1
|
Liu X, Zhao X, Zhang J, Wang Y, Ye X. Rolling Circle Amplification Integrating with Exonuclease-III-Assisted Color Reaction for Sensitive Telomerase Activity Analysis. ACS OMEGA 2024; 9:49081-49087. [PMID: 39713626 PMCID: PMC11656203 DOI: 10.1021/acsomega.4c03839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024]
Abstract
Telomerase activation can lead to the escape from cell senescence and immortalization, playing a crucial role in the growth and proliferation of cancer cells. Therefore, the detection of telomerase activity is essential for cancer diagnosis and treatment. Herein, we develop a novel ultrasensitive and visually detectable platform. By incorporation of exonuclease-III (Exo-III), this platform achieves dual signal amplification of rolling circle amplification products. Additionally, the colorimetric analysis of 3,3',5,5'-tetramethylbiphenyl (TMB) chromogenic reaction system provides this approach with unique advantages such as simplicity, speediness, and sensitivity. The detection platform exhibits high sensitivity and specificity in actual sample testing, which aligns closely with results obtained using commercial kits. Moreover, it offers ease-of-use through visual determination by the naked eyes. This finding indicates that our proposed sensing method performs satisfactorily in detecting telomerase in real biological samples. Henceforth, we believe that this sensing platform holds great potential for clinical diagnosis and anticancer drug development.
Collapse
Affiliation(s)
- Xiaoya Liu
- Department
of Oncology, The First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
| | - Xianxian Zhao
- Central
Laboratory, Chongqing University FuLing
Hospital, Chongqing 408099, China
| | - Jie Zhang
- Department
of Oncology, The First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
| | - Yihan Wang
- Department
of Oncology, The First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoping Ye
- Department
of Ultrasound, The First Affiliated Hospital
of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Apetroaei MM, Fragkiadaki P, Velescu BȘ, Baliou S, Renieri E, Dinu-Pirvu CE, Drăgănescu D, Vlăsceanu AM, Nedea MI(I, Udeanu DI, Docea AO, Tsatsakis A, Arsene AL. Pharmacotherapeutic Considerations on Telomere Biology: The Positive Effect of Pharmacologically Active Substances on Telomere Length. Int J Mol Sci 2024; 25:7694. [PMID: 39062937 PMCID: PMC11276808 DOI: 10.3390/ijms25147694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Telomeres are part of chromatin structures containing repeated DNA sequences, which function as protective caps at the ends of chromosomes and prevent DNA degradation and recombination, thus ensuring the integrity of the genome. While telomere length (TL) can be genetically inherited, TL shortening has been associated with ageing and multiple xenobiotics and bioactive substances. TL has been characterised as a reliable biomarker for the predisposition to developing chronic pathologies and their progression. This narrative review aims to provide arguments in favour of including TL measurements in a complex prognostic and diagnostic panel of chronic pathologies and the importance of assessing the effect of different pharmacologically active molecules on the biology of telomeres. Medicines used in the management of cardiovascular diseases, diabetes, schizophrenia, hormone replacement therapy at menopause, danazol, melatonin, and probiotics have been studied for their positive protective effects against TL shortening. All these classes of drugs are analysed in the present review, with a particular focus on the molecular mechanisms involved.
Collapse
Affiliation(s)
- Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Voutes, 71003 Heraklion, Greece; (P.F.); (S.B.); (E.R.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Bruno Ștefan Velescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Stella Baliou
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Voutes, 71003 Heraklion, Greece; (P.F.); (S.B.); (E.R.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Elisavet Renieri
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Voutes, 71003 Heraklion, Greece; (P.F.); (S.B.); (E.R.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Cristina Elena Dinu-Pirvu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Doina Drăgănescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Ana Maria Vlăsceanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Marina Ionela (Ilie) Nedea
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Denisa Ioana Udeanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Artistidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Voutes, 71003 Heraklion, Greece; (P.F.); (S.B.); (E.R.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Andreea Letiția Arsene
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| |
Collapse
|
3
|
Tsatsakis A, Renieri E, Tsoukalas D, Buga AM, Sarandi E, Vakonaki E, Fragkiadaki P, Alegakis A, Nikitovic D, Calina D, Spandidos DA, Docea AO. A novel nutraceutical formulation increases telomere length and activates telomerase activity in middle‑aged rats. Mol Med Rep 2023; 28:232. [PMID: 37921058 PMCID: PMC10668076 DOI: 10.3892/mmr.2023.13119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
Telomeres are major contributors to cell fate and aging through their involvement in cell cycle arrest and senescence. The accelerated attrition of telomeres is associated with aging‑related diseases, and agents able to maintain telomere length (TL) through telomerase activation may serve as potential treatment strategies. The aim of the present study was to assess the potency of a novel telomerase activator on TL and telomerase activity in vivo. The administration of a nutraceutical formulation containing Centella asiatica extract, vitamin C, zinc and vitamin D3 in 18‑month‑old rats for a period of 3 months reduced the telomere shortening rate at the lower supplement dose and increased mean the TL at the higher dose, compared to pre‑treatment levels. TL was determined using the Q‑FISH method in peripheral blood mononuclear cells collected from the tail vein of the rats and cultured with RPMI‑1640 medium. In both cases, TLs were significantly longer compared to the untreated controls (P≤0.001). In addition, telomerase activity was increased in the peripheral blood mononuclear cells of both treatment groups. On the whole, the present study demonstrates that the nutraceutical formulation can maintain or even increase TL and telomerase activity in middle‑aged rats, indicating a potential role of this formula in the prevention and treatment of aging‑related diseases.
Collapse
Affiliation(s)
- Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
- Lifeplus S.A., 71003 Heraklion, Greece
| | - Elisavet Renieri
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
- Lifeplus S.A., 71003 Heraklion, Greece
| | - Dimitris Tsoukalas
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece
- European Institute of Molecular Medicine (EINUMM), I-00198 Rome, Italy
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ana Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Evangelia Sarandi
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
- Lifeplus S.A., 71003 Heraklion, Greece
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
- Lifeplus S.A., 71003 Heraklion, Greece
| | - Athanasios Alegakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
- Lifeplus S.A., 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
4
|
Vellingiri B, Balasubramani K, Iyer M, Raj N, Elangovan A, Song K, Yeo HC, Jayakumar N, Kinoshita M, Thangarasu R, Narayanasamy A, Dayem AA, Prajapati VK, Gopalakrishnan AV, Cho SG. Role of Telomeres and Telomerase in Parkinson's Disease-A New Theranostics? Adv Biol (Weinh) 2023; 7:e2300097. [PMID: 37590305 DOI: 10.1002/adbi.202300097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/19/2023] [Indexed: 08/19/2023]
Abstract
Parkinson's disease (PD) is a complex condition that is significantly influenced by oxidative stress and inflammation. It is also suggested that telomere shortening (TS) is regulated by oxidative stress which leads to various diseases including age-related neurodegenerative diseases like PD. Thus, it is anticipated that PD would result in TS of peripheral blood mononuclear cells (PBMCs). Telomeres protect the ends of eukaryotic chromosomes preserving them against fusion and destruction. The TS is a normal process because DNA polymerase is unable to replicate the linear ends of the DNA due to end replication complications and telomerase activity in various cell types counteracts this process. PD is usually observed in the aged population and progresses over time therefore, disparities among telomere length in PBMCs of PD patients are recorded and it is still a question whether it has any useful role. Here, the likelihood of telomere attrition in PD and its implications concerning microglia activation, ageing, oxidative stress, and the significance of telomerase activators are addressed. Also, the possibility of telomeres and telomerase as a diagnostic and therapeutic biomarker in PD is discussed.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Kiruthika Balasubramani
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, Tamil Nadu, 641021, India
| | - Neethu Raj
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Ajay Elangovan
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Kwonwoo Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Han-Cheol Yeo
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Namitha Jayakumar
- Department of Biotechnology, Sri Ramakrishna College of Arts and Science, Coimbatore, Tamil Nadu, 641006, India
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, Ondoyama-Cho, Narutaki, Ukyo-Ku, Kyoto, 616-8255, Japan
| | - Ravimanickam Thangarasu
- Department of Zoology, School of Science, Tamil Nadu Open University, Saidapet, Chennai, 600015, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular and Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
5
|
Wang Y, Wu M, Xiang L, Liu S, Luo G, Lin Q, Xiao L. Association of Dietary Vitamin C Consumption with Serum Klotho Concentrations. Foods 2023; 12:4230. [PMID: 38231677 DOI: 10.3390/foods12234230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Klotho is widely recognized as a protein that combats aging and possesses antioxidative characteristics, which have been implicated in the pathophysiology of numerous diseases. There is emerging evidence suggesting that the consumption of dietary nutrients, particularly those rich in antioxidants, could be associated with serum Klotho concentrations. Dietary vitamin C is one of the critical nutrients that possesses antioxidant properties. Nonetheless, the association between dietary vitamin C consumption and serum Klotho concentrations remains unclear. OBJECTIVE Aiming to evaluate the relationship between serum Klotho concentrations and dietary vitamin C consumption among Americans aged 40 to 79, we conducted a population-based study. METHODS From the National Health and Nutrition Examination Survey (NHANES) conducted between 2007 and 2016, a grand total of 11,282 individuals who met the criteria were selected as eligible participants for the study. Serum Klotho concentrations were measured using an ELISA kit that is commercially available. Trained interviewers evaluated the consumption of dietary vitamin C in the diet through a 24-hour dietary recall technique. A generalized linear model was used to evaluate the correlation between the consumption of dietary vitamin C in the diet and serum Klotho concentrations. Further examination was conducted using restricted cubic spline (RCS) analysis to explore the non-linear correlation between dietary vitamin C consumption in the diet and serum Klotho concentrations. RESULTS After accounting for possible confounding factors, serum Klotho concentrations rose by 1.17% (95% confidence interval (CI): 0.37%, 1.99%) with every standard deviation (SD) rise in dietary vitamin C consumption. With the first quintile of dietary vitamin C consumption as a reference, the percentage change of serum Klotho concentrations in the fifth quintile of dietary vitamin C consumption was 3.66% higher (95% CI: 1.05%, 6.32%). In older, normal-weight, and male participants, the subgroup analysis revealed a stronger correlation between dietary vitamin C consumption and serum Klotho concentrations. Analysis of RCS showed a linear positive association between dietary vitamin C consumption and the levels of serum Klotho concentrations. CONCLUSION The findings of this research indicate a strong and positive correlation between dietary vitamin C consumption and serum Klotho concentrations among the general adult population in the United States. Further studies are needed to validate the present findings and to explore specific mechanisms.
Collapse
Affiliation(s)
- Yan Wang
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Mingyang Wu
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Lu Xiang
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Si Liu
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Gang Luo
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Qian Lin
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Lin Xiao
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| |
Collapse
|
6
|
Kakridonis F, Pneumatikos SG, Vakonaki E, Berdiaki A, Tzatzarakis MN, Fragkiadaki P, Spandidos DA, Baliou S, Ioannou P, Hatzidaki E, Nikitovic D, Tsatsakis A, Vasiliadis E. Telomere length as a predictive biomarker in osteoporosis (Review). Biomed Rep 2023; 19:87. [PMID: 37881605 PMCID: PMC10594068 DOI: 10.3892/br.2023.1669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023] Open
Abstract
Telomeres are the ends of chromosomes that protect them from DNA damage. There is evidence to suggest that telomere shortening appears with advanced age. Since aging is a significant risk factor for developing age-related complications, it is plausible that telomere shortening may be involved in the development of osteoporosis. The present review summarizes the potential of telomere shortening as a biomarker for detecting the onset of osteoporosis. For the purposes of the present review, the following scientific databases were searched for relevant articles: PubMed/NCBI, Cochrane Library of Systematic Reviews, Scopus, Embase and Google Scholar. The present review includes randomized and non-randomized controlled studies and case series involving humans, irrespective of the time of their publication. In six out of the 11 included studies providing data on humans, there was at least a weak association between telomere length and osteoporosis, with the remaining studies exhibiting no such association. As a result, telomere shortening may be used as a biomarker or as part of a panel of biomarkers for tracking the onset and progression of osteoporosis.
Collapse
Affiliation(s)
- Fotios Kakridonis
- 5th Department of Orthopaedics, KAT Attica General Hospital, 14561 Athens, Greece
| | - Spyros G. Pneumatikos
- 3rd Department of Orthopaedics, KAT Attica General Hospital, 14561 Athens, Greece
- Department of Orthopaedics, Medical School, Kapodistrian University of Athens, 11527 Athens, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Stella Baliou
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Petros Ioannou
- Laboratory of Internal Medicine, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Eleftheria Hatzidaki
- Department of Neonatology and NICU, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Elias Vasiliadis
- 3rd Department of Orthopaedics, KAT Attica General Hospital, 14561 Athens, Greece
| |
Collapse
|
7
|
Lee YJ, Chen SR, Ko PE, Yang MY, Yu MH, Wang CJ, Lee HJ. Quercetin-3-O-β-d-glucuronide in the Nuciferine Leaf Polyphenol Extract Promotes Neurogenesis Involving the Upregulation of the Tropomyosin Receptor Kinase (Trk) Receptor and AKT/Phosphoinositide 3-Kinase Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15582-15592. [PMID: 37819167 DOI: 10.1021/acs.jafc.3c03894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Neurogenesis is crucial during the human lifespan for the maintenance of synaptic plasticity and normal function. The impairment of hippocampal neurogenesis in adults may lead to neurodegenerative disease, such as Alzheimer's disease. Miquelianin (quercetin-3-O-β-d-glucuronide, Q3GA) is a constituent of the nuciferine leaf polyphenol extract (NLPE), and it has protective effects against neurodegeneration. In this study, we examined the effect of the NLPE on neurogenesis and the mechanisms underlying Q3GA on neurogenesis. We fed 24-week-old male C57BL/6 mice with 0.1 or 0.25% NLPE for 2 weeks. NLPE treatment increased small spindle-shaped stem cell numbers in the subgranular zone and the number of doublecortin (DCX)- and neuron-specific nuclear protein (NeuN)-expressing neurons. HT22, a hippocampal cell line, treated with Q3GA revealed significant neurite growth and upregulated TrkR and PI3K/Akt levels. The evidence from a model of retinoic acid-induced SH-SY5Y cell differentiation showed that Q3GA or NLPE increases neurite growth significantly. Taken together, the NLPE containing Q3GA to promote neurogenesis involving the upregulation of TrkR and the PI3K/Akt signaling pathway might be potentiated as an alternative strategy for the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Yi-Ju Lee
- Department of Pathology, Chung-Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
- Department of Pathology, School of Medicine, Chung-Shan Medical University, No. 110, Section, Jianguo N. Road, Taichung 40201, Taiwan
| | - Sin-Rong Chen
- Institute of Medicine, Chung-Shan Medical University, No. 110, Section, Jianguo N. Road, Taichung 40201, Taiwan
| | - Ping-En Ko
- Department of Medical Laboratory and Biotechnology, Chung-Shan Medical University, No. 110, Section, Jianguo N. Road, Taichung 40201, Taiwan
| | - Mon-Yuan Yang
- Department of Health Diet and Industry Management, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
| | - Meng-Hsuin Yu
- Department of Health Diet and Industry Management, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
- Department of Nutrition, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
| | - Chau-Jong Wang
- Department of Health Diet and Industry Management, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
| | - Huei-Jane Lee
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
- Department of Clinical Biochemistry, Chung Shan Medical University Hospital, No.110, Sec. 1, Jianguo N Road, South District, Taichung 40201, Taiwan
| |
Collapse
|
8
|
Sharifi-Rad J, Seidel V, Izabela M, Monserrat-Mequida M, Sureda A, Ormazabal V, Zuniga FA, Mangalpady SS, Pezzani R, Ydyrys A, Tussupbekova G, Martorell M, Calina D, Cho WC. Phenolic compounds as Nrf2 inhibitors: potential applications in cancer therapy. Cell Commun Signal 2023; 21:89. [PMID: 37127651 PMCID: PMC10152593 DOI: 10.1186/s12964-023-01109-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Cancer is a leading cause of death worldwide and involves an oxidative stress mechanism. The transcription factor Nrf2 has a crucial role in cytoprotective response against oxidative stress, including cancer growth and progression and therapy resistance. For this reason, inhibitors of Nrf2 are new targets to be studied. Traditional plant-based remedies rich in phytochemicals have been used against human cancers and phenolic compounds are known for their chemopreventive properties. This comprehensive review offers an updated review of the role of phenolic compounds as anticancer agents due to their action on Nrf2 inhibition. In addition, the role of naturally-occurring bioactive anticancer agents are covered in the clinical applications of polyphenols as Nrf2 inhibitors. Video Abstract.
Collapse
Affiliation(s)
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michalak Izabela
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372, Wroclaw, Poland
| | - Margalida Monserrat-Mequida
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122, Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122, Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Valeska Ormazabal
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Felipe A Zuniga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | | | - Raffaele Pezzani
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, 35128, Padova, Italy
- AIROB, Associazione Italiana Per La Ricerca Oncologica Di Base, Padova, Italy
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040, Almaty, Kazakhstan
- The Elliott School of International Affairs, 1957 E St NW, George Washington UniversityWashington DC, 20052, USA
| | - Gulmira Tussupbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040, Almaty, Kazakhstan
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386, Concepción, Chile.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
9
|
Ijaz S, Iqbal J, Abbasi BA, Ullah Z, Yaseen T, Kanwal S, Mahmood T, Sydykbayeva S, Ydyrys A, Almarhoon ZM, Sharifi-Rad J, Hano C, Calina D, Cho WC. Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications. Biomed Pharmacother 2023; 162:114687. [PMID: 37062215 DOI: 10.1016/j.biopha.2023.114687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023] Open
Abstract
Cancer is still the leading cause of death worldwide, burdening the global medical system. Rosmarinic acid (RA) is among the first secondary metabolites discovered and it is a bioactive compound identified in plants such as Boraginaceae and Nepetoideae subfamilies of the Lamiaceae family, including Thymus masticmasti chinaythia koreana, Ocimum sanctum, and Hyptis pectinate. This updated review is to highlight the chemopreventive and chemotherapeutic effects of RA and its derivatives, thus providing valuable clues for the potential development of some complementary drugs in the treatment of cancers. Relevant information about RA's chemopreventive and chemotherapeutic effects and its derivatives were collected from electronic scientific databases, such as PubMed/Medline, Scopus, TRIP database, Web of Science, and Science Direct. The results of the studies showed numerous significant biological effects such as antiviral, antibacterial, anti-inflammatory, anti-tumour, antioxidant and antiangiogenic effects. Most of the studies on the anticancer potential with the corresponding mechanisms are still in the experimental preclinical stage and are missing evidence from clinical trials to support the research. To open new anticancer therapeutic perspectives of RA and its derivatives, future clinical studies must elucidate the molecular mechanisms and targets of action in more detail, the human toxic potential and adverse effects.
Collapse
Affiliation(s)
- Shumaila Ijaz
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan.
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi 46300, Pakistan
| | - Zakir Ullah
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Kanwal
- Department of Biology and Environmental Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Sandugash Sydykbayeva
- Higher School of Natural Sciences, Zhetysu University named after I.Zhansugurov, 040009 Taldykorgan, Kazakhstan
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi ave. 71, 050040, Kazakhstan
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Christophe Hano
- Laboratoire de Biologie Des Ligneux Et Des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, 45067 Orléans Cedex2, France.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
10
|
Yu X, Liu MM, Zheng CY, Liu YT, Wang Z, Wang ZY. Telomerase reverse transcriptase and neurodegenerative diseases. Front Immunol 2023; 14:1165632. [PMID: 37063844 PMCID: PMC10091515 DOI: 10.3389/fimmu.2023.1165632] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Neurodegenerative diseases (NDs) are chronic conditions that result in progressive damage to the nervous system, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and Amyotrophic lateral sclerosis (ALS). Age is a major risk factor for NDs. Telomere shortening is a biological marker of cellular aging, and telomerase reverse transcriptase (TERT) has been shown to slow down this process by maintaining telomere length. The blood-brain barrier (BBB) makes the brain a unique immune organ, and while the number of T cells present in the central nervous system is limited, they play an important role in NDs. Research suggests that NDs can be influenced by modulating peripheral T cell immune responses, and that TERT may play a significant role in T cell senescence and NDs. This review focuses on the current state of research on TERT in NDs and explores the potential connections between TERT, T cells, and NDs. Further studies on aging and telomeres may provide valuable insights for developing therapeutic strategies for age-related diseases.
Collapse
|
11
|
Zahra N, Iqbal J, Arif M, Abbasi BA, Sher H, Nawaz AF, Yaseen T, Ydyrys A, Sharifi-Rad J, Calina D. A comprehensive review on traditional uses, phytochemistry and pharmacological properties of Paeonia emodi Wall. ex Royle: current landscape and future perspectives. Chin Med 2023; 18:23. [PMID: 36859262 PMCID: PMC9979516 DOI: 10.1186/s13020-023-00727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Paeonia emodi Wall. ex Royle is commonly known as Himalayan paeony has great importance as a food and medicine. The practice of Paeonia emodi Wall. ex Royle is very ancient and it is conventionally used for a wide range of illnesses in the folk system of medicine because of its wide beneficial phytochemical profile. The main purpose of the current review was the synthesis of recent data on botany, ethnopharmacology, phytochemistry and potential pharmacological mechanisms of action of Paeonia emodi Wall. ex Royle, thus offering new prospects for the development of new adjuvant natural therapies. Using scientific databases such as PubMed/MedLine, Scopus, Web of Science, ScienceDirect, Google Scholar, Springer, and Wiley, a comprehensive literature search was performed for Paeonia emodi Wall. ex Royle. For searching, we used the next MeSH terms: "Biological Product/isolation and purification", "Biological Products/pharmacology", "Drug Discovery/methods", "Ethnopharmacology, Medicine", "Traditional/methods", "Paeonia/chemistry", "Plant Extracts/pharmacology", "Phytochemicals/chemistry", "Phytochemicals/pharmacology", "Plants, Medicinal". The results of the most recent studies were analyzed and the most important data were summarized in tables and figures. Phytochemical research of Paeonia emodi Wall. ex Royle has led to the isolation of triterpenes, monoterpenes, phenolic acids, fatty acids, organic compounds, steroids, free radicals and some other classes of primary metabolites. In addition, diverse pharmacological activities like antibacterial, antifungal, anticoagulant, airway relaxant lipoxygenase and beta-glucuronidase inhibiting activity, radical scavenging activity, phytotoxic and insecticidal activities have been reported for Paeonia emodi Wall. ex Royle. Different bioactive compounds of Paeonia emodi Wall. ex Royle has proven their therapeutic potential in modern pharmacological and biomedical research to cure numerous gastrointestinal and nervous disorders. In future, further in vitro and in vivo therapeutic studies are required to identify new mechanisms of action, pharmacokinetics studies, and new pharmaceutical formulations for target transport and possible interaction with allopathic drugs. Also, new research regarding quality evaluation, toxicity and safety data in humans is needed.
Collapse
Affiliation(s)
- Nida Zahra
- Department of Biotechnology, University of Mianwali, Mianwali, 42200 Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa Pakistan
| | - Muhammad Arif
- Department of Biotechnology, University of Mianwali, Mianwali, 42200 Pakistan
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi, 46300 Pakistan
| | - Hassan Sher
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju, 19201 Pakistan
| | - Ayesha Fazal Nawaz
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa Pakistan
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040 Almaty, Kazakhstan
- The Elliott School of International Affairs, George Washington University, 1957 E St NW, Washington, DC 20052 USA
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
12
|
Pellicer N, Cozzolino M, Diaz-García C, Galliano D, Cobo A, Pellicer A, Herraiz S. Ovarian rescue in women with premature ovarian insufficiency: facts and fiction. Reprod Biomed Online 2023; 46:543-565. [PMID: 36710157 DOI: 10.1016/j.rbmo.2022.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
The ovary has a comparatively short functional lifespan compared with other organs, and genetic and pathological injuries can further shorten its functional life. Thus, preserving ovarian function should be considered in the context of women with threats to ovarian reserve, such as ageing, premature ovarian insufficiency (POI) and diminished ovarian reserve (DOR). Indeed, one-third of women with POI retain resting follicles that can be reactivated to produce competent oocytes, as proved by the in-vitro activation of dormant follicles. This paper discusses mechanisms and clinical data relating to new therapeutic strategies using ovarian fragmentation, stem cells or platelet-rich plasma to regain ovarian function in women of older age (>38 years) or with POI or DOR. Follicle reactivation techniques show promising experimental outcomes and have been successful in some cases, when POI is established or DOR diagnosed; however, there is scarce clinical evidence to warrant their widespread clinical use. Beyond these contexts, also discussed is how new insights into the biological mechanisms governing follicular dynamics and oocyte competence may play a role in reversing ovarian damage, as no technique modifies oocyte quality. Additional studies should focus on increasing follicle number and quality. Finally, there is a small but important subgroup of women lacking residual follicles and requiring oocyte generation from stem cells.
Collapse
Affiliation(s)
| | | | - César Diaz-García
- IVI London, EGA Institute for Women's Health, UCL, London, UK; IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | | | - Ana Cobo
- IVI RMA Valencia, Valencia, Spain
| | - Antonio Pellicer
- IVI RMA Rome, Rome, Italy; IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Sonia Herraiz
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.
| |
Collapse
|
13
|
The Vitamin D Receptor as a Potential Target for the Treatment of Age-Related Neurodegenerative Diseases Such as Alzheimer's and Parkinson's Diseases: A Narrative Review. Cells 2023; 12:cells12040660. [PMID: 36831327 PMCID: PMC9954016 DOI: 10.3390/cells12040660] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The vitamin D receptor (VDR) belongs to the nuclear receptor superfamily of transcription factors. The VDR is expressed in diverse brain regions and has been implicated in the neuroprotective, antiaging, prosurvival, and anti-inflammatory action of vitamin D. Accordingly, a relationship between vitamin D insufficiency and susceptibility to neurodegenerative diseases has been suggested. However, due to the multitargeted mechanisms of vitamin D and its often overlapping genomic and nongenomic effects, the role of the VDR in brain pathologies remains obscure. In this narrative review, we present progress in deciphering the molecular mechanism of nuclear VDR-mediated vitamin D effects on prosurvival and anti-inflammatory signaling pathway activity within the central nervous system. In line with the concept of the neurovascular unit in pathomechanisms of neurodegenerative diseases, a discussion of the role of the VDR in regulating the immune and vascular brain systems is also included. Next, we discuss the results of preclinical and clinical studies evaluating the significance of vitamin D status and the efficacy of vitamin D supplementation in the treatment of Parkinson's and Alzheimer's diseases, emphasizing the possible role of the VDR in these phenomena. Finally, the associations of some VDR polymorphisms with higher risks and severity of these neurodegenerative disorders are briefly summarized.
Collapse
|
14
|
Chaudhary P, Mitra D, Das Mohapatra PK, Oana Docea A, Mon Myo E, Janmeda P, Martorell M, Iriti M, Ibrayeva M, Sharifi-Rad J, Santini A, Romano R, Calina D, Cho WC. Camellia sinensis: insights on its molecular mechanisms of action towards nutraceutical, anticancer potential and other therapeutic applications. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
15
|
Cai Y, Zhong YD, Zhang H, Lu PL, Liang YY, Hu B, Wu H. Association between dietary vitamin C and telomere length: A cross-sectional study. Front Nutr 2023; 10:1025936. [PMID: 36776610 PMCID: PMC9908946 DOI: 10.3389/fnut.2023.1025936] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/04/2023] [Indexed: 01/28/2023] Open
Abstract
Background Currently, telomere length is known to reflect the replication potential and longevity of cells, and many studies have reported that telomere length is associated with age-related diseases and biological aging. Studies have also shown that vitamin C acts as an oxidant and free radical scavenger to protect cells from oxidative stress and telomere wear, thus achieving anti-aging effects. At present, there are few and incomplete studies on the relationship between vitamin C and telomere length, so this study aims to explore the relationship between vitamin C and telomere length. Methods This study used cross-sectional data from the National Health and Nutrition Examination Surveys (NHANES) database from 1999 to 2002, a total of 7,094 participants were selected from all races in the United States. Male participants accounted for 48.2% and female participants accounted for 51.8%. The correlation between vitamin C and telomere length was assessed using a multiple linear regression model, and the effect of dietary vitamin C on telomere length was obtained after adjusting for confounding factors such as age, gender, race, body mass index (BMI), and poverty income ratio (PIR). Results This cross-sectional study showed that vitamin C was positively correlated with telomere length, with greater dietary vitamin C intake associated with longer telomeres (β = 0.03, 95% CI: 0.01-0.05, P = 0.003). Conclusion This study shows that vitamin C intake is positively correlated with human telomere length, which is of guiding significance for our clinical guidance on people's health care, but our study need to be confirmed by more in-depth and comprehensive other research results.
Collapse
Affiliation(s)
- Yuan Cai
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangzhou Medical University, Guangzhou, China
| | - Yu-di Zhong
- Guangdong Ocean University, Zhanjiang, China
| | - Hao Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Department of Medical Imaging, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Pei-lin Lu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yong-yi Liang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangzhou Medical University, Guangzhou, China
| | - Biao Hu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangzhou Medical University, Guangzhou, China,Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China,*Correspondence: Biao Hu,
| | - Hui Wu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Hui Wu,
| |
Collapse
|
16
|
SHARIFI-RAD J, ALMARHOON ZM, ADETUNJI CO, SAMUEL MICHAEL O, CHANDRAN D, RADHA R, SHARMA N, KUMAR M, CALINA D. Neuroprotective effect of curcumin and curcumin-integrated nanocarriers in stroke: from mechanisms to therapeutic opportunities. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2022. [DOI: 10.23736/s2724-542x.22.02946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Sharifi-Rad J, Herrera-Bravo J, Kamiloglu S, Petroni K, Mishra AP, Monserrat-Mesquida M, Sureda A, Martorell M, Aidarbekovna DS, Yessimsiitova Z, Ydyrys A, Hano C, Calina D, Cho WC. Recent advances in the therapeutic potential of emodin for human health. Biomed Pharmacother 2022; 154:113555. [PMID: 36027610 DOI: 10.1016/j.biopha.2022.113555] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 01/01/2023] Open
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a bioactive compound, a natural anthraquinone aglycone, present mainly in herbaceous species of the families Fabaceae, Polygonaceae and Rhamnaceae, with a physiological role in protection against abiotic stress in vegetative tissues. Emodin is mainly used in traditional Chinese medicine to treat sore throats, carbuncles, sores, blood stasis, and damp-heat jaundice. Pharmacological research in the last decade has revealed other potential therapeutic applications such as anticancer, neuroprotective, antidiabetic, antioxidant and anti-inflammatory. The present study aimed to summarize recent studies on bioavailability, preclinical pharmacological effects with evidence of molecular mechanisms, clinical trials and clinical pitfalls, respectively the therapeutic limitations of emodin. For this purpose, extensive searches were performed using the PubMed/Medline, Scopus, Google scholar, TRIP database, Springer link, Wiley and SciFinder databases as a search engines. The in vitro and in vivo studies included in this updated review highlighted the signaling pathways and molecular mechanisms of emodin. Because its bioavailability is low, there are limitations in clinical therapeutic use. In conclusion, for an increase in pharmacotherapeutic efficacy, future studies with carrier molecules to the target, thus opening up new therapeutic perspectives.
Collapse
Affiliation(s)
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile; Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Senem Kamiloglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Gorukle, Bursa, Turkey; Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, 16059 Gorukle, Bursa, Turkey
| | - Katia Petroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy.
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand 246174, India.
| | - Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health and Health Research Institute of Balearic Islands (IdISBa), University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health and Health Research Institute of Balearic Islands (IdISBa), University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Miquel Martorell
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile; Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile.
| | - Dossymbetova Symbat Aidarbekovna
- Almaty Tecnological University, Kazakh-Russian Medical University, Almaty 050012, str. Tole bi 100, Str. Torekulova 71, Kazakhstan.
| | - Zura Yessimsiitova
- Department of Biodiversity and Bioresource, Al-Farabi Kazakh National University, al-Farabi av. 71, 050040 Almaty, Kazakhstan.
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, al-Farabi av. 71, 050040 Almaty, Kazakhstan.
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Eure et Loir Campus, 28000 Chartres, France.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
18
|
Sharma E, Attri DC, Sati P, Dhyani P, Szopa A, Sharifi-Rad J, Hano C, Calina D, Cho WC. Recent updates on anticancer mechanisms of polyphenols. Front Cell Dev Biol 2022; 10:1005910. [PMID: 36247004 PMCID: PMC9557130 DOI: 10.3389/fcell.2022.1005910] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
In today’s scenario, when cancer cases are increasing rapidly, anticancer herbal compounds become imperative. Studies on the molecular mechanisms of action of polyphenols published in specialized databases such as Web of Science, Pubmed/Medline, Google Scholar, and Science Direct were used as sources of information for this review. Natural polyphenols provide established efficacy against chemically induced tumor growth with fewer side effects. They can sensitize cells to various therapies and increase the effectiveness of biotherapy. Further pharmacological translational research and clinical trials are needed to evaluate theirs in vivo efficacy, possible side effects and toxicity. Polyphenols can be used to design a potential treatment in conjunction with existing cancer drug regimens such as chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- High Altitude Plant Physiology Research Centre (HAPPRC), HNB Garhwal University, Srinagar, Uttarakhand, India
| | - Priyanka Sati
- Graphic Era University, Dehradun, Uttarakhand, India
| | - Praveen Dhyani
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Kraków, Poland
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
- *Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; William C. Cho,
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Eure et Loir Campus, Chartres, France
- *Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; William C. Cho,
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- *Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; William C. Cho,
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
- *Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; William C. Cho,
| |
Collapse
|
19
|
Konovalov DA, Cáceres EA, Shcherbakova EA, Herrera-Bravo J, Chandran D, Martorell M, Hasan M, Kumar M, Bakrim S, Bouyahya A, Cho WC, Sharifi-Rad J, Suleria HAR, Calina D. Eryngium caeruleum: an update on ethnobotany, phytochemistry and biomedical applications. Chin Med 2022; 17:114. [PMID: 36175969 PMCID: PMC9523986 DOI: 10.1186/s13020-022-00672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A biennial or perennial plant of the Apiaceae family, Eryngium caeruleum M. Bieb. is traditionally used in medicine as an antitoxic, diuretic, digestive, anti-inflammatory and analgesic drug. This plant is widely distributed in temperate regions around the world. Young leaves of the plant are used in cooking as aromatic cooked vegetables in various local products in Iran. PURPOSE The current review aimed to highlight complete and updated information about the Eryngium caeruleum species, regarding botanical, ethnopharmacological, phytochemical data, pharmacological mechanisms as well as some nutritional properties. All this scientific evidence supports the use of this species in complementary medicine, thus opening new therapeutic perspectives for the treatment of some diseases. METHODS The information provided in this updated review is collected from several scientific databases such as PubMed/Medline, ScienceDirect, Mendeley, Scopus, Web of Science and Google Scholar. Ethnopharmacology books and various professional websites were also researched. RESULTS The phytochemical composition of the aerial parts and roots of E. caeruleum is represented by the components of essential oil (EO), phenolic compounds, saponins, protein, amino acids, fiber, carbohydrates, and mineral elements. The antioxidant, antimicrobial, antidiabetic, antihypoxic, and anti-inflammatory properties of E. caeruleum have been confirmed by pharmacological experiments with extracts using in vitro and in vivo methods. The syrup E. caeruleum relieved dysmenorrhea as effectively as Ibuprofen in the blinded, randomized, placebo-controlled clinical study. CONCLUSION Current evidence from experimental pharmacological studies has shown that the different bioactive compounds present in the species E. caeruleum have multiple beneficial effects on human health, being potentially active in the treatment of many diseases. Thus, the traditional uses of this species are supported based on evidence. In future, translational and human clinical studies are necessary to establish effective therapeutic doses in humans.
Collapse
Affiliation(s)
| | - Edgardo Avendaño Cáceres
- Departamento de Química e Ingeniería Química, Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohman, Av. Miraflores s/n, Tacna, 23001 Perú
| | | | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, 642109 Tamil Nadu India
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386 Concepción, Chile
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR - Central Institute of Agricultural Engineering, Bhopal, 462038 India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, 400019 India
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies, and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | | | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Daniela Calina
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
20
|
Multi-Target Mechanisms of Phytochemicals in Alzheimer’s Disease: Effects on Oxidative Stress, Neuroinflammation and Protein Aggregation. J Pers Med 2022; 12:jpm12091515. [PMID: 36143299 PMCID: PMC9500804 DOI: 10.3390/jpm12091515] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by a tangle-shaped accumulation of beta-amyloid peptide fragments and Tau protein in brain neurons. The pathophysiological mechanism involves the presence of Aβ-amyloid peptide, Tau protein, oxidative stress, and an exacerbated neuro-inflammatory response. This review aims to offer an updated compendium of the most recent and promising advances in AD treatment through the administration of phytochemicals. The literature survey was carried out by electronic search in the following specialized databases PubMed/Medline, Embase, TRIP database, Google Scholar, Wiley, and Web of Science regarding published works that included molecular mechanisms and signaling pathways targeted by phytochemicals in various experimental models of Alzheimer’s disease in vitro and in vivo. The results of the studies showed that the use of phytochemicals against AD has gained relevance due to their antioxidant, anti-neuroinflammatory, anti-amyloid, and anti-hyperphosphorylation properties of Tau protein. Some bioactive compounds from plants have been shown to have the ability to prevent and stop the progression of Alzheimer’s.
Collapse
|
21
|
Asgharian P, Quispe C, Herrera-Bravo J, Sabernavaei M, Hosseini K, Forouhandeh H, Ebrahimi T, Sharafi-Badr P, Tarhriz V, Soofiyani SR, Helon P, Rajkovic J, Durna Daştan S, Docea AO, Sharifi-Rad J, Calina D, Koch W, Cho WC. Pharmacological effects and therapeutic potential of natural compounds in neuropsychiatric disorders: An update. Front Pharmacol 2022; 13:926607. [PMID: 36188551 PMCID: PMC9521271 DOI: 10.3389/fphar.2022.926607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropsychiatric diseases are a group of disorders that cause significant morbidity and disability. The symptoms of psychiatric disorders include anxiety, depression, eating disorders, autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder, and conduct disorder. Various medicinal plants are frequently used as therapeutics in traditional medicine in different parts of the world. Nowadays, using medicinal plants as an alternative medication has been considered due to their biological safety. Despite the wide range of medications, many patients are unable to tolerate the side effects and eventually lose their response. By considering the therapeutic advantages of medicinal plants in the case of side effects, patients may prefer to use them instead of chemical drugs. Today, the use of medicinal plants in traditional medicine is diverse and increasing, and these plants are a precious heritage for humanity. Investigation about traditional medicine continues, and several studies have indicated the basic pharmacology and clinical efficacy of herbal medicine. In this article, we discuss five of the most important and common psychiatric illnesses investigated in various studies along with conventional therapies and their pharmacological therapies. For this comprehensive review, data were obtained from electronic databases such as MedLine/PubMed, Science Direct, Web of Science, EMBASE, DynaMed Plus, ScienceDirect, and TRIP database. Preclinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common psychiatric disorders. The mechanisms of action of the analyzed biocompounds are presented in detail. The bioactive compounds analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in the pharmacotherapy of neuropsychiatric diseases. Although comparative studies have been carefully reviewed in the preclinical pharmacology field, no clinical studies have been found to confirm the efficacy of herbal medicines compared to FDA-approved medicines for the treatment of mental disorders. Therefore, future clinical studies are needed to accelerate the potential use of natural compounds in the management of these diseases.
Collapse
Affiliation(s)
- Parina Asgharian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Mahsa Sabernavaei
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Forouhandeh
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ebrahimi
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paria Sharafi-Badr
- Department of Pharmacognosy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paweł Helon
- Branch in Sandomierz, Jan Kochanowski University of Kielce, Sandomierz, Poland
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, Sivas, Turkey
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| |
Collapse
|
22
|
Hong M, Yu J, Wang X, Liu Y, Zhan S, Wu Z, Zhang X. Tea Polyphenols as Prospective Natural Attenuators of Brain Aging. Nutrients 2022; 14:3012. [PMID: 35893865 PMCID: PMC9332553 DOI: 10.3390/nu14153012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/26/2022] Open
Abstract
No organism can avoid the process of aging, which is often accompanied by chronic disease. The process of biological aging is driven by a series of interrelated mechanisms through different signal pathways, including oxidative stress, inflammatory states, autophagy and others. In addition, the intestinal microbiota play a key role in regulating oxidative stress of microglia, maintaining homeostasis of microglia and alleviating age-related diseases. Tea polyphenols can effectively regulate the composition of the intestinal microbiota. In recent years, the potential anti-aging benefits of tea polyphenols have attracted increasing attention because they can inhibit neuroinflammation and prevent degenerative effects in the brain. The interaction between human neurological function and the gut microbiota suggests that intervention with tea polyphenols is a possible way to alleviate brain-aging. Studies have been undertaken into the possible mechanisms underpinning the preventative effect of tea polyphenols on brain-aging mediated by the intestinal microbiota. Tea polyphenols may be regarded as potential neuroprotective substances which can act with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Jing Yu
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan 512699, China;
| | - Xuanpeng Wang
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan 512699, China;
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| |
Collapse
|
23
|
Sengupta D, Sengupta K. Lamin A and telomere maintenance in aging: Two to Tango. Mutat Res 2022; 825:111788. [PMID: 35687934 DOI: 10.1016/j.mrfmmm.2022.111788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/28/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Lamin proteins which constitute the nuclear lamina in almost all higher eukaryotes, are mainly of two types A & B encoded by LMNA and LMNB1/B2 genes respectively. While lamin A remains the principal product of LMNA gene, variants like lamin C, C2 and A∆10 are also formed as alternate splice products. Role of lamin A in aging has been highlighted in recent times due to its association with progeroid or premature aging syndromes which is classified as a type of laminopathy. Progeria caused by accelerated accumulation of lamin A Δ50 or progerin occurs due to a mutation in this LMNA gene leading to defects in post translational modification of lamin A. One of the most common and severe symptoms of progeroid laminopathy is accelerated cellular senescence or aging along with bone resorption, muscle weakness, lipodystrophy and cardiovascular disorders. On the other hand, progerin accumulation and telomere dysfunction merge as common traits in the process of chronological aging. Two major hallmarks of physiological aging in humans include loss of genomic integrity and telomere attrition which can result from defective laminar organization leading to deformed nuclear architecture and culminates into replicative senescence. This also adversely affects epigenetic landscape, mitochondrial dysfunction and several signalling pathways like DNA repair, mTOR, MAPK, TGFβ. In this review, we discuss the telomere-lamina interplay in the context of physiological aging and progeria.
Collapse
Affiliation(s)
- Duhita Sengupta
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Kaushik Sengupta
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
24
|
Amin R, Quispe C, Docea AO, Alibek Y, Kulbayeva M, Durna Daştan S, Calina D, Sharifi-Rad J. The role of Tumour Necrosis Factor in neuroinflammation associated with Parkinson's disease and targeted therapies. Neurochem Int 2022; 158:105376. [PMID: 35667491 DOI: 10.1016/j.neuint.2022.105376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/21/2022]
Abstract
Neurodegenerative disorders Parkinson's disease is a progressive neurodegenerative disorder associated with neuroinflammatory responses that lead to the neurodegeneration of the dopaminergic neurons. These neuroinflammatory mechanisms involve various cytokines produced by the activated glial cells. Tumour Necrosis factor α (TNF α) is one of the major mediators of the neuroinflammation associated with neurodegeneration. TNF α has a dual role of neuroprotection and neurotoxicity in the brain. The effective pathways of TNF involve various signalling pathways transduced by the receptors TNFR1 and TNFR2. Effective therapeutic strategies have been produced targeting the neurotoxic behaviour of the Tumour Necrosis Factor and the associated neurodegeneration which includes the use of Dominant Negative Tumour Necrosis Factor (DN-TNF) inhibitors like XENP 345 and XPro®1595 and peroxisome proliferator receptor gamma (PPAR-γ) agonists.
Collapse
Affiliation(s)
- Ruhul Amin
- Faculty of Pharmaceutical Science, Assam Down Town University, Panikhaiti, Guwahati, Assam, India.
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique, 1110939, Chile.
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Ydyrys Alibek
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi av. 71, 050040, Almaty, Kazakhstan.
| | - Marzhan Kulbayeva
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi av. 71, 050040, Almaty, Kazakhstan.
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140, Sivas, Turkey; Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
25
|
Fragkiadaki P, Renieri E, Kalliantasi K, Kouvidi E, Apalaki E, Vakonaki E, Mamoulakis C, Spandidos DA, Tsatsakis A. Τelomerase inhibitors and activators in aging and cancer: A systematic review. Mol Med Rep 2022; 25:158. [PMID: 35266017 PMCID: PMC8941523 DOI: 10.3892/mmr.2022.12674] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
The main aim of the present systematic review was to summarize the most frequently used telomerase regulators with an impact on aging and cancer that are referred to in in vitro and in vivo studies. For this purpose, a systematic review of the available literature on telomerase regulators referred to in articles from PubMed and Scopus libraries published from 2002 to 2021 and in accordance with PRISMA 2020 criteria, was conducted. Articles were included if they met the following criteria: They referred to telomerase modulators in aging and in cancer and were in vitro and/or in vivo studies, while studies that did not provide sufficient data or studies not written in English were excluded. In the present systematic review, 54 publications were included, of which 29 were full‑text published studies, 11 were full‑text reviews, 10 structure‑based design studies and 4 abstracts are reported in this review. Telomerase regulators were then categorized as synthetic direct telomerase inhibitors, synthetic indirect telomerase inhibitors, synthetic telomerase activators, natural direct telomerase activators, natural telomerase inhibitors and natural indirect telomerase activators, according to their origin and their activity. On the whole, as demonstrated herein, telomerase regulators appear to be promising treatment agents in various age‑related diseases. However, further in vivo and in vitro studies need to be performed in order to clarify the potentiality of telomerase as a therapeutic target.
Collapse
Affiliation(s)
- Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., Heraklion 71601, Greece
| | - Elisavet Renieri
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Katerina Kalliantasi
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Elisavet Kouvidi
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens 15232, Greece
| | - Evita Apalaki
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, 75105 Uppsala, Sweden
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., Heraklion 71601, Greece
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., Heraklion 71601, Greece
| |
Collapse
|
26
|
The Transcriptome and Methylome of the Developing and Aging Brain and Their Relations to Gliomas and Psychological Disorders. Cells 2022; 11:cells11030362. [PMID: 35159171 PMCID: PMC8834030 DOI: 10.3390/cells11030362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Mutually linked expression and methylation dynamics in the brain govern genome regulation over the whole lifetime with an impact on cognition, psychological disorders, and cancer. We performed a joint study of gene expression and DNA methylation of brain tissue originating from the human prefrontal cortex of individuals across the lifespan to describe changes in cellular programs and their regulation by epigenetic mechanisms. The analysis considers previous knowledge in terms of functional gene signatures and chromatin states derived from independent studies, aging profiles of a battery of chromatin modifying enzymes, and data of gliomas and neuropsychological disorders for a holistic view on the development and aging of the brain. Expression and methylation changes from babies to elderly adults decompose into different modes associated with the serial activation of (brain) developmental, learning, metabolic and inflammatory functions, where methylation in gene promoters mostly represses transcription. Expression of genes encoding methylome modifying enzymes is very diverse reflecting complex regulations during lifetime which also associates with the marked remodeling of chromatin between permissive and restrictive states. Data of brain cancer and psychotic disorders reveal footprints of pathophysiologies related to brain development and aging. Comparison of aging brains with gliomas supports the view that glioblastoma-like and astrocytoma-like tumors exhibit higher cellular plasticity activated in the developing healthy brain while oligodendrogliomas have a more stable differentiation hierarchy more resembling the aged brain. The balance and specific shifts between volatile and stable and between more irreversible and more plastic epigenomic networks govern the development and aging of healthy and diseased brain.
Collapse
|
27
|
Butnariu M, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Singh L, Aborehab NM, Bouyahya A, Venditti A, Sen S, Acharya K, Bashiry M, Ezzat SM, Setzer WN, Martorell M, Mileski KS, Bagiu IC, Docea AO, Calina D, Cho WC. The Pharmacological Activities of Crocus sativus L.: A Review Based on the Mechanisms and Therapeutic Opportunities of its Phytoconstituents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8214821. [PMID: 35198096 PMCID: PMC8860555 DOI: 10.1155/2022/8214821] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Crocus species are mainly distributed in North Africa, Southern and Central Europe, and Western Asia, used in gardens and parks as ornamental plants, while Crocus sativus L. (saffron) is the only species that is cultivated for edible purpose. The use of saffron is very ancient; besides the use as a spice, saffron has long been known also for its medical and coloring qualities. Due to its distinctive flavor and color, it is used as a spice, which imparts food preservative activity owing to its antimicrobial and antioxidant activity. This updated review discusses the biological properties of Crocus sativus L. and its phytoconstituents, their pharmacological activities, signaling pathways, and molecular targets, therefore highlighting it as a potential herbal medicine. Clinical studies regarding its pharmacologic potential in clinical therapeutics and toxicity studies were also reviewed. For this updated review, a search was performed in the PubMed, Science, and Google Scholar databases using keywords related to Crocus sativus L. and the biological properties of its phytoconstituents. From this search, only the relevant works were selected. The phytochemistry of the most important bioactive compounds in Crocus sativus L. such as crocin, crocetin, picrocrocin, and safranal and also dozens of other compounds was studied and identified by various physicochemical methods. Isolated compounds and various extracts have proven their pharmacological efficacy at the molecular level and signaling pathways both in vitro and in vivo. In addition, toxicity studies and clinical trials were analyzed. The research results highlighted the various pharmacological potentials such as antimicrobial, antioxidant, cytotoxic, cardioprotective, neuroprotective, antidepressant, hypolipidemic, and antihyperglycemic properties and protector of retinal lesions. Due to its antioxidant and antimicrobial properties, saffron has proven effective as a natural food preservative. Starting from the traditional uses for the treatment of several diseases, the bioactive compounds of Crocus sativus L. have proven their effectiveness in modern pharmacological research. However, pharmacological studies are needed in the future to identify new mechanisms of action, pharmacokinetic studies, new pharmaceutical formulations for target transport, and possible interaction with allopathic drugs.
Collapse
Affiliation(s)
- Monica Butnariu
- 1Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timișoara, Romania
| | - Cristina Quispe
- 2Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- 3Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- 4Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | | | - Laxman Singh
- 6G.B. Pant National Institute of Himalayan Environment & Sustainable Development Kosi-Katarmal, Almora, Uttarakhand, India
| | - Nora M. Aborehab
- 7Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - Abdelhakim Bouyahya
- 8Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Morocco
| | - Alessandro Venditti
- 9Dipartimento di Chimica, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Surjit Sen
- 10Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- 11Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- 10Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Moein Bashiry
- 12Department of Food Science and Technology, Nutrition and Food Sciences Faculty, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahira M. Ezzat
- 13Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt
- 14Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - William N. Setzer
- 15Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Miquel Martorell
- 16Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Ksenija S. Mileski
- 17Department of Morphology and Systematic of Plants, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Iulia-Cristina Bagiu
- 18Victor Babes University of Medicine and Pharmacy of Timisoara Discipline of Microbiology, Timișoara, Romania
- 19Multidisciplinary Research Center on Antimicrobial Resistance, Timișoara, Romania
| | - Anca Oana Docea
- 20Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- 21Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- 22Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|