1
|
Żabińska M, Wiśniewska K, Węgrzyn G, Pierzynowska K. Exploring the physiological role of the G protein-coupled estrogen receptor (GPER) and its associations with human diseases. Psychoneuroendocrinology 2024; 166:107070. [PMID: 38733757 DOI: 10.1016/j.psyneuen.2024.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Estrogen is a group of hormones that collaborate with the nervous system to impact the overall well-being of all genders. It influences many processes, including those occurring in the central nervous system, affecting learning and memory, and playing roles in neurodegenerative diseases and mental disorders. The hormone's action is mediated by specific receptors. Significant roles of classical estrogen receptors, ERα and ERβ, in various diseases were known since many years, but after identifying a structurally and locationally distinct receptor, the G protein-coupled estrogen receptor (GPER), its role in human physiology and pathophysiology was investigated. This review compiles GPER-related information, highlighting its impact on homeostasis and diseases, while putting special attention on functions and dysfunctions of this receptor in neurobiology and biobehavioral processes. Understanding the receptor modulation possibilities is essential for therapy, as disruptions in receptors can lead to diseases or disorders, irrespective of correct estrogen levels. We conclude that studies on the GPER receptor have the potential to develop therapies that regulate estrogen and positively impact human health.
Collapse
Affiliation(s)
- Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland.
| |
Collapse
|
2
|
Cao J, Yang M, Guo D, Tao Z, Hu X. Emerging roles of tripartite motif family proteins (TRIMs) in breast cancer. Cancer Med 2024; 13:e7472. [PMID: 39016065 PMCID: PMC11252664 DOI: 10.1002/cam4.7472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
Breast cancer (BC) is the most common malignant tumor worldwide. Despite enormous progress made in the past decades, the underlying mechanisms of BC remain further illustrated. Recently, TRIM family proteins proved to be engaged in BC progression through regulating various aspects. Here we reviewed the structures and basic functions of TRIM family members and first classified them into three groups according to canonical polyubiquitination forms that they could mediate: K48- only, K63- only, and both K48- and K63-linked ubiquitination. Afterwards, we focused on the specific biological functions and mechanisms of TRIMs in BCs, including tumorigenesis and invasiveness, drug sensitivity, tumor immune microenvironment (TIME), cell cycle, and metabolic reprogramming. We also explored the potential of TRIMs as novel biomarkers for predicting prognosis and future therapeutic targets in BC.
Collapse
Affiliation(s)
- Jianing Cao
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Mengdi Yang
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Duancheng Guo
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Zhonghua Tao
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xichun Hu
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
3
|
Liao K, Liu K, Wang Z, Zhao K, Mei Y. TRIM2 promotes metabolic adaptation to glutamine deprivation via enhancement of CPT1A activity. FEBS J 2024. [PMID: 38949993 DOI: 10.1111/febs.17218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Cancer cells undergo metabolic adaptation to promote their survival and growth under energy stress conditions, yet the underlying mechanisms remain largely unclear. Here, we report that tripartite motif-containing protein 2 (TRIM2) is upregulated in response to glutamine deprivation by the transcription factor cyclic AMP-dependent transcription factor (ATF4). TRIM2 is shown to specifically interact with carnitine O-palmitoyltransferase 1 (CPT1A), a rate-limiting enzyme of fatty acid oxidation. Via this interaction, TRIM2 enhances the enzymatic activity of CPT1A, thereby regulating intracellular lipid levels and protecting cells from glutamine deprivation-induced apoptosis. Furthermore, TRIM2 is able to promote both in vitro cell proliferation and in vivo xenograft tumor growth via CPT1A. Together, these findings establish TRIM2 as an important regulator of the metabolic adaptation of cancer cells to glutamine deprivation and implicate TRIM2 as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Kaimin Liao
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kaiyue Liu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhongyu Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kailiang Zhao
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yide Mei
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
4
|
Chen T, Zhang Z, Tian C, Feng Y, He X, Jiang L. CircORC2 promoted proliferation and inhibited the sensitivity of osteosarcoma cell lines to cisplatin by regulating the miR-485-3p/TRIM2 axis. J Cell Commun Signal 2024; 18:e12029. [PMID: 38946721 PMCID: PMC11208123 DOI: 10.1002/ccs3.12029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 07/02/2024] Open
Abstract
Resistance to chemotherapy leads to poor prognosis for osteosarcoma (OS) patients. However, due to the high metastasis of tumor and the decrease in sensitivity of tumor cells to cisplatin (DDP), the 5-year survival rate of OS patients is still unsatisfactory. This study explored a mechanism for improving the sensitivity of OS cells to DDP. A DDP-resistant OS cell model was established, and we have found that circORC2 and TRIM2 were upregulated in DDP-resistant OS cells, but miR-485-3p was downregulated. The cell viability and proliferation of the OS cells decreased gradually with the increase of DDP dose, but a gradual increase in apoptosis was noted. CircORC2 promoted OS cell proliferation and DDP resistance and upregulated TRIM2 expression by targeting miR-485-3p. Functionally, circORC2 downregulated miR-485-3p to promote OS cell proliferation and inhibit DDP sensitivity. Additionally, it promoted cell proliferation and inhibited the sensitivity of DDP by regulating the miR-485-3p/TRIM2 axis. In conclusion, circORC2 promoted cell proliferation and inhibited the DDP sensitivity in OS cells via the miR-485-3p/TRIM2 axis. These findings indicated the role of circORC2 in regulating the sensitivity of OS cells to DDP.
Collapse
Affiliation(s)
- Tianhua Chen
- The Affiliated Changsha Central HospitalDepartment of OrthopaedicsHengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
| | - Zuyang Zhang
- The Affiliated Changsha Central HospitalDepartment of OrthopaedicsHengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
| | - Chao Tian
- The Affiliated Changsha Central HospitalDepartment of OrthopaedicsHengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
| | - Yuchao Feng
- The Affiliated Changsha Central HospitalDepartment of OrthopaedicsHengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
| | - Xiaojie He
- Laboratory of Pediatric NephrologyInstitute of PediatricsCentral South UniversityChangshaHunan ProvinceChina
| | - Liangdong Jiang
- The Affiliated Changsha Central HospitalDepartment of OrthopaedicsHengyang Medical SchoolUniversity of South ChinaChangshaHunan ProvinceChina
| |
Collapse
|
5
|
Masisi BK, El Ansari R, Alfarsi L, Fakroun A, Erkan B, Ibrahim A, Toss M, Ellis IO, Rakha EA, Green AR. Tripartite Motif-Containing 2, a Glutamine Metabolism-Associated Protein, Predicts Poor Patient Outcome in Triple-Negative Breast Cancer Treated with Chemotherapy. Cancers (Basel) 2024; 16:1949. [PMID: 38893070 PMCID: PMC11171213 DOI: 10.3390/cancers16111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Breast cancer (BC) remains heterogeneous in terms of prognosis and response to treatment. Metabolic reprogramming is a critical part of oncogenesis and a potential therapeutic target. Glutaminase (GLS), which generates glutamate from glutamine, plays a role in triple-negative breast cancer (TNBC). However, targeting GLS directly may be difficult, as it is essential for normal cell function. This study aimed to determine potential targets in BC associated with glutamine metabolism and evaluate their prognostic value in BC. METHODS The iNET model was used to identify genes in BC that are associated with GLS using RNA-sequencing data. The prognostic significance of tripartite motif-containing 2 (TRIM2) mRNA was assessed in BC transcriptomic data (n = 16,575), and TRIM2 protein expression was evaluated using immunohistochemistry (n = 749) in patients with early-stage invasive breast cancer with long-term follow-up. The associations between TRIM2 expression and clinicopathological features and patient outcomes were evaluated. RESULTS Pathway analysis identified TRIM2 expression as an important gene co-expressed with high GLS expression in BC. High TRIM2 mRNA and TRIM2 protein expression were associated with TNBC (p < 0.01). TRIM2 was a predictor of poor distant metastasis-free survival (DMFS) in TNBC (p < 0.01), and this was independent of established prognostic factors (p < 0.05), particularly in those who received chemotherapy (p < 0.05). In addition, TRIM2 was a predictor of shorter DMFS in TNBC treated with chemotherapy (p < 0.01). CONCLUSIONS This study provides evidence of an association between TRIM2 and poor patient outcomes in TNBC, especially those treated with chemotherapy. The molecular mechanisms and functional behaviour of TRIM2 and the functional link with GLS in BC warrant further exploration using in vitro models.
Collapse
Affiliation(s)
- Brendah K. Masisi
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Rokaya El Ansari
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Lutfi Alfarsi
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Ali Fakroun
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Busra Erkan
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Asmaa Ibrahim
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Michael Toss
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Ian O. Ellis
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
- Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Hucknall Road, Nottingham NG5 1PB, UK
| | - Emad A. Rakha
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
- Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Hucknall Road, Nottingham NG5 1PB, UK
| | - Andrew R. Green
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
6
|
Zhang D, Chen H, Wang J, Ji J, Imam M, Zhang Z, Yan S. Current progress and prospects for G protein-coupled estrogen receptor in triple-negative breast cancer. Front Cell Dev Biol 2024; 12:1338448. [PMID: 38476263 PMCID: PMC10928007 DOI: 10.3389/fcell.2024.1338448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a biologically and clinically heterogeneous disease. The G protein-coupled estrogen receptor (GPER) plays a crucial role in mediating the effect of estrogen and estrogen-like compounds in TNBC cells. Compared with other subtypes, GPER has a higher expression in TNBC. The GPER mechanisms have been thoroughly characterized and analyzed in estrogen receptor α (ERα) positive breast cancer, but not in TNBC. Our previous work revealed that a higher expression of GPER mRNA indicates a better prognosis for ERα-positive breast cancer; however, its effects in TNBC differ. Whether GPER could serve as a predictive prognostic marker or therapeutic target for TNBC remains unclear. In this review, we provide a detailed introduction to the subcellular localization of GPER, the different effects of various ligands, and the interactions between GPER and closely associated factors in TNBC. We focused on the internal molecular mechanisms specific to TNBC and thoroughly explored the role of GPER in promoting tumor development. We also discussed the interaction of GPER with specific cytokines and chemokines, and the relationship between GPER and immune evasion. Additionally, we discussed the feasibility of using GPER as a therapeutic target in the context of existing studies. This comprehensive review highlights the effects of GPER on TNBC, providing a framework and directions for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Zbiral B, Weber A, Vivanco MDM, Toca-Herrera JL. Characterization of Breast Cancer Aggressiveness by Cell Mechanics. Int J Mol Sci 2023; 24:12208. [PMID: 37569585 PMCID: PMC10418463 DOI: 10.3390/ijms241512208] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
In healthy tissues, cells are in mechanical homeostasis. During cancer progression, this equilibrium is disrupted. Cancer cells alter their mechanical phenotype to a softer and more fluid-like one than that of healthy cells. This is connected to cytoskeletal remodeling, changed adhesion properties, faster cell proliferation and increased cell motility. In this work, we investigated the mechanical properties of breast cancer cells representative of different breast cancer subtypes, using MCF-7, tamoxifen-resistant MCF-7, MCF10A and MDA-MB-231 cells. We derived viscoelastic properties from atomic force microscopy force spectroscopy measurements and showed that the mechanical properties of the cells are associated with cancer cell malignancy. MCF10A are the stiffest and least fluid-like cells, while tamoxifen-resistant MCF-7 cells are the softest ones. MCF-7 and MDA-MB-231 show an intermediate mechanical phenotype. Confocal fluorescence microscopy on cytoskeletal elements shows differences in actin network organization, as well as changes in focal adhesion localization. These findings provide further evidence of distinct changes in the mechanical properties of cancer cells compared to healthy cells and add to the present understanding of the complex alterations involved in tumorigenesis.
Collapse
Affiliation(s)
- Barbara Zbiral
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| | - Andreas Weber
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| | - Maria dM. Vivanco
- Cancer Heterogeneity Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain;
| | - José L. Toca-Herrera
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| |
Collapse
|
8
|
Fei X, Dou YN, Sun K, Wei J, Guo Q, Wang L, Wu X, Lv W, Jiang X, Fei Z. TRIM22 promotes the proliferation of glioblastoma cells by activating MAPK signaling and accelerating the degradation of Raf-1. Exp Mol Med 2023; 55:1203-1217. [PMID: 37258577 PMCID: PMC10318069 DOI: 10.1038/s12276-023-01007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/14/2023] [Accepted: 03/15/2023] [Indexed: 06/02/2023] Open
Abstract
The tripartite motif (TRIM) 22 and mitogen-activated protein kinase (MAPK) signaling pathways play critical roles in the growth of glioblastoma (GBM). However, the molecular mechanism underlying the relationship between TRIM22 and MAPK signaling remains unclear. Here, we found that TRIM22 binds to exon 2 of the sphingosine kinase 2 (SPHK2) gene. An ERK1/2-driven luciferase reporter construct identified TRIM22 as a potential activator of MAPK signaling. Knockout and overexpression of TRIM22 regulate the inhibition and activation of MAPK signaling through the RING-finger domain. TRIM22 binds to Raf-1, a negative regulator of MAPK signaling, and accelerates its degradation by inducing K48-linked ubiquitination, which is related to the CC and SPRY domains of TRIM22 and the C1D domain of Raf-1. In vitro and in vivo, an SPHK2 inhibitor (K145), an ERK1/2 inhibitor (selumetinib), and the nonphosphorylated mutant Raf-1S338A inhibited GBM growth. In addition, deletion of the RING domain and the nuclear localization sequence of TRIM22 significantly inhibited TRIM22-induced proliferation of GBM cells in vivo and in vitro. In conclusion, our study showed that TRIM22 regulates SPHK2 transcription and activates MAPK signaling through posttranslational modification of two critical regulators of MAPK signaling in GBM cells.
Collapse
Affiliation(s)
- Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Ya-Nan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Kai Sun
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Qingdong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Li Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Weihao Lv
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China.
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
9
|
Ge Y, Zhan Z, Ye M, Jin X. The crosstalk between ubiquitination and endocrine therapy. J Mol Med (Berl) 2023; 101:461-486. [PMID: 36961537 DOI: 10.1007/s00109-023-02300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/25/2023]
Abstract
Endocrine therapy (ET), also known as hormone therapy, refers to the treatment of tumors by regulating and changing the endocrine environment and hormone levels. Its related mechanism is mainly through reducing hormone levels and blocking the binding of hormones to corresponding receptors, thus blocking the signal transduction pathway to stimulate tumor growth. However, with the application of ET, some patients show resistance to ET, which is attributed to abnormal accumulation of hormone receptors (HRs) and the production of multiple mutants of HRs. The targeted degradation of abnormal accumulation protein mediated by ubiquitination is an important approach that regulates the protein level and function of intracellular proteins in eukaryotes. Here, we provide a brief description of the traditional and novel drugs available for ET in this review. Then, we introduce the link between ubiquitination and ET. In the end, we elaborate the clinical application of ET combined with ubiquitination-related molecules. KEY MESSAGES: • A brief description of the traditional and novel drugs available for endocrine therapy (ET). • The link between ubiquitination and ET. • The clinical application of ET combined with ubiquitination-related molecules.
Collapse
Affiliation(s)
- Yidong Ge
- The Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, 315010, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ziqing Zhan
- The Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, 315010, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Meng Ye
- The Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, 315010, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Xiaofeng Jin
- The Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, 315010, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
10
|
Qian K, Chen QR, He M, Wang ZT, Liu Y, Liang HG, Su ZY, Cui YS, Liu LJ, Zhang Y. Icotinib, an EGFR tyrosine kinase inhibitor, as adjuvant therapy for patients with stage IIA-IIIA EGFR-mutant non-small-cell lung adenocarcinoma: a multicenter, open-label, single-arm, phase II study (ICAPE). Invest New Drugs 2023; 41:44-52. [PMID: 36355317 DOI: 10.1007/s10637-022-01316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
The survival benefit of icotinib (an oral epidermal growth factor receptor [EGFR] tyrosine kinase inhibitor) in patients with advanced lung cancer has been confirmed in several studies. This study (ICAPE) evaluated the efficacy of icotinib as adjuvant therapy for patients with stage IIA-IIIA EGFR-mutant non-small-cell lung adenocarcinoma. Patients with stage IIA-IIIA EGFR-mutant non-small-cell lung adenocarcinoma were enrolled in the multicenter, open-label, single-arm, phase II study. Eligible patients received oral icotinib 125 mg thrice daily for 1.5 years after complete surgical resection. The primary endpoint was disease-free survival (DFS). Between March 2014 and January 2018, 79 patients were enrolled. The median follow-up time was 39.7 months with a median DFS and overall survival (OS) of 41.4 months (95% CI: 33.6-51.8) and 67.0 months (95% CI: 21.2-not reached [NR]), respectively. The 1-year, 3-year, and 5-year OS rates were 100%, 83.3%, and 61.7%, respectively. No significant difference was found in the median DFS between patients with Bcl-2 interacting mediator of cell death (BIM) mutant-type and wild-type (NR vs. 41.7 months; p = 0.75). No significant difference was found in the median DFS according to EGFR mutation types. Icotinib as adjuvant therapy demonstrated a favorable survival benefit in patients with stage IIA-IIIA EGFR-mutant non-small-cell lung adenocarcinoma, indicating that icotinib might be a promising treatment option for this patient population. The optimal adjuvant duration of icotinib is still not clear and needs more incoming data to answer.
Collapse
Affiliation(s)
- Kun Qian
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, 100053, Beijing, China
| | - Qi-Rui Chen
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ming He
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zi-Tong Wang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yu Liu
- Second Department of Thoracic Surgery, Handan Central Hospital, East District, Handan, Hebei, China
| | - Hua-Gang Liang
- Department of Thoracic Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Zhi-Yong Su
- Department of Thoracic Surgery, Affiliated Hospital of Chifeng University, Chifeng, Neimenggu, China
| | - Yu-Shang Cui
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Li-Jun Liu
- Department of Thoracic Surgery, Hebei Province People's Hospital, Shijiazhuang, Hebei, China
| | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, 100053, Beijing, China.
| |
Collapse
|
11
|
Bai X, Tang J. TRIM proteins in breast cancer: Function and mechanism. Biochem Biophys Res Commun 2023; 640:26-31. [PMID: 36495607 DOI: 10.1016/j.bbrc.2022.11.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most prevalent malignancy in the world, and despite tremendous progress in current treatment strategies, recurrence, metastasis and drug resistance of breast cancer remain the major causes of death in patients. Tripartite motif (TRIM) family proteins play a critical role in the tumor progression such as cell proliferation, migration, invasion, and metastasis. Accumulating evidence suggests that the TRIM protein family serve as cancer suppressor proteins or oncoproteins in breast cancer. This review focused on the roles and molecular mechanisms of TRIM protein in breast cancer. Importantly, it provides new insights that TRIM proteins may be ideal targets to treat breast cancer.
Collapse
Affiliation(s)
- Xin Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Jianming Tang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
12
|
GPER-mediated stabilization of HIF-1α contributes to upregulated aerobic glycolysis in tamoxifen-resistant cells. Oncogene 2023; 42:184-197. [PMID: 36400971 DOI: 10.1038/s41388-022-02506-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Tamoxifen is a first-line therapeutic drug for oestrogen-receptor positive breast cancer; however, like other therapeutics, its clinical use is limited by acquired resistance. Tamoxifen-resistant cells have demonstrated enhanced aerobic glycolysis; however, the mechanisms underlying this upregulation remain unclear. Here, we demonstrated that G-protein coupled oestrogen receptor (GPER) was involved in the upregulation of aerobic glycolysis via induction of hypoxia-inducible factor-1α (HIF-1α) expression and transcriptional activity in tamoxifen-resistant cells. Additionally, GPER stabilized HIF-1α through inhibiting its hydroxylation and ubiquitin-mediated degradation, which were associated with upregulation of C-terminal hydrolase-L1 (UCH-L1), downregulation of prolyl hydroxylase 2 (PHD2) and von Hippel-Lindau tumour suppressor protein (pVHL), induction of HIF-1α/UCH-L1 interaction, and suppression of HIF-1α/PHD2-pVHL association. The GPER/HIF-1α axis was functionally responsible for regulating tamoxifen sensitivity both in vitro and in vivo. Moreover, there was a positive correlation between GPER and HIF-1α expression in clinical breast cancer tissues, and high levels of GPER combined with nuclear HIF-1α indicated poor overall survival. High levels of the GPER/HIF-1α axis were also correlated with shorter relapse-free survival in patients receiving tamoxifen. Hence, our findings support a critical role of GPER/HIF-1α axis in the regulation of aerobic glycolysis in tamoxifen-resistant cells, offering a potential therapeutic target for tamoxifen-resistant breast cancer.
Collapse
|
13
|
Huang N, Sun X, Li P, Liu X, Zhang X, Chen Q, Xin H. TRIM family contribute to tumorigenesis, cancer development, and drug resistance. Exp Hematol Oncol 2022; 11:75. [PMID: 36261847 PMCID: PMC9583506 DOI: 10.1186/s40164-022-00322-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
The tripartite-motif (TRIM) family represents one of the largest classes of putative single protein RING-finger E3 ubiquitin ligases. TRIM family is involved in a variety of cellular signaling transductions and biological processes. TRIM family also contributes to cancer initiation, progress, and therapy resistance, exhibiting oncogenic and tumor-suppressive functions in different human cancer types. Moreover, TRIM family members have great potential to serve as biomarkers for cancer diagnosis and prognosis. In this review, we focus on the specific mechanisms of the participation of TRIM family members in tumorigenesis, and cancer development including interacting with dysregulated signaling pathways such as JAK/STAT, PI3K/AKT, TGF-β, NF-κB, Wnt/β-catenin, and p53 hub. In addition, many studies have demonstrated that the TRIM family are related to tumor resistance; modulate the epithelial–mesenchymal transition (EMT) process, and guarantee the acquisition of cancer stem cells (CSCs) phenotype. In the end, we havediscussed the potential of TRIM family members for cancer therapeutic targets.
Collapse
Affiliation(s)
- Ning Huang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xiaolin Sun
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Peng Li
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Xin Liu
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Chen
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
14
|
Li CL, Moi SH, Lin HS, Hou MF, Chen FM, Shih SL, Kan JY, Kao CN, Wu YC, Kao LC, Chen YH, Lee YC, Chiang CP. Comprehensive Transcriptomic and Proteomic Analyses Identify a Candidate Gene Set in Cross-Resistance for Endocrine Therapy in Breast Cancer. Int J Mol Sci 2022; 23:ijms231810539. [PMID: 36142451 PMCID: PMC9501051 DOI: 10.3390/ijms231810539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Endocrine therapy (ET) of selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs), and aromatase inhibitors (AIs) has been used as the gold standard treatment for hormone-receptor-positive (HR+) breast cancer. Despite its clinical benefits, approximately 30% of patients develop ET resistance, which remains a major clinical challenge in patients with HR+ breast cancer. The mechanisms of ET resistance mainly focus on mutations in the ER and related pathways; however, other targets still exist from ligand-independent ER reactivation. Moreover, mutations in the ER that confer resistance to SERMs or AIs seldom appear in SERDs. To date, little research has been conducted to identify a critical target that appears in both SERMs/SERDs and AIs. In this study, we conducted comprehensive transcriptomic and proteomic analyses from two cohorts of The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) to identify the critical targets for both SERMs/SERDs and AIs of ET resistance. From a treatment response cohort with treatment response for the initial ET regimen and an endocrine therapy cohort with survival outcomes, we identified candidate gene sets that appeared in both SERMs/SERDs and AIs of ET resistance. The candidate gene sets successfully differentiated progress/resistant groups (PD) from complete response groups (CR) and were significantly correlated with survival outcomes in both cohorts. In summary, this study provides valuable clinical implications for the critical roles played by candidate gene sets in the diagnosis, mechanism, and therapeutic strategy for both SERMs/SERDs and AIs of ET resistance for the future.
Collapse
Affiliation(s)
- Chung-Liang Li
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Sin-Hua Moi
- Center of Cancer Program Development, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Huei-Shan Lin
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Fang-Ming Chen
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Shen-Liang Shih
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Jung-Yu Kan
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chieh-Ni Kao
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yi-Chia Wu
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Li-Chun Kao
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ying-Hsuan Chen
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chih-Po Chiang
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
- Correspondence: or ; Tel.: +886-7-312-1101 (ext. 2260)
| |
Collapse
|
15
|
Expression and Role of TRIM2 in Human Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9430509. [PMID: 36051486 PMCID: PMC9427271 DOI: 10.1155/2022/9430509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
Tripartite motif (TRIM) protein family proteins contain more than 80 members in humans, and most of these proteins exhibit E3 ubiquitin ligase activity mediated through a RING finger domain. Their biological functions are very complex, and they perform diverse functions in cell evolution processes, such as intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy, and carcinogenesis. Tripartite motif-containing protein 2 (TRIM2), a member of the TRIM superfamily, is an 81 kDa multidomain protein, also known as CMT2R or RNF86, located at 4q31.3. TRIM2 functions as an E3 ubiquitin ligase. Current studies have shown that TRIM2 can play roles in neuroprotection, neuronal rapid ischemic tolerance, antiviral responses, neurological diseases, etc. Moreover, based on some studies in tumors, TRIM2 regulates tumor proliferation, migration, invasion, apoptosis, and drug resistance through different mechanisms and plays a critical role in tumor occurrence and development. This review is aimed at providing a systematic and comprehensive summary of research on TRIM2 and at exploring the potential role of TRIM2 as a biomarker and therapeutic target in many kinds of human diseases.
Collapse
|
16
|
Stress-induced epinephrine promotes epithelial-to-mesenchymal transition and stemness of CRC through the CEBPB/TRIM2/P53 axis. J Transl Med 2022; 20:262. [PMID: 35672760 PMCID: PMC9172202 DOI: 10.1186/s12967-022-03467-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Background Previous studies have indicated that chronic emotional stressors likely participate in the occurrence of cancers. However, direct evidence connecting stress and colorectal cancer development remains almost completely unexplored. Methods Chronic stress mouse model was used to investigate the influence of stress on tumorigenesis. Several major agonists and antagonists of adrenergic receptors were applied to investigate the effects of β-adrenergic signaling on the development of CRC. Chromatin immunoprecipitation assays (CHIP) were used to investigate the binding of p53 and CEBPB to TRIM2 promoter. Mammosphere cultures, Cell Counting Kit-8 (CCK-8) assay, colony-formation assay, scratch wound healing assays, qPCR, immunofluorescence, coimmunoprecipitation and western blotting were used to explore the effect of stress-induced epinephrine on the CEBPB/TRIM2/P53 axis and the progress of CRC cells. Results In this study, we found that stress-induced epinephrine (EPI) promotes the proliferation, metastasis and CSC generation of CRC primarily through the β2-adrenergic receptor. Furthermore, our studies also confirmed that chronic stress decreased the stability of p53 protein by promoting p53 ubiquitination. Results of transcriptome sequencing indicated that TRIM2 was overexpressed in cells treated with EPI. Further studies indicated that TRIM2 could regulate the stability of p53 protein by promoting p53 ubiquitination. Finally, we further proved that CEBPB was regulated by EPI and acts as the upstream transcription factor of TRIM2. Conclusions Our studies proved that stress-induced EPI promotes the development and stemness of CRC through the CEBPB/TRIM2/P53 axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03467-8.
Collapse
|
17
|
LINC01535 Attenuates ccRCC Progression through Regulation of the miR-146b-5p/TRIM2 Axis and Inactivation of the PI3K/Akt Pathway. JOURNAL OF ONCOLOGY 2022; 2022:2153337. [PMID: 35342411 PMCID: PMC8947867 DOI: 10.1155/2022/2153337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 01/09/2023]
Abstract
lncRNAs, a group of eukaryotic cell genome-encoded transcripts, have been demonstrated to exert a notable impact on tumorigenesis. LINC01535, belonging to the lncRNA family, was reported to have an aberrant expression in certain types of cancers and thus affect cancer progression. Nevertheless, the expression pattern and potential roles of LINC01535 in clear cell renal cell carcinoma (ccRCC) remain to be elucidated. Here, LINC01535 expression was detected in ccRCC by RT-qPCR, cell proliferation by CCK-8 assays, and invasion by transwell assays. Besides, effects of LINC01535 on in vivo tumor growth were investigated by xenograft tumor models. The miR-146b-5p/LINC01535/TRIM2 interaction was evaluated via luciferase reporter assays. This study showed downregulation of LINC01535 in ccRCC. Moreover, LINC01535 upregulation attenuated in vitro ccRCC development and hindered in vivo tumor growth. Furthermore, LINC01535 sponged miR-146b-5p which had a negative correlation with LINC01535, and TRIM2 was a direct target of miR-146b-5p and mediated by LINC01535. Mechanically, LINC01535/miR-146b-5p/TRIM2 axis affected ccRCC progression by mediating the PI3K/Akt signaling. All in all, our observations suggest the LINC01535/miR-146b-5p/TRIM2 axis as a crucial role in ccRCC.
Collapse
|
18
|
Xu Z, Zhao D, Zheng X, Huang B, Pan X, Xia X. Low concentrations of 17β-estradiol exacerbate tamoxifen resistance in breast cancer treatment through membrane estrogen receptor-mediated signaling pathways. ENVIRONMENTAL TOXICOLOGY 2022; 37:514-526. [PMID: 34821461 DOI: 10.1002/tox.23417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
The present study aims to discover the influences of tamoxifen and 17β-estradiol (E2) on tamoxifen-resistant (TamR) patients in vitro. Herein, we established a stabilized TamR MCF-7 cell line at 1 μM via gradient concentrations of tamoxifen cultivation. The expression changes of four ER subtypes (ERα66, ERβ, ERα36 and GPR30) were found to bring about tamoxifen resistance. Moreover, the generation of tamoxifen resistance involved in apoptosis escape via a reactive oxygen species-regulated p53 signaling pathway. Interestingly, E2 at environmental concentrations (0.1-10 nM) could activate the expression of both ERα36 and GPR30, and then stimulate the phosphorylation of ERK1/2 and Akt, resulting in cell growth promotion. Cell migration and invasion promotion, apoptosis inhibition, and cell cycle G1-S progression are involved in such proliferative effects. Conversely, the application of specific antagonists of ERα36 and GPR30 could restore tamoxifen's sensitivity as well as partially offset E2-mediated proliferation. In short, overexpression of ERα36 and GPR30 not only ablate tamoxifen responsiveness but also could promote tumor progression of TamR breast cancer under estrogen conditions. These results provided novel insights into underlying mechanisms of tamoxifen resistance and the negative effects of steroid estrogens at environmental concentrations on TamR MCF-7 cells, thus generating new thoughts for future management of ER-positive breast cancer.
Collapse
Affiliation(s)
- Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Dimeng Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xianyao Zheng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
19
|
Zhang D, Wang J, Chen H, Yan S. Cytoplasmic G Protein-Coupled Estrogen Receptor 1 as a Prognostic Indicator of Breast Cancer: A Meta-Analysis. Technol Cancer Res Treat 2022; 21:15330338221131664. [PMID: 36254557 PMCID: PMC9580104 DOI: 10.1177/15330338221131664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Purpose: To determine whether G protein-coupled estrogen receptor 1 (GPER1) is a suitable biomarker to predict the treatment outcome of breast cancer (BC). Methods: A meta-analysis of the literature was performed to clarify the correlation between GPER1 protein expression and BC outcome. The relationship between GPER1 mRNA expression and survival was analyzed using Breast Cancer Gene-Expression Miner (bc-GenExMiner) v4.6 software. Results: Six studies involving 2697 patients were included in the meta-analysis. Four studies reported the correlation between GPER1 protein expression and relapse-free survival (RFS) and 4 others reported the impact of GPER1 protein expression on overall survival (OS). The results showed that high GPER1 protein expression was not associated with RFS (hazard ratio [HR] = 1.58; 95% confidence interval [CI] = 0.71-3.48; P = .26) or OS (HR = 1.18; 95% CI = 0.64-2.18; P = .60). Subgroup analysis suggested that nuclear expression of GPER1 was not associated with OS (HR = 0.91; 95% CI = 0.77-1.08; P = .30), but high expression of cytoplasmic GPER1 was significantly associated with longer OS (HR = 0.69; 95% CI = 0.55-0.86; P = .001). Furthermore, the association of GPER1 mRNA and OS of BC patients was analyzed using bc-GenExMiner v4.6. Two data sets involving 4016 patients were included in the analysis. The targeted prognostic analysis results showed that high mRNA expression of GPER1 was predictive of better OS in BC patients (HR = 0.71; 95% CI = 0.59-0.86; P = .0005), which was remarkably similar to the result of cytoplasmic GPER1. Further subgroup analysis demonstrated that high mRNA expression of GPER1 was predictive of better OS in estrogen receptor (ER)-positive, but not ER-negative or triple-negative BC patients. Conclusions: High mRNA and cytoplasmic protein expression of GPER1 were predictive of better OS of BC patients.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jinpeng Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hong Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
20
|
Molecular Characterization of Membrane Steroid Receptors in Hormone-Sensitive Cancers. Cells 2021; 10:cells10112999. [PMID: 34831222 PMCID: PMC8616056 DOI: 10.3390/cells10112999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide, and its development is a result of the complex interaction of genetic factors, environmental cues, and aging. Hormone-sensitive cancers depend on the action of one or more hormones for their development and progression. Sex steroids and corticosteroids can regulate different physiological functions, including metabolism, growth, and proliferation, through their interaction with specific nuclear receptors, that can transcriptionally regulate target genes via their genomic actions. Therefore, interference with hormones’ activities, e.g., deregulation of their production and downstream pathways or the exposition to exogenous hormone-active substances such as endocrine-disrupting chemicals (EDCs), can affect the regulation of their correlated pathways and trigger the neoplastic transformation. Although nuclear receptors account for most hormone-related biologic effects and their slow genomic responses are well-studied, less-known membrane receptors are emerging for their ability to mediate steroid hormones effects through the activation of rapid non-genomic responses also involved in the development of hormone-sensitive cancers. This review aims to collect pre-clinical and clinical data on these extranuclear receptors not only to draw attention to their emerging role in cancer development and progression but also to highlight their dual role as tumor microenvironment players and potential candidate drug targets.
Collapse
|
21
|
Zhao G, Liu C, Wen X, Luan G, Xie L, Guo X. The translational values of TRIM family in pan-cancers: From functions and mechanisms to clinics. Pharmacol Ther 2021; 227:107881. [PMID: 33930453 DOI: 10.1016/j.pharmthera.2021.107881] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death across the world. Tripartite motif (TRIM) family, with E3 ubiquitin ligase activities in majority of its members, is reported to be involved in multiple cellular processes and signaling pathways. TRIM proteins have critical effects in the regulation of biological behaviors of cancer cells. Here, we discussed the current understanding of the molecular mechanism of TRIM proteins regulation of cancer cells. We also comprehensively reviewed published studies on TRIM family members as oncogenes or tumor suppressors in the oncogenesis, development, and progression of a variety of types of human cancers. Finally, we highlighted that certain TRIM family members are potential molecular biomarkers for cancer diagnosis and prognosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Guo Zhao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Chuan Liu
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xin Wen
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Gan Luan
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
22
|
Liu Y, Duan C, Zhang C. E3 Ubiquitin Ligase in Anticancer Drugdsla Resistance: Recent Advances and Future Potential. Front Pharmacol 2021; 12:645864. [PMID: 33935743 PMCID: PMC8082683 DOI: 10.3389/fphar.2021.645864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Drug therapy is the primary treatment for patients with advanced cancer. The use of anticancer drugs will inevitably lead to drug resistance, which manifests as tumor recurrence. Overcoming chemoresistance may enable cancer patients to have better therapeutic effects. However, the mechanisms underlying drug resistance are poorly understood. E3 ubiquitin ligases (E3s) are a large class of proteins, and there are over 800 putative functional E3s. E3s play a crucial role in substrate recognition and catalyze the final step of ubiquitin transfer to specific substrate proteins. The diversity of the set of substrates contributes to the diverse functions of E3s, indicating that E3s could be desirable drug targets. The E3s MDM2, FBWX7, and SKP2 have been well studied and have shown a relationship with drug resistance. Strategies targeting E3s to combat drug resistance include interfering with their activators, degrading the E3s themselves and influencing the interaction between E3s and their substrates. Research on E3s has led to the discovery of possible therapeutic methods to overcome the challenging clinical situation imposed by drug resistance. In this article, we summarize the role of E3s in cancer drug resistance from the perspective of drug class.
Collapse
Affiliation(s)
- Yuanqi Liu
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| |
Collapse
|
23
|
Qiu YA, Xiong J, Fu Q, Dong Y, Liu M, Peng M, Jin W, Zhou L, Xu X, Huang X, Fu A, Xu G, Tu G, Yu T. GPER-Induced ERK Signaling Decreases Cell Viability of Hepatocellular Carcinoma. Front Oncol 2021; 11:638171. [PMID: 33767999 PMCID: PMC7985169 DOI: 10.3389/fonc.2021.638171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy with a poor prognosis. Effective biomarkers and specific therapeutic targets for HCC are therefore urgently needed. G protein-coupled estrogen receptor (GPER) plays a crucial role in numerous cancer types; however, its functions in HCC require further exploration. In the present study, we found a remarkable difference in GPER staining between tumor tissue (100/141, 70.9%) and matched non-tumor tissue (27/30, 90.0%). Compared with the GPER-negative patients, the GPER-positive patients with HCC were closely associated with female sex, negative hepatitis B surface antigen, small tumor size, low serum alpha fetoprotein level, and longer overall survival. Treatment with GPER-specific agonist G1 led to the sustained and transient activation of the EGFR/ERK and EGFR/AKT signaling pathways, respectively, in the HCC cell lines HCCLM3 and SMMC-7721, which express high levels of GPER. Interestingly, G1-induced EGFR/ERK signaling, rather than EGFR/AKT signaling mediated by GPER, was involved in decreasing cell viability by blocking cell cycle progression, thereby promoting apoptosis and inhibiting cell growth. Clinical analysis indicated that simultaneous high expression of GPER and phosphorylated-ERK (p-ERK) predicted improved prognosis for HCC. Finally, the activation of GPER/ERK signaling remarkably suppressed tumor growth in an HCC xenograft model, and this result was consistent with the in vitro data. Our findings suggest that specific activation of the GPER/ERK axis may serve as a novel tumor-suppressive mechanism and that this axis could be a therapeutic target for HCC.
Collapse
Affiliation(s)
- Yu-An Qiu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Critical Care Medicine, Jiangxi Cancer Hospital, Nanchang University Cancer Hospital, Nanchang, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qin Fu
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang University Cancer Hospital, Nanchang, China
| | - Yun Dong
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang University Cancer Hospital, Nanchang, China
| | - Manran Liu
- Key Laboratory of Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Meixi Peng
- Key Laboratory of Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wenjian Jin
- Department of Elderly Oncology, Jiangxi Cancer Hospital, Nanchang University Cancer Hospital, Nanchang, China
| | - Lixia Zhou
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xue Xu
- Department of Ultrasonography, Jiangxi Cancer Hospital, Nanchang University Cancer Hospital, Nanchang, China
| | - Xianming Huang
- Department of Pathology, Jiangxi Cancer Hospital, Nanchang University Cancer Hospital, Nanchang, China
| | - Airong Fu
- Department of Pathology, Jiangxi Cancer Hospital, Nanchang University Cancer Hospital, Nanchang, China
| | - Guohui Xu
- Department of Hepatobiliary Surgery, Jiangxi Cancer Hospital, Nanchang University Cancer Hospital, Nanchang, China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tenghua Yu
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang University Cancer Hospital, Nanchang, China
| |
Collapse
|
24
|
Lu AS, Rouhimoghadam M, Arnatt C, Filardo EJ, Salem AK. Proteolytic Targeting Chimeras with Specificity for Plasma Membrane and Intracellular Estrogen Receptors. Mol Pharm 2021; 18:1455-1469. [PMID: 33600191 PMCID: PMC9671096 DOI: 10.1021/acs.molpharmaceut.1c00018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Decisions regarding the assignment of hormonal therapy for breast cancer are based solely upon the presence of nuclear estrogen receptors (ERs) in biopsied tumor tissue. This is despite the fact that the G-protein-coupled estrogen receptor (GPER) is linked to advanced breast cancer and is required for breast cancer stem cell survival, an observation that suggests that effective endocrine therapy should also target this receptor. Here, two ER/GPER-targeting proteolytic chimeras (UI-EP001 and UI-EP002) are described that effectively degrade ERα, ERβ, and GPER. These chimeras form high-affinity interactions with GPER and ER with binding dissociation constants of ∼30 nM and 10-20 nM, respectively. Plasma membrane and intracellular GPER and nuclear ER were degraded by UI-EP001 and UI-EP002, but not by a partial proteolytic targeting chimera (PROTAC) lacking its estrogen-targeting domain. Pretreatment of cells with the proteasomal inhibitor, MG132, blocked UI-EP001 and UI-EP002 proteolysis, while the lysosomotrophic inhibitor, chloroquine, had no effect. The off-target activity was not observed against recombinant β1-adrenergic receptor or CXCR4. Target specificity was further demonstrated in human MCF-7 cells where both drugs effectively degraded ERα, ERβ, and GPER, sparing the progesterone receptor (PR). UI-EP001 and UI-EP002 induced cytotoxicity and G2/M cell cycle arrest in MCF-7 breast cancer and human SKBR3 (ERα-ERβ-GPER+) breast cancer cells but not human MDA-MB-231 breast cancer cells that do not express functional GPER/ER. These results suggest that it is possible to develop a receptor-based strategy of antiestrogen treatment for breast cancer that targets both plasma membrane and intracellular estrogen receptors.
Collapse
Affiliation(s)
- Anh S. Lu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA 52242
| | - Milad Rouhimoghadam
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, USA 52242
- Carver College of Medicine, University of Iowa, Iowa City, USA 52242
| | - Christopher Arnatt
- Department of Chemistry, Saint Louis University, St. Louis, MO, USA 63104
| | - Edward J. Filardo
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, USA 52242
- Carver College of Medicine, University of Iowa, Iowa City, USA 52242
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA 52242
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, USA 52242
| |
Collapse
|
25
|
Nanotechnology-based drug delivery systems for the improved sensitization of tamoxifen. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Yao J, Deng K, Huang J, Zeng R, Zuo J. Progress in the Understanding of the Mechanism of Tamoxifen Resistance in Breast Cancer. Front Pharmacol 2020; 11:592912. [PMID: 33362547 PMCID: PMC7758911 DOI: 10.3389/fphar.2020.592912] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Tamoxifen is a drug commonly used in the treatment of breast cancer, especially for postmenopausal patients. However, its efficacy is limited by the development of drug resistance. Downregulation of estrogen receptor alpha (ERα) is an important mechanism of tamoxifen resistance. In recent years, with progress in research into the protective autophagy of drug-resistant cells and cell cycle regulators, major breakthroughs have been made in research on tamoxifen resistance. For a better understanding of the mechanism of tamoxifen resistance, protective autophagy, cell cycle regulators, and some transcription factors and enzymes regulating the expression of the estrogen receptor are summarized in this review. In addition, recent progress in reducing resistance to tamoxifen is reviewed. Finally, we discuss the possible research directions into tamoxifen resistance in the future to provide assistance for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Jingwei Yao
- Nanhua Hospital Affiliated to University of South China, Hengyang, China.,The Third Affiliated Hospital of University of South China, Hengyang, China
| | - Kun Deng
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, China
| | - Jialu Huang
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruimin Zeng
- Nanhua Hospital Affiliated to University of South China, Hengyang, China
| | - Jianhong Zuo
- Nanhua Hospital Affiliated to University of South China, Hengyang, China.,Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, China.,The Third Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
27
|
Rouhimoghadam M, Lu AS, Salem AK, Filardo EJ. Therapeutic Perspectives on the Modulation of G-Protein Coupled Estrogen Receptor, GPER, Function. Front Endocrinol (Lausanne) 2020; 11:591217. [PMID: 33329395 PMCID: PMC7719807 DOI: 10.3389/fendo.2020.591217] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Estrogens exert their physiological and pathophysiological effects via cellular receptors, named ERα, ERβ, and G-protein coupled estrogen receptor (GPER). Estrogen-regulated physiology is tightly controlled by factors that regulate estrogen bioavailability and receptor sensitivity, while disruption of these control mechanisms can result in loss of reproductive function, cancer, cardiovascular and neurodegenerative disease, obesity, insulin resistance, endometriosis, and systemic lupus erythematosus. Restoration of estrogen physiology by modulating estrogen bioavailability or receptor activity is an effective approach for treating these pathological conditions. Therapeutic interventions that block estrogen action are employed effectively for the treatment of breast and prostate cancer as well as for precocious puberty and anovulatory infertility. Theoretically, treatments that block estrogen biosynthesis should prevent estrogen action at ERs and GPER, although drug resistance and ligand-independent receptor activation may still occur. In addition, blockade of estrogen biosynthesis does not prevent activation of estrogen receptors by naturally occurring or man-made exogenous estrogens. A more complicated scenario is provided by anti-estrogen drugs that antagonize ERs since these drugs function as GPER agonists. Based upon its association with metabolic dysregulation and advanced cancer, GPER represents a therapeutic target with promise for the treatment of several critical health concerns facing Western society. Selective ligands that specifically target GPER have been developed and may soon serve as pharmacological agents for treating human disease. Here, we review current forms of estrogen therapy and the implications that GPER holds for these therapies. We also discuss existing GPER targeted drugs, additional approaches towards developing GPER-targeted therapies and how these therapies may complement existing modalities of estrogen-targeted therapy.
Collapse
Affiliation(s)
- Milad Rouhimoghadam
- Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Anh S. Lu
- College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Aliasger K. Salem
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
- College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Edward J. Filardo
- Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
28
|
Funakoshi-Tago M, Tago K, Li C, Hokimoto S, Tamura H. Coffee decoction enhances tamoxifen proapoptotic activity on MCF-7 cells. Sci Rep 2020; 10:19588. [PMID: 33177647 PMCID: PMC7659352 DOI: 10.1038/s41598-020-76445-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
The consumption of coffee has been suggested to effectively enhance the therapeutic effects of tamoxifen against breast cancer; however, the underlying molecular mechanisms remain unclear. We herein attempted to clarify how coffee decoction exerts anti-cancer effects in cooperation with tamoxifen using the estrogen receptor α (ERα)-positive breast cancer cell line, MCF-7. The results obtained showed that coffee decoction down-regulated the expression of ERα, which was attributed to caffeine inhibiting its transcription. Coffee decoction cooperated with tamoxifen to induce cell-cycle arrest and apoptotic cell death, which may have been mediated by decreases in cyclin D1 expression and the activation of p53 tumor suppressor. The inclusion of caffeine in coffee decoction was essential, but not sufficient, to induce cell-cycle arrest and apoptotic cell death, suggesting the requirement of unknown compound(s) in coffee decoction to decrease cyclin D1 expression and activate apoptotic signaling cascades including p53. The activation of p53 through the cooperative effects of these unidentified component(s), caffeine, and tamoxifen appeared to be due to the suppression of the ERK and Akt pathways. Although the mechanisms by which the suppression of these pathways induces p53-mediated apoptotic cell death remain unclear, the combination of decaffeinated coffee, caffeine, and tamoxifen also caused cell-cycle arrest and apoptotic cell death, suggesting that unknown compound(s) present in decaffeinated coffee cooperate with caffeine and tamoxifen.
Collapse
Affiliation(s)
- Megumi Funakoshi-Tago
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Chin Li
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Shingo Hokimoto
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Hiroomi Tamura
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
29
|
Sun Q, Ye Z, Qin Y, Fan G, Ji S, Zhuo Q, Xu W, Liu W, Hu Q, Liu M, Zhang Z, Xu X, Yu X. Oncogenic function of TRIM2 in pancreatic cancer by activating ROS-related NRF2/ITGB7/FAK axis. Oncogene 2020; 39:6572-6588. [PMID: 32929153 DOI: 10.1038/s41388-020-01452-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/29/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Evidence suggests that tripartite motif-containing 2 (TRIM2) is associated with carcinogenic effects in several malignancies. However, the expression patterns and roles of TRIM2 in pancreatic cancer are rarely studied. Our study demonstrated that TRIM2 was expressed in a high percentage of pancreatic tumors. High TRIM2 expression was negatively correlated with the outcome of pancreatic cancer. TRIM2 silencing significantly inhibited the proliferation, migration, invasion, and in vivo tumorigenicity of pancreatic cancer cells. Regarding the mechanism involved, TRIM2 activated ROS-related E2-related factor 2 (NRF2)/antioxidant response element (ARE) signaling and the integrin/focal adhesion kinase (FAK) pathway. Treatment of pancreatic cancer cells with the antioxidant N-acetyl-L-cysteine decreased ROS activity and expression level of NRF2 and ITGB7. Increased translocation of NRF2 protein into nucleus further rescued the inhibited ITGB7 transcription. Moreover, NRF2 bound to the potential ARE on the promoter region and enhanced the transcriptional activity of ITGB7, indicating the bridging effect of NRF2 between the two signaling pathways. In summary, our study provides evidence that upregulated TRIM2 in pancreatic cancer predicts short survival for pancreatic cancer patients. TRIM2 accelerates pancreatic cancer progression via the ROS-related NRF2/ITGB7/FAK axis.
Collapse
Affiliation(s)
- Qiqing Sun
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Qifeng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China. .,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China. .,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China. .,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China. .,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China.
| |
Collapse
|
30
|
Feng G, Cai J, Huang Y, Zhu X, Gong B, Yang Z, Yan C, Hu Z, Yang L, Wang Z. G-Protein-Coupled Estrogen Receptor 1 Promotes Gender Disparities in Hepatocellular Carcinoma via Modulation of SIN1 and mTOR Complex 2 Activity. Mol Cancer Res 2020; 18:1863-1875. [PMID: 32873626 DOI: 10.1158/1541-7786.mcr-20-0173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/30/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
Due to its intricate heterogeneity and limited treatment, hepatocellular carcinoma (HCC) has been considered a major cause of cancer-related mortality worldwide. Increasing evidence indicates that G-protein-coupled estrogen receptor 1 (GPER1) can promote estrogen-dependent hepatocellular proliferation by activating AKT signaling. The mTOR complex 2 (mTORC2), whose integrity and activity are modulated by its subunit Sin1, controls the activation of AKT by phosphorylation at position S473. In this study, we investigate the modulation of Sin1 and how estrogen signaling may influence the mTORC2-AKT cascade in HCC cells and a DEN-induced mouse model. We have found that estradiol-dependent Sin1 expression is transcriptionally modulated by GPER1 as well as ERα. GPER1 is able to regulate Sin1 stability via nuclear translocation, therefore increasing Sin1-mTORC2-AKT activation. Moreover, Sin1 interacts with ERα and further enhances its transcriptional activity. Sin1 is highly expressed in acute liver injury and in cases of HCC harboring high expression of GPER1 and constitutive activation of mTORC2-AKT signaling. GPER1 inhibition using the antagonist G-15 reverses DEN-induced acute liver injury by suppressing Sin1 expression and mTORC2-AKT activation. Notably, SIN1 expression varies between male and female mice in the context of both liver injury and liver cancer. In addition, high SIN1 expression is predictive of good prognosis in both male and female patients with HCC who are free from hepatitis virus infection and who report low alcohol consumption. Hence, here we demonstrate that Sin1 can be regulated by GPER1 both through nongenomic and indirect genomic signaling. IMPLICATIONS: This study suggests that Sin1 may be a novel HCC biomarker which is gender-dependent and sensitive to particular risk factor.
Collapse
Affiliation(s)
- Guanying Feng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingshu Cai
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunchuanxiang Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianjun Zhu
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenglin Yang
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, Georgia
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Zhuowei Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Ziyan Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
31
|
Lin Z, Lin X, Zhu L, Huang J, Huang Y. TRIM2 directly deubiquitinates and stabilizes Snail1 protein, mediating proliferation and metastasis of lung adenocarcinoma. Cancer Cell Int 2020; 20:228. [PMID: 32536816 PMCID: PMC7288537 DOI: 10.1186/s12935-020-01316-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background Lung adenocarcinoma has surpassed lung squamous cell carcinoma as the most common type of non-small cell lung cancer. In this study, we had tested the biological role of TRIM2 in lung adenocarcinoma. Methods TRIM2 abundance in clinical tissues and six cell lines were examined with quantitative real-time PCR test (qRT-PCR) and western blot. TRIM2 overexpression treated H322 cells and TRIM2 knockdown treated A549 cells were used to study cell proliferation, migration, colony formation, invasion, and the expression of epithelial mesenchymal transformation (EMT) biomarkers. Moreover, ubiquitination related Snail1 degradation were studied with qRT-PCR and western blot. The relationships between TRIM2 and Snail1 were investigated with western blot, co-immunoprecipitation, migration, and invasion. Results TRIM2 was highly expressed in lung adenocarcinoma tissues. TRIM2 overexpression and knockdown treatments could affect cell proliferation, colony formation, migration, invasion, and the expression of EMT associated biomarkers. Moreover, TRIM2 can regulate the ubiquitination related Snail1 degradation. In addition, TRIM2 can regulate Snail1 degradation in lung adenocarcinoma via ubiquitination pathway. TRIM2 could promote the proliferation, migration, and invasion of lung adenocarcinoma. Meanwhile, TRIM2 can deubiquitinate and stabilize Snail1 protein, which play important role in the function of lung adenocarcinoma. Conclusion A high TRIM2 expression could be detected in lung adenocarcinoma tissues and cells. TRIM2 could aggravate cell proliferation, invasion, and migration in colorectal cancer by regulating Snail1 ubiquitylation degradation. Our results could provide detailed information for further studies in lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhaoxian Lin
- Department of Thoracic Surgery, Fujian Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350001 Fujian China
| | - Xing Lin
- Department of Thoracic Surgery, Fujian Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350001 Fujian China
| | - Lihuan Zhu
- Department of Thoracic Surgery, Fujian Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350001 Fujian China
| | - Jianyuan Huang
- Department of Thoracic Surgery, Fujian Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350001 Fujian China
| | - Yangyun Huang
- Department of Thoracic Surgery, Fujian Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350001 Fujian China
| |
Collapse
|
32
|
Rao L, Mak VCY, Zhou Y, Zhang D, Li X, Fung CCY, Sharma R, Gu C, Lu Y, Tipoe GL, Cheung ANY, Mills GB, Cheung LWT. p85β regulates autophagic degradation of AXL to activate oncogenic signaling. Nat Commun 2020; 11:2291. [PMID: 32385243 PMCID: PMC7210311 DOI: 10.1038/s41467-020-16061-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
PIK3R2 encodes the p85β regulatory subunit of phosphatidylinositol 3-kinase and is frequently amplified in cancers. The signaling mechanism and therapeutic implication of p85β are poorly understood. Here we report that p85β upregulates the protein level of the receptor tyrosine kinase AXL to induce oncogenic signaling in ovarian cancer. p85β activates p110 activity and AKT-independent PDK1/SGK3 signaling to promote tumorigenic phenotypes, which are all abolished upon inhibition of AXL. At the molecular level, p85β alters the phosphorylation of TRIM2 (an E3 ligase) and optineurin (an autophagy receptor), which mediate the selective regulation of AXL by p85β, thereby disrupting the autophagic degradation of the AXL protein. Therapeutically, p85β expression renders ovarian cancer cells vulnerable to inhibitors of AXL, p110, or PDK1. Conversely, p85β-depleted cells are less sensitive to these inhibitors. Together, our findings provide a rationale for pharmacological blockade of the AXL signaling axis in PIK3R2-amplified ovarian cancer.
Collapse
Affiliation(s)
- Ling Rao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Victor C Y Mak
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yuan Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Dong Zhang
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Xinran Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Chloe C Y Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Rakesh Sharma
- Proteomics and Metabolomics Core Facility, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Chao Gu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George L Tipoe
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Annie N Y Cheung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Lydia W T Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
33
|
Yu T, Cheng H, Ding Z, Wang Z, Zhou L, Zhao P, Tan S, Xu X, Huang X, Liu M, Peng M, Qiu YA. GPER mediates decreased chemosensitivity via regulation of ABCG2 expression and localization in tamoxifen-resistant breast cancer cells. Mol Cell Endocrinol 2020; 506:110762. [PMID: 32087276 DOI: 10.1016/j.mce.2020.110762] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Rescue chemotherapy is usually the preferred treatment for patients with advanced estrogen receptor-positive (ER+) breast cancer with endocrinotherapy resistance. However, these patients often simultaneously show a poor response to cytotoxic drugs, and thus the detailed mechanism of this resistance needs to be further investigated. Our previous research indicated that the G-protein-coupled estrogen receptor (GPER) is a novel mediator of the development of multidrug resistance, including resistance to both endocrinotherapy and chemotherapy, and ATP binding cassette subfamily G member 2 (ABCG2) has been identified as an engine that confers cancer cells with chemoresistance by expelling xenobiotics and chemotherapeutics. Here, we are the first to show that the expression levels of GPER and ABCG2 are markedly increased in tamoxifen-resistant ER + metastases compared to the corresponding primary tumors. A plasma membrane expression pattern of GPER and ABCG2 was observed in patients with metastases. Furthermore, both ER modulator tamoxifen, GPER-specific agonist G1 and pure ER antagonist ICI 182,780 significantly enhanced ABCG2 expression in tamoxifen-resistant breast cancer cells (MCF-7R) but not in tamoxifen-sensitive cells (MCF-7). The activated downstream GPER/EGFR/ERK and GPER/EGFR/AKT signaling pathways were responsible for regulating the expression and cell membrane localization of ABCG2, respectively, in MCF-7R cells. Interestingly, the above phenomenon could be alleviated by inhibitors of both the indicated signaling pathways and by knockdown of GPER in MCF-7R cells. More importantly, the tamoxifen-induced GPER/ABCG2 signaling axis was shown to play a pivotal role in the development of chemotherapy (doxorubicin) resistance both in vitro and in vivo. The clinical data further revealed that tamoxifen-resistant patients with high GPER/ABCG2 signaling activation had poor progression-free survival (PFS) when given rescue anthracycline chemotherapy. Therefore, our data provide novel insights into GPER-mediated chemoresistance and provide a rationale for the GPER/ABCG2 signaling axis being a promising target for reversing chemoresistance in patients with advanced ER + tamoxifen-resistant breast cancer.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Antineoplastic Agents, Hormonal/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- MCF-7 Cells
- Mice
- Mice, Nude
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protein Transport/drug effects
- Protein Transport/genetics
- Receptors, Estrogen/physiology
- Receptors, G-Protein-Coupled/physiology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Tamoxifen/therapeutic use
- Tissue Distribution/drug effects
- Tissue Distribution/genetics
Collapse
Affiliation(s)
- Tenghua Yu
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Hong Cheng
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Zhijuan Ding
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Zhiliang Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Lixia Zhou
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Peng Zhao
- Department of Head and Neck Surgery, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Shengxing Tan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xue Xu
- Department of Ultrasonography, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Xianming Huang
- Department of Pathology, Jiangxi Cancer Hospital, Nanchang, 330029, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Yu-An Qiu
- Department of Critical Care Medicine, Jiangxi Cancer Hospital, Nanchang, 330029, China.
| |
Collapse
|
34
|
Wang S, Wang W, Wang W, Xia P, Yu L, Lu Y, Chen X, Xu C, Liu H. Context-Specific Coordinately Regulatory Network Prioritize Breast Cancer Genetic Risk Factors. Front Genet 2020; 11:255. [PMID: 32273883 PMCID: PMC7113376 DOI: 10.3389/fgene.2020.00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
Breast cancer (BC) is one of the most common tumors, leading the causes of cancer death in women. However, the pathogenesis of BC still remains unclear, and the atlas of BC-associated risk factors is far from complete. In this study, we constructed a BC-specific coordinately regulatory network (CRN) to prioritize potential BC-associated protein-coding genes (PCGs) and non-coding RNAs (ncRNAs). We integrated 813 BC sample transcriptome data from The Cancer Genome Atlas (TCGA) and eight types of regulatory relationships to construct BC-specific CRN, including 387 transcription factors (TFs), 174 microRNAs (miRNAs), 407 long non-coding RNAs (lncRNAs), and 905 PCGs. After that, the random walk with restart (RWR) method was performed on the CRN by using the known BC-associated factors as seeds, and potential BC-associated risk factors were prioritized. The leave-one-out cross-validation (LOOCV) was utilized on the BC-specific CRN and achieved an area under the curve (AUC) of 0.92. The performances of common CRN, common protein-protein interaction (PPI) network, and BC-specific PPI network were also evaluated, demonstrating that the context-specific CRN prioritizes BC risk factors. Functional analysis for the top 100-ranked risk factors in the candidate list revealed that these factors were significantly enriched in cancer-related functions and had significant semantic similarity with BC-related gene ontology (GO) terms. Differential expression analysis and survival analysis proved that the prioritized risk factors significantly associated with BC progression and prognosis. In total, we provided a computational method to predict reliable BC-associated risk factors, which would help improve the understanding of the pathology of BC and benefit disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Shuyuan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wencan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Weida Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Peng Xia
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lei Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ye Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaowen Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hui Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
35
|
Zheng Y, Sowers JY, Houston KD. IGFBP-1 Expression Promotes Tamoxifen Resistance in Breast Cancer Cells via Erk Pathway Activation. Front Endocrinol (Lausanne) 2020; 11:233. [PMID: 32435229 PMCID: PMC7218143 DOI: 10.3389/fendo.2020.00233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/31/2020] [Indexed: 01/18/2023] Open
Abstract
Insulin-like growth factor (IGF) system plays a significant role in many cellular processes, including proliferation, and survival. In estrogen receptor positive breast cancer, the level of circulating IGF-1 is positively associated with the incidence and at least 50% of cases have elevated IGF-1R signaling. Tamoxifen, a selective estrogen receptor modulator and antagonist for estrogen receptor alpha (ERα) in breast tissue, is a commonly prescribed adjuvant treatment for patients presenting with ERα-positive breast cancer. Unfortunately, tamoxifen resistance is a frequent occurrence in patients receiving treatment and the molecular mechanisms that underlie tamoxifen resistance not adequately defined. It has recently been reported that the inhibition of IGF-1R activation and the proliferation of breast cancer cells upon tamoxifen treatment is mediated by the accumulation of extracellular insulin-like growth factor binding protein 1 (IGFBP-1). Elevated IGFBP-1 expression was observed in tamoxifen-resistant (TamR) MCF-7 and T-47D cells lines suggesting that the tamoxifen-resistant state is associated with IGFBP-1 accumulation. MCF-7 and T-47D breast cancer cells stably transfected with and IGFBP-1 expression vector were generated (MCF7-BP1 and T47D-BP1) to determine the impact of breast cancer cell culture in the presence of increased IGFBP-1 expression. In these cells, the expression of IGF-1R was significantly reduced compared to controls and was similar to our observations in tamoxifen-resistant MCF-7 and T-47D cells. Also similar to TamR breast cancer cells, MCF7-BP1 and T47D-BP1 were resistant to tamoxifen treatment, had elevated epidermal growth factor receptor (EGFR) expression, increased phospho-EGFR (pEGFR), and phospho-Erk (pErk). Furthermore, tamoxifen sensitivity was restored in the MCF7-BP1 and T47D-BP1 upon inhibition of Erk phosphorylation. Lastly, the transient knockdown of IGFBP-1 in MCF7-BP1 and T47D-BP1 inhibited pErk accumulation and increased tamoxifen sensitivity. Taken together, these data support the conclusion that IGFBP-1 is a key component of the development of tamoxifen resistance in breast cancer cells.
Collapse
|
36
|
Qiu C, Huang F, Zhang Q, Chen W, Zhang H. miR-205-3p promotes proliferation and reduces apoptosis of breast cancer MCF-7 cells and is associated with poor prognosis of breast cancer patients. J Clin Lab Anal 2019; 33:e22966. [PMID: 31578772 PMCID: PMC6805278 DOI: 10.1002/jcla.22966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background To study the expression of microribonucleic acid (miR)‐205 in breast cancer and its effects on the proliferation and apoptosis of breast cancer cells. Methods Breast cancer cell line MCF‐7 cells with stable expression of miR‐205‐3p were constructed. Cell proliferation, invasion, and apoptosis were detected via MTT assay, transwell assay, and flow cytometry, respectively. The expressions of Ezrin, LaminA/C, cleaved caspase‐3, Bcl‐2, and Bax were detected via Western blotting. The expressions of miR‐205‐3p in breast cancer tissues and para‐carcinoma tissues were detected via quantitative PCR (qPCR). Results In transfection group, cell proliferation and invasion capacities were increased significantly (P < 0.01), but apoptotic cells were significantly reduced (P < 0.01). In addition, the expressions of Ezrin, LaminA/C, and cleaved caspase‐3 in the transfection group were significantly decreased (P < 0.01), but the Bcl‐2/Bax ratio was significantly increased (P < 0.01). The miR‐205‐3p expression in tumor tissues of breast cancer patients was significantly higher than that in para‐carcinoma tissue, but Ezrin, LaminA/C, and cleaved caspase‐3 expressions in tumor tissues were remarkably declined (P < 0.01), while the Bcl‐2/Bax ratio was remarkably increased (P < 0.01). Moreover, the 5‐year survival of patients with high expression of miR‐205‐3p was significantly shorter than patients with normal or low expression (P < 0.01). Conclusion Highly expressed miR‐205‐3p can promote the proliferation and invasion and reduce the apoptosis of breast cancer cells, and the high expression of miR‐205‐3p can significantly reduce the survival time of patients.
Collapse
Affiliation(s)
- Changhong Qiu
- Department of General Surgery, The First People's Hospital of ZhaoQing, ZhaoQing, China
| | - Fei Huang
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University (Shen Zhen), Shen Zhen, China
| | - Qing Zhang
- Department of General Surgery, The First People's Hospital of ZhaoQing, ZhaoQing, China
| | - Wei Chen
- Department of General Surgery, The First People's Hospital of ZhaoQing, ZhaoQing, China
| | - Huiting Zhang
- Department of General Surgery, The First People's Hospital of ZhaoQing, ZhaoQing, China
| |
Collapse
|
37
|
Deng J, Wang W, Yu G, Ma X. MicroRNA‑195 inhibits epithelial‑mesenchymal transition by targeting G protein‑coupled estrogen receptor 1 in endometrial carcinoma. Mol Med Rep 2019; 20:4023-4032. [PMID: 31545414 PMCID: PMC6797983 DOI: 10.3892/mmr.2019.10652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been shown to exert promoting effects on the progression of a number of cancer types, including endometrial carcinoma (EC). MicroRNA (miRNA or miR)-195 has been shown to function as a tumor suppressor. This study aimed to explore the potential role of miR-195 in the EMT process of EC. miR-195 overexpression (Mimics) and mimics control (Mock) vectors were constructed and transfected into human endometrial cancer cells (AN3-CA and Hec1A) using Lipofectamine 2000, and cell viability was detected using the Cell Counting kit-8 (CCK-8). The invasive and migratory capacities of the cells transfected with the Mimics or Mock vectors were assessed by Transwell and wound healing assays. Relative mRNA and protein levels were analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, respectively. Using TargetScan prediction, the potential target of miR-195 was identified and was further verified by dual-luciferase reporter assay. Following transfection with miR-195 mimics, the viability of the AN3-CA and Hec1A cells decreased in a time-dependent manner, specifically at 24 h. The wound closure rate and the number of invaded cells in the Mimics group were much lower than those in the Control and Mock groups (P<0.01). miR-195 overexpression significantly upregulated the mRNA and protein levels of tissue inhibitor of metalloproteinase 2 (TIMP-2), while it downregulated the expression levels of matrix metalloproteinase (MMP)-2 and MMP-9. Moreover, the phosphorylation levels of PI3K and AKT were also notably decreased (P<0.01). G protein-coupled estrogen receptor 1 (GPER) was identified as a target of miR-195. On the whole, the findings of this study indicate that the inhibitory effects of miR195 on EC cell migration and invasion are associated with the PI3K/AKT signaling pathway and GPER expression.
Collapse
Affiliation(s)
- Junfeng Deng
- Department of Obstetrics and Gynecology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264012, P.R. China
| | - Weihua Wang
- Department of Obstetrics and Gynecology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264012, P.R. China
| | - Guangyu Yu
- Department of Obstetrics and Gynecology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264012, P.R. China
| | - Xiuzhen Ma
- Department of Obstetrics and Gynecology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264012, P.R. China
| |
Collapse
|
38
|
Identification of a new tamoxifen-xanthene hybrid as pro-apoptotic anticancer agent. Bioorg Chem 2019; 86:538-549. [DOI: 10.1016/j.bioorg.2019.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/18/2019] [Accepted: 02/06/2019] [Indexed: 12/25/2022]
|
39
|
Han X, Li Q, Liu C, Wang C, Li Y. Overexpression miR-24-3p repressed Bim expression to confer tamoxifen resistance in breast cancer. J Cell Biochem 2019; 120:12966-12976. [PMID: 31001849 DOI: 10.1002/jcb.28568] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/27/2022]
Abstract
Endocrine therapy resistance represents a major challenge to the successful treatment of patients with breast cancer. The development of tamoxifen resistance commonly occurrs during the treatment of patients with breast cancer whereas its underlying mechanisms remain elusive. Here, we found that miR-24-3p regulated tamoxifen sensitivity in breast cancer cells. Forced overexpression of miR-24-3p augmented tamoxifen-induced cell viability inhibition in breast cancer cells, while knockdown of miR-24-3p partially attenuated the cytotoxicity effect of tamoxifen. Moreover, we discovered Bim as a target gene of miR-24-3p in breast cancer cells by RNA immunoprecipitation, quantitative reverse transcription polymerase chain reaction, Western blot, and dual luciferase reporter assay. In our established tamoxifen resistant MCF7 cell line (MCF7/TAM), there was a significant elevation of miR-24-3p and decrease of BIM expression compared with parental MCF7 cells. In addition, the inhibition of miR-24-3p could reverse the tamoxifen resistance of MCF7/TAM cells by the induction of cell apoptosis. Silencing of Bim expression blocked miR-24-3p inhibitor-induced elevation of tamoxifen sensitivity of MCF7/TAM cells. Using tumor tissues from patients with breast cancer, we also found that the expression of miR-24-3p was negatively correlated with Bim mRNA expression. Collectively, our study highlighted the pivotal role of miR-24-3p overexpression in mediating the development of tamoxifen resistance in breast cancer and suggested miR-24-3p might be a predictor or target for patients with breast cancer.
Collapse
Affiliation(s)
- Xu Han
- Department of Traditional Chinese medicine, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qiaobei Li
- Department of Ultrasonic Diagnosis, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chang Liu
- Department of Radiation Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chunyan Wang
- Department of Ultrasonic Diagnosis, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
40
|
Touillaud M, Gelot A, Mesrine S, Bennetau-Pelissero C, Clavel-Chapelon F, Arveux P, Bonnet F, Gunter M, Boutron-Ruault MC, Fournier A. Use of dietary supplements containing soy isoflavones and breast cancer risk among women aged >50 y: a prospective study. Am J Clin Nutr 2019; 109:597-605. [PMID: 30831601 DOI: 10.1093/ajcn/nqy313] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Soy-based dietary supplements have been promoted as natural alternatives to menopausal hormone therapy, but their potential effect on breast cancer development is controversial. OBJECTIVES We examined the relation between the consumption of soy supplements and the risk of breast cancer, overall and by tumor hormone receptor status, among women aged >50 y. METHODS In total, 76,442 women from the Etude Epidemiologique aupres de Femmes de la Mutuelle Generale de l'Education Nationale (E3N) cohort, born between 1925 and 1950, were followed from 2000 to 2011 (11.2 y on average, starting at a mean age of 59.5 y; 3608 incident breast cancers), with soy supplement use assessed every 2-3 y. HRs of breast cancer were estimated with the use of multivariable Cox models. RESULTS Compared with never using soy supplements, the HRs associated with current use of soy supplements were 0.92 (95% CI: 0.76, 1.11) for all, 0.78 (95% CI: 0.60, 0.99) for estrogen receptor (ER)-positive, and 2.01 (95% CI: 1.41, 2.86) for ER-negative breast cancers. There was no association between past use of soy supplements and breast cancer. HRs for current use were 1.36 (95% CI: 0.95, 1.93) and 0.82 (95% CI: 0.65, 1.02) among women with and without a family history of breast cancer, respectively (P-interaction = 0.03) and 1.06 (95% CI: 0.87, 1.30) ≥5 y after menopause compared with 0.50 (95% CI: 0.31, 0.81) in premenopause or ≤5 y postmenopause (P-interaction = 0.04). CONCLUSIONS In this cohort of women aged >50 y, we report opposing associations of soy supplements with ER-positive and ER-negative breast cancer risk. Our results also caution against the use of these supplements in women with a family history of breast cancer. Whether the risk profile of soy supplements could be more favorable among premenopausal or recently postmenopausal women deserves further investigation.
Collapse
Affiliation(s)
- Marina Touillaud
- Léon Bérard Cancer Center, UNICANCER, Lyon, France
- Cancer Research Centre of Lyon, French Institute of Health and Medical Research (INSERM) 1052, French National Centre for Scientific Research (CNRS) 5286, Lyon, France
| | - Amandine Gelot
- Center for Research in Epidemiology and Population Health (CESP), "Health across Generations" team, INSERM U1018, Villejuif, France
- CESP, University of Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France, Neurocentre Magendie, Bordeaux, France
| | - Sylvie Mesrine
- Center for Research in Epidemiology and Population Health (CESP), "Health across Generations" team, INSERM U1018, Villejuif, France
- CESP, University of Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France, Neurocentre Magendie, Bordeaux, France
| | - Catherine Bennetau-Pelissero
- University of Bordeaux, Physiopathologie de la plasticité neuronale, INSERM U1215, Neurocentre Magendie, Bordeaux, France
| | - Françoise Clavel-Chapelon
- Center for Research in Epidemiology and Population Health (CESP), "Health across Generations" team, INSERM U1018, Villejuif, France
- CESP, University of Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France, Neurocentre Magendie, Bordeaux, France
| | - Patrick Arveux
- Center for Research in Epidemiology and Population Health (CESP), "Health across Generations" team, INSERM U1018, Villejuif, France
- CESP, University of Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France, Neurocentre Magendie, Bordeaux, France
- Breast and Gynaecologic Cancer Registry of Cote d'Or, Georges-Francois Leclerc Cancer Centre, UNICANCER, Dijon, France
| | - Fabrice Bonnet
- Center for Research in Epidemiology and Population Health (CESP), "Health across Generations" team, INSERM U1018, Villejuif, France
- CESP, University of Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France, Neurocentre Magendie, Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Rennes, University of Rennes 1, Department of Endocrinology, Diabetology and Nutrition, Rennes, France
| | - Marc Gunter
- International Agency for Research on Cancer, Section of Nutrition and Metabolism, Lyon, France
| | - Marie-Christine Boutron-Ruault
- Center for Research in Epidemiology and Population Health (CESP), "Health across Generations" team, INSERM U1018, Villejuif, France
- CESP, University of Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France, Neurocentre Magendie, Bordeaux, France
| | - Agnès Fournier
- Center for Research in Epidemiology and Population Health (CESP), "Health across Generations" team, INSERM U1018, Villejuif, France
- CESP, University of Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France, Neurocentre Magendie, Bordeaux, France
| |
Collapse
|
41
|
Cao H, Fang Y, Liang Q, Wang J, Luo B, Zeng G, Zhang T, Jing X, Wang X. TRIM2 is a novel promoter of human colorectal cancer. Scand J Gastroenterol 2019; 54:210-218. [PMID: 30916596 DOI: 10.1080/00365521.2019.1575463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/13/2019] [Accepted: 01/19/2019] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The incidence of colorectal cancer (CRC) is increasing year by year and appears to be younger, due to the low early diagnosis rate and metastasis. It is difficult to remedy by conventional treatment. Here, we reported that tripartite motif containing protein 2 (TRIM2) could promote tumor growth, invasion and metastasis of CRC via a mechanism that involved EMT both in vitro and in vivo. METHODS First, we used immunohistochemistry to detect TRIM2 expression. Next, TCGA database was applied to the coorelation between TRIM2 and CRC progression. Then, the plasmids and lentivirus particles were used to manipulate TRIM2 expression in SW620 or HT29 cells. The assays of proliferation, adhesion, magration and invasion were employed to detect the migration and invasion ability of CRC cells. Finally, a tail injection of CRC cells was used to identify the role of TRIM2 in tumor metastasis. RESULTS TRIM2 expression was significantly higher in CRC tissues than in non-cancerous tissues and was significantly associated with some clinicopathological factors. Forced overexpression of TRIM2 promoted CRC cell proliferation, migration and invasion in vitro, while opposing results were observed when TRIM2 was depleted by short hairpin RNA. TRIM2 expression had reversely correlated with YAP signaling, which was a novel pathway way referred to tumorigenesis. Furthermore, animal metastasis models confirmed that the in vivo results were consistent with the outcomes in vitro. TRIM2 conducts its function during CRC cell metastasis by epithelial-mesenchymal transition (EMT). These results indicate that TRIM2 is a novel promoter of human colorectal cancer.
Collapse
Affiliation(s)
- Hua Cao
- a Emergency Department , Shanghai Tenth People's Hospital , Shanghai , China
| | - Yi Fang
- a Emergency Department , Shanghai Tenth People's Hospital , Shanghai , China
| | - Qiwen Liang
- b Emergency Department , First Affiliated Hospital of Naval Military Medical University , Shanghai , China
| | - Jianzhong Wang
- a Emergency Department , Shanghai Tenth People's Hospital , Shanghai , China
| | - Bijun Luo
- a Emergency Department , Shanghai Tenth People's Hospital , Shanghai , China
| | - Guanghao Zeng
- a Emergency Department , Shanghai Tenth People's Hospital , Shanghai , China
| | - Tingting Zhang
- a Emergency Department , Shanghai Tenth People's Hospital , Shanghai , China
| | - Xiaoqian Jing
- c Department of Surgery, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xiongjun Wang
- d Precise Genome Engineering Center, School of Life Sciences , Guangzhou University , Guangzhou , China
| |
Collapse
|
42
|
Li Y, Gong D, Zhang L, Li H, Zhang S, Zhang J, Li K, Zheng Q, Zhao G, Zhang Y, Chen Y, Guo Y, Xiang R, Lin P, Wei Y. Zinc finger protein 32 promotes breast cancer stem cell-like properties through directly promoting GPER transcription. Cell Death Dis 2018; 9:1162. [PMID: 30478301 PMCID: PMC6255875 DOI: 10.1038/s41419-018-1144-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
Breast cancer is one of the leading causes of death in women. Due to the existence of a small fraction of stem cell-like subpopulations, some breast cancer subtypes exhibit very high malignancy and resistance to multiple therapies. The underlying mechanisms of how these subtypes acquire stem cell-like properties and progress more aggressively remain largely unknown. Zinc finger protein 32 (ZNF32), a newly discovered transcription factor, has been reported to be associated with breast cancer progression. However, many questions remain about its target genes and its exact mechanisms in regulating stem cell-like properties and drug resistance. In the present study, we examined the relationship between ZNF32 and GPER, a membrane-associated estrogen receptor, and we addressed their roles in stemness regulation in human breast cancer cell lines. Our results showed that ZNF32 could induce expansion of stem cell-like subpopulations and increase drug resistance by upregulating GPER expression, in which ERK activation was also implicated. We also illustrated that ZNF32 induced GPER expression via a ZNF32 binding sequence located within the GPER promoter region. A correlation between ZNF32/GPER expression and increased tumor incidence and burden was observed in xenograft mouse models. We conclude that ZNF32 can engage GPER/ERK signalling and confer breast cancer stem cell-like properties, which may indicate poor prognosis of breast cancer patients. ZNF32 and GPER targeted therapies might provide new solutions for breast cancer treatment.
Collapse
Affiliation(s)
- Yanyan Li
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Di Gong
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Le Zhang
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Hongjiang Li
- Department of Thyroid and Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shu Zhang
- Huaxi Biobank, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhang
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Kai Li
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - QianWen Zheng
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Gang Zhao
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yue Zhang
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yue Chen
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yafei Guo
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Rong Xiang
- Department of clinical medicine, School of Medicine, Nankai University, and Collaborative Innovation Center for Biotherapy, Tianjin, China
| | - Ping Lin
- Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Yuquan Wei
- Division of Cancer Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
43
|
Xiao W, Wang X, Wang T, Xing J. TRIM2 downregulation in clear cell renal cell carcinoma affects cell proliferation, migration, and invasion and predicts poor patients' survival. Cancer Manag Res 2018; 10:5951-5964. [PMID: 30538545 PMCID: PMC6255054 DOI: 10.2147/cmar.s185270] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background and aim Tripartite motif containing (TRIM) family protein has been involved in multiple pathogenesis of cancers. TRIM2 is a member of the family, and its role in clear cell renal cell carcinoma (ccRCC) remains to be unclarifid. Here, we showed the clinical value and biological role of TRIM2 in ccRCC. Methods ROC curves analyzed the clinicopathological parameters, Kaplan-Meier survival analysis determined the correlation of OS and DFS time, multivariate analysis demonstrated the prognostic indicator in overall survival and disease-free survival of ccRCC with TRIM2 expression in The Cancer Genome Atlas Kidney Clear Cell Carcinoma (TCGA-KIRC) database. Western blotting and immunohistochemistry were used to check the level of TRIM2 expression. Gain-of-function assay by exogenous overexpression of TRIM2 studied the biological role of TRIM2 in renal cell carcinoma cells. Results TRIM2 expression was associated with various clinicopathologicalfactors and lower TRIM2 expression was interrelated to a poor prognosis. The levels of TRIM2 expression were also scanty in ccRCC tissues and renal cancer cell lines than in normal control. The biological role of TRIM2 in ccRCC was identifid by bioinformatics analysis and functional analysis. Exogenous overexpression of TRIM2 with the gain-of-function assay in renal cell carcinoma cells showed that the cell proliferation, migration, and invasion were signifiantly suppressed. Conclusion These results showed that TRIM2 acted as an antitumor gene and a specifi prognostic indicator for patients with ccRCC, which indicated that positive modulation of TRIM2 might be a novel treatment strategy for ccRCC.
Collapse
Affiliation(s)
- Wen Xiao
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China,
| | - Xuegang Wang
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China,
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China,
| | - Jinchun Xing
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China,
| |
Collapse
|
44
|
Regulatory mechanisms of miR-145 expression and the importance of its function in cancer metastasis. Biomed Pharmacother 2018; 109:195-207. [PMID: 30396077 DOI: 10.1016/j.biopha.2018.10.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are post-transcriptional mediators of gene expression and regulation, which play influential roles in tumorigenesis and cancer metastasis. The expression of tumor suppressor miR-145 is reduced in various cancer cell lines, containing both solid tumors and blood malignancies. However, the responsible mechanisms of its down-regulation are a complicated network. miR-145 is potentially able to inhbit tumor cell metastasis by targeting of multiple oncogenes, including MUC1, FSCN1, Vimentin, Cadherin, Fibronectin, Metadherin, GOLM1, ARF6, SMAD3, MMP11, Snail1, ZEB1/2, HIF-1α and Rock-1. This distinctive role of miR-145 in the regulation of metastasis-related gene expression may introduce miR-145 as an ideal candidate for controlling of cancer metastasis by miRNA replacement therapy. The present review aims to discuss the current understanding of the different aspects of molecular mechanisms of miR-145 regulation as well as its role in r metastasis regulation.
Collapse
|