1
|
Sun Y, Li Q, Huang Y, Yang Z, Li G, Sun X, Gu X, Qiao Y, Wu Q, Xie T, Sui X. Natural products for enhancing the sensitivity or decreasing the adverse effects of anticancer drugs through regulating the redox balance. Chin Med 2024; 19:110. [PMID: 39164783 PMCID: PMC11334420 DOI: 10.1186/s13020-024-00982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
Redox imbalance is reported to play a pivotal role in tumorigenesis, cancer development, and drug resistance. Severe oxidative damage is a general consequence of cancer cell responses to treatment and may cause cancer cell death or severe adverse effects. To maintain their longevity, cancer cells can rescue redox balance and enter a state of resistance to anticancer drugs. Therefore, targeting redox signalling pathways has emerged as an attractive and prospective strategy for enhancing the efficacy of anticancer drugs and decreasing their adverse effects. Over the past few decades, natural products (NPs) have become an invaluable source for developing new anticancer drugs due to their high efficacy and low toxicity. Increasing evidence has demonstrated that many NPs exhibit remarkable antitumour effects, whether used alone or as adjuvants, and are emerging as effective approaches to enhance sensitivity and decrease the adverse effects of conventional cancer therapies by regulating redox balance. Among them are several novel anticancer drugs based on NPs that have entered clinical trials. In this review, we summarize the synergistic anticancer effects and related redox mechanisms of the combination of NPs with conventional anticancer drugs. We believe that NPs targeting redox regulation will represent promising novel candidates and provide prospects for cancer treatment in the future.
Collapse
Affiliation(s)
- Yitian Sun
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qinyi Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yufei Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Zijing Yang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Guohua Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoyu Sun
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoqing Gu
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yunhao Qiao
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Tian Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Xinbing Sui
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
2
|
Cai M, Yao Y, Yin D, Zhu R, Fu T, Kong J, Wang K, Liu J, Yao A, Ruan Y, Shi W, Zhu Q, Ni J, Yin X. Enhanced lysosomal escape of cell penetrating peptide-functionalized metal-organic frameworks for co-delivery of survivin siRNA and oridonin. J Colloid Interface Sci 2023; 646:370-380. [PMID: 37207419 DOI: 10.1016/j.jcis.2023.04.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
In recent years, small interfering RNA (siRNA) has been widely used in the treatment of human diseases, especially tumors, and has shown great appeal. However, the clinical application of siRNA faces several challenges. Insufficient efficacy, poor bioavailability, poor stability, and lack of responsiveness to a single therapy are the main problems affecting tumor therapy. Here, we designed a cell-penetrating peptide (CPP)-modified metal organic framework nanoplatform (named PEG-CPP33@ORI@survivin siRNA@ZIF-90, PEG-CPP33@NPs) for targeted co-delivery of oridonin (ORI), a natural anti-tumor active ingredient) and survivin siRNA in vivo. This can improve the stability and bioavailability of siRNA and the efficacy of siRNA monotherapy. The high drug-loading capacity and pH-sensitive properties of zeolite imidazolides endowed the PEG-CPP33@NPs with lysosomal escape abilities. The Polyethylene glycol (PEG)-conjugated CPP (PEG-CPP33) coating significantly improved the uptake in the PEG-CPP33@NPs in vitro and in vivo. The results showed that the co-delivery of ORI and survivin siRNA greatly enhanced the anti-tumor effect of PEG-CPP33@NPs, demonstrating the synergistic effect between ORI and survivin siRNA. In summary, the novel targeted nanobiological platform loaded with ORI and survivin siRNA presented herein showed great advantages in cancer therapy, and provides an attractive strategy for the synergistic application of chemotherapy and gene therapy.
Collapse
Affiliation(s)
- Mengru Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongge Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rongyue Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tingting Fu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiahui Kong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Kaixin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jing Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Aina Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yidan Ruan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenjuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qian Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
3
|
Sobral PJM, Vicente ATS, Salvador JAR. Recent advances in oridonin derivatives with anticancer activity. Front Chem 2023; 11:1066280. [PMID: 36846854 PMCID: PMC9947293 DOI: 10.3389/fchem.2023.1066280] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Cancer is a leading cause of mortality responsible for an estimated 10 million deaths worldwide in 2020, and its incidence has been rapidly growing over the last decades. Population growth and aging, as well as high systemic toxicity and chemoresistance associated with conventional anticancer therapies reflect these high levels of incidence and mortality. Thus, efforts have been made to search for novel anticancer drugs with fewer side effects and greater therapeutic effectiveness. Nature continues to be the main source of biologically active lead compounds, and diterpenoids are considered one of the most important families since many have been reported to possess anticancer properties. Oridonin is an ent-kaurane tetracyclic diterpenoid isolated from Rabdosia rubescens and has been a target of extensive research over the last few years. It displays a broad range of biological effects including neuroprotective, anti-inflammatory, and anticancer activity against a variety of tumor cells. Several structural modifications on the oridonin and biological evaluation of its derivatives have been performed, creating a library of compounds with improved pharmacological activities. This mini-review aims to highlight the recent advances in oridonin derivatives as potential anticancer drugs, while succinctly exploring their proposed mechanisms of action. To wind up, future research perspectives in this field are also disclosed.
Collapse
Affiliation(s)
- Pedro J. M. Sobral
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - André T. S. Vicente
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal,*Correspondence: Jorge A. R. Salvador,
| |
Collapse
|
4
|
Altamura G, Borzacchiello G. Anti-EGFR monoclonal antibody Cetuximab displays potential anti-cancer activities in feline oral squamous cell carcinoma cell lines. Front Vet Sci 2022; 9:1040552. [PMID: 36467642 PMCID: PMC9712204 DOI: 10.3389/fvets.2022.1040552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 10/15/2023] Open
Abstract
Feline oral squamous cell carcinoma (FOSCC) is a malignant tumor characterized by an aggressive behavior and poor prognosis, for which no fully effective therapies are available. Studies of comparative oncology suggest that epidermal growth factor receptor (EGFR) may be a therapeutic target in FOSCC, similarly to human head and neck SCC (HNSCC), where the use of anti-EGFR monoclonal antibody Cetuximab has entered the clinical practice. The aim of this study was to assess the efficacy of Cetuximab in three validated preclinical models of FOSCC (SCCF1, SCCF2, SCCF3). Sequencing of tyrosine kinase domain of EGFR in the cell lines revealed a wild-type genotype, excluding the presence of activating mutations. Western blotting experiments demonstrated that Cetuximab inhibited activation of EGFR and its downstream kinase Akt in SCCF1, SCCF2 and SCCF3 along with HNSCC cell line CAL 27 included as control. Importantly, CCK-8 and trypan blue exclusion assays revealed that treatment with Cetuximab caused a decrease in cell proliferation and cell viability in all cell lines, with a general dose- and time-dependent trend. Cell death induced by Cetuximab was associated with cleavage of PARP, indicating occurrence of apoptosis. Taken together, our data suggest that Cetuximab exerts potential anti-cancer activities in FOSCC, paving the way for future translational studies aimed at assessing its employment in the therapy of this lethal cancer of cats.
Collapse
Affiliation(s)
| | - Giuseppe Borzacchiello
- General Pathology and Anatomic Pathology Section, Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Zhang Y, Kong L, Zhu P, Liu Q, Liao X, Si T, Yang B. Preparation, Characterization and Anticancer Activity of Inclusion Complexes between Genistein and Amino‐Appended β‐Cyclodextrins. ChemistrySelect 2022. [DOI: 10.1002/slct.202201125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yazhou Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 PR China
| | - Lingguang Kong
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 PR China
| | - Panyong Zhu
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 PR China
| | - Qingmeng Liu
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 PR China
| | - Xiali Liao
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 PR China
| | - Tian Si
- Faculty of Chemical Engineering Kunming University of Science and Technology, Kunming Yunnan 650500 PR China
| | - Bo Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology, Kunming Yunnan 650500 PR China
| |
Collapse
|
6
|
Zhan Z, Dai F, Zhang T, Chen Y, She J, Jiang H, Liu S, Gu T, Tang L. Oridonin alleviates hyperbilirubinemia through activating LXRα-UGT1A1 axis. Pharmacol Res 2022; 178:106188. [PMID: 35338002 DOI: 10.1016/j.phrs.2022.106188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
Hyperbilirubinemia is a serious hazard to human health due to its neurotoxicity and lethality. So far, successful therapy for hyperbilirubinemia with fewer side effects is still lacking. In this study, we aimed to clarify the effects of oridonin (Ori), an active diterpenoid extracted from Rabdosia rubescens, on hyperbilirubinemia and revealed the underlying molecular mechanism in vivo and in vitro. Here, we showed that liver X receptor alpha (LXRα) deletion eliminated the protective effect of Ori on phenylhydrazine hydrochloride-induced hyperbilirubinemia mice, indicating that LXRα acted as a key target for Ori treatment of hyperbilirubinemia. Ori significantly increased the expression of LXRα and UDP-glucuronosyltransferase 1A1 (UGT1A1) in the liver of wild-type (WT) mice, which were lost in LXRα-/- mice. Ori or LXR agonist GW3965 also reduced lipopolysaccharide/D-galactosamine-induced hyperbilirubinemia via activating LXRα/UGT1A1 in WT mice. Liver UGT1A1 enzyme activity was elevated by Ori or GW3965 in WT mice. Further, Ori up-regulated LXRα gene expression, increased its nuclear translocation and stimulated UGT1A1 promoter activity in HepG2 cells. After silencing LXRα by siRNA, Ori-induced UGT1A1 expression was markedly reduced in HepG2 cells and primary mouse hepatocytes. Taken together, Ori stimulated the transcriptional activity of LXRα, resulting in the up-regulation of UGT1A1. Therefore, Ori or its analogs might have the potential to treat hyperbilirubinemia-related diseases through modulating LXRα-UGT1A1 signaling.
Collapse
Affiliation(s)
- Zhikun Zhan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fahong Dai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tao Zhang
- Department of Pharmaceutical, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, China
| | - Yulian Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianglian She
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Huanguo Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Tanwei Gu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lan Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
7
|
Hu X, Wang Y, Gao X, Xu S, Zang L, Xiao Y, Li Z, Hua H, Xu J, Li D. Recent Progress of Oridonin and Its Derivatives for the Treatment of Acute Myelogenous Leukemia. Mini Rev Med Chem 2020; 20:483-497. [PMID: 31660811 DOI: 10.2174/1389557519666191029121809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/13/2019] [Accepted: 09/06/2019] [Indexed: 01/03/2023]
Abstract
First stage human clinical trial (CTR20150246) for HAO472, the L-alanine-(14-oridonin) ester trifluoroacetate, was conducted by a Chinese company, Hengrui Medicine Co. Ltd, to develop a new treatment for acute myelogenous leukemia. Two patents, WO2015180549A1 and CN201410047904.X, covered the development of the I-type crystal, stability experiment, conversion rate research, bioavailability experiment, safety assessment, and solubility study. HAO472 hewed out new avenues to explore the therapeutic properties of oridonin derivatives and develop promising treatment of cancer originated from naturally derived drug candidates. Herein, we sought to overview recent progress of the synthetic, physiological, and pharmacological investigations of oridonin and its derivatives, aiming to disclose the therapeutic potentials and broaden the platform for the discovery of new anticancer drugs.
Collapse
Affiliation(s)
- Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yan Wang
- Valiant Co. Ltd., 11 Wuzhishan Road, YEDA Yantai, Shandong 264006, China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Shengtao Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Linghe Zang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yan Xiao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jinyi Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
8
|
Liang Y, Zhang T, Zhang J. Natural tyrosine kinase inhibitors acting on the epidermal growth factor receptor: Their relevance for cancer therapy. Pharmacol Res 2020; 161:105164. [PMID: 32846211 DOI: 10.1016/j.phrs.2020.105164] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Epidermal growth factor receptor (EGFR), also known as ErbB-1/HER-1, plays a key role in the regulation of the cell proliferation, migration, differentiation, and survival. Since the constitutive activation or overexpression of EGFR is nearly found in various cancers, the applications focused on EGFR are the most widely used in the clinical level, including the therapeutic drugs of targeting EGFR, monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs).Over the past decades, the compounds from natural sources have been a productive source of novel drugs, especially in both discovery and development of anti-tumor drugs by targeting the EGFR pathways as the TKIs. This work presents a review of the compounds from natural sources as potential EGFR-TKIs involved in the regulation of cancer. Moreover, high-throughput drug screening of EGFR-TKIs from the natural compounds has also been summarized.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
9
|
ROS-Mediated Therapeutic Strategy in Chemo-/Radiotherapy of Head and Neck Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5047987. [PMID: 32774675 PMCID: PMC7396055 DOI: 10.1155/2020/5047987] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
Abstract
Head and neck cancer is a highly genetic and metabolic heterogeneous collection of malignancies of the lip, oral cavity, salivary glands, pharynx, esophagus, paranasal sinuses, and larynx with five-year survival rates ranging from 12% to 93%. Patients with head and neck cancer typically present with advanced stage III, IVa, or IVb disease and are treated with comprehensive modality including chemotherapy, radiotherapy, and surgery. Despite advancements in treatment modality and technique, noisome recurrence, invasiveness, and resistance as well as posttreatment complications severely influence survival rate and quality of life. Thus, new therapeutic strategies are urgently needed that offer enhanced efficacy with less toxicity. ROS in cancer cells plays a vital role in regulating cell death, DNA repair, stemness maintenance, metabolic reprogramming, and tumor microenvironment, all of which have been implicated in resistance to chemo-/radiotherapy of head and neck cancer. Adjusting ROS generation and elimination to reverse the resistance of cancer cells without impairing normal cells show great hope in improving the therapeutic efficacy of chemo-/radiotherapy of head and neck cancer. In the current review, we discuss the pivotal and targetable redox-regulating system including superoxide dismutases (SODs), tripeptide glutathione (GSH), thioredoxin (Trxs), peroxiredoxins (PRXs), nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/keap1), and mitochondria electron transporter chain (ETC) complexes and their roles in regulating ROS levels and their clinical significance implicated in chemo-/radiotherapy of head and neck cancer. We also summarize several old drugs (referred to as the non-anti-cancer drugs used in other diseases for a long time) and small molecular compounds as well as natural herbs which effectively modulate cellular ROS of head and neck cancer to synergize the efficacy of conventional chemo-/radiotherapy. Emerging interdisciplinary techniques including photodynamic, nanoparticle system, and Bio-Electro-Magnetic-Energy-Regulation (BEMER) therapy are promising measures to broaden the potency of ROS modulation for the benefit of chemo-/radiotherapy in head and neck cancer.
Collapse
|
10
|
Liu X, Xu J, Zhou J, Shen Q. Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance. Genes Dis 2020; 8:448-462. [PMID: 34179309 PMCID: PMC8209342 DOI: 10.1016/j.gendis.2020.06.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the diseases with high morbidity and mortality on a global scale. Chemotherapy remains the primary treatment option for most cancer patients, including patients with progressive, metastatic, and recurrent diseases. To date, hundreds of chemotherapy drugs are used to treat various cancers, however, the anti-cancer efficacy and outcomes are largely hampered by chemotherapy-associated toxicity and acquired therapeutic resistance. The natural product (NP) oridonin has been extensively studied for its anti-cancer efficacy. More recently, oridonin has been shown to overcome drug resistance through multiple mechanisms, with yet-to-be-defined bona fide targets. Hundreds of oridonin derivative analogs (oridonalogs) have been synthesized and screened for improved potency, bioavailability, and other drug properties. Particularly, many of these oridonalogs have been tested against oridonin for tumor growth inhibition, potential for overcoming therapeutic resistance, and immunity modulation. This concise review seeks to summarize the advances in this field in light of identifying clinical-trial level drug candidates with the promise for treating progressive cancers and reversing chemoresistance.
Collapse
Affiliation(s)
- Xi Liu
- Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Jimin Xu
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
- Corresponding author. Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Basic Science Building, 301 University Blvd., Galveston, TX, 77555, USA.
| | - Qiang Shen
- Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Corresponding author. Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
Kang N, Cao S, Jiang B, Zhang Q, Donkor PO, Zhu Y, Qiu F, Gao X. Cetuximab enhances oridonin-induced apoptosis through mitochondrial pathway and endoplasmic reticulum stress in laryngeal squamous cell carcinoma cells. Toxicol In Vitro 2020; 67:104885. [PMID: 32407876 DOI: 10.1016/j.tiv.2020.104885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/24/2022]
Abstract
Cetuximab plus oridonin showed a synergistic way to kill laryngeal squamous cell carcinoma (LSCC), as been reported previously. The present work further mechanistically extended action of the synergistic effects of combination treatment. Firstly, two LSCC cells displayed higher sensitivity to oridonin, whereas both low EGFR expression tumor cells and EGFR knockdown LSCC cells were less sensitive to oridonin. Next, cetuximab/oridonin significantly enhanced the mitochondrial apoptosis through NF-κB. Meanwhile, PI3K/Akt and JAK2/STAT3 pathways are associated with the nucleus translocation of NF-κB by combination treatment. Additionally, cetuximab enhanced oridonin-promoted ER stress-related apoptosis. Interestingly, both ER stress and mitochondrial apoptosis by combination treatment are abrogated by ROS scavenger. Furthermore, oridonin/cetuximab induced ROS production after 1.5 h, followed by G2/M arrest and apoptosis, indicating that ROS generation might be an early and key event. Taken together, cetuximab enhances oridonin-induced ER stress and mitochondrial apoptotic pathway, which contributes to the synergistic antitumor effects of cetuximab/oridonin.
Collapse
Affiliation(s)
- Ning Kang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Benke Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Faculty of Life Sciences and Biological Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Qiang Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Paul Owusu Donkor
- School of Pharmacy, University of Ghana, Korle Bu, Accra, P.O. Box 52, Ghana
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
12
|
Cao S, Huang Y, Zhang Q, Lu F, Donkor PO, Zhu Y, Qiu F, Kang N. Molecular mechanisms of apoptosis and autophagy elicited by combined treatment with oridonin and cetuximab in laryngeal squamous cell carcinoma. Apoptosis 2020; 24:33-45. [PMID: 30430397 DOI: 10.1007/s10495-018-1497-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Combined oridonin (ORI), a natural and safe kaurene diterpenoid isolated from Rabdosia rubescens, and cetuximab (Cet), an anti-EGFR monoclonal antibody, have been reported to exert synergistic anti-tumor effects against laryngeal squamous cell carcinoma (LSCC) both in vitro and in vivo by our group. In the present study, we further found that ORI/Cet treatment not only resulted in apoptosis but also induced autophagy. AMPK/mTOR signaling pathway was found to be involved in the activation of autophagy in ORI/Cet-treated LSCC cells, which is independent of p53 status. Additionally, chromatin immunoprecipitation (ChIP) assay showed that ORI/Cet significantly increased the binding NF-κB family member p65 with the promotor of BECN 1, and p65-mediated up-regulation of BECN 1 caused by ORI/Cet is coupled to increased autophagy. On the other hand, we demonstrated that either Beclin 1 SiRNA or autophagy inhibitors could increase ORI/Cet induced-apoptosis, indicating that autophagy induced by combination of the two agents plays a cytoprotective role. Interestingly, 48 h after the combined treatment, autophagy began to decrease but apoptosis was significantly elevated. Our findings suggest that autophagy might be strongly associated with the antitumor efficacy of ORI/Cet, which may be beneficial to the clinical application of ORI/Cet in LSCC treatment.
Collapse
Affiliation(s)
- Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Yiyuan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, People's Republic of China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Qiang Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, People's Republic of China
| | - Fangjin Lu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Paul Owusu Donkor
- School of Pharmacy, University of Health and Allied Sciences, Ho, PMB 31, Ghana
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Ning Kang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Tianjin, 300193, People's Republic of China.
| |
Collapse
|
13
|
Tian L, Sheng D, Li Q, Guo C, Zhu G. Preliminary safety assessment of oridonin in zebrafish. PHARMACEUTICAL BIOLOGY 2019; 57:632-640. [PMID: 31545911 PMCID: PMC6764400 DOI: 10.1080/13880209.2019.1662457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Context: Oridonin, isolated from the leaves of Isodon rubescens (Hemsl.) H.Hara (Lamiaceae), has good antitumor activity. However, its safety in vivo is still unclear. Objective: To investigate the preliminary safety of oridonin in zebrafish. Materials and methods: Embryo, larvae and adult zebrafish (n = 40) were used. Low, medium and high oridonin concentrations (100, 200 and 400 mg/L for embryo; 150, 300 and 600 mg/L for larvae; 200, 400 and 800 mg/L for adult zebrafish) and blank samples were administered. At specific stages of zebrafish development, spontaneous movement, heartbeat, hatching rate, etc., were recorded to assess the developmental effects of oridonin. VEGFA, VEGFR2 and VEGFR3 gene expression were also examined. Results: Low-dose oridonin increased spontaneous movement and hatching rate with median effective doses (ED50) of 115.17 mg/L at 24 h post-fertilization (hpf) and 188.59 mg/L at 54 hpf, but these values decreased at high doses with half maximal inhibitory concentrations (IC50) of 209.11 and 607.84 mg/L. Oridonin decreased heartbeat with IC50 of 285.76 mg/L at 48 hpf, and induced malformation at 120 hpf with half maximal effective concentration (EC50) of 411.94 mg/L. Oridonin also decreased body length with IC50 of 324.78 mg/L at 144 hpf, and increased swimming speed with ED50 of 190.98 mg/L at 120 hpf. The effects of oridonin on zebrafish embryo development may be attributed to the downregulation of VEGFR3 gene expression. Discussions and conclusions: Oridonin showed adverse effects at early stages of zebrafish development. We will perform additional studies on mechanism of oridonin based on VEGFR3.
Collapse
Affiliation(s)
- Lili Tian
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Traditional Chinese Medicine Pharmacy, Zhejiang Hospital, Hangzhou, China
| | - Donglai Sheng
- Institute of Developmental and Regenerative Biology, Hangzhou Normal University, Hangzhou, China
| | - Qiushuang Li
- Center of Clinical Evaluation and Analysis, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Chenxu Guo
- Department of Integrated Chinese and Western Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Guofu Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- CONTACT Guofu Zhu School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Zhang GH, Kai JY, Chen MM, Ma Q, Zhong AL, Xie SH, Zheng H, Wang YC, Tong Y, Tian Y, Lu RQ, Guo L. Downregulation of XBP1 decreases serous ovarian cancer cell viability and enhances sensitivity to oxidative stress by increasing intracellular ROS levels. Oncol Lett 2019; 18:4194-4202. [PMID: 31579421 PMCID: PMC6757316 DOI: 10.3892/ol.2019.10772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Interaction between endoplasmic reticulum (ER) stress and oxidative stress contributes to the occurrence and development of various types of cancer. The X-box-binding protein 1 (XBP1), which is an important transcription factor in ER stress-related pathways, has also been reported to serve a protective role against oxidative stress. However, the role of XBP1 in serous ovarian cancer (SOC) remains elusive. The aim of the present study was to explore the biological function of XBP1 in SOC cells under normal or oxidative stress conditions. The expression of XBP1 was downregulated in the SOC cell lines A2780 and HO8910 by lentivirus-mediated short hairpin RNA (shRNA). Cell proliferative ability was evaluated by cell colony formation and viability assays. The sensitivity of ovarian cancer cells to oxidative stress was evaluated using cell survival rate and apoptotic rate, determined by the Cell Counting Kit-8 assay and flow cytometry, respectively. Reactive oxygen species (ROS) levels were measured by flow cytometry and cell immunofluorescence using a dichlorodihydrofluorescein diacetate probe. The mRNA and protein expression levels were detected by fluorescence quantitative polymerase chain reaction and western blot analysis, respectively. The results demonstrated that XBP1 was overexpressed in SOC compared with normal ovarian epithelial cells, and that downregulation of XBP1 significantly reduced cell proliferative ability. In addition, the downregulation of XBP1 significantly enhanced the sensitivity of SOC cells to H2O2 by increasing the intracellular ROS levels. The phosphorylation level of the mitogen-activated protein kinase (MAPK) p38 decreased in the cells of the XBP1-knockdown group. These results indicated that XBP1 may serve a protective role against oxidative stress in SOC cells, and the underlying molecular mechanism may be associated with the downregulation of phosphorylated p38. Therefore, targeting XBP1 may act synergistically with ROS inducers in the treatment of SOC.
Collapse
Affiliation(s)
- Gui Hong Zhang
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Jin Yan Kai
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Miao Miao Chen
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Qian Ma
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Ai Ling Zhong
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Su Hong Xie
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Hui Zheng
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yan Chun Wang
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Ying Tong
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yuan Tian
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Ren Quan Lu
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
15
|
Jeon MY, Seo SU, Woo SM, Min KJ, Byun HS, Hur GM, Kang SC, Kwon TK. Oridonin enhances TRAIL-induced apoptosis through GALNT14-mediated DR5 glycosylation. Biochimie 2019; 165:108-114. [PMID: 31336136 DOI: 10.1016/j.biochi.2019.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/17/2019] [Indexed: 01/09/2023]
Abstract
Oridonin is a diterpenoid isolated from the Rabdosia rubescens and has multiple biological effects, such as anti-inflammation and anti-tumor activities. In present study, we revealed that the sensitizing effect of oridonin on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in several cancer cells, but not in normal cells. Oridonin enhanced death-signaling inducing complexes (DISC) formation and DR5 glycosylation without affecting expression of downstream intracellular apoptosis-related proteins. Oridonin upregulated peptidyl O-glycosyltransferase GALNT14 in a dose- and time-dependent manner. Knockdown of GALNT14 by siRNA and Endo H treatment reduced oridonin-induced DR5 glycosylation. Furthermore, treatment with inhibitor of glycosylation (benzyl-α-GalNAc) blocked oridonin plus TRAIL-induced apoptosis. Collectively, our results suggest that oridonin-induced DR5 glycosylation contributes to TRAIL-induced apoptotic cell death in cancer cells.
Collapse
Affiliation(s)
- Mi-Yeon Jeon
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 42601, South Korea
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 42601, South Korea
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 42601, South Korea
| | - Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 42601, South Korea
| | - Hee Sun Byun
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon, 35015, South Korea
| | - Gang Min Hur
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon, 35015, South Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 42601, South Korea.
| |
Collapse
|
16
|
Li J, Wu Y, Wang D, Zou L, Fu C, Zhang J, Leung GPH. Oridonin synergistically enhances the anti-tumor efficacy of doxorubicin against aggressive breast cancer via pro-apoptotic and anti-angiogenic effects. Pharmacol Res 2019; 146:104313. [PMID: 31202781 DOI: 10.1016/j.phrs.2019.104313] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 01/30/2023]
Abstract
The therapeutic outcomes of doxorubicin (Dox) treatment in breast cancer are limited by decreased drug efficiency and cardiotoxicity. The aim of this study was to investigate whether oridonin (Ori), a natural chemical abundant in the Chinese herb Isodon rubescens, might potentiate the anticancer effects, and decrease the adverse cardiotoxic effects, of Dox. On the basis of the optimized drug ratio determined through combination index calculations, we evaluated the synergistic effects and potential mechanisms of combining Dox with Ori to suppress breast cancer growth and angiogenesis both in vitro and in vivo. Dox plus Ori synergistically induced apoptosis in MDA-MB-231 cells, in a manner involving regulation of the Bcl-2/Bax, PARP, Caspase 3 and Survivin signaling pathways. Additionally, Ori increased the intracellular accumulation of Dox in MDA-MB-231 cells. Moreover, Dox plus Ori significantly decreased the proliferation, migration, invasion and tube formation of HUVECs. The underlying anti-angiogenic mechanism may have been due to the inhibition of VEGFR2-mediated signaling. Computational docking analysis further demonstrated that Dox plus Ori had high affinity toward the ATP-binding domain of VEGFR-2 kinase. Consistently with these findings, in vivo studies indicated that Ori enhanced the antitumor effect of Dox via activating apoptosis and inhibiting blood vessel formation at tumor sites. Moreover, Ori reversed the Dox-induced cardiotoxicity in a mouse model. In conclusion, our findings provide strong evidence that Ori may be highly promising in enhancing the efficacy of Dox and decreasing its adverse cardiotoxic effects, thus suggesting that Ori may serve as a potential adjunct therapy during Dox-based chemotherapy.
Collapse
Affiliation(s)
- Jingjing Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Yihan Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Di Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liang Zou
- School of Medicine, Chengdu University, Chengdu, 610106, China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, 999077, Hong Kong Special Administrative Region.
| |
Collapse
|
17
|
Zhang D, Zhou Q, Huang D, He L, Zhang H, Hu B, Peng H, Ren D. ROS/JNK/c-Jun axis is involved in oridonin-induced caspase-dependent apoptosis in human colorectal cancer cells. Biochem Biophys Res Commun 2019; 513:594-601. [PMID: 30981511 DOI: 10.1016/j.bbrc.2019.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 11/30/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignant neoplasms with high mortality worldwide. Oridonin, a diterpenoid isolated from the Chinese medicinal herb Rabdosia rubescens, has been proved to have anticancer effect on various types of cancer cells. However, the detailed mechanisms of oridonin in CRC cells remain unclear and if oridonin can overcome 5-FU resistance have not been investigated yet. In this study, we investigated the anticancer effect of oridonin in both 5-FU sensitive and resistant CRC cells and illuminated the underlying mechanisms. We showed that oridonin induced proliferation inhibition and caspase-dependent apoptosis in both 5-FU sensitive and resistant CRC cells. Oridonin induced reactive oxygen species (ROS) accumulation in both 5-FU sensitive and resistant CRC cells, which resulted in cell apoptosis as oridonin-induced apoptosis was almost abolished when cells were co-treated with the ROS scavenger N-acetyl-L-cysteine (NAC). Moreover, we found that oridonin induced CRC cell apoptosis via the c-Jun N-terminal kinase (JNK)/c-Jun pathway as oridonin activated JNK/c-Jun pathway and the JNK inhibitor SP600125 restored oridonin-induced apoptosis in CRC cells. Interestingly, when CRC cells were co-treated with NAC, the activation of JNK/c-Jun pathway induced by oridonin was nearly reversed, indicating that oridonin induced JNK/c-Jun pathway activation through the accumulation of ROS. Taken together, these data reveal that oridonin induces apoptosis through the ROS/JNK/c-Jun axis in both 5-FU sensitive and resistant CRC cells, suggesting that oridonin could be a potential agent for CRC treatment.
Collapse
Affiliation(s)
- Di Zhang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Zhou
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dandan Huang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu He
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Heng Zhang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bang Hu
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Peng
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Donglin Ren
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Fan Y, Mao Y, Cao S, Xia G, Zhang Q, Zhang H, Qiu F, Kang N. S5, a Withanolide Isolated from Physalis Pubescens L., Induces G2/M Cell Cycle Arrest via the EGFR/P38 Pathway in Human Melanoma A375 Cells. Molecules 2018; 23:E3175. [PMID: 30513793 PMCID: PMC6321527 DOI: 10.3390/molecules23123175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 11/16/2022] Open
Abstract
S5 is a withanolide natural product isolated from Physalis pubescens L. Our previous experimental studies found that it has significant antitumor activity on renal cell carcinoma. In the present study, the anti-melanoma effect of S5 and the related molecular mechanism was first investigated. It was found that S5 induced an obvious growth inhibitory effect on human melanoma A375 cells with low toxicity to human peripheral blood cells. Furthermore, the results demonstrated that the cell death mode of S5 on A375 cells is not due to inducing apoptosis and autophagy. However, there was a significant time-dependent increase in G2/M phase after treatment of A375 with S5. Meanwhile, S5 could also decrease the protein expression of Cdc25c, Cdc2, and CyclinB1, and increased the expression of p-P53 and P21, suggesting that S5 inhibited A375 cell death through G2/M phase arrest. Moreover, the signal pathway factors P38, extracellular regulated protein kinases (ERK), and epidermal growth factor receptor (EGFR) were observed taking part in the S5-induced A375 cells growth inhibitory effect. In addition, suppressing P38 and EGFR reversed the cell proliferation inhibitory effect and G2/M cell cycle arrest induced by S5 and inhibition of EGFR enhanced the downregulation of the expression of P38 and p-P38, indicating that S5 induced A375 G2/M arrest through the EGFR/P38 pathway. Briefly, this study explained for the first time the mechanism of S5-induced A375 cell growth inhibition in order to provide the basis for its clinical application in melanoma.
Collapse
Affiliation(s)
- Yuqi Fan
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Yiwei Mao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Guiyang Xia
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Department of Pharmaceutical Chemistry, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Qiang Zhang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Hongyang Zhang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Feng Qiu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Department of Pharmaceutical Chemistry, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Ning Kang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
19
|
Lin X, Wen G, Wang S, Lu H, Li C, Wang X. Expression and role of EGFR, cyclin D1 and KRAS in laryngocarcinoma tissues. Exp Ther Med 2018; 17:782-790. [PMID: 30651863 PMCID: PMC6307426 DOI: 10.3892/etm.2018.7027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Epidermal growth factor receptor (EGFR), cyclin D1 and KRAS proto-oncogene, GTPase (KRAS) genes serve roles in the occurrence and development of tumors. The aim of the current study was to investigate the expression levels of EGFR, cyclin D1 and KRAS in laryngocarcinoma tissues and their association with clinical features. In addition, correlation between the expression levels of EGFR, cyclin D1 and KRAS was analyzed in laryngocarcinoma tissues. The expression levels of EGFR, cyclin D1 and KRAS in 46 patients with laryngocarcinoma and 20 patients with vocal cord polyps as the control group were determined using Super Vision immunohistochemical staining assay kits. The differences in clinical and pathological parameters between groups were statistically analyzed using SPSS software version 16.0. The expression rates of EGFR, cyclin D1 and KRAS were 71.7, 52.2 and 39.1%, respectively in laryngocarcinoma tissues, and 10.0, 5.0 and 10.0%, respectively in vocal cord polyps. There was a positive correlation between the expression levels of EGFR, cyclin D1 and KRAS. The expression of these genes was also closely associated with the clinical stage, treatment response and prognosis of patients with laryngocarcinoma. Multivariate analysis of prognosis using the Cox regression model indicated that EGFR expression in laryngocarcinoma tissues and the clinical stage of patients with laryngocarcinoma were closely associated with patient prognosis. The results of the current study indicated that EGFR, cyclin D1 and KRAS were synergistically involved in the occurrence and development of laryngocarcinoma, directly affecting the prognosis of patients. Additionally, high expression of EGFR, cyclin D1 and KRAS facilitated the invasion and metastasis of laryngocarcinoma cells. The expression of EGFR in laryngocarcinoma tissues and clinical stage were two independent risk factors affecting the prognosis of patients.
Collapse
Affiliation(s)
- Xinsheng Lin
- Department of Otolaryngology-Head and Neck Surgery, Shantou Central Hospital, Shantou, Guangdong 515031, P.R. China
| | - Guofeng Wen
- Department of Otolaryngology-Head and Neck Surgery, Shantou Central Hospital, Shantou, Guangdong 515031, P.R. China
| | - Shuangle Wang
- Department of Otolaryngology-Head and Neck Surgery, Shantou Central Hospital, Shantou, Guangdong 515031, P.R. China
| | - Hangui Lu
- Department of Otolaryngology-Head and Neck Surgery, Shantou Central Hospital, Shantou, Guangdong 515031, P.R. China
| | - Chuangwei Li
- Department of Otolaryngology-Head and Neck Surgery, Shantou Central Hospital, Shantou, Guangdong 515031, P.R. China
| | - Xin Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
20
|
Jiang J, Pi J, Jin H, Cai J. Oridonin‐induced mitochondria‐dependent apoptosis in esophageal cancer cells by inhibiting PI3K/AKT/mTOR and Ras/Raf pathways. J Cell Biochem 2018; 120:3736-3746. [DOI: 10.1002/jcb.27654] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/14/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Jin‐Huan Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Department of Chinese Medicine, Macau University of Science and Technology Macau China
| | - Jiang Pi
- Key Laboratory for Tropical Diseases Control of the Ministry of Education, Department of Microbiology Zhongshan School of Medicine, Sun Yat‐sen University Guangzhou China
- Department of Microbiology and Immunology University of Illinois Chicago Illinois
| | - Hua Jin
- Department of Microbiology and Immunology University of Illinois Chicago Illinois
| | - Ji‐Ye Cai
- State Key Laboratory of Quality Research in Chinese Medicines, Department of Chinese Medicine, Macau University of Science and Technology Macau China
- Department of Chemistry Jinan University Guangzhou China
| |
Collapse
|
21
|
Zou Z, Chang H, Li H, Wang S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis 2018; 22:1321-1335. [PMID: 28936716 DOI: 10.1007/s10495-017-1424-9] [Citation(s) in RCA: 378] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS), a group of ions and molecules, include hydroxyl radicals (·OH), alkoxyl radicals, superoxide anion (O2·-), singlet oxygen (1O2) and hydrogen peroxide (H2O2). Hydroxyl radicals and alkoxyl radicals are extremely and highly reactive species respectively. Endogenous ROS are mainly formed in mitochondrial respiratory chain. Low levels of ROS play important roles in regulating biological functions in mammalian cells. However, excess production of ROS can induce cell death by oxidative damaging effects to intracellular biomacromolecules. Cancer cell death types induced by ROS include apoptotic, autophagic, ferroptotic and necrotic cell death. Since abnormal metabolism in cancer cells, they have higher ROS content compared to normal cells. The higher endogenous ROS levels in cancer cells endow them more susceptible to the ROS-induction treatment. Indeed, some anticancer drugs currently used in clinic, such as molecular targeted drugs and chemotherapeutic agents, effectively kill cancer cells by inducing ROS generation. In addition, photodynamic therapy (PDT) is mainly based on induction of ROS burst to kill cancer cells. The mechanism of cell death induced by radiotherapy using ionizing radiation also refers to ROS production. Moreover, ROS play an important role in tumor immune therapy. Altogether, combining above traditional treatments with ROS-induced agents will be considered as a promising strategy in cancer therapy. In this review, we focus on our current understanding of the anticancer effects of ROS.
Collapse
Affiliation(s)
- Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China. .,Joint Laboratory of Laser Oncology with Cancer Center of Sun Yat-sen University, South China Normal University, Guangzhou, China.
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Haolong Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Songmao Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
22
|
Targeting Oxidatively Induced DNA Damage Response in Cancer: Opportunities for Novel Cancer Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2389523. [PMID: 29770165 PMCID: PMC5892224 DOI: 10.1155/2018/2389523] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/22/2018] [Indexed: 12/17/2022]
Abstract
Cancer is a death cause in economically developed countries that results growing also in developing countries. Improved outcome through targeted interventions faces the scarce selectivity of the therapies and the development of resistance to them that compromise the therapeutic effects. Genomic instability is a typical cancer hallmark due to DNA damage by genetic mutations, reactive oxygen and nitrogen species, ionizing radiation, and chemotherapeutic agents. DNA lesions can induce and/or support various diseases, including cancer. The DNA damage response (DDR) is a crucial signaling-transduction network that promotes cell cycle arrest or cell death to repair DNA lesions. DDR dysregulation favors tumor growth as downregulated or defective DDR generates genomic instability, while upregulated DDR may confer treatment resistance. Redox homeostasis deeply and capillary affects DDR as ROS activate/inhibit proteins and enzymes integral to DDR both in healthy and cancer cells, although by different routes. DDR regulation through modulating ROS homeostasis is under investigation as anticancer opportunity, also in combination with other treatments since ROS affect DDR differently in the patients during cancer development and treatment. Here, we highlight ROS-sensitive proteins whose regulation in oxidatively induced DDR might allow for selective strategies against cancer that are better tailored to the patients.
Collapse
|
23
|
Mesbahi Y, Zekri A, Ahmadian S, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH. Targeting of EGFR increase anti-cancer effects of arsenic trioxide: Promising treatment for glioblastoma multiform. Eur J Pharmacol 2018; 820:274-285. [DOI: 10.1016/j.ejphar.2017.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
24
|
Liermann J, Naumann P, Fortunato F, Schmid TE, Weber KJ, Debus J, Combs SE. Phytotherapeutics Oridonin and Ponicidin show Additive Effects Combined with Irradiation in Pancreatic Cancer in Vitro. Radiol Oncol 2017; 51:407-414. [PMID: 29333119 PMCID: PMC5765317 DOI: 10.1515/raon-2017-0048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/13/2017] [Indexed: 01/26/2023] Open
Abstract
Background Chemoradiation of locally advanced non-metastatic pancreatic cancer can lead to secondary operability by tumor mass reduction. Here, we analyzed radiomodulating effects of oridonin and ponicidin in pancreatic cancer in vitro. Both agents are ent-kaurane diterpenoids, extracted from Isodon rubescens, a plant that is well known in Traditional Chinese Medicine. Cytotoxic effects have recently been shown in different tumor entities for both agents. Materials and methods Pancreatic cancer cell lines AsPC-1, BxPC-3, Panc-1 and MIA PaCa-2 were pretreated with oridonin or ponicidin and irradiated with 2 Gy to 6 Gy. Long-term survival was determined by clonogenic assay. Cell cycle effects and intensity of γH2AX as indicator for DNA double-strand breaks were investigated by flow cytometry. Western blotting was used to study the DNA double-strand break repair proteins Ku70, Ku80 and XRCC4. Results Oridonin and ponicidin lead to a dose-dependent reduction of clonogenic survival and an increase in γH2AX. Combined with irradiation we observed additive effects and a prolonged G2/M-arrest. No relevant changes in the levels of the DNA double-strand break repair proteins were detected. Conclusions Pretreatment with oridonin or ponicidin followed by irradiation lead to an additional reduction in survival of pancreatic cancer cells in vitro, presumably explained by an induced prolonged G2/M-arrest. Both agents seem to induce DNA double-strand breaks but do not interact with the non-homologous end joining (NHEJ) pathway.
Collapse
Affiliation(s)
- Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120, Heidelberg, Germany
| | - Patrick Naumann
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120, Heidelberg, Germany
| | - Franco Fortunato
- Heidelberg University Hospital, Section Surgical Research, Heidelberg, Germany
| | - Thomas E Schmid
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Klaus-Josef Weber
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69120, Heidelberg, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
25
|
Reactive Oxygen Species-Mediated Mechanisms of Action of Targeted Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28698765 DOI: 10.1155/2017/1485283,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Targeted cancer therapies, involving tyrosine kinase inhibitors and monoclonal antibodies, for example, have recently led to substantial prolongation of survival in many metastatic cancers. Compared with traditional chemotherapy and radiotherapy, where reactive oxygen species (ROS) have been directly linked to the mediation of cytotoxic effects and adverse events, the field of oxidative stress regulation is still emerging in targeted cancer therapies. Here, we provide a comprehensive review regarding the current evidence of ROS-mediated effects of antibodies and tyrosine kinase inhibitors, use of which has been indicated in the treatment of solid malignancies and lymphomas. It can be concluded that there is rapidly emerging evidence of ROS-mediated effects of some of these compounds, which is also relevant in the context of drug resistance and how to overcome it.
Collapse
|
26
|
Teppo HR, Soini Y, Karihtala P. Reactive Oxygen Species-Mediated Mechanisms of Action of Targeted Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1485283. [PMID: 28698765 PMCID: PMC5494102 DOI: 10.1155/2017/1485283] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/15/2017] [Accepted: 05/21/2017] [Indexed: 01/21/2023]
Abstract
Targeted cancer therapies, involving tyrosine kinase inhibitors and monoclonal antibodies, for example, have recently led to substantial prolongation of survival in many metastatic cancers. Compared with traditional chemotherapy and radiotherapy, where reactive oxygen species (ROS) have been directly linked to the mediation of cytotoxic effects and adverse events, the field of oxidative stress regulation is still emerging in targeted cancer therapies. Here, we provide a comprehensive review regarding the current evidence of ROS-mediated effects of antibodies and tyrosine kinase inhibitors, use of which has been indicated in the treatment of solid malignancies and lymphomas. It can be concluded that there is rapidly emerging evidence of ROS-mediated effects of some of these compounds, which is also relevant in the context of drug resistance and how to overcome it.
Collapse
Affiliation(s)
- Hanna-Riikka Teppo
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Ylermi Soini
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Peeter Karihtala
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|