1
|
Pranadwista ZF, Hasanah NT, Nur’aeny N. Clinical Investigation of Patients with Oral Hematoma and Anemia Linked to Symptoms of Indigestion: A Case Report. Int Med Case Rep J 2024; 17:757-763. [PMID: 39220374 PMCID: PMC11363933 DOI: 10.2147/imcrj.s479028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Background Oral cavity is the gateway to the digestive system and a window to general human health. Anemia is one of the health problems in the world characterized by various clinical conditions, including in the oral cavity. Purpose This case report aims to present the results of a clinical investigation of a patient who had oral hematoma and anemia with indigestion symptoms. Case Presentation A 59-year-old male complained of a lump on his tongue two months prior, which was painless and frequently bleeding. The complaint was followed by abdominal discomfort, difficulty defecating, weight loss, and decreased appetite. The patient only ate porridge and lacked water intake. Intraoral examination showed a blackish-red, irregularly shaped, painless hematoma on the dorsum of the tongue and a negative diascopy test. Hematology examination showed anemia with hemoglobin 6.7g/dL, hematocrit 21.4%, erythrocytes 3.08 x 106/µL, MCV 69.5fL, MCH 21.8pg, and MCHC 31.3g/dL. The diagnosis of the tongue lesion was an oral hematoma. Case Management Pharmacologic therapy included antifibrinolytic agents and hematinic supplementation. Non-pharmacologic therapy included dental health education, a balanced lifestyle, and avoiding triggers for tongue bleeding. Management in other fields was also carried out in parallel, including oral surgery and internal medicine. The general condition of the patient general condition improved through multidisciplinary monitoring. Conclusion Clinical investigations that include signs and symptoms of disease in a patient with bleeding disorders such as hematoma and anemia need to be carried out in detailed aid examinations, especially if other symptoms are found, such as digestive disorders.
Collapse
Affiliation(s)
- Zulfa Fidi Pranadwista
- Oral Medicine Residency Program, Faculty of Dentistry, Padjadjaran University, Bandung, Indonesia
| | - Novia Tri Hasanah
- Oral Medicine Residency Program, Faculty of Dentistry, Padjadjaran University, Bandung, Indonesia
| | - Nanan Nur’aeny
- Department of Oral Medicine, Faculty of Dentistry, Padjadjaran University, Bandung, Indonesia
| |
Collapse
|
2
|
Feteih SMN, Dada A, Heaphy ELG, Zailaie S, Jan D, Rashed Z, Wali G. The effect of novel vitamin D3 compounds on saliva samples from COVID-19 patients: a lab study. Sci Rep 2024; 14:19415. [PMID: 39169216 PMCID: PMC11339379 DOI: 10.1038/s41598-024-70429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Vitamin D has shown antimicrobial effects. This study aimed to explore the antiviral effects of vitamin D3 on saliva samples collected from patients with coronavirus disease-19 (COVID-19) and compare saliva and swab results to aid in policy development. Saliva and swab samples were collected from adult patients with a positive test for COVID-19 at the King Faisal Specialist Hospital and Research Centre, Jeddah. Patients who were immunocompromised and pregnant and aged < 18 years were excluded. Vitamin D3 compound (100, 300, 800, and 1,200 IU) was added to the first saliva sample in the laboratory (n = 20); the rest of the swab specimens were compared with the saliva samples via real-time polymerase chain reaction. Of the 257 patients, 236 (94.8%) had positive saliva sample test results, 7 (2.8%) had errors, and 6 (2.4%) had negative results. Of the 236 positive tests, 235 (99.6%) had a cycle threshold (Ct) indicating strong positive reactions, and only one (Ct = 28.86) was weak. Among the 236 positive results, 235 (99.6%) exhibited robust positive reactions, indicating a substantial positive sample size. Thus, saliva might be a dependable alternative testing tool when obtaining swab samples from patients is inconvenient or challenging.
Collapse
Affiliation(s)
- Sarah M Nizar Feteih
- Department of Dentistry, Periodontology, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia.
| | - Ashraf Dada
- Department of Pathology & Laboratory Medicine, Head, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Emily L G Heaphy
- Department of Research Center, Epidemiology, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Samar Zailaie
- Department of Research Center, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Dania Jan
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Virology Technology, Jeddah, Saudi Arabia
| | - Zinab Rashed
- Pharmacy Department, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Ghassan Wali
- Department of Medicine, Infectious Diseases, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Eryilmaz Polat S, Akyan Soydaş ŞS, Ocak E, Gençoğlu MY, Uytun S, Özkan Tabakci S, Kürtül M, Bilgiç I, Kaşikçi M, Ademhan Tural D, Tuğcu GD, Cinel G. Has the Coronavirus Disease 2019 Pandemic Played a Role in the Early Detection of Pulmonary Embolism in Children? J Pediatr Hematol Oncol 2024; 46:e412-e418. [PMID: 38968543 DOI: 10.1097/mph.0000000000002913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
OBJECTIVE Pulmonary embolism (PE) poses a significant threat to children, and nonspecific symptoms lead to delayed diagnosis. The emergence of coronavirus disease 2019 (COVID-19) has increased the complexity as it is associated with similar symptoms and increased risk of thrombotic complications. This study aimed to assess the risk factors, clinical presentations, and diagnostic features of PE in pediatric patients and to examine the impact of the COVID-19 pandemic on children with PE. MATERIALS AND METHODS We conducted a retrospective descriptive study examining the clinical and diagnostic data of 44 pediatric patients with radiologically confirmed PE. The study compared and analyzed patients diagnosed before and during the COVID-19 pandemic. RESULTS In the study, 21 of 44 pediatric patients were diagnosed in the 4 years before the COVID-19 pandemic, and 23 were diagnosed with PE during the COVID-19 pandemic. The mean time to diagnosis was 8 (2 to 14) days before the pandemic and 1 (1 to 2) days during the pandemic ( P < 0.001). The most common associated condition in both groups was infection (65.9%). Dyspnea (65.9%) and tachypnea (50.0%) were common symptoms. Except for deep vein thrombosis, there were no significant differences according to associated conditions between the groups ( P = 0.001). Pulmonary emboli were anatomically detected using computed tomography angiography, showing bilateral involvement in 45.4% of patients, segmental artery involvement in 38.6%, and main artery involvement in 15.9%. CONCLUSION The COVID-19 pandemic heightened suspicion of pediatric PE and accelerated diagnosis. Standardized diagnostic guidelines are increasingly necessary to balance accurate diagnosis with avoiding excessive imaging.
Collapse
Affiliation(s)
| | | | - Ece Ocak
- Department of Pediatric Pulmonology, Ankara City Hospital
| | | | - Salih Uytun
- Department of Pediatric Pulmonology, Ankara City Hospital
| | | | - Meltem Kürtül
- Department of Pediatric Pulmonology, Ankara City Hospital
| | - Işil Bilgiç
- Department of Pediatric Pulmonology, Ankara City Hospital
| | - Merve Kaşikçi
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | - Güzin Cinel
- Department of Pediatric Pulmonology, Ankara City Hospital
| |
Collapse
|
4
|
Wilburn J, Sappe B, Jorge K, Hickey L, Nandyala D, Chadha T. Effectiveness of Pfizer Vaccine BNT162b2 Against SARS-CoV-2 in Americans 16 and Older: A Systematic Review. Cureus 2024; 16:e65111. [PMID: 39171051 PMCID: PMC11338298 DOI: 10.7759/cureus.65111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
This systematic review evaluates the efficacy and long-term effectiveness of the Pfizer-BioNTech COVID-19 vaccine (BNT162b2) across diverse clinical and observational settings within the United States in Americans aged 16 and older. We conducted an extensive literature search utilizing various types of studies to assess the vaccine's performance in preventing symptomatic SARS-CoV-2 infection and severe COVID-19 outcomes. Our initial search in PubMed on March 14, 2022, yielded 6,725 potentially relevant articles, with 26 undergoing full-text assessment and eight meeting the inclusion criteria. To incorporate the most up-to-date findings, a secondary search was conducted on July 6, 2024, using improved and refined Medical Subject Headings (MeSH) terms within the PubMed and Scopus databases. This expanded approach resulted in 78 potentially relevant articles from PubMed and 1,567 from Scopus, with 40 articles undergoing full-text assessment and an additional 14 articles meeting the inclusion criteria. Early clinical trials reported initial vaccine effectiveness (VE) up to 95% with sustained immunity in various populations. Observational studies and systematic reviews further confirmed VE above 90% against symptomatic infections and highlighted nearly complete protection against hospitalizations and deaths. Recent research underscores the critical role of booster doses in maintaining high VE, especially against emerging variants, showing restored effectiveness up to 95% and supporting their strategic importance in ongoing pandemic responses. Despite observed waning immunity and breakthrough infections, the BNT162b2 vaccine continues to exhibit robust protection across different demographic groups and under varying epidemiological conditions. Our findings advocate for continuous booster updates and adaptive vaccination strategies to manage emerging SARS-CoV-2 variants, reinforcing the pivotal role of mRNA vaccine technology in addressing global health emergencies.
Collapse
Affiliation(s)
- Justin Wilburn
- Obesity and Cardiovascular Research, Nemours Children's Health System, Jacksonville, USA
| | - Brooke Sappe
- Basic Sciences, Saint James School of Medicine, The Quarter, AIA
| | - Kevin Jorge
- Basic Sciences, Saint James School of Medicine, The Quarter, AIA
| | - Lynn Hickey
- Basic Sciences, Saint James School of Medicine, The Quarter, AIA
| | - Dhatri Nandyala
- Basic Sciences, Saint James School of Medicine, The Quarter, AIA
| | - Tandra Chadha
- Microbiology, Saint James School of Medicine, The Quarter, AIA
| |
Collapse
|
5
|
Xu C, Chen Y, Zhu G, Wu H, Jiang Q, Zhang R, Yu B, Fang L, Wu Z. A Portable, Integrated, Sample-In Result-Out Nucleic Acid Diagnostic Device for Rapid and Sensitive Chikungunya Virus Detection. MICROMACHINES 2024; 15:663. [PMID: 38793236 PMCID: PMC11123350 DOI: 10.3390/mi15050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Chikungunya virus, a mosquito-borne virus that causes epidemics, is often misdiagnosed due to symptom similarities with other arboviruses. Here, a portable and integrated nucleic acid-based diagnostic device, which combines reverse transcription-loop-mediated isothermal amplification and lateral-flow detection, was developed. The device is simple to use, precise, equipment-free, and highly sensitive, enabling rapid chikungunya virus identification. The result can be obtained by the naked eye within 40 min. The assay can effectively distinguish chikungunya virus from dengue virus, Japanese encephalitis virus, Zika virus, and yellow fever virus with high specificity and sensitivity as low as 598.46 copies mL-1. It has many benefits for the community screening and monitoring of chikungunya virus in resource-limited areas because of its effectiveness and simplicity. The platform has great potential for the rapid nucleic acid detection of other viruses.
Collapse
Affiliation(s)
- Changping Xu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing 210093, China
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yalin Chen
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guiying Zhu
- Shanghai Sci-Tech InnoCenter for Infection & Immunity, Shanghai 200030, China
| | - Huan Wu
- Ustar Biotechnologies (Hangzhou) Ltd., Hangzhou 310051, China
| | - Qi Jiang
- Ustar Biotechnologies (Hangzhou) Ltd., Hangzhou 310051, China
| | - Rui Zhang
- Center for Public Health Research, Medical School of Nanjing University, Nanjing 210093, China
| | - Beibei Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou 310000, China
| | - Lei Fang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou 310000, China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
6
|
Xiao Y, Dong H, Wu C, Zhang K, Jiang X, Chen J, Wang H, Xu S, Zhang F, Gu L. Nanobody in a Double "Y"-Shaped Assembly: A Promising Candidate for Lateral Flow Immunoassays. Anal Chem 2024; 96:7130-7137. [PMID: 38679866 DOI: 10.1021/acs.analchem.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Derived from camelid heavy-chain antibodies, nanobodies (Nbs) are the smallest natural antibodies and are an ideal tool in biological studies because of their simple structure, high yield, and low cost. Nbs possess significant potential for developing highly specific and user-friendly diagnostic assays. Despite offering considerable advantages in detection applications, knowledge is limited regarding the exclusive use of Nbs in lateral flow immunoassay (LFIA) detection. Herein, we present a novel double "Y" architecture, achieved by using the SpyTag/SpyCatcher and Im7/CL7 systems. The double "Y" assemblies exhibited a significantly higher affinity for their epitopes, as particularly evident in the reduced dissociation rate. An LFIA employing double "Y" assemblies was effectively used to detect the severe acute respiratory syndrome coronavirus-2 N protein, with a detection limit of at least 500 pg/mL. This study helps broaden the array of tools available for the development of Nb-based diagnostic techniques.
Collapse
Affiliation(s)
- Yumeng Xiao
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Hongjie Dong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibaizhong Road, Jining 272033, P. R. China
| | - Cancan Wu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Kundi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Xiaoqiong Jiang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Junyu Chen
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Hongwei Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| |
Collapse
|
7
|
Tsang HF, Pei XM, Wong YKE, Wong SCC. Plasma Circulating mRNA Profile for the Non-Invasive Diagnosis of Colorectal Cancer Using NanoString Technologies. Int J Mol Sci 2024; 25:3012. [PMID: 38474258 DOI: 10.3390/ijms25053012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers and the second leading cause of cancer deaths in developed countries. Early CRC may have no symptoms and symptoms usually appear with more advanced diseases. Regular screening can identify people who are at increased risk of CRC in order to offer earlier treatment. A cost-effective non-invasive platform for the screening and monitoring of CRC patients allows early detection and appropriate treatment of the disease, and the timely application of adjuvant therapy after surgical operation is needed. In this study, a cohort of 71 plasma samples that include 48 colonoscopy- and histopathology-confirmed CRC patients with TNM stages I to IV were recruited between 2017 and 2019. Plasma mRNA profiling was performed in CRC patients using NanoString nCounter. Normalized data were analyzed using a Mann-Whitney U test to determine statistically significant differences between samples from CRC patients and healthy subjects. A multiple-group comparison of clinical phenotypes was performed using the Kruskal-Wallis H test for statistically significant differences between multiple groups. Among the 27 selected circulating mRNA markers, all of them were found to be overexpressed (gene expression fold change > 2) in the plasma of patients from two or more CRC stages. In conclusion, NanoString-based targeted plasma CRC-associated mRNAs circulating the marker panel that can significantly distinguish CRC patients from a healthy population were developed for the non-invasive diagnosis of CRC using peripheral blood samples.
Collapse
Affiliation(s)
- Hin Fung Tsang
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong SAR, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yin Kwan Evelyn Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
8
|
Al-Qaoud KM, Obeidat YM, Al-Omari T, Okour M, Al-Omari MM, Ahmad MI, Alshadfan R, Rawashdeh AM. The development of an electrochemical immunosensor utilizing chicken IgY anti-spike antibody for the detection of SARS-CoV-2. Sci Rep 2024; 14:748. [PMID: 38185704 PMCID: PMC10772103 DOI: 10.1038/s41598-023-50501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024] Open
Abstract
This paper introduces a novel approach for detecting the SARS-CoV-2 recombinant spike protein combining a label free electrochemical impedimetric immunosensor with the use of purified chicken IgY antibodies. The sensor employs three electrodes and is functionalized with an anti-S IgY antibody, ELISA and immunoblot assays confirmed the positive response of chicken immunized with SARS-CoV2 S antigen. The developed immunosensor is effective in detecting SARS-CoV-2 in nasopharyngeal clinical samples from suspected cases. The key advantage of this biosensor is its remarkable sensitivity, and its capability of detecting very low concentrations of the target analyte, with a detection limit of 5.65 pg/mL. This attribute makes it highly suitable for practical point-of-care (POC) applications, particularly in low analyte count clinical scenarios, without requiring amplification. Furthermore, the biosensor has a wide dynamic range of detection, spanning from 11.56 to 740 ng/mL, which makes it applicable for sample analysis in a typical clinical setting.
Collapse
Affiliation(s)
- Khaled M Al-Qaoud
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Yusra M Obeidat
- Department of Electronics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan.
| | - Tareq Al-Omari
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Mohammad Okour
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Mariam M Al-Omari
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mohammad I Ahmad
- Rawgene Biotech, Umm Khelad St. 33, Amman, Jordan
- Atlas Medical, Sahab Industrial Area, Amman, Jordan
- Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Raed Alshadfan
- Rawgene Biotech, Umm Khelad St. 33, Amman, Jordan
- Atlas Medical, Sahab Industrial Area, Amman, Jordan
| | | |
Collapse
|
9
|
Hempel EM, Bharmal A, Li G, Minhas A, Manan R, Doull K, Hamilton L, Cheung B, Chan M, Gunadasa K, Chow R, Lee T, Tsang F, Krajden M, Mooder K, Kassan T, Prystajecky N, Jassem A, Hoang LMN. Prospective, clinical comparison of self-collected throat-bilateral nares swabs and saline gargle compared to health care provider collected nasopharyngeal swabs among symptomatic outpatients with potential SARS-CoV-2 infection. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2024; 8:283-298. [PMID: 38250616 PMCID: PMC10797771 DOI: 10.3138/jammi-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 01/23/2024]
Abstract
Background In British Columbia (BC), self-collected saline gargle (SG) is the only alternative to health care provider (HCP)-collected nasopharyngeal (NP) swabs to detect SARS-CoV-2 in an outpatient setting by polymerase chain reaction (PCR). However, some individuals cannot perform a SG. Our study aimed to assess combined throat-bilateral nares (TN) swabbing as a swab-based alternative. Methods Symptomatic individuals greater than 12 years of age seeking a COVID-19 PCR test at one of two COVID-19 collection centres in Metro Vancouver were asked to participate in this study. Participants provided a HCP-collected NP sample and a self-collected SG and TN sample for PCR testing, which were either HCP observed or unobserved. Results Three-hundred and eleven individuals underwent all three collections. Compared against HCP-NP, SG was 99% sensitive and 98% specific (kappa 0.97) and TN was 99% sensitive and 99% specific (kappa 0.98). Using the final clinical test interpretation as the reference standard, NP was 98% sensitive and 100% specific (kappa 0.98), and both SG and TN were 99% sensitive and 100% specific (both kappa 0.99). Mean cycle threshold values for each viral target were higher in SG specimens compared to the other sample types; however, this did not significantly impact the clinical performance, because the positivity rates were similar. The clinical performance of all specimen types was comparable within the first 7 days of symptom onset, regardless of the observation method. SG self-collections were rated the most acceptable, followed by TN. Conclusions TN provides another less invasive self-collection modality for symptomatic outpatient SARS-CoV-2 PCR testing.
Collapse
Affiliation(s)
- Eric M Hempel
- Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Aamir Bharmal
- British Columbia Centre for Disease Control Public Health Response, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guiyun Li
- Fraser Health Authority, Surrey, British Columbia, Canada
| | - Aileen Minhas
- Fraser Health Authority, Surrey, British Columbia, Canada
| | - Ramndip Manan
- Fraser Health Authority, Surrey, British Columbia, Canada
| | - Kathy Doull
- Fraser Health Authority, Surrey, British Columbia, Canada
| | - Lynsey Hamilton
- British Columbia Centre for Disease Control Knowledge Translation, Vancouver, British Columbia, Canada
| | - Branco Cheung
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Michael Chan
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Kingsley Gunadasa
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Ron Chow
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Tracy Lee
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Frankie Tsang
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Mooder
- Provincial Health Services Authority, Vancouver, British Columbia, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Trushna Kassan
- Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Natalie Prystajecky
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Agatha Jassem
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Linda MN Hoang
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Shoute LCT, Charlton CL, Kanji JN, Babiuk S, Babiuk L, Chen J. Faradaic Impedimetric Immunosensor for Label-Free Point-of-Care Detection of COVID-19 Antibodies Using Gold-Interdigitated Electrode Array. BIOSENSORS 2023; 14:6. [PMID: 38248383 PMCID: PMC10812953 DOI: 10.3390/bios14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
Label-free electrochemical biosensors have many desirable characteristics in terms of miniaturization, scalability, digitization, and other attributes associated with point-of-care (POC) applications. In the era of COVID-19 and pandemic preparedness, further development of such biosensors will be immensely beneficial for rapid testing and disease management. Label-free electrochemical biosensors often employ [Fe(CN)6]-3/4 redox probes to detect low-concentration target analytes as they dramatically enhance sensitivity. However, such Faradaic-based sensors are reported to experience baseline signal drift, which compromises the performance of these devices. Here, we describe the use of a mecaptohexanoic (MHA) self-assembled monolayer (SAM) modified Au-interdigitated electrode arrays (IDA) to investigate the origin of the baseline signal drift, developed a protocol to resolve the issue, and presented insights into the underlying mechanism on the working of label-free electrochemical biosensors. Using this protocol, we demonstrate the application of MHA SAM-modified Au-IDA for POC analysis of human serum samples. We describe the use of a label-free electrochemical biosensor based on covalently conjugated SARS-CoV-2 spike protein for POC detection of COVID-19 antibodies. The test requires a short incubation time (10 min), and has a sensitivity of 35.4/decade (35.4%/10 ng mL-1) and LOD of 21 ng/mL. Negligible cross reactivity to seasonal human coronavirus or other endogenous antibodies was observed. Our studies also show that Faradaic biosensors are ~17 times more sensitive than non-Faradaic biosensors. We believe the work presented here contributes to the fundamental understanding of the underlying mechanisms of baseline signal drift and will be applicable to future development of electrochemical biosensors for POC applications.
Collapse
Affiliation(s)
- Lian C. T. Shoute
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
| | - Carmen L. Charlton
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada; (C.L.C.); (J.N.K.)
- Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB T2N 1M7, Canada
- Li Ka Shing Institute for Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jamil N. Kanji
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada; (C.L.C.); (J.N.K.)
- Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB T2N 1M7, Canada
- Division of Infectious Diseases, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada;
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Lorne Babiuk
- Vaccine and Infectious Disease Organization, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
11
|
d'Arqom A, Akram M, Azzahranisa NS, Nasution MZ, Surjaningrum ER, Yusof J. Societal influence and psychological distress among Indonesian adults in Java on the early Omicron wave of COVID-19. Future Sci OA 2023; 9:FSO894. [PMID: 37753359 PMCID: PMC10518838 DOI: 10.2144/fsoa-2023-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/02/2023] [Indexed: 09/28/2023] Open
Abstract
Aim Changes during the COVID-19 pandemic might create pressure on different people, thus this study aimed to measure respondents' psychological distress during the early phase of the Omicron wave in Java Island. Methods A web-based survey on societal influence and COVID-19-related psychological distress was distributed through social media in November-December 2021, and received 396 responses. Results This study showed that almost 50% of respondents faced psychological distress during the early phase of the Omicron variant, especially concerning hypervigilance and avoidance. Several sociodemographic factors might contribute to the incidence of psychological distress including comorbidity, age and education. Conclusion Taken together, the incidence of COVID-19-related psychological distress was still found in the early phase of the Omicron variant, especially among young adults.
Collapse
Affiliation(s)
- Annette d'Arqom
- Division of Pharmacology & Therapy, Department of Anatomy, Histology, & Pharmacology, Faculty of Medicine, Universitas Airlangga, 60131, Indonesia
- Airlangga Research Group for Translational Medicine & Therapeutic, Universitas Airlangga, 60131, Indonesia
| | - Muh Akram
- Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia
| | | | | | | | - Junaidah Yusof
- School of Human Resource Development & Psychology, Faculty of Social Sciences & Humanities, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| |
Collapse
|
12
|
Wezenbeek E, Denolf S, Bourgois JG, Philippaerts RM, De Winne B, Willems TM, Witvrouw E, Verstockt S, Schuermans J. Impact of (long) COVID on athletes' performance: a prospective study in elite football players. Ann Med 2023; 55:2198776. [PMID: 37126052 PMCID: PMC10134946 DOI: 10.1080/07853890.2023.2198776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
OBJECTIVES To investigate possible persistent performance deficits after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in elite athletes. METHODS A prospective cohort study in three Belgian professional male football teams was performed during the 2020 - 2021 season. Participants were submitted to strength, jump, and sprint tests and an aerobic performance test (the Yo-Yo Intermittent Recovery test (YYIR)). These tests were repeated at fixed time intervals throughout the season. Assessment of SARS-CoV-2 infection was performed by a polymerase chain reaction (PCR) test before each official game. RESULTS Of the 84 included participants, 22 were infected with SARS-CoV-2 during follow-up. At the first testing after infection (52.0 ± 11.2 days after positive PCR testing) significantly higher percentages of maximal heart rate (%HRmax) were seen - within the isolated group of infected players- during (p = .006) and after the YYIR (2 min after, p = .013), compared to pre-infection data. This increase in %HRmax was resolved at the second YYIR testing after infection (127.6 ± 33.1 days after positive PCR testing). Additionally, when comparing the first test after infection in formerly infected to non-infected athletes, significantly higher %HRmax were found during (p < .001) and after the YYIR test (p < .001),No significant deficits were found for the jump, muscular strength or sprint tests. Aerobic performance seems compromised even weeks after infection. Simultaneously, anaerobic performance seemed to be spared. Because of the potential detrimental effects on the immune system, caution might be advised with high-intensity exposure until aerobic performance is restored.KEY MESSAGESElite football players' aerobic performance seems to be affected for weeks after they return to sports after a SARS-CoV-2 infection.Similarly, anaerobic performance tests showed no discernible changes between both before and after SARS-CoV-2 infections.Regular YYIR testing is recommended to monitor aerobic performance after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- E Wezenbeek
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | | | - J G Bourgois
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Performance and Sports Sciences, KAA Ghent - UGent, Ghent, Belgium
| | | | | | | | | | - S Verstockt
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | | |
Collapse
|
13
|
Bové HM, Noer VR, Mousing CA. Being a Hospice Nurse in Times of the COVID-19 Pandemic: A Phenomenological Study of Providing End-of-Life Care. J Hosp Palliat Nurs 2023; 25:277-285. [PMID: 37302804 DOI: 10.1097/njh.0000000000000961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
End-of-life care changed during the COVID-19 pandemic, and the previous prevailing hospice philosophy and essential values of hospice care were suddenly under pressure. The aim was to explore hospice nurses' lived experience of providing end-of-life care to patients admitted in an out-hospital hospice setting during the COVID-19 pandemic. Data consist of 10 individual in-depth interviews of hospice nurses. A purposive sampling strategy was used, and the data collection and analysis was guided by a descriptive phenomenology. Providing end-of-life care was described through an existential dimension and a practical-related dimension. The pandemic and the ensuing constraints created an unfamiliar gap, triggering insecurity and unfamiliarity within nursing. Findings are elaborated in the following constituents: being a hospice nurse and providing end-of-life care. The latter constituent was further elucidated in additional perspectives: a new job position and bending the rules. Providing end-of-life care during the COVID-19 regime was a highly challenging and distressing experience due to the coercion of maintaining rules and restrictions as well as providing care. An experience of having to reinvent and work within a new agenda was present. Furthermore, the nurses experienced significant loss of job satisfaction and may be morally injured as well as highly exposed to secondary traumatization.
Collapse
|
14
|
Guo BC, Wu KH, Chen CY, Lin WY, Chang YJ, Lee TA, Lin MJ, Wu HP. Mesenchymal Stem Cells in the Treatment of COVID-19. Int J Mol Sci 2023; 24:14800. [PMID: 37834246 PMCID: PMC10573267 DOI: 10.3390/ijms241914800] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Since the emergence of the coronavirus disease 2019 (COVID-19) pandemic, many lives have been tragically lost to severe infections. The COVID-19 impact extends beyond the respiratory system, affecting various organs and functions. In severe cases, it can progress to acute respiratory distress syndrome (ARDS) and multi-organ failure, often fueled by an excessive immune response known as a cytokine storm. Mesenchymal stem cells (MSCs) have considerable potential because they can mitigate inflammation, modulate immune responses, and promote tissue regeneration. Accumulating evidence underscores the efficacy and safety of MSCs in treating severe COVID-19 and ARDS. Nonetheless, critical aspects, such as optimal routes of MSC administration, appropriate dosage, treatment intervals, management of extrapulmonary complications, and potential pediatric applications, warrant further exploration. These research avenues hold promise for enriching our understanding and refining the application of MSCs in confronting the multifaceted challenges posed by COVID-19.
Collapse
Affiliation(s)
- Bei-Cyuan Guo
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan;
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chun-Yu Chen
- Department of Emergency Medicine, Tungs’ Taichung Metro Harbor Hospital, Taichung 43503, Taiwan;
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan
| | - Wen-Ya Lin
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung 43503, Taiwan
| | - Yu-Jun Chang
- Laboratory of Epidemiology and Biostastics, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Tai-An Lee
- Department of Emergency Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan;
| | - Mao-Jen Lin
- Division of Cardiology, Department of Medicine, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97002, Taiwan
| | - Han-Ping Wu
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| |
Collapse
|
15
|
Borah Slater K, Ahmad M, Poirier A, Stott A, Siedler BS, Brownsword M, Mehat J, Urbaniec J, Locker N, Zhao Y, La Ragione R, Silva SRP, McFadden J. Development of a loop-mediated isothermal amplification (LAMP)-based electrochemical test for rapid detection of SARS-CoV-2. iScience 2023; 26:107570. [PMID: 37664622 PMCID: PMC10470312 DOI: 10.1016/j.isci.2023.107570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Rapid, reliable, sensitive, portable, and accurate diagnostics are required to control disease outbreaks such as COVID-19 that pose an immense burden on human health and the global economy. Here we developed a loop-mediated isothermal amplification (LAMP)-based electrochemical test for the detection of SARS-CoV-2 that causes COVID-19. The test is based on the oxidation-reduction reaction between pyrophosphates (generated from positive LAMP reaction) and molybdate that is detected by cyclic voltammetry using inexpensive and disposable carbon screen printed electrodes. Our test showed higher sensitivity (detecting as low as 5.29 RNA copies/μL) compared to the conventional fluorescent reverse transcriptase (RT)-LAMP. We validated our tests using human serum and saliva spiked with SARS-CoV-2 RNA and clinical (saliva and nasal-pharyngeal) swab samples demonstrating 100% specificity and 93.33% sensitivity. Our assay provides a rapid, specific, and sensitive test with an electrochemical readout in less than 45 min that could be adapted for point-of-care settings.
Collapse
Affiliation(s)
- Khushboo Borah Slater
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Muhammad Ahmad
- Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK
| | - Aurore Poirier
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - Ash Stott
- Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK
| | - Bianca Sica Siedler
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Matthew Brownsword
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Jai Mehat
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Joanna Urbaniec
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Nicolas Locker
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Yunlong Zhao
- Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK
| | - Roberto La Ragione
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - S. Ravi P. Silva
- Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK
| | - Johnjoe McFadden
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
16
|
Oloo MA, Awandu SS, Onyango B, Magwanga RO, Oluoch AO, Lidechi S, Muok EM, Munga S, Estambale B. Comparative analysis of SARS-CoV-2 detection methods using stool, blood, and nasopharyngeal swab samples. Pan Afr Med J 2023; 46:21. [PMID: 38107343 PMCID: PMC10724033 DOI: 10.11604/pamj.2023.46.21.39483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction as a public health policy, the ongoing global coronavirus disease 2019 vaccination drives require continuous tracking, tracing, and testing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnostic testing is important in virus detection and understanding its spread for timely intervention. This is especially important for low-income settings where the majority of the population remains untested. This is well supported by the fact that of about 9% of the Kenyan population had been tested for the virus. Methods this was a cross-sectional study conducted at the Kisumu and Siaya Referral Hospitals in Kenya. Here we report on the sensitivity and specificity of the rapid antigen detection test (Ag-RDT) of SARS-CoV-2 compared with the quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) using stool and nasopharyngeal swab samples. Further, the mean Immunoglobulin M (IgM) and Immunoglobulin G (IgG) antibody levels among symptomatic and asymptomatic individuals in western Kenya were evaluated. Results the sensitivity and specificity of Ag-RDT were 76.3% (95% CI, 59.8-88.6%) and 96.3% (95% CI, 87.3-99.5%) with a negative and positive predictive value of 85% (95% CI, 73.8%-93.0%) and 93% (95% CI, 78.6%-99.2%) respectively. There was substantial agreement of 88% (Kappa value of 0.75, 95% CI, 0.74-0.77) between Ag-RDT and nasopharyngeal swab RT-qPCR, and between stool and nasopharyngeal swab RT-qPCR results (83.7% agreement, Kapa value 0.62, 95% CI 0.45-0.80). The mean IgM and IgG antibody response to SARS-CoV-2 were not different in asymptomatic individuals, 1.11 (95% CI, 0.78-1.44) and 0.88 (95% CI, 0.65-1.11) compared to symptomatic individuals 4.30 (95% CI 3.30-5.31) and 4.16 (95% CI 3.32 -5.00). Conclusion the choice of an appropriate SARS-CoV-2 diagnostic, screening, and surveillance test should be guided by the specific study needs and a rational approach for optimal results.
Collapse
Affiliation(s)
- Marceline Adhiambo Oloo
- School of Biological, Physical, Mathematics and Actuarial Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O Box 210-40601, Bondo, Kenya
| | - Shehu Shagari Awandu
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O Box 210-40601, Bondo, Kenya
| | - Benson Onyango
- School of Biological, Physical, Mathematics and Actuarial Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O Box 210-40601, Bondo, Kenya
| | - Richard Odongo Magwanga
- School of Biological, Physical, Mathematics and Actuarial Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O Box 210-40601, Bondo, Kenya
| | - Alfred Ochieng Oluoch
- School of Biological, Physical, Mathematics and Actuarial Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O Box 210-40601, Bondo, Kenya
| | - Shirley Lidechi
- Kenya Medical Research Institute Centre for Global Health Research (CGHR), P.O Box 1578-40100, Kisumu, Kenya
| | - Erick Mbata Muok
- Kenya Medical Research Institute Centre for Global Health Research (CGHR), P.O Box 1578-40100, Kisumu, Kenya
| | - Stephen Munga
- Kenya Medical Research Institute Centre for Global Health Research (CGHR), P.O Box 1578-40100, Kisumu, Kenya
| | - Benson Estambale
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O Box 210-40601, Bondo, Kenya
| |
Collapse
|
17
|
Musat O, Sorop VB, Sorop MI, Lazar V, Marti DT, Susan M, Avram CR, Oprisoni A, Vulcanescu DD, Horhat FG, Bagiu IC, Horhat DI, Diaconu MM. COVID-19 and Laboratory Markers from Romanian Patients-A Narrative Review. Life (Basel) 2023; 13:1837. [PMID: 37763241 PMCID: PMC10532991 DOI: 10.3390/life13091837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
COVID-19 has significantly impacted the whole world, and Romania was no exception. Biomarkers play a crucial role in understanding and managing the disease. However, research regarding laboratory analyses for patients with COVID-19 is fairly limited. For detection, PCR testing is still considered the golden standard, while antibodies are still useful for monitoring both patients and their vaccination status. In our country, biomarkers such as CRP, LDH, transaminases, cardiac, and iron markers have been used to assess the status of patients and even predict illness outcome. CRP, IL-6, LDH, FER, fibrinogen, creatinine, and vitamin D levels have been associated with increased severity, risk of ICU admission, and death. Cardiac markers and D-dimers are also good predictors, but their role seems more important in patients with complications. HDL cholesterol and BUN levels were also suggested as potential biomarkers. Hematological issues in SARS-CoV-2 infections include neutrophilia, lymphopenia and their ratio, while PCT, which is a marker of bacterial infections, is better to be used in patients with co- or supra-infections. The current research is a narrative review that focuses on the laboratory results of Romanian COVID-19 patients. The goal of this article is to provide an update on the research on biomarkers and other laboratory tests conducted inside the borders of Romania and identify gaps in this regard. Secondly, options for further research are discussed and encouraged.
Collapse
Affiliation(s)
- Ovidiu Musat
- Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania;
- Department of Ophthalmology, “Dr Carol Davila” Central Military Emergency University Hospital, Mircea Vulcanescu Street, No. 88, 010825 Bucharest, Romania
| | - Virgiliu Bogdan Sorop
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.S.); (M.M.D.)
| | - Madalina Ioana Sorop
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.I.S.); (D.D.V.)
| | - Viorica Lazar
- Department of General Medicine, “Vasile Goldis” University of Medicine, Liviu Rebreanu Street, No. 86, 310048 Arad, Romania;
- Pediatric Clinic II, Clinical Hospital Emergency of Arad County, Andrényi Károly Street, No. 2-4, 310037 Arad, Romania
| | - Daniela Teodora Marti
- Department of Biology and Life Sciences, “Vasile Goldis” University of Medicine, Liviu Rebreanu Street, No. 86, 310048 Arad, Romania;
- Clinical Analysis Laboratory Clinical Hospital Emergency of Arad County, Andrényi Károly Street, No. 2-4, 310037 Arad, Romania
| | - Monica Susan
- Department of Internal Medicine, Centre for Preventive Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Cecilia Roberta Avram
- Department of Residential Training and Post-University Courses, “Vasile Goldis” Western University, Liviu Rebreanu Street 86, 310414 Arad, Romania;
| | - Andrada Oprisoni
- Department of Pediatrics, Discipline of Pediatric Oncology and Hematology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Dan Dumitru Vulcanescu
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.I.S.); (D.D.V.)
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Clinical Analysis Laboratory, “Louis Turcanu” Emergency Clinical Hospital for Children, Iosif Nemoianu Street 2, 300011 Timisoara, Romania
| | - Florin George Horhat
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Clinical Analysis Laboratory, “Louis Turcanu” Emergency Clinical Hospital for Children, Iosif Nemoianu Street 2, 300011 Timisoara, Romania
| | - Iulia Cristina Bagiu
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Clinical Analysis Laboratory, “Louis Turcanu” Emergency Clinical Hospital for Children, Iosif Nemoianu Street 2, 300011 Timisoara, Romania
| | - Delia Ioana Horhat
- Department of ENT, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Mircea Mihai Diaconu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.S.); (M.M.D.)
| |
Collapse
|
18
|
Nava G, Casiraghi L, Carzaniga T, Zanchetta G, Chiari M, Damin F, Bollati V, Signorini L, Delbue S, Bellini T, Buscaglia M. Digital Detection of Single Virus Particles by Multi-Spot, Label-Free Imaging Biosensor on Anti-Reflective Glass. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300947. [PMID: 37060208 DOI: 10.1002/smll.202300947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Rapid detection of whole virus particles in biological or environmental samples represents an unmet need for the containment of infectious diseases. Here, an optical device enabling the enumeration of single virion particles binding on antibody or aptamers immobilized on a surface with anti-reflective coating is described. In this regime, nanoparticles adhering to the sensor surface provide localized contributions to the reflected field that become detectable because of their mixing with the interfering waves in the reflection direction. Thus, these settings are exploited to realize a scan-free, label-free, micro-array-type digital assay on a disposable cartridge, in which the virion counting takes place in wide field-of-view imaging. With this approach we could quantify, by enumeration, different variants of SARS-CoV-2 virions interacting with antibodies and aptamers immobilized on different spots. For all tested variants, the aptamers showed larger affinity but lower specificity relative to the antibodies. It is found that the combination of different probes on the same surface enables increasing specificity of detection and dynamic range.
Collapse
Affiliation(s)
- Giovanni Nava
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, via F.lli Cervi, 93, Segrate, Milano, 20054, Italy
| | - Luca Casiraghi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, via F.lli Cervi, 93, Segrate, Milano, 20054, Italy
| | - Thomas Carzaniga
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, via F.lli Cervi, 93, Segrate, Milano, 20054, Italy
| | - Giuliano Zanchetta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, via F.lli Cervi, 93, Segrate, Milano, 20054, Italy
| | - Marcella Chiari
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), via Mario Bianco 11, Milano, 20131, Italy
| | - Francesco Damin
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", National Research Council of Italy (SCITEC-CNR), via Mario Bianco 11, Milano, 20131, Italy
| | - Valentina Bollati
- Dipartimento di Scienze Cliniche e di Comunitá, Universitá degli Studi di Milano, via S. Barnaba 8, Milano, 20122, Italy
| | - Lucia Signorini
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Universitá degli Studi di Milano, via Pascal 36, Milano, 20133, Italy
| | - Serena Delbue
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Universitá degli Studi di Milano, via Pascal 36, Milano, 20133, Italy
| | - Tommaso Bellini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, via F.lli Cervi, 93, Segrate, Milano, 20054, Italy
| | - Marco Buscaglia
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, via F.lli Cervi, 93, Segrate, Milano, 20054, Italy
| |
Collapse
|
19
|
Fu Q, Pang X, Su Z, Yang Y, Liu Y, Zhang Z, Fu Y, Wang J, Zhou J. Rapid On-Site Detection of SARS-CoV-2 Using RT-LAMP Assay with a Portable Low-Cost Device. BIOSENSORS 2023; 13:724. [PMID: 37504122 PMCID: PMC10377351 DOI: 10.3390/bios13070724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
Emerging infectious diseases pose a serious threat to human health and affect social stability. In recent years, the epidemic situation of emerging infectious diseases is very serious; among these infectious diseases, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected many countries and regions in a short time. The prevention and treatment of these diseases require rapid on-site detection methods. However, the common detection method, RT-PCR, requires expensive instruments, complex operations, and professional operators. Here, we developed a portable low-cost assay for rapid on-site detection of viral nucleic acid using reverse transcription-loop-mediated isothermal amplification (RT-LAMP). The SARS-CoV-2 RNA can be successfully amplified within 15 min in a thermos, and the detection result is read rapidly in a portable low-cost device with a sensitivity of 100 copies/µL. The portable low-cost device consists of a black box, a laser or LED and a filter, costing only a few cents. The rapid on-site detection method can provide strong support for the control of biological threats such as infectious diseases. It is also an emergency detection method for low-resource settings, relieving the huge pressure on health care.
Collapse
Affiliation(s)
- Quanying Fu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xueyuan Pang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenning Su
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuxiao Yang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yiren Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ziyue Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yuqiu Fu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jiasi Wang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianhua Zhou
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
20
|
Tang YN, Jiang D, Wang X, Liu Y, Wei D. Recent progress on rapid diagnosis of COVID-19 by point-of-care testing platforms. CHINESE CHEM LETT 2023; 35:108688. [PMID: 37362324 PMCID: PMC10266891 DOI: 10.1016/j.cclet.2023.108688] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
The outbreak of COVID-19 has drawn great attention around the world. SARS-CoV-2 is a highly infectious virus with occult transmission by many mutations and a long incubation period. In particular, the emergence of asymptomatic infections has made the epidemic even more severe. Therefore, early diagnosis and timely management of suspected cases are essential measures to control the spread of the virus. Developing simple, portable, and accurate diagnostic techniques for SARS-CoV-2 is the key to epidemic prevention. The advantages of point-of-care testing technology make it play an increasingly important role in viral detection and screening. This review summarizes the point-of-care testing platforms developed by nucleic acid detection, immunological detection, and nanomaterial-based biosensors detection. Furthermore, this paper provides a prospect for designing future highly accurate, cheap, and convenient SARS-CoV-2 diagnostic technology.
Collapse
Affiliation(s)
- Ya-Nan Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dingding Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
21
|
Pilvenyte G, Ratautaite V, Boguzaite R, Ramanavicius S, Chen CF, Viter R, Ramanavicius A. Molecularly Imprinted Polymer-Based Electrochemical Sensors for the Diagnosis of Infectious Diseases. BIOSENSORS 2023; 13:620. [PMID: 37366985 DOI: 10.3390/bios13060620] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The appearance of biological molecules, so-called biomarkers in body fluids at abnormal concentrations, is considered a good tool for detecting disease. Biomarkers are usually looked for in the most common body fluids, such as blood, nasopharyngeal fluids, urine, tears, sweat, etc. Even with significant advances in diagnostic technology, many patients with suspected infections receive empiric antimicrobial therapy rather than appropriate treatment, which is driven by rapid identification of the infectious agent, leading to increased antimicrobial resistance. To positively impact healthcare, new tests are needed that are pathogen-specific, easy to use, and produce results quickly. Molecularly imprinted polymer (MIP)-based biosensors can achieve these general goals and have enormous potential for disease detection. This article aimed to overview recent articles dedicated to electrochemical sensors modified with MIP to detect protein-based biomarkers of certain infectious diseases in human beings, particularly the biomarkers of infectious diseases, such as HIV-1, COVID-19, Dengue virus, and others. Some biomarkers, such as C-reactive protein (CRP) found in blood tests, are not specific for a particular disease but are used to identify any inflammation process in the body and are also under consideration in this review. Other biomarkers are specific to a particular disease, e.g., SARS-CoV-2-S spike glycoprotein. This article analyzes the development of electrochemical sensors using molecular imprinting technology and the used materials' influence. The research methods, the application of different electrodes, the influence of the polymers, and the established detection limits are reviewed and compared.
Collapse
Affiliation(s)
- Greta Pilvenyte
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Raimonda Boguzaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106, Taiwan
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia
- Center for Collective Use of Scientific Equipment, Sumy State University, 31, Sanatornaya st., 40018 Sumy, Ukraine
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
22
|
Xu W, Shu H, Wang L, Wang XS, Watmough J. The importance of quarantine: modelling the COVID-19 testing process. J Math Biol 2023; 86:81. [PMID: 37097481 PMCID: PMC10127192 DOI: 10.1007/s00285-023-01916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/12/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
We incorporate the disease state and testing state into the formulation of a COVID-19 epidemic model. For this model, the basic reproduction number is identified and its dependence on model parameters related to the testing process and isolation efficacy is discussed. The relations between the basic reproduction number, the final epidemic and peak sizes, and the model parameters are further explored numerically. We find that fast test reporting does not always benefit the control of the COVID-19 epidemic if good quarantine while awaiting test results is implemented. Moreover, the final epidemic and peak sizes do not always increase along with the basic reproduction number. Under some circumstances, lowering the basic reproduction number increases the final epidemic and peak sizes. Our findings suggest that properly implementing isolation for individuals who are waiting for their testing results would lower the basic reproduction number as well as the final epidemic and peak sizes.
Collapse
Affiliation(s)
- Wanxiao Xu
- School of Science, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Hongying Shu
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710062, China.
| | - Lin Wang
- Department of Mathematics and Statistics, University of New Brunswick, Fredericton, E3B 5A3, Canada
| | - Xiang-Sheng Wang
- Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA, 70503, USA
| | - James Watmough
- Department of Mathematics and Statistics, University of New Brunswick, Fredericton, E3B 5A3, Canada
| |
Collapse
|
23
|
Spicuzza L, Campagna D, Di Maria C, Sciacca E, Mancuso S, Vancheri C, Sambataro G. An update on lateral flow immunoassay for the rapid detection of SARS-CoV-2 antibodies. AIMS Microbiol 2023; 9:375-401. [PMID: 37091823 PMCID: PMC10113162 DOI: 10.3934/microbiol.2023020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
Over the last three years, after the outbreak of the COVID-19 pandemic, an unprecedented number of novel diagnostic tests have been developed. Assays to evaluate the immune response to SARS-CoV-2 have been widely considered as part of the control strategy. The lateral flow immunoassay (LFIA), to detect both IgM and IgG against SARS-CoV-2, has been widely studied as a point-of-care (POC) test. Compared to laboratory tests, LFIAs are faster, cheaper and user-friendly, thus available also in areas with low economic resources. Soon after the onset of the pandemic, numerous kits for rapid antibody detection were put on the market with an emergency use authorization. However, since then, scientists have tried to better define the accuracy of these tests and their usefulness in different contexts. In fact, while during the first phase of the pandemic LFIAs for antibody detection were auxiliary to molecular tests for the diagnosis of COVID-19, successively these tests became a tool of seroprevalence surveillance to address infection control policies. When in 2021 a massive vaccination campaign was implemented worldwide, the interest in LFIA reemerged due to the need to establish the extent and the longevity of immunization in the vaccinated population and to establish priorities to guide health policies in low-income countries with limited access to vaccines. Here, we summarize the accuracy, the advantages and limits of LFIAs as POC tests for antibody detection, highlighting the efforts that have been made to improve this technology over the last few years.
Collapse
Affiliation(s)
- Lucia Spicuzza
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Cell-mediated and humoral immunity during COVID-19 in the Republic of Crimea. ACTA BIOMEDICA SCIENTIFICA 2023. [DOI: 10.29413/abs.2023-8.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
The COVID-19 (coronavirus disease 2019) pandemic has spurred the development of highly effective quantitative methods for assessing the adaptive immune response to the SARS-CoV-2 (severe acute respiratory syndrome-related coronavirus 2) virus. In order to assess the humoral component of the immune response, various methods for detecting immunoglobulins A, M, G are widely used. ELISPOT seems to be the most accessible and effective method to assess the level of T cells that specifically respond to the SARS-CoV-2 virus antigens.The aim. To assess cell-mediated and humoral immunity in COVID-19 in residents of the Republic of Crimea.Methods. The study was performed on 24 volunteers: the presence of coronavirus antibodies was determined by ELISA method, and the presence of contact with coronavirus proteins – by the ELISPOT “TigraTest® SARS-CoV-2” method (Generium, Russia). For retrospective study of humoral immunity in the population, we assessed 10 000 ELISA tests (ECOlab IgM and IgG, Russia) performed in our laboratory for the period from July 2020 to January 2022.Results. The results show the effectiveness of using the ELISPOT method to detect latent forms of coronavirus infection. It is important to note that there is statistically significant relationship between the timing of the disease and the number of spots in both antigen panels. After vaccination against SARS-CoV-2, cell-mediated immunity lasts up to 6 months or more.Conclusions. As a result of the study, it was found that during 2021, the level of immunization of the population of the Republic of Crimea against COVID-19 has significantly increased; the proportion of residents who have positive IgG test has increased from 27 % to 87 %. The results of ELISPOT studies using a set of reagents for in vitro detection of blood T-lymphocytes that specifically respond to SARS-COV-2 virus antigens (“TigraTest® SARS-CoV-2”) showed that this method is more sensitive than ELISA in detecting latent diseases.
Collapse
|
25
|
Krishnamoorthy A, Chandrapalan S, JalayeriNia G, Hussain Y, Bannaga A, Lei II, Arasaradnam R. Influence of seasonal and operator variations on diagnostic accuracy of lateral flow devices during the COVID-19 pandemic: a systematic review and meta-analysis. Clin Med (Lond) 2023; 23:144-150. [PMID: 36921988 PMCID: PMC11046551 DOI: 10.7861/clinmed.2022-0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
BACKGROUND Lateral flow tests (LFT) are point-of-care rapid antigen tests that allow isolation and control of disease outbreaks through convenient, practical testing. However, studies have shown significant variation in their diagnostic accuracy. We conducted a systematic review of the diagnostic accuracy of LFTs for the detection of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) to identify potential factors affecting their performance. METHODS A systematic search of online databases was carried out to identify studies assessing the sensitivity and specificity of LFTs compared with polymerase chain reaction (PCR) tests. Data were extracted and used to calculate pooled sensitivity and specificity. Meta-regression analysis was conducted to identify covariates influencing diagnostic accuracy. RESULTS In total, 76 articles with 108,820 test results were identified for analysis. Pooled sensitivity and specificity were 72% (95% confidence interval (CI): 0.68-0.76) and 100% (95% CI: 0.99-1.00), respectively. Staff operation of the LFT showed a statistically significant increase in sensitivity (p=0.04) and specificity (p=0.001) compared with self-operation by the test subjects. The use of LFTs in symptomatic patient subgroups also resulted in higher test sensitivity. CONCLUSION LFTs display good sensitivity and extremely good specificity for SARS-CoV-2 antigen detection; they become more sensitive in patients with symptoms and when performed by trained professionals.
Collapse
Affiliation(s)
| | | | - Gohar JalayeriNia
- University Hospital of Coventry & Warwickshire NHS Trust, Coventry, UK
| | - Yaqza Hussain
- University Hospital of Coventry & Warwickshire NHS Trust, Coventry, UK
| | - Ayman Bannaga
- University Hospital of Coventry & Warwickshire NHS Trust, Coventry, UK
| | - Ian Io Lei
- University Hospital of Coventry & Warwickshire NHS Trust, Coventry, UK
| | | |
Collapse
|
26
|
Srivastava S, Garg I, Singh Y, Meena R, Ghosh N, Kumari B, Kumar V, Eslavath MR, Singh S, Dogra V, Bargotya M, Bhattar S, Gupta U, Jain S, Hussain J, Varshney R, Ganju L. Evaluation of altered miRNA expression pattern to predict COVID-19 severity. Heliyon 2023; 9:e13388. [PMID: 36743852 PMCID: PMC9889280 DOI: 10.1016/j.heliyon.2023.e13388] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Outbreak of COVID-19 pandemic in December 2019 affected millions of people globally. After substantial research, several biomarkers for COVID-19 have been validated however no specific and reliable biomarker for the prognosis of patients with COVID-19 infection exists. Present study was designed to identify specific biomarkers to predict COVID-19 severity and tool for formulating treatment. A small cohort of subjects (n = 43) were enrolled and categorized in four study groups; Dead (n = 16), Severe (n = 10) and Moderate (n = 7) patients and healthy controls (n = 10). Small RNA sequencing was done on Illumina platform after isolation of microRNA from peripheral blood. Differential expression (DE) of miRNA (patients groups compared to control) revealed 118 down-regulated and 103 up-regulated known miRNAs with fold change (FC) expression ≥2 folds and p ≤ 0.05. DE miRNAs were then subjected to functional enrichment and network analysis. Bioinformatic analysis resulted in 31 miRNAs (24 Down-regulated; 7 up-regulated) significantly associated with COVID-19 having AUC>0.8 obtained from ROC curve. Seventeen out of 31 DE miRNAs have been linked to COVID-19 in previous studies. Three miRNAs, hsa-miR-147b-5p and hsa-miR-107 (down-regulated) and hsa-miR-1299 (up-regulated) showed significant unique DE in Dead patients. Another set of 4 miRNAs, hsa-miR-224-5p (down-regulated) and hsa-miR-4659b-3p, hsa-miR-495-3p and hsa-miR-335-3p were differentially up-regulated uniquely in Severe patients. Members of three miRNA families, hsa-miR-20, hsa-miR-32 and hsa-miR-548 were significantly down-regulated in all patients group in comparison to healthy controls. Thus a distinct miRNA expression profile was observed in Dead, Severe and Moderate COVID-19 patients. Present study suggests a panel of miRNAs which identified in COVID-19 patients and could be utilized as potential diagnostic biomarkers for predicting COVID-19 severity.
Collapse
Affiliation(s)
- Swati Srivastava
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India,Corresponding author
| | - Iti Garg
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India,Corresponding author
| | - Yamini Singh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ramesh Meena
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Nilanjana Ghosh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Babita Kumari
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Vinay Kumar
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Malleswara Rao Eslavath
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Sayar Singh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Vikas Dogra
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Mona Bargotya
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Sonali Bhattar
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Utkarsh Gupta
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Shruti Jain
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Javid Hussain
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Rajeev Varshney
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Lilly Ganju
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| |
Collapse
|
27
|
Hadavand F, Shoaei SD, Kharazmi AB. Misdiagnosed Pneumocystis Pneumonia as COVID-19: A Case Report. TANAFFOS 2023; 22:272-275. [PMID: 38628875 PMCID: PMC11016925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/01/2023] [Indexed: 04/19/2024]
Abstract
Nonspecific clinical features and imaging findings of COVID-19 may lead to misdiagnosis with other diseases that have specific risks and treatments. Here a patient is reported with Pneumocystis Pneumonia with an undiagnosed HIV disease who was treated for COVID-19 with no response after one week. COVID-19 was diagnosed by CT findings but PCR was negative. Further evaluation for ground glass opacities confirmed AIDS and clinical response to Pneumocystis Pneumonia treatment.
Collapse
Affiliation(s)
- Fahimeh Hadavand
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Research and Development Center, Imam Hossein Teaching and Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dokht Shoaei
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Research and Development Center, Imam Hossein Teaching and Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Behnam Kharazmi
- Clinical Research and Development Center, Imam Hossein Teaching and Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
COVID-19 diagnostic approaches with an extensive focus on computed tomography in accurate diagnosis, prognosis, staging, and follow-up. Pol J Radiol 2023; 88:e53-e64. [PMID: 36819223 PMCID: PMC9907165 DOI: 10.5114/pjr.2023.124597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/12/2022] [Indexed: 02/10/2023] Open
Abstract
Although a long time has passed since its outbreak, there is currently no specific treatment for COVID-19, and it seems that the most appropriate strategy to combat this pandemic is to identify and isolate infected individuals. Various clinical diagnosis methods such as molecular techniques, serologic assays, and imaging techniques have been developed to identify suspected patients. Although reverse transcription-quantitative PCR (RT-qPCR) has emerged as a reference standard method for diagnosis of SARS-CoV-2, the high rate of false-negative results and limited supplies to meet current demand are the main shortcoming of this technique. Based on a comprehensive literature review, imaging techniques, particularly computed tomography (CT), show an acceptable level of sensitivity in the diagnosis and follow-up of COVID-19. Indeed, because lung infection or pneumonia is a common complication of COVID-19, the chest CT scan can be an alternative testing method in the early diagnosis and treatment assessment of the disease. In this review, we summarize all the currently available frontline diagnostic tools for the detection of SARS-CoV-2-infected individuals and highlight the value of chest CT scan in the diagnosis, prognosis, staging, management, and follow-up of infected patients.
Collapse
|
29
|
Chavda VP, Balar P, Vaghela D, Solanki HK, Vaishnav A, Hala V, Vora L. Omicron Variant of SARS-CoV-2: An Indian Perspective of Vaccination and Management. Vaccines (Basel) 2023; 11:160. [PMID: 36680006 PMCID: PMC9860853 DOI: 10.3390/vaccines11010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Omicron variants have highly influenced the entire globe. It has a high rate of transmissibility, which makes its management tedious. There are various subtypes of omicron, namely BA.1, BA.2, BA.3, BA.4, and BA.5. Currently, one omicron subvariant BF.7 is also immersed in some parts of India. Further studies are required for a better understanding of the new immersing SARS-CoV-2 subvariant of the omicron. They differ in the mutation of the spike proteins, which alters their attachment to the host receptor and hence modifies their virulence and adaptability. Delta variants have a great disastrous influence on the entire world, especially in India. While overcoming it, another mutant catches the pace. The Indian population is highly affected by omicron variants. It alters the entire management and diagnosis system against COVID-19. It demanded forcemeat in the health care system, both qualitatively and quantitively, to cope with the omicron wave. The alteration in spike protein, which is the major target of vaccines, leads to varied immunization against the subvariants. The efficacy of vaccines against the new variant was questioned. Every vaccine had a different shielding effect on the new variant. The hesitancy of vaccination was a prevalent factor in India that might have contributed to its outbreak. The prevalence of omicron, monkeypox, and tomato flu shared some similarities and distinct features when compared to their influence on the Indian population. This review emphasizes the changes omicron brings with it and how the Indian health care system outrage this dangerous variant.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Pankti Balar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Dixa Vaghela
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Hetvi K. Solanki
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Akta Vaishnav
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Vivek Hala
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
30
|
Moghaddam M, Vivarelli S, Falzone L, Libra M, Bonavida B. Cancer resistance via the downregulation of the tumor suppressors RKIP and PTEN expressions: therapeutic implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:170-207. [PMID: 37205308 PMCID: PMC10185445 DOI: 10.37349/etat.2023.00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/12/2022] [Indexed: 05/21/2023] Open
Abstract
The Raf kinase inhibitor protein (RKIP) has been reported to be underexpressed in many cancers and plays a role in the regulation of tumor cells' survival, proliferation, invasion, and metastasis, hence, a tumor suppressor. RKIP also regulates tumor cell resistance to cytotoxic drugs/cells. Likewise, the tumor suppressor, phosphatase and tensin homolog (PTEN), which inhibits the phosphatidylinositol 3 kinase (PI3K)/AKT pathway, is either mutated, underexpressed, or deleted in many cancers and shares with RKIP its anti-tumor properties and its regulation in resistance. The transcriptional and posttranscriptional regulations of RKIP and PTEN expressions and their roles in resistance were reviewed. The underlying mechanism of the interrelationship between the signaling expressions of RKIP and PTEN in cancer is not clear. Several pathways are regulated by RKIP and PTEN and the transcriptional and post-transcriptional regulations of RKIP and PTEN is significantly altered in cancers. In addition, RKIP and PTEN play a key role in the regulation of tumor cells response to chemotherapy and immunotherapy. In addition, molecular and bioinformatic data revealed crosstalk signaling networks that regulate the expressions of both RKIP and PTEN. These crosstalks involved the mitogen-activated protein kinase (MAPK)/PI3K pathways and the dysregulated nuclear factor-kappaB (NF-κB)/Snail/Yin Yang 1 (YY1)/RKIP/PTEN loop in many cancers. Furthermore, further bioinformatic analyses were performed to investigate the correlations (positive or negative) and the prognostic significance of the expressions of RKIP or PTEN in 31 different human cancers. These analyses were not uniform and only revealed that there was a positive correlation between the expression of RKIP and PTEN only in few cancers. These findings demonstrated the existence of signaling cross-talks between RKIP and PTEN and both regulate resistance. Targeting either RKIP or PTEN (alone or in combination with other therapies) may be sufficient to therapeutically inhibit tumor growth and reverse the tumor resistance to cytotoxic therapies.
Collapse
Affiliation(s)
- Matthew Moghaddam
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
- Correspondence: Benjamin Bonavida, Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), 1602 Molecular Sciences Building, 609 Charles E. Young Drive, East Los Angeles, CA 90095, USA.
| |
Collapse
|
31
|
Shoute LCT, Abdelrasoul GN, Ma Y, Duarte PA, Edwards C, Zhuo R, Zeng J, Feng Y, Charlton CL, Kanji JN, Babiuk S, Chen J. Label-free impedimetric immunosensor for point-of-care detection of COVID-19 antibodies. MICROSYSTEMS & NANOENGINEERING 2023; 9:3. [PMID: 36597510 PMCID: PMC9805445 DOI: 10.1038/s41378-022-00460-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/06/2022] [Accepted: 09/25/2022] [Indexed: 05/28/2023]
Abstract
The COVID-19 pandemic has posed enormous challenges for existing diagnostic tools to detect and monitor pathogens. Therefore, there is a need to develop point-of-care (POC) devices to perform fast, accurate, and accessible diagnostic methods to detect infections and monitor immune responses. Devices most amenable to miniaturization and suitable for POC applications are biosensors based on electrochemical detection. We have developed an impedimetric immunosensor based on an interdigitated microelectrode array (IMA) to detect and monitor SARS-CoV-2 antibodies in human serum. Conjugation chemistry was applied to functionalize and covalently immobilize the spike protein (S-protein) of SARS-CoV-2 on the surface of the IMA to serve as the recognition layer and specifically bind anti-spike antibodies. Antibodies bound to the S-proteins in the recognition layer result in an increase in capacitance and a consequent change in the impedance of the system. The impedimetric immunosensor is label-free and uses non-Faradaic impedance with low nonperturbing AC voltage for detection. The sensitivity of a capacitive immunosensor can be enhanced by simply tuning the ionic strength of the sample solution. The device exhibits an LOD of 0.4 BAU/ml, as determined from the standard curve using WHO IS for anti-SARS-CoV-2 immunoglobulins; this LOD is similar to the corresponding LODs reported for all validated and established commercial assays, which range from 0.41 to 4.81 BAU/ml. The proof-of-concept biosensor has been demonstrated to detect anti-spike antibodies in sera from patients infected with COVID-19 within 1 h. Photolithographically microfabricated interdigitated microelectrode array sensor chips & label-free impedimetric detection of COVID-19 antibody.
Collapse
Affiliation(s)
- Lian C. T. Shoute
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Gaser N. Abdelrasoul
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Yuhao Ma
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Pedro A. Duarte
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Cole Edwards
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB Canada
| | - Ran Zhuo
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB Canada
| | - Jie Zeng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Yiwei Feng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Carmen L. Charlton
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7 Canada
- Li Ka Shing Institute for Virology, University of Alberta, Edmonton, AB Canada
| | - Jamil N. Kanji
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7 Canada
- Division of Infectious Diseases, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
- Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB Canada
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2R3 Canada
| |
Collapse
|
32
|
Irkham I, Ibrahim AU, Nwekwo CW, Al-Turjman F, Hartati YW. Current Technologies for Detection of COVID-19: Biosensors, Artificial Intelligence and Internet of Medical Things (IoMT): Review. SENSORS (BASEL, SWITZERLAND) 2022; 23:426. [PMID: 36617023 PMCID: PMC9824404 DOI: 10.3390/s23010426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Despite the fact that COVID-19 is no longer a global pandemic due to development and integration of different technologies for the diagnosis and treatment of the disease, technological advancement in the field of molecular biology, electronics, computer science, artificial intelligence, Internet of Things, nanotechnology, etc. has led to the development of molecular approaches and computer aided diagnosis for the detection of COVID-19. This study provides a holistic approach on COVID-19 detection based on (1) molecular diagnosis which includes RT-PCR, antigen-antibody, and CRISPR-based biosensors and (2) computer aided detection based on AI-driven models which include deep learning and transfer learning approach. The review also provide comparison between these two emerging technologies and open research issues for the development of smart-IoMT-enabled platforms for the detection of COVID-19.
Collapse
Affiliation(s)
- Irkham Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| | | | - Chidi Wilson Nwekwo
- Department of Biomedical Engineering, Near East University, Mersin 99138, Turkey
| | - Fadi Al-Turjman
- Research Center for AI and IoT, Faculty of Engineering, University of Kyrenia, Mersin 99138, Turkey
- Artificial Intelligence Engineering Department, AI and Robotics Institute, Near East University, Mersin 99138, Turkey
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| |
Collapse
|
33
|
Sazed SA, Kibria MG, Zamil MF, Hossain MS, Khan JZ, Juthi RT, Hossain ME, Ahmed D, Noor Z, Haque R, Alam MS. Direct Nasal Swab for Rapid Test and Saliva as an Alternative Biological Sample for RT-PCR in COVID-19 Diagnosis. Microbiol Spectr 2022; 10:e0199822. [PMID: 36453913 PMCID: PMC9769842 DOI: 10.1128/spectrum.01998-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Accurate and early diagnoses are prerequisites for prompt treatment. For coronavirus disease 2019 (COVID-19), it is even more crucial. Currently, choice of methods include rapid diagnostic tests and reverse transcription polymerase chain reaction (RT-PCR) using samples mostly of respiratory origin and sometimes saliva. We evaluated two rapid diagnostic tests with three specimen types using viral transport medium (VTM) containing naso-oropharyngeal (NOP) swabs, direct nasal and direct nasopharyngeal (NP) samples from 428 prospective patients. We also performed RT-PCR for 428 NOP VTM and 316 saliva samples to compare results. The sensitivity of the SD Biosensor Standard Q COVID-19 antigen (Ag) test kit drastically raised from an average of 65.55% (NOP VTM) to 85.25% (direct nasal samples), while RT-PCR was the gold standard. For the CareStart kit, the sensitivity was almost similar for direct NP swabs; the average was 84.57%. The specificities were ≥95% for both SD Biosensor Standard Q and CareStart COVID-19 Ag tests in all platforms. The kits were also able to detect patients with different variants as well. Alternatively, RT-PCR results from saliva and NOP VTM samples showed high sensitivities of 96.45% and 95.48% with respect to each other as standard. The overall results demonstrated high performance of the rapid tests, indicating the suitability for regular surveillance at clinical facilities when using direct nasal or direct NP samples rather than NOP VTM. Additionally, the analysis also signifies not showed that RT-PCR of saliva can be used as an choice of method to RT-PCR of NOP VTM, providing an easier, non-invasive sample collection method. IMPORTANCE There are several methods for the diagnosis of coronavirus disease 2019 (COVID-19), and the choice of methods depends mostly on the resources and level of sensitivity required by the user and health care providers. Still, reverse transcription polymerase chain reaction (RT-PCR) has been chosen as the best method using direct naso-oropharyngeal swabs. There are also other methods of fast detection, such as rapid diagnostic tests (RDTs), which offer result within 15 to 20 min and have become quite popular for self-testing and in the clinical setting. The major drawback of the currently used RT-PCR method is compliance, as it may cause irritation, and patients often refuse to test in such a way. RDTs, although inexpensive, suffer from low sensitivity due to technical issues. In this article, we propose saliva as a noninvasive source for RT-PCR samples and evaluate various specimen types at different times after infection for the best possible output from COVID-19 rapid tests.
Collapse
Affiliation(s)
- Saiful Arefeen Sazed
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Mohammad Golam Kibria
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Md Fahad Zamil
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Mohammad Sharif Hossain
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Jeba Zaman Khan
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Rifat Tasnim Juthi
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Mohammad Enayet Hossain
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Dilruba Ahmed
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Zannatun Noor
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| | - Mohammad Shafiul Alam
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Mohakhali, Bangladesh
| |
Collapse
|
34
|
Zheng X, Duan RH, Gong F, Wei X, Dong Y, Chen R, yue Liang M, Tang C, Lu L. Accuracy of serological tests for COVID-19: A systematic review and meta-analysis. Front Public Health 2022; 10:923525. [PMID: 36589993 PMCID: PMC9800917 DOI: 10.3389/fpubh.2022.923525] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Objective To determine the diagnostic accuracy of serological tests for coronavirus disease-2019 (COVID-19). Methods PubMed, Embase and the Cochrane Library were searched from January 1 2020 to September 2 2022. We included studies that measured the sensitivity, specificity or both qualities of a COVID-19 serological test and a reference standard of a viral culture or reverse transcriptase polymerase chain reaction (RT-PCR). The risk of bias was assessed by using quality assessment of diagnostic accuracy studies 2 (QUADAS-2). The primary outcomes included overall sensitivity and specificity, as stratified by the methods of serological testing [enzyme-linked immunosorbent assays (ELISAs), lateral flow immunoassays (LFIAs) or chemiluminescent immunoassays (CLIAs)] and immunoglobulin classes (IgG, IgM, or both). Secondary outcomes were stratum-specific sensitivity and specificity within the subgroups, as defined by study or participant characteristics, which included the time from the onset of symptoms, testing via commercial kits or an in-house assay, antigen target, clinical setting, serological kit as the index test and the type of specimen for the RT-PCR reference test. Results Eight thousand seven hundred and eighty-five references were identified and 169 studies included. Overall, we judged the risk of bias to be high in 47.9 % (81/169) of the studies, and a low risk of applicability concerns was found in 100% (169/169) of the studies. For each method of testing, the pooled sensitivity of the ELISAs ranged from 81 to 82%, with sensitivities ranging from 69 to 70% for the LFIAs and 77% to 79% for the CLIAs. Among the evaluated tests, IgG (80-81%)-based tests exhibited better sensitivities than IgM-based tests (66-68%). IgG/IgM-based CLIA had the highest sensitivity [87% (86-88%)]. All of the tests displayed high specificity (97-98%). Heterogeneity was observed in all of the analyses. The detection of nucleocapsid protein (77-80%) as the antigen target was found to offer higher sensitivity results than surface protein detection (66-68%). Sensitivity was higher in the in-house assays (78-79%) than in the commercial kits (47-48%). Conclusion Among the evaluated tests, ELISA and CLIA tests performed better in terms of sensitivity than did the LFIA. IgG-based tests had higher sensitivity than IgM-based tests, and combined IgG/IgM test-based CLIA tests had the best overall diagnostic test accuracy. The type of sample, serological kit and timing of use of the specific tests were associated with the diagnostic accuracy. Due to the limitations of the serological tests, other techniques should be quickly approved to provide guidance for the correct diagnosis of COVID-19.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Rui hua Duan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fen Gong
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojing Wei
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Dong
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rouhao Chen
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ming yue Liang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunzhi Tang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Chunzhi Tang
| | - Liming Lu
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China,Liming Lu
| |
Collapse
|
35
|
Fernandes Q, Inchakalody VP, Merhi M, Mestiri S, Taib N, Moustafa Abo El-Ella D, Bedhiafi T, Raza A, Al-Zaidan L, Mohsen MO, Yousuf Al-Nesf MA, Hssain AA, Yassine HM, Bachmann MF, Uddin S, Dermime S. Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines. Ann Med 2022; 54:524-540. [PMID: 35132910 PMCID: PMC8843115 DOI: 10.1080/07853890.2022.2031274] [Citation(s) in RCA: 231] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The emergence of novel and evolving variants of SARS-CoV-2 has fostered the need for change in the form of newer and more adaptive diagnostic methods for the detection of SARS-CoV-2 infections. On the other hand, developing rapid and sensitive diagnostic technologies is now more challenging due to emerging variants and varying symptoms exhibited among the infected individuals. In addition to this, vaccines remain the major mainstay of prevention and protection against infection. Novel vaccines and drugs are constantly being developed to unleash an immune response for the robust targeting of SARS-CoV-2 and its associated variants. In this review, we provide an updated perspective on the current challenges posed by the emergence of novel SARS-CoV-2 mutants/variants and the evolution of diagnostic techniques to enable their detection. In addition, we also discuss the development, formulation, working mechanisms, advantages, and drawbacks of some of the most used vaccines/therapeutic drugs and their subsequent immunological impact.Key messageThe emergence of novel variants of the SARS-CoV-2 in the past couple of months, highlights one of the primary challenges in the diagnostics, treatment, as well as vaccine development against the virus.Advancements in SARS-CoV-2 detection include nucleic acid based, antigen and immuno- assay-based and antibody-based detection methodologies for efficient, robust, and quick testing; while advancements in COVID-19 preventive and therapeutic strategies include novel antiviral and immunomodulatory drugs and SARS-CoV-2 targeted vaccines.The varied COVID-19 vaccine platforms and the immune responses induced by each one of them as well as their ability to battle post-vaccination infections have all been discussed in this review.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.,College of Medicine, Qatar University, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Lobna Al-Zaidan
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Mona O Mohsen
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.,Department of Biomedical Research, Immunology RIA, University of Bern, Bern, Switzerland
| | | | - Ali Ait Hssain
- Medical Intensive Care Unit, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | - Martin F Bachmann
- Department of Biomedical Research, Immunology RIA, University of Bern, Bern, Switzerland.,Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
36
|
Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022; 10:1052436. [PMID: 36507266 PMCID: PMC9732709 DOI: 10.3389/fbioe.2022.1052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the associated coronavirus disease 2019 (COVID-19), which severely affect the respiratory system and several organs and tissues, and may lead to death, have shown how science can respond when challenged by a global emergency, offering as a response a myriad of rapid technological developments. Development of vaccines at lightning speed is one of them. SARS-CoV-2 outbreaks have stressed healthcare systems, questioning patients care by using standard non-adapted therapies and diagnostic tools. In this scenario, nanotechnology has offered new tools, techniques and opportunities for prevention, for rapid, accurate and sensitive diagnosis and treatment of COVID-19. In this review, we focus on the nanotechnological applications and nano-based materials (i.e., personal protective equipment) to combat SARS-CoV-2 transmission, infection, organ damage and for the development of new tools for virosurveillance, diagnose and immune protection by mRNA and other nano-based vaccines. All the nano-based developed tools have allowed a historical, unprecedented, real time epidemiological surveillance and diagnosis of SARS-CoV-2 infection, at community and international levels. The nano-based technology has help to predict and detect how this Sarbecovirus is mutating and the severity of the associated COVID-19 disease, thereby assisting the administration and public health services to make decisions and measures for preparedness against the emerging variants of SARS-CoV-2 and severe or lethal COVID-19.
Collapse
Affiliation(s)
- Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Romina Cabrera-Rodriguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Silvia Perez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Judith Estevez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jonay Garcia-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
37
|
Development of CRISPR-Mediated Nucleic Acid Detection Technologies and Their Applications in the Livestock Industry. Genes (Basel) 2022; 13:genes13112007. [PMID: 36360244 PMCID: PMC9690124 DOI: 10.3390/genes13112007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
The rapid rate of virus transmission and pathogen mutation and evolution highlight the necessity for innovative approaches to the diagnosis and prevention of infectious diseases. Traditional technologies for pathogen detection, mostly PCR-based, involve costly/advanced equipment and skilled personnel and are therefore not feasible in resource-limited areas. Over the years, many promising methods based on clustered regularly interspaced short palindromic repeats and the associated protein systems (CRISPR/Cas), i.e., orthologues of Cas9, Cas12, Cas13 and Cas14, have been reported for nucleic acid detection. CRISPR/Cas effectors can provide one-tube reaction systems, amplification-free strategies, simultaneous multiplex pathogen detection, visual colorimetric detection, and quantitative identification as alternatives to quantitative PCR (qPCR). This review summarizes the current development of CRISPR/Cas-mediated molecular diagnostics, as well as their design software and readout methods, highlighting technical improvements for integrating CRISPR/Cas technologies into on-site applications. It further highlights recent applications of CRISPR/Cas-based nucleic acid detection in livestock industry, including emerging infectious diseases, authenticity and composition of meat/milk products, as well as sex determination of early embryos.
Collapse
|
38
|
Sarangi MK, Padhi S, Patel LD, Rath G, Nanda SS, Yi DK. Theranostic efficiency of biosurfactants against COVID-19 and similar viruses - A review. J Drug Deliv Sci Technol 2022; 76:103764. [PMID: 36090183 PMCID: PMC9444339 DOI: 10.1016/j.jddst.2022.103764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022]
Abstract
The world has witnessed an extreme vulnerability of a pandemic during 2020; originated from China. The coronavirus disease 2019 (COVID-19) is infecting and beginning deaths in thousands to millions, creating of the global economic crisis. Biosurfactants (BSs) can carry the prevention, control and management of pandemic out through diverse approaches, such as pharmaceutical, therapeutic, hygienic and environmental. The microbiotas having virulent intrinsic properties towards starting as easily as spreading of diseases (huge morbidity and mortality) could be inhibited via BSs. Such elements could be recognised for their antimicrobial activity, capability to interact with the immune system via micelles formation and in nanoparticulate synthesis. However, they can be used for developing novel and more effective therapeutics, pharmaceuticals, non-toxic formulations, vaccines, and effective cleaning agents. Such approaches can be utilized for product development and implemented for managing and combating the pandemic conditions. This review emphasized on the potentiality of BSs as key components with several ways for protecting against unknown and known pathogens, including COVID-19.
Collapse
Affiliation(s)
- Manoj Kumar Sarangi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, Pin-248001, India
| | - Sasmita Padhi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, Pin-248001, India
| | - L D Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, Pin-391760, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, 751030, Odisha, India
| | | | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin, 03674, South Korea
| |
Collapse
|
39
|
Gu Z, Sun T, Guo Q, Wang Y, Ge Y, Gu H, Xu G, Xu H. Bead-Based Multiplexed Droplet Digital Polymerase Chain Reaction in a Single Tube Using Universal Sequences: An Ultrasensitive, Cross-Reaction-Free, and High-Throughput Strategy. ACS Sens 2022; 7:2759-2766. [PMID: 36041054 DOI: 10.1021/acssensors.2c01415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The multiplexed digital polymerase chain reaction (PCR) is widely used in molecular diagnosis owing to its high sensitivity and throughput for multiple target detection compared with the single-plexed digital PCR; however, current multiplexed digital PCR technologies lack efficient coding strategies that do not compromise the sensitivity and signal-to-noise (S/N) ratio. Hence, we propose a fluorescent-encoded bead-based multiplexed droplet digital PCR method for ultra-high coding capacity, along with the creative design of universal sequences (primer and fluorescent TaqMan probe) for ultra-sensitivity and high S/N ratios. First, pre-amplification is used to introduce universal primers and universal fluorescent TaqMan probes to reduce primer interference and background noise, as well as to enrich regions of interest in targeted analytes. Second, fluorescent-encoded beads (FEBs), coupled with the corresponding target sequence-specific capture probes through streptavidin-biotin conjugation, are used to partition amplicons via hybridization according to the Poisson distribution. Finally, FEBs mixed with digital PCR mixes are isolated into droplets generated via Sapphire chips (Naica Crystal Digital PCR system) to complete the digital PCR and result analysis. For proof of concept, we demonstrate that this method achieves high S/N ratios in a 5-plexed assay for influenza viruses and SARS-CoV-2 at concentrations below 10 copies and even close to a single molecule per reaction without cross-reaction, further verifying the possibility of clinical actual sample detection with 100% accuracy, which paves the way for the realization of digital PCR with ultrahigh coding capacity and ultra-sensitivity.
Collapse
Affiliation(s)
- Zhejia Gu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Tong Sun
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Qingsheng Guo
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yao Wang
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yunfei Ge
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Hongchen Gu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Gaolian Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Hong Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
40
|
Progress and Challenges of Point-of-Need Photonic Biosensors for the Diagnosis of COVID-19 Infections and Immunity. BIOSENSORS 2022; 12:bios12090678. [PMID: 36140063 PMCID: PMC9496547 DOI: 10.3390/bios12090678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022]
Abstract
The new coronavirus disease, COVID-19, caused by SARS-CoV-2, continues to affect the world and after more than two years of the pandemic, approximately half a billion people are reported to have been infected. Due to its high contagiousness, our life has changed dramatically, with consequences that remain to be seen. To prevent the transmission of the virus, it is crucial to diagnose COVID-19 accurately, such that the infected cases can be rapidly identified and managed. Currently, the gold standard of testing is polymerase chain reaction (PCR), which provides the highest accuracy. However, the reliance on centralized rapid testing modalities throughout the COVID-19 pandemic has made access to timely diagnosis inconsistent and inefficient. Recent advancements in photonic biosensors with respect to cost-effectiveness, analytical performance, and portability have shown the potential for such platforms to enable the delivery of preventative and diagnostic care beyond clinics and into point-of-need (PON) settings. Herein, we review photonic technologies that have become commercially relevant throughout the COVID-19 pandemic, as well as emerging research in the field of photonic biosensors, shedding light on prospective technologies for responding to future health outbreaks. Therefore, in this article, we provide a review of recent progress and challenges of photonic biosensors that are developed for the testing of COVID-19, consisting of their working fundamentals and implementation for COVID-19 testing in practice with emphasis on the challenges that are faced in different development stages towards commercialization. In addition, we also present the characteristics of a biosensor both from technical and clinical perspectives. We present an estimate of the impact of testing on disease burden (in terms of Disability-Adjusted Life Years (DALYs), Quality Adjusted Life Years (QALYs), and Quality-Adjusted Life Days (QALDs)) and how improvements in cost can lower the economic impact and lead to reduced or averted DALYs. While COVID19 is the main focus of these technologies, similar concepts and approaches can be used and developed for future outbreaks of other infectious diseases.
Collapse
|
41
|
Liquid Biopsy and Circulating Biomarkers for the Diagnosis of Precancerous and Cancerous Oral Lesions. Noncoding RNA 2022; 8:ncrna8040060. [PMID: 36005828 PMCID: PMC9414906 DOI: 10.3390/ncrna8040060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Oral cancer is one of the most common malignancies worldwide, accounting for 2% of all cases annually and 1.8% of all cancer deaths. To date, tissue biopsy and histopathological analyses are the gold standard methods for the diagnosis of oral cancers. However, oral cancer is generally diagnosed at advanced stages with a consequent poor 5-year survival (~50%) due to limited screening programs and inefficient physical examination strategies. To address these limitations, liquid biopsy is recently emerging as a novel minimally invasive tool for the early identification of tumors as well as for the evaluation of tumor heterogeneity and prognosis of patients. Several studies have demonstrated that liquid biopsy in oral cancer could be useful for the detection of circulating biomarkers including circulating tumor DNA (ctDNA), microRNAs (miRNAs), proteins, and exosomes, thus improving diagnostic strategies and paving the way to personalized medicine. However, the application of liquid biopsy in oral cancer is still limited and further studies are needed to better clarify its clinical impact. The present manuscript aims to provide an updated overview of the potential use of liquid biopsy as an additional tool for the management of oral lesions by describing the available methodologies and the most promising biomarkers.
Collapse
|
42
|
Nagy B. Foreword: Current Laboratory Aspects of COVID-19. EJIFCC 2022; 33:75-78. [PMID: 36313908 PMCID: PMC9562487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Béla Nagy
- Corresponding author: Béla Nagy Jr., MD, PhD Department of Laboratory Medicine Faculty of Medicine, University of Debrecen Nagyerdei krt. 98 H-4032, Debrecen Hungary E-mail:
| |
Collapse
|
43
|
Kwok HF. The significance of advanced COVID-19 diagnostic testing in pandemic control measures. Int J Biol Sci 2022; 18:4610-4617. [PMID: 35874951 PMCID: PMC9305263 DOI: 10.7150/ijbs.72837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/02/2022] [Indexed: 12/11/2022] Open
Abstract
During the 2 years since the start of the novel coronavirus disease 2019 (COVID-19) pandemic, the scientific world made an enormous effort to fight against this disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has high transmissibility. Advancements in vaccine and treatment strategies have reduced both the hospitalization and mortality rates. However, the virus has shown its ability to evolve and evade from our COVID-19 combating armamentaria by the most common evolution mechanism—mutation. Diagnostic testing has been the first line of defense following the identification of the causative agent. Ever since, the scientific community has developed nuclei acid-based, antigen-based, and antibody-based diagnostic tests, and these testing methodologies are still playing a central role in slowing down viral transmission. These testing methods have different sensitivity and specificity and could be optimally used in areas facing different challenges owing to different level and conditions of COVID-19 outbreak. In this review, we discuss these testing methodologies as well as the considerations on how to apply these diagnostic tests optimally in the community to cope with the ever-changing pandemic conditions.
Collapse
Affiliation(s)
- Hang Fai Kwok
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| |
Collapse
|
44
|
Wadden J, Newell BS, Bugbee J, John V, Bruzek AK, Dickson RP, Koschmann C, Blaauw D, Narayanasamy S, Das R. Ultra-rapid somatic variant detection via real-time targeted amplicon sequencing. Commun Biol 2022; 5:708. [PMID: 35840782 PMCID: PMC9284968 DOI: 10.1038/s42003-022-03657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Molecular markers are essential for cancer diagnosis, clinical trial enrollment, and some surgical decision making, motivating ultra-rapid, intraoperative variant detection. Sequencing-based detection is considered the gold standard approach, but typically takes hours to perform due to time-consuming DNA extraction, targeted amplification, and library preparation times. In this work, we present a proof-of-principle approach for sub-1 hour targeted variant detection using real-time DNA sequencers. By modifying existing protocols, optimizing for diagnostic time-to-result, we demonstrate confirmation of a hot-spot mutation from tumor tissue in ~52 minutes. To further reduce time, we explore rapid, targeted Loop-mediated Isothermal Amplification (LAMP) and design a bioinformatics tool-LAMPrey-to process sequenced LAMP product. LAMPrey's concatemer aware alignment algorithm is designed to maximize recovery of diagnostically relevant information leading to a more rapid detection versus standard read alignment approaches. Using LAMPrey, we demonstrate confirmation of a hot-spot mutation (250x support) from tumor tissue in less than 30 minutes.
Collapse
Affiliation(s)
- Jack Wadden
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA.
- Division of Computer Science and Engineering, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA.
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
| | - Brandon S Newell
- Division of Computer Science and Engineering, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joshua Bugbee
- Division of Computer Science and Engineering, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vishal John
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Amy K Bruzek
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Robert P Dickson
- Division of Pulmonary and Critical Care, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Carl Koschmann
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - David Blaauw
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Satish Narayanasamy
- Division of Computer Science and Engineering, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Reetuparna Das
- Division of Computer Science and Engineering, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
45
|
Supervised Learning Models for the Preliminary Detection of COVID-19 in Patients Using Demographic and Epidemiological Parameters. INFORMATION 2022. [DOI: 10.3390/info13070330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The World Health Organization labelled the new COVID-19 breakout a public health crisis of worldwide concern on 30 January 2020, and it was named the new global pandemic in March 2020. It has had catastrophic consequences on the world economy and well-being of people and has put a tremendous strain on already-scarce healthcare systems globally, particularly in underdeveloped countries. Over 11 billion vaccine doses have already been administered worldwide, and the benefits of these vaccinations will take some time to appear. Today, the only practical approach to diagnosing COVID-19 is through the RT-PCR and RAT tests, which have sometimes been known to give unreliable results. Timely diagnosis and implementation of precautionary measures will likely improve the survival outcome and decrease the fatality rates. In this study, we propose an innovative way to predict COVID-19 with the help of alternative non-clinical methods such as supervised machine learning models to identify the patients at risk based on their characteristic parameters and underlying comorbidities. Medical records of patients from Mexico admitted between 23 January 2020 and 26 March 2022, were chosen for this purpose. Among several supervised machine learning approaches tested, the XGBoost model achieved the best results with an accuracy of 92%. It is an easy, non-invasive, inexpensive, instant and accurate way of forecasting those at risk of contracting the virus. However, it is pretty early to deduce that this method can be used as an alternative in the clinical diagnosis of coronavirus cases.
Collapse
|
46
|
Hajikarimlou M, Hooshyar M, Moutaoufik M, Aly K, Azad T, Takallou S, Jagadeesan S, Phanse S, Said K, Samanfar B, Bell J, Dehne F, Babu M, Golshani A. A computational approach to rapidly design peptides that detect SARS-CoV-2 surface protein S. NAR Genom Bioinform 2022; 4:lqac058. [PMID: 36004308 PMCID: PMC9394169 DOI: 10.1093/nargab/lqac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The coronavirus disease 19 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prompted the development of diagnostic and therapeutic frameworks for timely containment of this pandemic. Here, we utilized our non-conventional computational algorithm, InSiPS, to rapidly design and experimentally validate peptides that bind to SARS-CoV-2 spike (S) surface protein. We previously showed that this method can be used to develop peptides against yeast proteins, however, the applicability of this method to design peptides against other proteins has not been investigated. In the current study, we demonstrate that two sets of peptides developed using InSiPS method can detect purified SARS-CoV-2 S protein via ELISA and Surface Plasmon Resonance (SPR) approaches, suggesting the utility of our strategy in real time COVID-19 diagnostics. Mass spectrometry-based salivary peptidomics shortlist top SARS-CoV-2 peptides detected in COVID-19 patients’ saliva, rendering them attractive SARS-CoV-2 diagnostic targets that, when subjected to our computational platform, can streamline the development of potent peptide diagnostics of SARS-CoV-2 variants of concern. Our approach can be rapidly implicated in diagnosing other communicable diseases of immediate threat.
Collapse
Affiliation(s)
- Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa , Health Science Campus, Ottawa , Ontario , Canada
- Department of Biology, Carleton University , Ottawa , Ontario , Canada
| | - Mohsen Hooshyar
- Ottawa Institute of Systems Biology, University of Ottawa , Health Science Campus, Ottawa , Ontario , Canada
- Department of Biology, Carleton University , Ottawa , Ontario , Canada
| | - Mohamed Taha Moutaoufik
- Department of Biochemistry, Research and Innovation Centre, University of Regina , Regina , Canada
| | - Khaled A Aly
- Department of Biochemistry, Research and Innovation Centre, University of Regina , Regina , Canada
| | - Taha Azad
- The Ottawa Hospital Research Institute 501 Smyth Road , Ottawa , Ontario , Canada
| | - Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa , Health Science Campus, Ottawa , Ontario , Canada
- Department of Biology, Carleton University , Ottawa , Ontario , Canada
| | - Sasi Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa , Health Science Campus, Ottawa , Ontario , Canada
- Department of Biology, Carleton University , Ottawa , Ontario , Canada
| | - Sadhna Phanse
- Department of Biochemistry, Research and Innovation Centre, University of Regina , Regina , Canada
| | - Kamaledin B Said
- Department of Biology, Carleton University , Ottawa , Ontario , Canada
- Department of Pathology and Microbiology, College of Medicine, University of Hail , Saudi Arabia
| | - Bahram Samanfar
- Ottawa Institute of Systems Biology, University of Ottawa , Health Science Campus, Ottawa , Ontario , Canada
- Department of Biology, Carleton University , Ottawa , Ontario , Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC) , Ottawa , Ontario , Canada
| | - John C Bell
- The Ottawa Hospital Research Institute 501 Smyth Road , Ottawa , Ontario , Canada
| | - Frank Dehne
- School of Computer Science, Carleton University , Ottawa , Ontario , Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina , Regina , Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa , Health Science Campus, Ottawa , Ontario , Canada
- Department of Biology, Carleton University , Ottawa , Ontario , Canada
| |
Collapse
|
47
|
Chantaravisoot N, Kaewsapsak P, Mayuramart O, Nimsamer P, Mankhong S, Chomta N, Bootsri R, Alee I, Wongkongkathep P, Treeprasertsuk S, Payungporn S. COVID-19 active case findings based on self-collected saliva samples with CRISPR-Cas12a detection. Exp Biol Med (Maywood) 2022; 247:1228-1234. [PMID: 35473361 PMCID: PMC9379603 DOI: 10.1177/15353702221090181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
COVID-19 is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus affecting the world population. Early detection has become one of the most successful strategies to alleviate the epidemic and pandemic of this contagious coronavirus. Surveillance testing programs have been initiated in many countries worldwide to prevent the outbreak of COVID-19. In this study, we demonstrated that our previously established clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a-based assay could detect variants of concern during 2021 in Thailand, including Alpha, Beta, and Delta strains as well as Omicron strain in early 2022. In combination with the newly designed saliva collection funnel, we established a safe, simple, economical, and efficient self-collection protocol for the COVID-19 screening process. We successfully utilized the assay in an active case finding with a total number of 578 asymptomatic participants to detect the SARS-CoV-2 in saliva samples. We finally demonstrated that the validation and evaluation in a large-scale setting could provide valuable information and elaborate the practicality of the test in real-world settings. Our optimized protocol yielded effective results with high sensitivity, specificity, and diagnostic accuracy (96.86%). In addition, this study demonstrates COVID-19 active case findings in low-resource settings, which would be feasible and attractive for surveillance and outbreak prevention in the future.
Collapse
Affiliation(s)
- Naphat Chantaravisoot
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Kaewsapsak
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Oraphan Mayuramart
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pattaraporn Nimsamer
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwanan Mankhong
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nantinee Chomta
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rungnapa Bootsri
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Isara Alee
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piriya Wongkongkathep
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sombat Treeprasertsuk
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Sunchai Payungporn.
| |
Collapse
|
48
|
Dentamaro V, Giglio P, Impedovo D, Moretti L, Pirlo G. AUCO ResNet: an end-to-end network for Covid-19 pre-screening from cough and breath. PATTERN RECOGNITION 2022; 127:108656. [PMID: 35313619 PMCID: PMC8920577 DOI: 10.1016/j.patcog.2022.108656] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 05/09/2023]
Abstract
This study presents the Auditory Cortex ResNet (AUCO ResNet), it is a biologically inspired deep neural network especially designed for sound classification and more specifically for Covid-19 recognition from audio tracks of coughs and breaths. Differently from other approaches, it can be trained end-to-end thus optimizing (with gradient descent) all the modules of the learning algorithm: mel-like filter design, feature extraction, feature selection, dimensionality reduction and prediction. This neural network includes three attention mechanisms namely the squeeze and excitation mechanism, the convolutional block attention module, and the novel sinusoidal learnable attention. The attention mechanism is able to merge relevant information from activation maps at various levels of the network. The net takes as input raw audio files and it is able to fine tune also the features extraction phase. In fact, a Mel-like filter is designed during the training, thus adapting filter banks on important frequencies. AUCO ResNet has proved to provide state of art results on many datasets. Firstly, it has been tested on many datasets containing Covid-19 cough and breath. This choice is related to the fact that that cough and breath are language independent, allowing for cross dataset tests with generalization aims. These tests demonstrate that the approach can be adopted as a low cost, fast and remote Covid-19 pre-screening tool. The net has also been tested on the famous UrbanSound 8K dataset, achieving state of the art accuracy without any data preprocessing or data augmentation technique.
Collapse
Affiliation(s)
- Vincenzo Dentamaro
- Università degli studi di Bari "Aldo Moro", Department of Computer Science, via Orabona 4, Bari, 70125, Italy
| | - Paolo Giglio
- Università degli studi di Bari "Aldo Moro", Department of Computer Science, via Orabona 4, Bari, 70125, Italy
| | - Donato Impedovo
- Università degli studi di Bari "Aldo Moro", Department of Computer Science, via Orabona 4, Bari, 70125, Italy
| | - Luigi Moretti
- Università degli studi di Bari "Aldo Moro", Medical School, Bari, Italy
| | - Giuseppe Pirlo
- Università degli studi di Bari "Aldo Moro", Department of Computer Science, via Orabona 4, Bari, 70125, Italy
| |
Collapse
|
49
|
Lino A, Cardoso MA, Martins‐Lopes P, Gonçalves HMR. Omicron - The new SARS-CoV-2 challenge? Rev Med Virol 2022; 32:e2358. [PMID: 35445774 PMCID: PMC9111063 DOI: 10.1002/rmv.2358] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 01/05/2023]
Abstract
SARS-CoV-2 virus has infected nearly 300 M people worldwide and has been associated with over 6 M deaths by March 2022. Since the virus emergence in December 2019 in Wuhan, several new mutations have been described. The World Health Organization has developed a working name for these emerging variants according to their impact on the worldwide population. In this context a high alert has been paid to variants of concern (VOC) due to their high infectiousness and transmissibility patterns. The most recent VOC, Omicron (B.1.1.529), has become dominant in the shortest time ever and has placed Europe under an overwhelming and unprecedented number of new cases. This variant has numerous mutations in regions that are associated with higher transmissibility, stronger viral binding, affinity and antibody escape. Moreover, the mutations and deletions present in the spike protein suggest that the SARS-CoV-2 specific attachment inhibitors may not be the best option for Omicron therapy. Omicron is the dominant variant circulating worldwide and, at the end of February 2022, it was responsible for nearly all sequences reported to GISAID. Omicron is made up of several sublineages, where the most common are BA.1 and BA.2 (or Nextstrain clade 21K and 21L, respectively). At a global level, it is possible to say that the proportion of BA.2 has been increasing relative to BA.1 and in some countries it has been replacing it at high rates. In order to better assess the Omicron effectiveness on antibody escape, spread and infectious ability it is of the highest relevance to maintain a worldwide tight surveillance. Even though this variant has been associated with a lower death rate, it is important to highlight that the number of people becoming infected is concerning and that further unpredictable mutations may emerge as the number of infected people rises.
Collapse
Affiliation(s)
- A. Lino
- BioISI ‐ Biosystems & Integrative Sciences InstituteFaculty of SciencesUniversity of LisbonLisbonPortugal
| | - M. A. Cardoso
- REQUIMTEInstituto Superior de Engenharia do PortoPortoPortugal
| | - P. Martins‐Lopes
- BioISI ‐ Biosystems & Integrative Sciences InstituteFaculty of SciencesUniversity of LisbonLisbonPortugal
- Department of Genetics and Biotechnology (DGB)University of Trás‐os‐Montes e Alto Douro (UTAD)Vila RealPortugal
| | | |
Collapse
|
50
|
Lee CG, Lee D. Comparison of Laboratory Tests Applied for Diagnosing the SARS-CoV-2 Infection. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2022. [DOI: 10.15324/kjcls.2022.54.2.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Chang-Gun Lee
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| | - Dongsup Lee
- Department of Clinical Laboratory Science, Hyejeon College, Hongseong, Korea
| |
Collapse
|