: PMC9106516 DOI: 10.1155/2022/9886846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/07/2022] [Accepted: 03/04/2022] [Indexed: 11/20/2022]
Abstract
Idiopathic epiretinal membrane (iERM) is a pathological fibrocellular change in the vitreoretinal junction over the macular area; however, possible pathogenic mechanisms remain unclear. Changes in the differential protein composition of the aqueous humor (AH) may represent potential molecular changes associated with iERM. To gain new insights into the molecular mechanisms of iERM pathology, a sensitive label-free proteomics analysis was performed to compare AH protein expressions in patients with cataracts with or without iERM. This study employed nanoflow ultra-high-performance liquid chromatography-tandem mass spectrometry to investigate protein compositions of the AH obtained from individual human cataract eyes from 10 patients with iERM and 10 age-matched controls without iERM. Eight proteins were differentially expressed between the iERM and control samples, among which six proteins were upregulated and two were downregulated. A gene ontology (GO) analysis revealed that iERM was closely associated with several biological processes, such as immunity interactions, cell proliferation, and extracellular matrix remodeling. Additionally, multiple proteins, including lumican, cyclin-dependent kinase 13, and collagen alpha-3(VI) chain, were correlated with the central retinal thickness, indicating a multifactorial response in the pathogenic process of iERM. Changes in the AH level of lumican between iERM and control samples were also confirmed by an enzyme-linked immunosorbent assay. In conclusion, several pathological pathways involved in iERM were identified in the AH by a proteomic analysis, including immune reactions, cell proliferation, and remodeling of the extracellular matrix. Lumican is a potential aqueous biomarker for predicting iERM development and monitoring its progression. More clinical parameters also need to be identified to complete the analysis, and those could provide additional targets for treating and preventing iERM.
Collapse
|
22
|
Chao C, Lattery L, Qin G, Kamat M, Basso K, Lakkis C, Hasan M, Richdale K. Tear Proteomics of Children and Young Adult Soft Contact Lens, Orthokeratology and Spectacle Wearers - A Pilot Study. Curr Eye Res 2022; 47:832-842. [PMID: 35317695 DOI: 10.1080/02713683.2022.2047206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Contact lens complications occur more often in older teenagers and young adults compared to children. This study explored differences in tear proteomics between children and young adults wearing soft contact lens (SCL), orthokeratology or spectacles for >3 years. METHODS Twelve children and 12 sex- and correction-matched young adults were enrolled. Tears were collected via Schirmer strips for tear proteomic analysis using mass spectrometry. Proteome Discoverer was used for protein identification. Label-Free Quantitation was generated using Scaffold software; Fisher's Exact tests were used to compare proteins by age and correction groups. Generalized linear models were used to assess differences in overall protein levels by age and correction groups. A secondary analysis of proteins presented in >50% of samples of each group was conducted using the R/Bioconductor limma package. RESULTS There were 385 proteins present only in young adults while 183 were unique in children. There were 528 unique proteins to SCL, 96 to orthokeratology and 149 to spectacle wearers. Based on Fisher's Exact analyses, 126 proteins were higher in young adults than children (all P < 0.048). Forty-seven protein levels were higher in SCL compared to orthokeratology (all P < 0.01), 33 protein levels were higher in SCL compared to spectacles (all P < 0.01), 15 protein levels were higher in orthokeratology compared to spectacle wearers (all P < 0.01). Based on generalized linear models, young adults had higher overall protein levels than children (P = 0.001), SCL had higher protein levels than spectacle wearers (P < 0.001) but no differences were found between orthokeratology and spectacle wearers (P = 0.79). Based on the secondary analysis, only Antileukoproteinase was higher in the young adult orthokeratology group compared to other groups (P < 0.01). CONCLUSIONS Tear protein type and abundance differ by age and correction. Further research is needed to understand the effects of contact lens correction in children and young adults on the tear proteome.
Collapse
Affiliation(s)
- Cecilia Chao
- College of Optometry, University of Houston, Houston, TX, USA.,School of Optometry and Vision Science, University of New South Wales Sydney, Kensington, Australia
| | - Lauren Lattery
- College of Optometry, University of Houston, Houston, TX, USA
| | - Guoting Qin
- College of Optometry, University of Houston, Houston, TX, USA
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kari Basso
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Carol Lakkis
- College of Optometry, University of Houston, Houston, TX, USA
| | | | | |
Collapse
|
23
|
Jones G, Lee TJ, Glass J, Rountree G, Ulrich L, Estes A, Sezer M, Zhi W, Sharma S, Sharma A. Comparison of Different Mass Spectrometry Workflows for the Proteomic Analysis of Tear Fluid. Int J Mol Sci 2022; 23:2307. [PMID: 35216421 PMCID: PMC8875482 DOI: 10.3390/ijms23042307] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
The tear film is a multi-layer fluid that covers the corneal and conjunctival epithelia of the eye and provides lubrication, nutrients, and protection from the outside environment. Tear fluid contains a high concentration of proteins and has thus been recognized as a potential source of biomarkers for ocular disorders due to its proximity to disease sites on the ocular surface and the non-invasive nature of its collection. This is particularly true in the case of dry eye disease, which directly impacts the tear film and its components. Proteomic analysis of tear fluid is challenging mainly due to the wide dynamic range of proteins and the small sample volumes. However, recent advancements in mass spectrometry have revolutionized the field of proteomics enabling unprecedented depth, speed, and accuracy, even with small sample volumes. In this study using the Orbitrap Fusion Tribrid mass spectrometer, we compared four different mass spectrometry workflows for the proteomic analysis of tear fluid collected via Schirmer strips. We were able to establish a method of in-strip protein digestion that identified >3000 proteins in human tear samples from 11 healthy subjects. Our method offers a significant improvement in the number of proteins identified compared to previously reported methods without pooling samples.
Collapse
Affiliation(s)
- Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Joshua Glass
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Grace Rountree
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lane Ulrich
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Amy Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mary Sezer
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
24
|
Lee H, Kim SI. Review of Liquid Chromatography-Mass Spectrometry-Based Proteomic Analyses of Body Fluids to Diagnose Infectious Diseases. Int J Mol Sci 2022; 23:ijms23042187. [PMID: 35216306 PMCID: PMC8878692 DOI: 10.3390/ijms23042187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Rapid and precise diagnostic methods are required to control emerging infectious diseases effectively. Human body fluids are attractive clinical samples for discovering diagnostic targets because they reflect the clinical statuses of patients and most of them can be obtained with minimally invasive sampling processes. Body fluids are good reservoirs for infectious parasites, bacteria, and viruses. Therefore, recent clinical proteomics methods have focused on body fluids when aiming to discover human- or pathogen-originated diagnostic markers. Cutting-edge liquid chromatography-mass spectrometry (LC-MS)-based proteomics has been applied in this regard; it is considered one of the most sensitive and specific proteomics approaches. Here, the clinical characteristics of each body fluid, recent tandem mass spectroscopy (MS/MS) data-acquisition methods, and applications of body fluids for proteomics regarding infectious diseases (including the coronavirus disease of 2019 [COVID-19]), are summarized and discussed.
Collapse
Affiliation(s)
- Hayoung Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea;
- Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Seung Il Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea;
- Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence:
| |
Collapse
|
25
|
Proteomic Analysis of Tears and Conjunctival Cells Collected with Schirmer Strips Using timsTOF Pro: Preanalytical Considerations. Metabolites 2021; 12:metabo12010002. [PMID: 35050124 PMCID: PMC8778087 DOI: 10.3390/metabo12010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the human proteome profile of samples collected from whole (W) Schirmer strips (ScS) and their two parts—the bulb (B) and the rest of the strip (R)—with a comprehensive proteomic approach using a trapped ion mobility mass spectrometer, the timsTOF Pro. Eight ScS were collected from two healthy subjects at four different visits to be separated into three batches, i.e., 4W, 4B, and 4R. In total, 1582 proteins were identified in the W, B, and R batches. Among all identified proteins, binding proteins (43.4%) and those with catalytic activity (42.2%) constituted more than 80% of the molecular functions. The most represented biological processes were cellular processes (31.2%), metabolic processes (20.8%), and biological regulation (13.1%). Enzymes were the most represented protein class (41%), consisting mainly of hydrolases (47.5%), oxidoreductases (22.1%), and transferases (16.7%). The bulb (B), which is in contact with the conjunctiva, might collect both tear and cell proteins and therefore promote the identification of more proteins. Processing B and R separately before mass spectrometry (MS) analysis, combined with the high data acquisition speed and the addition of ion-mobility-based separation in the timsTOF Pro, can bring a new dimension to biomarker investigations of a limited sample such as tear fluid.
Collapse
|
26
|
Nandi SK, Singh D, Upadhay J, Gupta N, Dhiman N, Mittal SK, Mahindroo N. Identification of tear-based protein and non-protein biomarkers: Its application in diagnosis of human diseases using biosensors. Int J Biol Macromol 2021; 193:838-846. [PMID: 34728300 DOI: 10.1016/j.ijbiomac.2021.10.198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/30/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Discovery of robust, selective and specific biomarkers are important for early diagnosis and monitor progression of human diseases. Eye being a common target for several human diseases, vision impediment and complications are often associated with systemic and ocular diseases. Tears are bodily fluids that are closest to eye and are rich in protein content and other metabolites. As a biomarker repository, it advantages over other bodily fluids due to the ability to collect it non-invasively. In this review, we highlight some recent advancements in identification of tear-based protein biomarkers like lacryglobin and cystatin SA for cancer; interleukin-6 and immunoglobulin-A antibody for COVID-19; tau, amyloid-β-42 and lysozyme-C for Alzheimer's disease; peroxiredoxin-6 and α-synuclein for Parkinson's disease; kallikrein, angiotensin converting enzyme and lipocalin-1 for glaucoma; lactotransferrin and lipophilin-A for diabetic retinopathy and zinc-alpha-2 glycoprotein-1, prolactin and calcium binding protein-A4 for eye thyroid disease. We also discussed identification of tear based non-protein biomarkers like lysophospholipids and acetylcarnitine for glaucoma, 8-hydroxy-2'-deoxyquanosine and malondialdehyde for thyroid eye disease. We elucidate technological advancement in developing tear-based biosensors for diagnosis and monitoring diseases such as diabetes, diabetic retinopathy and Alzheimer's disease. Altogether, the study of tears as potential biomarkers for early diagnosis of human diseases is promising.
Collapse
Affiliation(s)
- Sandip K Nandi
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Deepanmol Singh
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Jyoti Upadhay
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Neeti Gupta
- Department of Ophthalmology, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Nayan Dhiman
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Sanjeev Kumar Mittal
- Department of Ophthalmology, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Neeraj Mahindroo
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
27
|
Auler N, Tonner H, Pfeiffer N, Grus FH. Antibody and Protein Profiles in Glaucoma: Screening of Biomarkers and Identification of Signaling Pathways. BIOLOGY 2021; 10:biology10121296. [PMID: 34943212 PMCID: PMC8698915 DOI: 10.3390/biology10121296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Glaucoma is a chronic eye disease that is one of the leading causes of blindness worldwide. Currently, the only therapeutic option is to lower intraocular pressure. The onset of the disease is often delayed because patients do not notice visual impairment until very late, which is why glaucoma is also known as “the silent thief of sight”. Therefore, early detection and definition of specific markers, the so-called biomarkers, are immensely important. For the methodical implementation, high-throughput methods and omic-based methods came more and more into focus. Thus, interesting targets for possible biomarkers were already suggested by clinical research and basic research, respectively. This review article aims to join the findings of the two disciplines by collecting overlaps as well as differences in various clinical studies and to shed light on promising candidates concerning findings from basic research, facilitating conclusions on possible therapy options. Abstract Glaucoma represents a group of chronic neurodegenerative diseases, constituting the second leading cause of blindness worldwide. To date, chronically elevated intraocular pressure has been identified as the main risk factor and the only treatable symptom. However, there is increasing evidence in the recent literature that IOP-independent molecular mechanisms also play an important role in the progression of the disease. In recent years, it has become increasingly clear that glaucoma has an autoimmune component. The main focus nowadays is elucidating glaucoma pathogenesis, finding early diagnostic options and new therapeutic approaches. This review article summarizes the impact of different antibodies and proteins associated with glaucoma that can be detected for example by microarray and mass spectrometric analyzes, which (i) provide information about expression profiles and associated molecular signaling pathways, (ii) can possibly be used as a diagnostic tool in future and, (iii) can identify possible targets for therapeutic approaches.
Collapse
|