1
|
He X, Liu P, Luo Y, Fu X, Yang T. STATs, promising targets for the treatment of autoimmune and inflammatory diseases. Eur J Med Chem 2024; 277:116783. [PMID: 39180944 DOI: 10.1016/j.ejmech.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Cytokines play a crucial role in the pathophysiology of autoimmune and inflammatory diseases, with over 50 cytokines undergoing signal transduction through the Signal Transducers and Activators of Transcription (STAT) signaling pathway. Recent studies have solidly confirmed the pivotal role of STATs in autoimmune and inflammatory diseases. Therefore, this review provides a detailed summary of the immunological functions of STATs, focusing on exploring their mechanisms in various autoimmune and inflammatory diseases. Additionally, with the rapid advancement of structural biology in the field of drug discovery, many STAT inhibitors have been identified using structure-based drug design strategies. In this review, we also examine the structures of STAT proteins and compile the latest research on STAT inhibitors currently being tested in animal models and clinical trials for the treatment of immunological diseases, which emphasizes the feasibility of STATs as promising therapeutic targets and provides insights into the design of the next generation of STAT inhibitors.
Collapse
Affiliation(s)
- Xinlian He
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pingxian Liu
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyuan Fu
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Khokhar M, Purohit P. The emerging role of T helper 9 (Th9) cells in immunopathophysiology: A comprehensive review of their effects and responsiveness in various disease states. Int Rev Immunol 2024; 43:341-360. [PMID: 38864109 DOI: 10.1080/08830185.2024.2364586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Th9 cells, a subset of T-helper cells producing interleukin-9 (IL-9), play a vital role in the adaptive immune response and have diverse effects in different diseases. Regulated by transcription factors like PU.1 and IRF4, and cytokines such as IL-4 and TGF-β, Th9 cells drive tissue inflammation. This review focuses on their emerging role in immunopathophysiology. Th9 cells exhibit immune-mediated cancer cell destruction, showing promise in glioma and cervical cancer treatment. However, their role in breast and lung cancer is intricate, requiring a deeper understanding of pro- and anti-tumor aspects. Th9 cells, along with IL-9, foster T cell and immune cell proliferation, contributing to autoimmune disorders. They are implicated in psoriasis, atopic dermatitis, and infections. In allergic reactions and asthma, Th9 cells fuel pro-inflammatory responses. Targeting Foxo1 may regulate innate and adaptive immune responses, alleviating disease symptoms. This comprehensive review outlines Th9 cells' evolving immunopathophysiological role, emphasizing the necessity for further research to grasp their effects and potential therapeutic applications across diseases.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| |
Collapse
|
3
|
Liu Y, Xie Y, Han X, Li P, Zhou J, Hu X, Wang Q. Th9/IL-9 may participate in the pathogenesis of multiple myeloma. Int J Lab Hematol 2024; 46:322-328. [PMID: 38058269 DOI: 10.1111/ijlh.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION This research is aimed to evaluate the correlation between Th9-associated cytokine levels in MM patients, clinical features, and therapy. METHODS Peripheral blood samples were taken in 52 MM patients and 20 healthy volunteers matched by sex and age. The patients with MM were separated into two groups: the untreated group (27) and the remission group (25). An enzyme-linked immunosorbent assay (ELISA) was used to measure the IL-9 plasma levels. The levels of Th9-associated cytokines' mRNA expression (IL-9, PU.1, and IRF4) were measured in RT-qPCR. We also analyzed the correlations between the IL-9 plasma levels and the clinical parameters of newly diagnosed MM patients. RESULTS The IL-9 plasma levels and the Th9-associated cytokines (IL-9, PU.1, and IRF4) mRNA levels in newly diagnosed MM patients were significantly elevated than those in healthy volunteers and significantly decreased after achieving remission. Moreover, PU.1 and IRF4 had a positive correlation with the IL-9 mRNA expression. Then, we found that the upregulation of IL-9 plasma levels correlates with the severity of anemia and decreased albumin Levels. CONCLUSION The results demonstrate that Th9/IL-9 may be involved in the pathogenesis of MM and is correlated with worse patient conditions such as lower hemoglobin and serum albumin. More work is necessary to confirm whether they might serve as a useful therapeutic target and prognostic marker for MM.
Collapse
Affiliation(s)
- Yihan Liu
- Department of Hematology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yinghua Xie
- Department of Hematology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiyao Han
- Department of Hematology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Pei Li
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianan Zhou
- Department of Hematology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xinxin Hu
- Department of Hematology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qiuyun Wang
- Department of Hematology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Yao Q, Song Z, Wang B, Du P, Qin Q, Zhao J, Zhang JA. Increased interleukin-9 and Th9 cells in patients with refractory Graves' disease and interleukin-9 polymorphisms are associated with autoimmune thyroid diseases. Front Immunol 2024; 15:1341749. [PMID: 38605942 PMCID: PMC11007129 DOI: 10.3389/fimmu.2024.1341749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction Autoimmune thyroid diseases (AITDs) are prevalent disorders, primarily encompassing Graves' disease (GD) and Hashimoto's thyroiditis (HT). Despite their common occurrence, the etiology of AITDs remains elusive. Th9 cells, a new subset of CD4+T cells with immunomodulatory properties, have been linked to the development of various autoimmune diseases. However, research on the role of Th9 cells in AITDs is limited. Methods We investigated the expression of Th9 cells,their functional cytokine IL-9, and transcription factor IRF4 in peripheral blood mononuclear cells (PBMCs) and plasma of AITD patients and healthy controls. Additionally, we explored the genetic association between four loci polymorphisms (rs31564, rs2069879, rs1859430, and rs2069868) of the IL-9 gene and AITDs. Results We reported, for the first time, that refractory GD patients exhibited elevated mRNA levels of IL-9 and IRF4 in PBMCs, increased IL-9 protein levels in plasma, and a higher proportion of Th9 cells in peripheral blood when compared to normal controls. Furthermore, human recombinant IL-9 protein was found to enhance IFN-g secretion in PBMCs from both GD patients and normal controls. At the genetic association level, after adjusting for age and sex, the rs2069879 polymorphism exhibited a significant association with AITDs under an additive model (P<0.001, OR= 0.05, 95% CI=0.03-0.08). Discussion Our results reveal that Th9 cells may exert a pivotal role in the pathogenesis and progression of refractory GD and HT, and IL-9 holds promise as a novel therapeutic target for the management of AITDs.
Collapse
Affiliation(s)
- Qiuming Yao
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Zhenyu Song
- Department of Tumor Interventional Oncology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Bin Wang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Peng Du
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Qiu Qin
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jing Zhao
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jin-an Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
5
|
Roostaee A, Yaghobi R, Afshari A, Jafarinia M. Regulatory role of T helper 9/interleukin-9: Transplantation view. Heliyon 2024; 10:e26359. [PMID: 38420400 PMCID: PMC10900956 DOI: 10.1016/j.heliyon.2024.e26359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
T helper 9 (Th9) cells, a subset of CD4+ T helper cells, have emerged as a valuable target for immune cell therapy due to their potential to induce immunomodulation and tolerance. The Th9 cells mainly produce interleukin (IL)-9 and are known for their defensive effects against helminth infections, allergic and autoimmune responses, and tumor suppression. This paper explores the mechanisms involved in the generation and differentiation of Th9 cells, including the cytokines responsible for their polarization and stabilization, the transcription factors necessary for their differentiation, as well as the role of Th9 cells in inflammatory and autoimmune diseases, allergic reactions, and cancer immunotherapies. Recent research has shown that the differentiation of Th9 cells is coregulated by the transcription factors transforming growth factor β (TGF-β), IL-4, and PU.1, which are also known to secrete IL-10 and IL-21. Multiple cell types, such as T and B cells, mast cells, and airway epithelial cells, are influenced by IL-9 due to its pleiotropic effects.
Collapse
Affiliation(s)
- Azadeh Roostaee
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Jafarinia
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
6
|
de Sena Rodrigues Júnior R, Antonia Nunes Gomes J, Alberto da Silva Dias G, Fujihara S, Toshimitsu Yoshikawa G, Vilela Lopes Koyama R, Catarina Medeiros Sousa R, Antonio Simões Quaresma J, Thais Fuzii H. T helper type 9 cell response and its role in the neurological clinic of patients with Human T-lymphotropic virus 1. Immunobiology 2023; 228:152740. [PMID: 37657359 DOI: 10.1016/j.imbio.2023.152740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Human T-lymphotropic virus 1 (HTLV-1) affects 5-10 million individuals worldwide. Most of those infected with this virus remain asymptomatic; however, 0.25%-4% of individuals develop HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), while 2%-4% develop adult T-cell leukemia/lymphoma (ATLL). Understanding the immune response inherent in this infection is extremely important. The role of T helper type 1 (Th1) and Th2 cells in HTLV-1 infection is well known; however, exploring the different subtypes of immune responses is also necessary. The role of Th9 cells in HTLV-1 infection and the mechanisms involved in their interference in the pathophysiological process of HAM/TSP is poorly understood. This study aimed to evaluate the expression profiles of PU.1, interferon regulatory factor 4 (IRF-4), and cytokine interleukin-9 (IL-9) during the induction of peripheral immune response and their role in the HTLV-1-infected patients' neurological symptoms. This analytical cross-sectional study was carried out at the Laboratory of Clinical and Epidemiology of Endemic Diseases and the Laboratory of Immunopathology, both from the Tropical Medicine Center at the Federal University of Pará. Assessment of neurological parameters was performed (gait, Expanded Kurtzke Disability State Scale (EDSS) score, upper and lower limb reflexes, Hoffman's sign, Babinski reflex, and clonus reflex). For Th9 cell analysis, peripheral blood samples were collected from HTLV-1-infected patients; then, the lymphomononuclear cells were separated followed by the isolation of messenger ribonucleic acid (mRNA). Complementary deoxyribonucleic acid (cDNA) synthesis each sample was carried out. The gene expression levels of PU.1, IRF-4, and IL-9 as well as those of constitutive genes (glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and β-actin) were quantified by real-time polymerase chain reaction (qPCR). This study included 81 HTLV-1-infected patients, of whom 47 were asymptomatic, 13 were mono/oligosymptomatic (MOS), and 21 developed HAM/TSP. IL-9 was the least expressed gene among the three studied groups. The MOS group showed the lowest expression levels of PU.1, IRF-4, and IL-9. HAM/TSP patients showed lower IL-9 protein quantification. Negative correlations were found between IL and 9 and EDSS in MOS patients and between PU.1, EDSS, IRF-4, and EDSS in the HAM/TSP group. An association was found between IL and 9 and Babinski reflex in the HAM/TSP group, suggesting that this gene was more highly expressed in patients who did not have this pathological sign. Th9 cells may interfere with the neurological progression of HAM/TSP and act as a protective factor.
Collapse
Affiliation(s)
| | | | | | - Satomi Fujihara
- Institute of Health Sciences, Federal University of Pará, Brazil
| | | | | | | | - Juarez Antonio Simões Quaresma
- Immunopathology Laboratory of Tropical Medicine Center. Federal University of Pará, Brazil; Center of Biological and Health Sciences, Pará State University, Brazil
| | - Hellen Thais Fuzii
- Immunopathology Laboratory of Tropical Medicine Center. Federal University of Pará, Brazil.
| |
Collapse
|
7
|
Li Y, Liu H, He C, Lin Y, Ma L, Xue H. IL-9-Producing Th9 Cells Participate in the Occurrence and Development of Iodine-Induced Autoimmune Thyroiditis. Biol Trace Elem Res 2023; 201:5298-5308. [PMID: 36773201 DOI: 10.1007/s12011-023-03598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Iodine excess may cause and aggravate autoimmune thyroiditis (AIT), which is regarded as a typical kind of autoimmune disease mainly mediated by CD4+ T cells. Thus far, it is unclear whether T helper (Th) 9 cells, a novel subpopulation of CD4+ T cells, play a potential role in AIT. Therefore, in the present study, changes in Th9 cells were detected in murine models of AIT induced by excess iodine intake to explore the possible immune mechanism. Female C57BL/6 mice were divided into 7 groups (n = 8) and were supplied with water containing 0.005% sodium iodide for 0, 2, 4, 6, 8, 10, and 12 weeks. With the extension of the high-iodine intake duration, the incidence of thyroiditis and the spleen index were significantly increased, and serum thyroglobulin antibody (TgAb) titers and interleukin 9 (IL-9, major cytokine from Th9 cells) concentrations were also increased. Additionally, it was revealed that the percentages of Th9 cells in spleen mononuclear cells (SMCs) and thyroid tissues were both markedly elevated and accompanied by increased mRNA and protein expression of IL-9 and key transcription factors of Th9 cells (PU.1 and IRF-4). Significantly, dynamic changes in Th9 cells were found, with a peak at 8 weeks after high iodine intake, the time point when thyroiditis was the most serious. Importantly, Th9 cells were detected in the areas of infiltrating lymphocytes in thyroid sections. In conclusion, the continuously increasing proportions of Th9 cells may play an important role in the occurrence and development of AIT induced by high iodine intake.
Collapse
Affiliation(s)
- Yiwen Li
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, No. 661 Second Huanghe Road, Binzhou, 256603, China
| | - Hao Liu
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, No. 661 Second Huanghe Road, Binzhou, 256603, China
| | - Chengyan He
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, No. 661 Second Huanghe Road, Binzhou, 256603, China
| | - Yawen Lin
- Department of Dermatology, Binzhou Medical University Hospital, No. 661 Second Huanghe Road, Binzhou, 256603, China
| | - Lei Ma
- Department of Dermatology, Binzhou Medical University Hospital, No. 661 Second Huanghe Road, Binzhou, 256603, China
| | - Haibo Xue
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, No. 661 Second Huanghe Road, Binzhou, 256603, China.
| |
Collapse
|
8
|
Aldossari AA, Assiri MA, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Albekairi TH, Alomar HA, Al-Mazroua HA, Almanaa TN, Al-Hamamah MA, Alwetaid MY, Ahmad SF. Histamine H4 Receptor Antagonist Ameliorates the Progression of Experimental Autoimmune Encephalomyelitis via Regulation of T-Cell Imbalance. Int J Mol Sci 2023; 24:15273. [PMID: 37894952 PMCID: PMC10607370 DOI: 10.3390/ijms242015273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Multiple sclerosis (MS) is a degenerative condition characterized by immune-mediated attacks on the central nervous system (CNS), resulting in demyelination and recurring T-cell responses. The histamine H4 receptor (H4R) is mainly expressed in cellular populations and plays a vital role in inflammation and immunological responses. The role of H4R in neurons of the CNS has recently been revealed. However, the precise role of H4R in neuronal function remains inadequately understood. The objective of this work was to investigate the impact of JNJ 10191584 (JNJ), a highly effective and specific H4R antagonist, on the development of experimental autoimmune encephalomyelitis (EAE) and to gain insight into the underlying mechanism involved. In this study, we examined the potential impact of JNJ therapy on the course of EAE in SJL/J mice. EAE mice were administered an oral dose of JNJ at a concentration of 6 mg/kg once a day, starting from day 10 and continuing until day 42. Afterward, the mice's clinical scores were assessed. In this study, we conducted additional research to examine the impact of JNJ on several types of immune cells, specifically Th1 (IFN-γ and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A and RORγt), and regulatory T (Tregs; Foxp3 and TGF-β1) cells in the spleen. In this study, we further investigated the impact of JNJ on the mRNA expression levels of IFN-γ, T-bet, IL-9, IRF4, IL-17A, RORγt, Foxp3, and TGF-β1 in the brain. Daily treatment of JNJ effectively reduced the development of EAE in mice. The percentages of CD4+IFN-γ+, CD4+T-bet+, CD4+IL-9+, CD4+IRF4+, CD4+IL-17A+, and CD4+RORγt+ cells were shown to decrease, whereas the percentages of CD4+TGF-β1+ and CD4+Foxp3+ cells were observed to increase in EAE mice treated with JNJ. Therefore, the HR4 antagonist positively affected the course of EAE by modulating the signaling of transcription factors. The identified results include possible ramifications in the context of MS treatment.
Collapse
Affiliation(s)
- Abdullah A. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatun A. Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A. Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y. Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Riekert M, Almanzar G, Schmalzing M, Schütze N, Jakob F, Prelog M. Mesenchymal stem cells modulate IL-17 and IL-9 production induced by Th17-inducing cytokine conditions in autoimmune arthritis: an explorative analysis. Adv Rheumatol 2023; 63:37. [PMID: 37525265 DOI: 10.1186/s42358-023-00317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND The importance of proinflammatory T-cells and their cytokine production in patients with autoimmune arthritis has been widely described. Due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have come into focus as a potential therapeutic concept. The aim of this study was to investigate the influence of MSCs on the phenotype, cytokine profile, and functionality of naive and non-naive CD4+ T-cells from healthy donors (HD) and patients with autoimmune arthritis under Th17-cytokine polarizing conditions in an explorative way using a transwell system prohibiting any cell-cell-contact. METHODS Magnetically isolated naive and non-naive CD4+ T-cells were stimulated under Th17-polarizing proinflammatory cytokine conditions in presence and absence of bone marrow derived mesenchymal stromal cells (MSCs). After an incubation period of 6 days, the proportions of the T-cell subpopulations TEMRA (CD45RA+CD27-), memory (CD45RA-CD27+), effector (CD45RA-CD27-) and naive cells (CD45RA+CD27+) were determined. Quantitative immunofluorescence intensity was used as a measure for IL-9, IL-17 and IFN-γ production in each subpopulation. RESULTS In isolated naive CD4+ T-cells from HD and patients, MSCs suppressed the differentiation of naive towards an effector phenotype while memory and naive cells showed higher percentages in culture with MSCs. In patients, MSCs significantly decreased the proportion of IL-9 and IL-17 producing effector T-cells. MSCs also reduced IFN-γ production in the naive and memory phenotype from HD. CONCLUSION The results of the study indicate significant immunomodulatory properties of MSCs, as under Th17-polarizing conditions MSCs are still able to control T-cell differentiation and proinflammatory cytokine production in both HD and patients with autoimmune arthritis.
Collapse
Affiliation(s)
- Maximilian Riekert
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany.
- Department of Oral and Craniomaxillofacial and Plastic Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50924, Cologne, Germany.
| | - Giovanni Almanzar
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Marc Schmalzing
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Norbert Schütze
- Orthopedic Clinic, Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Franz Jakob
- Orthopedic Clinic, Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Martina Prelog
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
10
|
Pajulas A, Zhang J, Kaplan MH. The World according to IL-9. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:7-14. [PMID: 37339404 PMCID: PMC10287031 DOI: 10.4049/jimmunol.2300094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/22/2023]
Abstract
Among the cytokines regulating immune cells, IL-9 has gained considerable attention for its ability to act on multiple cell types as a regulator of beneficial and pathologic immune responses. Yet, it is still not clearly defined how IL-9 impacts immune responses. IL-9 demonstrates a remarkable degree of tissue-specific functionality and has cellular sources that vary by tissue site and the context of the inflammatory milieu. Here, we provide perspective to summarize the biological activities of IL-9 and highlight cell type-specific roles in the immune pathogenesis of diseases. This perspective will be important in defining the diseases where targeting IL-9 as a therapeutic strategy would be beneficial and where it has the potential to complicate clinical outcomes.
Collapse
Affiliation(s)
- Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 215] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
12
|
Fahmawi A, Khalifeh MS, Alzoubi KH, Rababa'h AM. The Effects of Acute and Chronic Sleep Deprivation on the Immune Profile in the Rat. Curr Mol Pharmacol 2023; 16:101-108. [PMID: 35297357 DOI: 10.2174/1874467215666220316104321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Acute and chronic sleep deprivation present many health-related problems in modern societies, mainly concerning the immune system. Immune factors, particularly the interleukins, regulate sleep and, therefore, may be altered by sleep deprivation (SD). OBJECTIVES We aimed to investigate the possible effects of acute and chronic sleep deprivation on selected cytokines, including interleukins (IL-1β, IL-9, IL-17, and IL-23) and tumor necrosis factor- alpha (TNF-α). METHODS The animals were grouped into acute sleep-deprived (SD; for 24 hours) and chronic sleep-deprived (8 hours a day for 10, 20, and 30-days). The SD was induced using the multipleplatforms model. The serum levels of cytokines were measured using commercially available ELISA. RESULTS The serum levels of IL-1β were significantly reduced after acute SD, whereas they were increased after 20-days of chronic SD. The IL-9 levels were reduced after acute SD, increased after 10-days of SD, and reduced again after 30-days of SD. Conversely, the levels of IL-23 were not changed after acute SD, reduced after 10 days of SD, and increased after 30-days of SD. Levels of TNF-α were not changed after acute SD, whereas they were increased after 20 and 30- days of SD. CONCLUSION In conclusion, both acute and chronic SD distinctly disturb the immune profile, which might result in the emergence of various pathologies presented during sleep deprivation.
Collapse
Affiliation(s)
- Alaa Fahmawi
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammad S Khalifeh
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Abeer M Rababa'h
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
13
|
Fang Y, Chen W, Li Z, Chen Y, Wu X, Zhu X, Wang H, Chen X, Liang Q, Huang J, Han X, Hong W, Wang X, Wei W, Yu Z, Tu J. The role of a key transcription factor PU.1 in autoimmune diseases. Front Immunol 2022; 13:1001201. [PMID: 36248862 PMCID: PMC9557192 DOI: 10.3389/fimmu.2022.1001201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
PU.1, a transcription factor member of the E26 transformation-specific family, affects the function of a variety of immune cells in several physiological and pathological conditions. Previous studies studying the role of PU.1 in pathological conditions have mainly focused on immune system-related cancers, and a series of articles have confirmed that PU.1 mutation can induce a variety of immune cell-related malignancies. The underlying mechanism has also been extensively validated. However, the role of PU.1 in other major immune system-related diseases, namely, systemic autoimmune diseases, is still unclear. It was only in recent years that researchers began to gradually realize that PU.1 also played an important role in a variety of autoimmune diseases, such as rheumatoid arthritis (RA), experimental autoimmune encephalomyelitis (EAE) and systemic lupus erythematosus (SLE). This review article summarizes the findings of recent studies that investigated the role of PU.1 in various autoimmune diseases and the related underlying mechanisms. Furthermore, it presents new ideas and provides insight into the role of PU.1 as a potential treatment target for autoimmune diseases and highlights existing research problems and future research directions in related fields.
Collapse
Affiliation(s)
- Yilong Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Weile Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Zhe Li
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yu Chen
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xuming Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Xiangling Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Huihui Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Xiaochun Chen
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Qiuni Liang
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jinghua Huang
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xintong Han
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wenming Hong
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinming Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China,*Correspondence: Jiajie Tu, ; Zhiying Yu, ; Wei Wei,
| | - Zhiying Yu
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China,*Correspondence: Jiajie Tu, ; Zhiying Yu, ; Wei Wei,
| | - Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China,*Correspondence: Jiajie Tu, ; Zhiying Yu, ; Wei Wei,
| |
Collapse
|
14
|
Semenchuk J, Sullivan K, Moineddin R, Mahmud F, Dart A, Wicklow B, Xiao F, Medeiros T, Scholey J, Burger D. Urinary interleukin-9 in youth with type 1 diabetes mellitus. Acta Diabetol 2022; 59:939-947. [PMID: 35445345 PMCID: PMC9156513 DOI: 10.1007/s00592-022-01873-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/20/2022] [Indexed: 11/17/2022]
Abstract
AIMS Interleukin-9 (IL-9) attenuates podocyte injury in experimental kidney disease, but its role in diabetic nephropathy is unknown. We sought to relate urinary IL-9 levels to the release of podocyte-derived extracellular vesicles (EVs) in youth with type 1 diabetes. We related urinary IL-9 levels to clinical variables and studied interactions between urinary IL-9, vascular endothelial growth factor (VEGF), tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) on urinary albumin/creatinine ratio (ACR) a functional measure of podocyte injury. METHODS We performed an analysis of urine samples and clinical data from a cohort of youth with type 1 diabetes (n = 53). Cytokines were measured using a Luminex platform (Eve Technologies), and nanoscale flow cytometry was employed to quantify urinary podocyte-derived EVs. All urinary measures were normalized to urinary creatinine. RESULTS Mean age was 14.7 ± 1.6 years, and the mean time from diagnosis was 6.7 ± 2.9 years. Mean HbA1c was 70.3 ± 13.9 mmol/mol, mean ACR was 1.3 ± 1.9 mg/mmol, and mean eGFR was 140.3 ± 32.6 ml/min/1.73 m2. IL-9 was inversely related to podocyte EVs (r = - 0.56, p = 0.003). IL-9 was also inversely related to blood glucose, HbA1C and eGFR (r = - 0.44, p = 0.002; r = - 0.41, p = 0.003; r = - 0.49, p < 0.001, respectively) and positively correlated with systolic BP (r = 0.30, p = 0.04). There was a significant interaction between IL-9, EVs and ACR (p = 0.0143), and the relationship between IL-9 and ACR depended on VEGF (p = 0.0083), TNFα (p = 0.0231) and IL-6 levels (p = 0.0178). CONCLUSIONS IL-9 is associated with podocyte injury in early type 1 diabetes, and there are complex interactions between urinary IL-9, inflammatory cytokines and ACR.
Collapse
Affiliation(s)
- Julie Semenchuk
- Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada.
| | - Katie Sullivan
- Department of Medicine, Renal and Hypertension Division, University of Pennsylvania, Philadelphia, USA
| | - Rahim Moineddin
- Department of Family and Community Medicine, University of Toronto, Toronto, Canada
| | - Farid Mahmud
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Allison Dart
- Department of Pediatrics and Child Health, Children's Hospital Research Institute of Manitoba, Diabetes Research Envisioned and Accomplished in Manitoba Research Team, University of Manitoba, Winnipeg, Canada
| | - Brandy Wicklow
- Department of Pediatrics and Child Health, Children's Hospital Research Institute of Manitoba, Diabetes Research Envisioned and Accomplished in Manitoba Research Team, University of Manitoba, Winnipeg, Canada
| | - Fengxia Xiao
- Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada
| | - Thalia Medeiros
- Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada
| | - James Scholey
- Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Dylan Burger
- Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada
| |
Collapse
|
15
|
CCR1 antagonist ameliorates experimental autoimmune encephalomyelitis by inhibition of Th9/Th22-related markers in the brain and periphery. Mol Immunol 2022; 144:127-137. [DOI: 10.1016/j.molimm.2022.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 01/20/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022]
|
16
|
Neuroinflammation Is Associated with GFAP and sTREM2 Levels in Multiple Sclerosis. Biomolecules 2022; 12:biom12020222. [PMID: 35204724 PMCID: PMC8961656 DOI: 10.3390/biom12020222] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 01/22/2023] Open
Abstract
Background: Astrocytes and microglia play an important role in the inflammatory process of multiple sclerosis (MS). We investigated the associations between the cerebrospinal fluid (CSF) levels of glial fibrillary acid protein (GFAP) and soluble triggering receptors expressed on myeloid cells-2 (sTREM-2), inflammatory molecules, and clinical characteristics in a group of patients with relapsing-remitting MS (RRMS). Methods: Fifty-one RRMS patients participated in the study. Clinical evaluation and CSF collection were performed at the time of diagnosis. The CSF levels of GFAP, sTREM-2, and of a large set of inflammatory and anti-inflammatory molecules were determined. MRI structural measures (cortical thickness, T2 lesion load, cerebellar volume) were examined. Results: The CSF levels of GFAP and sTREM-2 showed significant correlations with inflammatory cytokines IL-8, G-CSF, and IL-5. Both GFAP and sTREM-2 CSF levels positively correlated with age at diagnosis. GFAP was also higher in male MS patients, and was associated with an increased risk of MS progression, as evidenced by higher BREMS at the onset. Finally, a negative association was found between GFAP CSF levels and cerebellar volume in RRMS at diagnosis. Conclusions: GFAP and sTREM-2 represent suitable biomarkers of central inflammation in MS. Our results suggest that enhanced CSF expression of GFAP may characterize patients with a higher risk of progression.
Collapse
|
17
|
Zha L, Dong J, Chen Q, Liao Y, Zhang H, Xie T, Tang T, Xia N, Zhang M, Jiao J, Zhou Y, Wu J, Yang X, Xu C, Wang QK, Tu X, Cheng X, Nie S. Genetic association analysis between IL9 and coronary artery disease in a Chinese Han population. Cytokine 2021; 150:155761. [PMID: 34814015 DOI: 10.1016/j.cyto.2021.155761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/04/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
Interleukin-9 (IL-9) plays important role in coronary artery disease (CAD). However, the exact relationship between them is not explored yet. Here, four tag SNPs covering IL9 (rs31563, rs2069868, rs2069870 and rs31564) were selected to conduct case-control association analyses in a total of 3704 individuals from Chinese Han population (1863 CAD vs 1841 control). Results showed that: first, rs2069868 was associated with CAD combined with hypertension (Padj = 0.027); second, IL9 haplotype (CGAT) was associated with CAD (Padj = 0.035), and the combination genotype of "rs31563_CC/rs31564_TT" would remarkably decrease the risk of CAD (Padj = 0.001); third, significant associations were found between rs2069870 and decreased LDL-c levels and decreased total cholesterol levels, and between rs31563 and increased HDL-c levels (Padj < 0.05). Therefore, we conclude that IL9 might play a causal role in CAD by interacted with CAD traditional risk factors, which might confer a new way to improve the prevention and treatment of CAD.
Collapse
Affiliation(s)
- Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiangtao Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianwen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Maternal and Child Health Hospital, Wuhan 430070, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongsong Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Tian Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiao Jiao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingchao Zhou
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianfei Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangping Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaofang Nie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
18
|
Xiang N, Fang X, Sun XG, Zhou YB, Ma Y, Zhu C, Li XP, Wang GS, Tao JH, Li XM. Expression profile of PU.1 in CD4 +T cells from patients with systemic lupus erythematosus. Clin Exp Med 2021; 21:621-632. [PMID: 33966135 DOI: 10.1007/s10238-021-00717-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with complex genetic predisposing factors involved. PU.1 is an important member of the ETS transcription factors family which has diverse functions such as regulating the proliferation, differentiation of immune cells and multiple inflammatory cytokines. Previous studies preliminary explored the relation between PU.1 and SLE. To further explain the potential role of PU.1 in the pathogenesis of SLE, 40 SLE patients and 20 age-sex matched healthy controls (HC) were recruited in this study. Flow cytometry was used to test the percentages of CD4+PU.1+T cells in peripheral blood mononuclear cells (PBMCs) from patients with SLE and HC. Expression levels of PU.1 mRNA in CD4+T cells from SLE patients and HC were analyzed by real-time transcription-polymerase chain reaction. Expression levels of plasma IL-1β, IL-9, IL-18, IL-6, IFN-α, TNF-α, IL-10 and TGF-β1 were measured by enzyme-linked immunosorbent assay. The percentage of CD4+PU.1+T cells in PBMCs from patients with SLE was significantly higher than that from HC (P < 0.001). In addition, the PU.1 mRNA expression in CD4+T cells from SLE patients was increased than that from HC (P = 0.002). In SLE patients, no significant correlation was found between the percentage of CD4+PU.1+T cells and the expression of PU.1 mRNA in CD4+T cells (P > 0.05). Associations of PU.1 mRNA expression in CD4+T cells with major clinical and laboratory parameters of SLE patients were also analyzed, but no significant correlations were found. Consistent with previous studies, SLE patients had increased IL-1β, IL-18, IL-6, IFN-α, TNF-α and IL-10 plasma concentrations than HC (P < 0.01). The expression level of plasma TGF-β1 was significantly decreased in SLE patients than in HC (P < 0.001). In SLE patients, the expression level of IL-1β was positive correlated with PU.1 mRNA expression in CD4+T cells (P = 0.001). Our study first time evaluated the expression profile of PU.1 in CD4+T cells from SLE patients confirming that PU.1 may participate in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Nan Xiang
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xuan Fang
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Xiao-Ge Sun
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Ying-Bo Zhou
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Yan Ma
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Chen Zhu
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Xiang-Pei Li
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Guo-Sheng Wang
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Jin-Hui Tao
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Xiao-Mei Li
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China.
| |
Collapse
|
19
|
Heim J, Almanzar G, Schmalzing M, Gernert M, Tony HP, Prelog M. Induction of IL-9 in Peripheral Lymphocytes of Rheumatoid Arthritis Patients and Healthy Donors by Th17-Inducing Cytokine Conditions. Front Immunol 2021; 12:668095. [PMID: 33995403 PMCID: PMC8117786 DOI: 10.3389/fimmu.2021.668095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
IL-9-producing Th9 cells display a group of helper T cells with similarities to Th17 and Th2 T cells and have been shown to be involved in synovial inflammation in rheumatoid arthritis (RA) patients. So far, it is unclear which parameters drive Th9 differentiation in lymphocytes derived from RA patients compared to immunologically healthy individuals and whether autocrine mechanisms are able to enhance Th9 polarization. Further, parallel pathways of induction of IL-17-producing cells with Th9 phenotype have to be distinguished from exclusively Th9-inductive mechanisms. Thus, the present study aimed to determine the parameters of Th9 induction by simulation in a standardized inflammatory cytokine milieu.Peripheral naive and non-naive T cells of RA patients and healthy donors (HD) were cultured under Th9 and Th17-driving conditions and phenotypically analyzed by flow cytometry and molecular analysis.Our findings indicate a similar differentiation pathway of Th9 and Th17 cells and similar distributions of IL-9+ T cells in RA and HD regardless of Th9- or Th17-promoting cytokine milieus. Whereas the magnitude and direction of Th9- or Th17-polarization was about the same in RA and HD, IL-17+ CD4+ T cells were significantly stimulated by Th17-inducing conditions in HD. In conclusion, the results indicate that Th9- and Th17-inducing cytokine conditions mimicking autoimmune inflammation in RA may have similar stimulatory effects regarding polarization of peripheral naive and non-naive T cells into Th9 or Th17 cells. The results suggest that the differentiation of Th9 cells may be also induced by Th17-driving conditions.
Collapse
Affiliation(s)
- Jana Heim
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Giovanni Almanzar
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Marc Schmalzing
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Gernert
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Hans-Peter Tony
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Martina Prelog
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
20
|
Kumar S, Marathe S, Dhamija B, Zambare U, Bilala R, Warang S, Nayak C, Purwar R. Presence and the roles of IL-9/Th9 axis in vitiligo. Pigment Cell Melanoma Res 2021; 34:966-972. [PMID: 33834624 DOI: 10.1111/pcmr.12978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/16/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022]
Abstract
Immune dysregulation is critical in vitiligo pathogenesis. Although the presence and roles of numerous CD4+ T-cell subsets have been described, the presence of Th9 cells and more importantly, roles of IL-9 on melanocyte functions are not explored yet. Here, we quantified the T helper cell subsets including Th9 cells in vitiligo patients by multicolor flowcytometry. There was an increased frequency of skin-homing (CLA+ ) and systemic (CLA- ) Th9 cells in vitiligo patients compared to healthy donors. However, there was no difference in Th9 cell frequency in vitiligo patients with early and chronic disease. There was negligible IL-9 receptor (IL-9R) expression on human primary melanocytes (HPMs); however, IFNγ upregulated IL-9R expression on HPMs. Functionally, IL-9/IL-9R signaling reduced the production of IFNγ-induced toxic reactive oxygen species (ROS) in HPMs. There was no effect of IL-9 on expression of genes responsible for melanosome formation (MART1, TYRP1, and DCT), melanin synthesis (TYR), and melanocyte-inducing transcription factor (MITF) in HPMs. In conclusion, this study identifies the presence of Th9 cells in vitiligo and their roles in reducing the oxidative stress of melanocytes, which might be useful in designing effective therapeutics.
Collapse
Affiliation(s)
- Sushant Kumar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Soumitra Marathe
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Bhavuk Dhamija
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Uddhao Zambare
- Skin and Venereal Diseases Department, TNMC and BYL Nair Charitable Hospital, Mumbai, India
| | - Richa Bilala
- Skin and Venereal Diseases Department, TNMC and BYL Nair Charitable Hospital, Mumbai, India
| | - Sanyogita Warang
- Skin and Venereal Diseases Department, TNMC and BYL Nair Charitable Hospital, Mumbai, India
| | - Chitra Nayak
- Skin and Venereal Diseases Department, TNMC and BYL Nair Charitable Hospital, Mumbai, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| |
Collapse
|
21
|
Sheng Y, Zhang J, Li K, Wang H, Wang W, Wen L, Gao J, Tang X, Tang H, Huang H, Cai M, Yuan T, Liu L, Zheng X, Zhu Z, Cui Y. Bach2 overexpression represses Th9 cell differentiation by suppressing IRF4 expression in systemic lupus erythematosus. FEBS Open Bio 2021; 11:395-403. [PMID: 33249782 PMCID: PMC7876501 DOI: 10.1002/2211-5463.13050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 01/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by abnormal activation of T cells and caused by an imbalance in the production and clearance of apoptotic cells. We previously showed that the transcription regulator Bach2 regulated abnormal B-cell activation in SLE. Here, we investigated whether Bach2 was also involved in Th9 cell differentiation in SLE. We found that the proportion of Th9 cells was enhanced in the peripheral blood mononuclear cells (PBMC) of SLE patients. The PBMC and CD4+ T cells of SLE patients exhibited a decrease of Bach2 expression and an increase of IL-9 expression. Furthermore, Bach2 overexpression significantly repressed the levels of PU.1, IRF4, IL-9, and Th9 cells in the CD4+ T cells of SLE patients and healthy volunteers. In addition, Bach2 overexpression inhibited the levels of IL-9 and Th9 cells, whereas IRF4 upregulation enhanced the levels of IRF4 and IL-9 and Th9 cells in the CD4+ T cells of SLE patients and healthy volunteers. The effect of IRF4 up-regulation was abolished by Bach2 overexpression. In summary, our work suggests that Bach2 overexpression represses Th9 cell differentiation by suppressing IRF4 expression in SLE, and thus, Bach2 may be a novel potential target for SLE treatment.
Collapse
Affiliation(s)
- Yujun Sheng
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Jiali Zhang
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Keke Li
- Department of DermatologyChina–Japan Friendship HospitalBeijingChina
| | - Hongyan Wang
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Wenjun Wang
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Leilei Wen
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Jinping Gao
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Xianfa Tang
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Huayang Tang
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - He Huang
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Minglong Cai
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Tao Yuan
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Lu Liu
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Xiaodong Zheng
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Zhengwei Zhu
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Yong Cui
- Department of DermatologyChina–Japan Friendship HospitalBeijingChina
| |
Collapse
|
22
|
Xie Y, Liu B, Wu Z. Increased interleukin-9 levels in skin lesions from cutaneous lupus erythematosus patients may predict the progression to systemic lupus erythematosus. J Dermatol Sci 2020; 101:78-80. [PMID: 33172731 DOI: 10.1016/j.jdermsci.2020.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Yongyi Xie
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Baoyi Liu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
23
|
Donninelli G, Saraf-Sinik I, Mazziotti V, Capone A, Grasso MG, Battistini L, Reynolds R, Magliozzi R, Volpe E. Interleukin-9 regulates macrophage activation in the progressive multiple sclerosis brain. J Neuroinflammation 2020; 17:149. [PMID: 32375811 PMCID: PMC7204302 DOI: 10.1186/s12974-020-01770-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
Background Multiple sclerosis (MS) is an immune-mediated, chronic inflammatory, and demyelinating disease of the central nervous system (CNS). Several cytokines are thought to be involved in the regulation of MS pathogenesis. We recently identified interleukin (IL)-9 as a cytokine reducing inflammation and protecting from neurodegeneration in relapsing–remitting MS patients. However, the expression of IL-9 in CNS, and the mechanisms underlying the effect of IL-9 on CNS infiltrating immune cells have never been investigated. Methods To address this question, we first analyzed the expression levels of IL-9 in post-mortem cerebrospinal fluid of MS patients and the in situ expression of IL-9 in post-mortem MS brain samples by immunohistochemistry. A complementary investigation focused on identifying which immune cells express IL-9 receptor (IL-9R) by flow cytometry, western blot, and immunohistochemistry. Finally, we explored the effect of IL-9 on IL-9-responsive cells, analyzing the induced signaling pathways and functional properties. Results We found that macrophages, microglia, and CD4 T lymphocytes were the cells expressing the highest levels of IL-9 in the MS brain. Of the immune cells circulating in the blood, monocytes/macrophages were the most responsive to IL-9. We validated the expression of IL-9R by macrophages/microglia in post-mortem brain sections of MS patients. IL-9 induced activation of signal transducer and activator of transcription (STAT)1, STAT3, and STAT5 and reduced the expression of activation markers, such as CD45, CD14, CD68, and CD11b in inflammatory macrophages stimulated in vitro with lipopolysaccharide and interferon (IFN)-γ. Similarly, in situ the number of activated CD68+ macrophages was significantly reduced in areas with high levels of IL-9. Moreover, in the same conditions, IL-9 increased the secretion of the anti-inflammatory cytokine, transforming growth factor (TGF)-β. Conclusions These results reveal a new cytokine expressed in the CNS, with a role in the context of MS. We have demonstrated that IL-9 and its receptor are both expressed in CNS. Moreover, we found that IL-9 decreases the activation state and promotes the anti-inflammatory properties of human macrophages. This mechanism may contribute to the beneficial effects of IL-9 that are observed in MS, and may be therapeutically potentiated by modulating IL-9 expression in MS.
Collapse
Affiliation(s)
- Gloria Donninelli
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Inbar Saraf-Sinik
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Valentina Mazziotti
- Neurology section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico G.B. Rossi, P.le L.A. Scuro, 10, 37134, Verona, Italy
| | - Alessia Capone
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy.,Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | | | - Luca Battistini
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Roberta Magliozzi
- Neurology section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico G.B. Rossi, P.le L.A. Scuro, 10, 37134, Verona, Italy. .,Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK.
| | - Elisabetta Volpe
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy.
| |
Collapse
|
24
|
Hu X, Feng J, Deng S, Tang J, Liao Z, Luo L, Luo L, Meng T, Gong G, Li X. Anaphylatoxins enhance Th9 cell recruitment via the CCL20-CCR6 axis in IgA nephropathy. J Nephrol 2020; 33:1027-1036. [PMID: 32036611 DOI: 10.1007/s40620-020-00708-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/31/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND CD4+ T cells are involved in the pathogenesis of immunoglobulin A nephropathy (IgAN); T helper (Th) 1, Th17 and Th22 cells promote the occurrence and amplification of inflammatory reactions, while regulatory T (Treg) cells produce the opposite effects. However, whether Th9 cells, a subset of CD4+ T cells, participate in IgAN development is still unknown. METHODS Human peripheral blood mononuclear cells (PBMCs) were isolated from IgAN patients for Th9 cells detection by flow cytometry. Wild-type (WT) mouse was used to establish an IgAN mouse model while C3aR and C5aR inhibitor treated IgAN mouse. Kidney disease and function was assessed by histology and albumin-to-creatinine ratio. C3aR and C5aR expression was examined by immunohistochemical (IHC) assay. Th9 cell proportions in the blood of IgAN mouse was detected. C3a, C5a and interleukin (IL)-9 levels were tested by ELISA. Moreover, co-culture system between human mesangial cells (HMCs) and CD4+ T cells were constructed with or without C3a, C5a and anti-CCL20 mAb stimulation for transwell assay to examine Th9 cell chemotaxis. RESULTS We observed the numbers of Th9 cell and the levels of IL-9 were increased in IgAN patients and IgAN mice. Furthermore, C3a and C5a level in serum and kidney, C3aR and C5aR expression was increased in IgAN mice compared to WT mice. Most interestingly, C3aR and C5aR inhibitor could reduce kidney damage, Th9 cell numbers and IL-9 levels. We also observed that C3a and C5a enhanced CCL20 production in HMCs. Notably, C3a and C5a also increased the recruitment of Th9 cells and IL-9 levels by HMCs through enhancing the CCL20-CCR6 pathway. CONCLUSIONS Our results support that C3a and C5a increase the production of CCL20 by HMCs and consequently augment Th9 cell recruitment and IL-9 levels, resulting in IgAN exacerbation.
Collapse
Affiliation(s)
- Xinyue Hu
- Department of Respiratory and Critical Care Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Juntao Feng
- Department of Respiratory and Critical Care Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Shuanglinzi Deng
- Department of Respiratory and Critical Care Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Jiale Tang
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Zhonghua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Lisha Luo
- Department of Respiratory and Critical Care Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Liying Luo
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Ting Meng
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Guanghui Gong
- Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
25
|
Niu X, Xu X, Luo Z, Wu D, Tang J. The expression of Th9 and Th22 cells in rats with cerebral palsy after hUC-MSC transplantation. J Chin Med Assoc 2020; 83:60-66. [PMID: 31904741 DOI: 10.1097/jcma.0000000000000202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND This study aimed to investigate the expression of Th9 and Th22 cells in rats with cerebral palsy (CP) after human umbilical cord-derived mesenchymal stem cell (hUC-MSC) transplantation. METHODS First, hUC-MSCs were isolated from fresh umbilical cords and identified. Rats were divided into the normal group, CP group, and hUC-MSC transplantation group. The Morris water maze and balance beam tests were performed to evaluate the neurobehavioral ability of the rats. The levels of TNF-α, IL-6, IL-9, and IL-22 in rat brain tissues were detected by ELISA. Th9 and Th22 proportions in brain tissues were detected by flow cytometric analysis. The mRNA levels of IL-9, IL-22, PU.1, and AHR in brain tissues were determined by qRT-PCR. RESULTS hUC-MSC transplantation enhanced the neurobehavioral ability of CP rats. Furthermore, Th9 and Th22 proportions were decreased in brain tissues from CP rats after hUC-MSC transplantation. The levels of proinflammatory cytokines (TNF-α and IL-6), Th9-related IL-9 and PU.1, and Th22-related IL-22 and AHR were markedly higher in brain tissues from CP rats than in brain tissues from control rats, but their levels were significantly decreased after hUC-MSC transplantation. CONCLUSION Our data indicate that Th9 and Th22 proportions are decreased in CP rats after hUC-MSC transplantation.
Collapse
Affiliation(s)
- Xia Niu
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoyan Xu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhihua Luo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - De Wu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiulai Tang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
26
|
Elevated interleukin-25 and its association to Th2 cytokines in systemic lupus erythematosus with lupus nephritis. PLoS One 2019; 14:e0224707. [PMID: 31697750 PMCID: PMC6837487 DOI: 10.1371/journal.pone.0224707] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/18/2019] [Indexed: 12/30/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder that is associated with lupus nephritis, initiated by the deposition of immune complexes in the kidney; subsequently, this induces the overexpression of cytokines. Lupus nephritis is known as one of the major clinical manifestations that affect the disease severity in SLE patients. An increased number of resident periglomerular and immune cells in the kidney has the potential to affect the equilibrium of different immune cell subsets, such as Th1, Th2, Th17, and Tregs, which may be central to the induction of tissue damage in kidney by exerting either proinflammatory or anti-inflammatory effects, or both. This equilibrium has yet to be confirmed, as new players such as IL-25 remain undiscovered. IL-25 is a cytokine of the IL-17 family, which stimulates Th2-mediated immune response when overly expressed. Thus, the aim of this research is to determine the plasma levels of IL-25 and Th2-associated cytokines (IL-4, IL-5, IL-6, IL-9, IL-10, IL-13) in SLE patients with (SLE-LN) and without lupus nephritis. Sixty-four (n = 64) SLE patients and fifteen (n = 15) healthy individuals were recruited. This study demonstrated that the IL-9, IL-10 and IL-25 had significantly increased expressions in SLE-LN, followed by SLE without LN, compared to healthy controls. Meanwhile, IL-5 and IL-6 had significantly reduced. No significant difference was observed with IL-13, while the level of IL-4 was undetectable. Furthermore, IL-9 and IL-10 were significantly correlated with the IL-25, and IL-25, IL-9 and IL-10 were positively correlated with the disease severity score, SLEDAI. In conclusion, IL-25 and its associated Th2 cytokines (IL-9 and IL-10) may be involved in SLE pathogenesis. These cytokines could be potential biomarkers in monitoring and predicting the disease severity during SLE pathogenesis.
Collapse
|
27
|
Chen J, Liu H, Li L, Wang H, Li Y, Wang Y, Ding K, Hao S, Shao Y, Li L, Song J, Wang G, Shao Z, Fu R. Abnormal numbers of CD4+ T lymphocytes and abnormal expression of CD4+ T lymphocyte‑secreted cytokines in patients with immune‑related haemocytopenia. Mol Med Rep 2019; 20:3979-3990. [PMID: 31545490 PMCID: PMC6797981 DOI: 10.3892/mmr.2019.10663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 06/12/2019] [Indexed: 12/24/2022] Open
Abstract
In the past decade, a group of cases with persisting haemocytopenia were separated from those with idiopathic cytopenia of undetermined significance due to the optimal response of these patients to immunosuppression therapy and due to the detection of autoantibodies in the bone marrow of haemopoietic cells. This condition was termed immune-related haemocytopenia (IRH). However, the quantity of T lymphocytes remained unknown. In the present study, the percentage of CD4+ T-cell subsets and related cytokines was measured using flow cytometry and an enzyme-linked immunosorbent assay. An abnormal number of CD4+ T cell subsets was found, including increased percentages of T helper (Th)2, Th9 and Th17 cells and a decreased number of regulatory T (Treg) cells. In addition, the results showed downregulation in the levels of interleukin (IL)-2, transforming growth factor-β and IL-35, and upregulation in the levels of IL-4, IL-6, IL-17, IL-23 and interferon-γ in patients who did not receive therapy (untreated patients). These levels were significantly associated with the number of peripheral blood cells and were recovered following treatment. In conclusion, an abnormal number of CD4+ T cell subsets and corresponding abnormal levels of regulatory cytokines resulted in the stimulation of B1 lymphocytes to produce autoantibodies in IRH, which may be considered as markers to evaluate disease prognosis and treatment strategies.
Collapse
Affiliation(s)
- Jin Chen
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hui Liu
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Liyan Li
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Honglei Wang
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yi Li
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yihao Wang
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kai Ding
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shanfeng Hao
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yuanyuan Shao
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lijuan Li
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jia Song
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guojin Wang
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zonghong Shao
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Rong Fu
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
28
|
Chen J, Guan L, Tang L, Liu S, Zhou Y, Chen C, He Z, Xu L. T Helper 9 Cells: A New Player in Immune-Related Diseases. DNA Cell Biol 2019; 38:1040-1047. [PMID: 31414895 PMCID: PMC6791470 DOI: 10.1089/dna.2019.4729] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The helper T cell 9 (Thelper-9, Th9), as a functional subgroup of CD4+T cells, was first discovered in 2008. Th9 cells expressed transcription factor PU.1 and cytokine interleukin-9 (IL-9) characteristically. Recent researches have shown that the differentiation of Th9 cells was coregulated by cytokine transforming growth factor β, IL-4, and various transcription factors. Th9 cells, as a new player, played an important role in various immune-related diseases, including tumors, inflammatory diseases, parasite infection, and other diseases. In this article, we summarize the related research progress and discuss the possible prospect.
Collapse
Affiliation(s)
- Jing Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lian Guan
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lin Tang
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shiming Liu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhixu He
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Zunyi, Guizhou, China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
- Address correspondence to: Lin Xu, PhD, Department of Immunology, Zunyi Medical University, Zunyi 563003, Guizhou, China
| |
Collapse
|
29
|
Lack of association between serum IL-9 levels and Behçet’s disease. Immunol Lett 2019; 211:23-27. [DOI: 10.1016/j.imlet.2019.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/01/2019] [Accepted: 05/12/2019] [Indexed: 12/22/2022]
|
30
|
Chakraborty S, Kubatzky KF, Mitra DK. An Update on Interleukin-9: From Its Cellular Source and Signal Transduction to Its Role in Immunopathogenesis. Int J Mol Sci 2019; 20:E2113. [PMID: 31035677 PMCID: PMC6522352 DOI: 10.3390/ijms20092113] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Interleukin-9 (IL-9) is a pleiotropic cytokine and was primarily studied in the context of T helper 2 (TH2)-associated immuno-pathological conditions such as asthma and parasitic infections. There was a paradigm shift in the biology of IL-9 after the recent discovery of TH9 cells, a new subtype of TH cells which secrete IL-9 in copious amounts. This has resulted in renewed interest in this cytokine, which was neglected since discovery because it was considered it to be just another TH2 cytokine. Recent studies have shown that it has multiple cellular sources and is critically involved in the immune-pathogenesis of inflammatory diseases and in guarding immune tolerance. In this review, we will discuss its discovery, gene organization, cellular sources, and signaling pathways. Especially, we will give an update on the recent development regarding its relevance in the immune pathogenesis of human diseases.
Collapse
Affiliation(s)
- Sushmita Chakraborty
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 1100029, India.
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 1100029, India.
| |
Collapse
|
31
|
Cai L, Zhang Y, Zhang Y, Chen H, Hu J. Effect of Th9/IL-9 on the growth of gastric cancer in nude mice. Onco Targets Ther 2019; 12:2225-2234. [PMID: 30988627 PMCID: PMC6441462 DOI: 10.2147/ott.s197816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective By neutralizing IL-9 in a nude mouse model, the study aimed to investigate the role of Th9/IL-9 on the growth of gastric cancer in mice. Materials and methods Male BALB/c nude mice were randomly divided into three groups: a normal control group (Control), an SGC-7901 xenografted nude mice model group (Model), and a rIL-9 treatment group (Treat). The weight of the tumors was recorded to calculate the tumor inhibition rate. Flow cytometry was used to detect the cell frequency of Th9, Th17, and Treg in peripheral blood. The IL-4, IL-9, IL-10, IL-25, VEGF, and TGF-β levels in serum were determined by ELISA. The cellular migration and invasion were investigated by transwell assay. Immunohistochemical and Western blot were used to detect the expression of IL-9, CD34, PU.1, p53, and p21 proteins in gastric cancer tissue. The mRNA expression levels of IL-9, IL-21, and PU.1 in gastric cancer tissue were determined by qRT-PCR. Result rIL-9 can significantly inhibit the growth of gastric cancer. The frequency of Th9, Th17, and Treg in peripheral blood was decreased upon treatment. The levels of IL-4, IL-9, IL-10, IL-25, VEGF, and TGF-β in serum were significantly reduced in the Treat group compared with the Model group (P<0.05). rIL-9 can inhibit cellular migration and invasion and reduce the mRNA level of IL-9, IL-21, and PU.1. Meanwhile, in the Treat group, the expression of IL-9, CD34, and PU.1 was significantly reduced, whereas the expression of p53 and p21 was significantly increased compared with the Model group (P<0.05). Conclusion This study suggested that Th9/IL-9 has a deleterious role in gastric cancer.
Collapse
Affiliation(s)
- Li Cai
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, People's Republic of China
| | - Yue Zhang
- Department of Gastrointestinal Surgery, Laizhou People's Hospital, Yantai 264000, People's Republic of China
| | - Yifei Zhang
- Department of Gastrointestinal Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, People's Republic of China,
| | - Hongbing Chen
- Department of Gastrointestinal Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, People's Republic of China,
| | - Jinchen Hu
- Department of Gastrointestinal Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, People's Republic of China,
| |
Collapse
|
32
|
Yazdani R, Shapoori S, Rezaeepoor M, Sanaei R, Ganjalikhani-Hakemi M, Azizi G, Rae W, Aghamohammadi A, Rezaei N. Features and roles of T helper 9 cells and interleukin 9 in immunological diseases. Allergol Immunopathol (Madr) 2019; 47:90-104. [PMID: 29703631 DOI: 10.1016/j.aller.2018.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/28/2018] [Accepted: 02/09/2018] [Indexed: 02/08/2023]
Abstract
T helper 9 (TH9) cells are considered as newly classified helper T cells that have an important role in the regulation of immune responses. Since these cells preferentially produce IL-9, these cells are termed TH9 cells. Recently, the role of TH9 and its signature cytokine (IL-9) has been investigated in a wide range of diseases, including autoimmunity, allergy, infections, cancer and immunodeficiency. Herein, we review the most recent data concerning TH9 cells and IL-9 as well as their roles in disease. These insights suggest that TH9 cells are a future target for therapeutic intervention.
Collapse
|
33
|
Maywald M, Wang F, Rink L. Zinc supplementation plays a crucial role in T helper 9 differentiation in allogeneic immune reactions and non-activated T cells. J Trace Elem Med Biol 2018; 50:482-488. [PMID: 29439842 DOI: 10.1016/j.jtemb.2018.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
Abstract
T helper (Th) 9 cells play a critical role in immune-mediated diseases, including allergic airway inflammation, autoimmune diseases, and cancer development. Thus, the promotion or suppression of Th9 cell differentiation, transcriptional control, and function is very important for a healthy immune system. Interestingly, T cell maturation, differentiation and function are highly dependent on the individuals' zinc status. This is especially seen in zinc deficient individuals as in the elderly population often suffering of autoimmunity and increased incidence of infections. In this regard, this study examines the impact of zinc supplementation in pharmacological doses on Th9 differentiation in two in vitro models: 1) in mixed lymphocyte cultures (MLC) displaying allogeneic activated T cells in graft versus host disease, and 2) on non-activated resting T cells in peripheral blood mononuclear cells (PBMC). On the one hand, zinc supplementation significantly diminishes IL-4-induced Th9 differentiation in MLC thereby ameliorating this pro-inflammatory allogeneic immunoreaction. On the other hand, Th9 cells are induced in resting T cells in PBMC hence triggering the immunological defense. Thus, zinc supplementation can be considered as useful additive to dampen unwanted allogeneic immunoreactions. Moreover, the pro-inflammatory immune defense in non-reactive T cells can be strengthened, which is a frequent issue in the elderly population having a weakened immune response against invading pathogens.
Collapse
Affiliation(s)
- Martina Maywald
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Fudi Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Lothar Rink
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
34
|
Ali ME, El-Badawy O, Afifi NA, Eldin AS, Hassan EA, Halby HM, El-Mokhtar MA. Role of T-Helper 9 Cells in Chronic Hepatitis C-Infected Patients. Viruses 2018; 10:E341. [PMID: 29937515 PMCID: PMC6071239 DOI: 10.3390/v10070341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus is a hepatotropic virus that is transmitted parenterally. Viral infections are usually associated with modulations of the immune cells, leading to enhanced viral survival and spreading, and accordingly, life-threatening complications. Recently, it has been proposed that a new subset of T-helper, named T-helper 9, is involved in the pathogenesis of different immunopathological conditions, such as allergies, tumors, and viral infections. Some studies reported a protective role, and others described a pathogenic potential for the T-helper 9 cells. Here, we present evidence that T-helper 9 cells are dynamically increased with increasing the pathogenic strategy for hepatitis C virus (HCV). Furthermore, viral clearance is associated with a decrease in T-helper 9. The increase in T-helper 9 was paralleled with an increase in its receptor expression. Taken together, our data suggest that T-helper 9 cells play an important role in the pathogenesis of HCV, and is directly associated with HCV-related complications.
Collapse
Affiliation(s)
- Mohamed E Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Omnia El-Badawy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Noha A Afifi
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Abeer Sharaf Eldin
- Department of Gastroenterology and Tropical Medicine, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Elham Ahmed Hassan
- Department of Gastroenterology and Tropical Medicine, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Hamada M Halby
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Mohamed Ahmed El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| |
Collapse
|
35
|
Shohan M, Sabzevary-Ghahfarokhi M, Bagheri N, Shirzad H, Rahimian G, Soltani A, Ghatreh-Samani M, Deris F, Tahmasbi K, Shahverdi E, Fathollahi F. Intensified Th9 Response is Associated with the Immunopathogenesis of Active Ulcerative Colitis. Immunol Invest 2018; 47:700-711. [DOI: 10.1080/08820139.2018.1486411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mojtaba Shohan
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Milad Sabzevary-Ghahfarokhi
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ghorbanali Rahimian
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahdi Ghatreh-Samani
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Deris
- Department of Epidemiology and Biostatistics, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Kamran Tahmasbi
- Department of Pathology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elahe Shahverdi
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fereshteh Fathollahi
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
36
|
Shohan M, Elahi S, Shirzad H, Rafieian-Kopaei M, Bagheri N, Soltani E. Th9 Cells: Probable players in ulcerative colitis pathogenesis. Int Rev Immunol 2018; 37:192-205. [PMID: 29672174 DOI: 10.1080/08830185.2018.1457659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
T lymphocytes represent an important part of adaptive immune system undertaking different functions to regulate immune responses. CD4+ T cells are the most important activator cells in inflammatory conditions. Depending on the type of induced cells and inflamed sites, expression and activity of different subtypes of helper T cells are changed. Recent studies have confirmed the existence of a new subset of helper T lymphocytes called Th9. Naive T cells can differentiate into Th9 subtypes if they are exposed simultaneously by interleukin (IL) 4 and transforming growth factor β and also secondary activation of a complicated network of transcription factors such as interferon regulatory factor 4 (IRF4) and Smads which are essential for adequate induction of this phenotype. Th9 cells specifically produce interleukin 9 and their probable roles in promoting intestinal inflammation are being investigated in human subjects and experimental models of ulcerative colitis (UC). Recently, infiltration of Th9 cells, overexpression of IL-9, and certain genes associated with Th9 differentiation have been demonstrated in inflammatory microenvironment of UC. Intestinal oversecretion of IL-9 protein is likely to break down epithelial barriers and compromise tolerance to certain commensal microorganisms which leads to inflammation. Th9 pathogenicity has not yet been adequately explored in UC and they are far from being considered as inflammatory cells in this milieu, therefore precise understanding the role of these newly identified cells in particular their potential role in gut pathogenesis may enable us to develop novel therapeutic approaches for inflammatory bowel disease. So, this article tries to discuss the latest knowledge on the above-mentioned field.
Collapse
Affiliation(s)
- Mojtaba Shohan
- a Department of Microbiology and Immunology , Faculty of Medicine, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Shokrollah Elahi
- b Department of Dentistry , Department of Medical Microbiology and Immunology , Faculty of Medicine and Dentistry, University of Alberta , Edmonton , Alberta , Canada
| | - Hedayatollah Shirzad
- c Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Mahmoud Rafieian-Kopaei
- d Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Nader Bagheri
- a Department of Microbiology and Immunology , Faculty of Medicine, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Emad Soltani
- a Department of Microbiology and Immunology , Faculty of Medicine, Shahrekord University of Medical Sciences , Shahrekord , Iran
| |
Collapse
|
37
|
Li Y, Yu Q, Zhang Z, Wang J, Li S, Zhang J, Liu G. TH9 cell differentiation, transcriptional control and function in inflammation, autoimmune diseases and cancer. Oncotarget 2018; 7:71001-71012. [PMID: 27589682 PMCID: PMC5342605 DOI: 10.18632/oncotarget.11681] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/26/2016] [Indexed: 12/31/2022] Open
Abstract
Naïve CD4+T cells differentiate into various T cell subsets depending on the specific cytokine environment. TH9 cells are less well-characterized than other T cell subsets, and factors that control their development and function have only recently been identified. It is now clear that TH9 cells play critical roles in immune-mediated diseases, including allergic airway, autoimmune and inflammatory bowel diseases, and cancer. Thus, the promotion or suppression of TH9 cell differentiation, transcriptional control and function may provide novel treatments for clinical inflammation, autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qing Yu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Zhengguo Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jian Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Simin Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jiangyuan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Abstract
IL-9 is a pleiotropic cytokine produced in different amounts by a wide variety of cells including mast cells, NKT cells, Th2, Th17, Treg, ILC2, and Th9 cells. Th9 cells are considered to be the main CD4+ T cells that produce IL-9. IL-9 exerts its effects on multiple types of cells and different tissues. To date, its main role has been found in the immune responses against parasites and pathogenesis of allergic diseases such as asthma and bronchial hyperreactivity. Additionally, it induces the proliferation of hematologic neoplasias, including Hodgkin's lymphoma in humans. However, IL-9 also has antitumor properties in solid tumors such as melanoma. The objective of this review is to describe IL-9, its function, sources, and methods of detection.
Collapse
Affiliation(s)
| | - Elizabeth Sanchez
- Department of Physiology, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
39
|
Chowdhury K, Kumar U, Das S, Chaudhuri J, Kumar P, Kanjilal M, Ghosh P, Sircar G, Basyal RK, Kanga U, Bandyopadhaya S, Mitra DK. Synovial IL-9 facilitates neutrophil survival, function and differentiation of Th17 cells in rheumatoid arthritis. Arthritis Res Ther 2018; 20:18. [PMID: 29382374 PMCID: PMC5791733 DOI: 10.1186/s13075-017-1505-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 12/27/2017] [Indexed: 01/08/2023] Open
Abstract
Background Role of Th9 cells and interleukin-9 (IL-9) in human autoimmune diseases such as psoriasis and ulcerative colitis has been explored only very recently. However, their involvement in human rheumatoid arthritis (RA) is not conclusive. Pathogenesis of RA is complex and involves various T cell subsets and neutrophils. Here, we aimed at understanding the impact of IL-9 on infiltrating immune cells and their eventual role in synovial inflammation in RA. Methods In vitro stimulation of T cells was performed by engagement of anti-CD3 and anti-CD28 monoclonal antibodies. Flow cytometry was employed for measuring intracellular cytokine, RORγt in T cells, evaluating apoptosis of neutrophils. ELISA was used for measuring soluble cytokine, Western blot analysis and confocal microscopy were used for STAT3 phosphorylation and nuclear translocation. Results We demonstrated synovial enrichment of Th9 cells and their positive correlation with disease activity (DAS28-ESR) in RA. Synovial IL-9 prolonged the survival of neutrophils, increased their matrix metalloprotienase-9 production and facilitated Th17 cell differentiation evidenced by induction of transcription factor RORγt and STAT3 phosphorylation. IL-9 also augmented the function of IFN-γ + and TNF-α + synovial T cells. Conclusions We provide evidences for critical role of IL-9 in disease pathogenesis and propose that targeting IL-9 may be an effective strategy to ameliorate synovial inflammation in RA. Inhibiting IL-9 may have wider impact on the production of pathogenic cytokines involved in autoimmune diseases including RA and may offer better control over the disease. Electronic supplementary material The online version of this article (10.1186/s13075-017-1505-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaustav Chowdhury
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences (AIIMS), Room No-75, New Delhi, 110029, India
| | - Uma Kumar
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Soumabha Das
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Jaydeep Chaudhuri
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research (CSIR), Kolkata, India
| | - Prabin Kumar
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences (AIIMS), Room No-75, New Delhi, 110029, India
| | - Maumita Kanjilal
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Parashar Ghosh
- Rheumatology Center, Institute of Post Graduate Medical Education and Research (IPGMER), Kolkata, India
| | - Geetabali Sircar
- Rheumatology Center, Institute of Post Graduate Medical Education and Research (IPGMER), Kolkata, India
| | - Ravi Kiran Basyal
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Uma Kanga
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences (AIIMS), Room No-75, New Delhi, 110029, India
| | - Santu Bandyopadhaya
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research (CSIR), Kolkata, India
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences (AIIMS), Room No-75, New Delhi, 110029, India.
| |
Collapse
|
40
|
Savioli B, Abdulahad WH, Brouwer E, Kallenberg CG, de Souza AWS. Are cytokines and chemokines suitable biomarkers for Takayasu arteritis? Autoimmun Rev 2017; 16:1071-1078. [DOI: 10.1016/j.autrev.2017.07.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/26/2022]
|
41
|
Yang ZX, Chi Y, Ji YR, Wang YW, Zhang J, Luo WF, Li LN, Hu CD, Zhuo GS, Wang LF, Han ZB, Han ZC. Human umbilical cord mesenchymal stem cells increase interleukin-9 production of CD4 + T cells. Exp Ther Med 2017; 14:3541-3548. [PMID: 29042945 PMCID: PMC5639408 DOI: 10.3892/etm.2017.4952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSC) are able to differentiate into cells of multiple lineage, and additionally act to modulate the immune response. Interleukin (IL)-9 is primarily produced by cluster of differentiation (CD)4+ T cells to regulate the immune response. The present study aimed to investigate the effect of human umbilical cord derived-MSC (UC-MSC) on IL-9 production of human CD4+ T cells. It was demonstrated that the addition of UC-MSC to the culture of CD4+ T cells significantly enhanced IL-9 production by CD4+ T cells. Transwell experiments suggested that UC-MSC promotion of IL-9 production by CD4+ T cells was dependent on cell-cell contact. Upregulated expression of CD106 was observed in UC-MSC co-cultured with CD4+ T cells, and the addition of a blocking antibody of CD106 significantly impaired the ability of UC-MSC to promote IL-9 production by CD4+ T cells. Therefore, the results of the present study demonstrated that UC-MSC promoted the generation of IL-9 producing cells, which may be mediated, in part by CD106. The findings may act to expand understanding and knowledge of the immune modulatory role of UC-MSC.
Collapse
Affiliation(s)
- Zhou Xin Yang
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin 300020, P.R. China.,Zhejiang Provincial Key Laboratory of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Ying Chi
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin 300020, P.R. China
| | - Yue Ru Ji
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin 300020, P.R. China
| | - You Wei Wang
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin 300020, P.R. China.,National Engineering Research Center of Cell Products, Tianjin 300457, P.R. China
| | - Jing Zhang
- Zhejiang Provincial Key Laboratory of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Wei Feng Luo
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Li Na Li
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Cai Dong Hu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Guang Sheng Zhuo
- Beijing Institute of Health and Stem Cells, Beijing 100176, P.R. China
| | - Li Fang Wang
- Department of Basic Medicine, Zhejiang Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhi-Bo Han
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin 300020, P.R. China.,National Engineering Research Center of Cell Products, Tianjin 300457, P.R. China
| | - Zhong Chao Han
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin 300020, P.R. China.,National Engineering Research Center of Cell Products, Tianjin 300457, P.R. China
| |
Collapse
|
42
|
Ciccia F, Guggino G, Ferrante A, Raimondo S, Bignone R, Rodolico V, Peralta S, Van Tok M, Cannizzaro A, Schinocca C, Ruscitti P, Cipriani P, Giacomelli R, Alessandro R, Dieli F, Rizzo A, Baeten D, Triolo G. Interleukin-9 Overexpression and Th9 Polarization Characterize the Inflamed Gut, the Synovial Tissue, and the Peripheral Blood of Patients With Psoriatic Arthritis. Arthritis Rheumatol 2017; 68:1922-31. [PMID: 26895441 DOI: 10.1002/art.39649] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/16/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the expression and tissue distribution of Th9-related cytokines in patients with psoriatic arthritis (PsA). METHODS Quantitative gene expression analysis of Th1, Th17, and Th9 cytokines was performed in intestinal biopsy samples obtained from patients with PsA, HLA-B27-positive patients with ankylosing spondylitis (AS), patients with Crohn's disease (CD), and healthy controls. Expression and tissue distribution of interleukin-23 (IL-23), IL-17, IL-22, IL-9, and IL-9 receptor (IL-9R) were evaluated by immunohistochemistry and confocal microscopy. Flow cytometry was used to study the frequency of Th9 cells among peripheral blood, lamina propria, and synovial fluid mononuclear cells. The functional relevance of IL-9R expression on epithelial cells was assessed in functional in vitro studies. Th9 cells in synovial tissue from patients with PsA were also studied. RESULTS Subclinical gut inflammation in PsA patients was characterized by a clear Th17 and Th22, but not Th1, polarized immune response. Unlike AS and CD, a strong and significant up-regulation of IL-9 was observed in PsA gut, especially among infiltrating mononuclear cells, high endothelial venules, and Paneth cells. IL-9-positive mononuclear cells were demonstrated to be in large part Th9 cells. IL-9 overexpression was accompanied by significant Paneth cell hyperplasia. Paneth cells strongly overexpressed IL-9R, and stimulation of epithelial cells, isolated from PsA patients, with IL-9 resulted in overexpression of α-defensin 5 and IL-23p19. Peripheral and synovial expansion of α4β7+ Th9 cells was also observed in patients with PsA. Increased expression of IL-9 and IL-9R was also found in synovial tissue. CONCLUSION Strong IL-9/Th9 polarization seems to be the predominant immunologic signature in patients in PsA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Melissa Van Tok
- Academic Medical Center and University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | - Aroldo Rizzo
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Dominique Baeten
- Academic Medical Center and University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
43
|
Ciccia F, Guggino G, Ferrante A, Cipriani P, Giacomelli R, Triolo G. Interleukin-9 and T helper type 9 cells in rheumatic diseases. Clin Exp Immunol 2017; 185:125-32. [PMID: 27159882 DOI: 10.1111/cei.12807] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/14/2016] [Accepted: 04/30/2016] [Indexed: 01/05/2023] Open
Abstract
Interleukin (IL)-9 is a 28-30 kDa monomeric glycosylated polypeptide belonging to the IL-7/IL-9 family of proteins that bind to a composite receptor consisting of the private receptor IL-9R and the IL-2 receptor, gamma (IL-2RG), a common gamma subunit shared by the receptors of many different cytokines. The IL-9R is expressed widely and IL-9 impacts a number of effector cells, such as effector T cells, B cells, innate lymphoid cells, mast cells, polymorphonuclear cells, epithelial cells and smooth muscle cells, playing an important role in regulating inflammatory immunity. The critical role of IL-9 in promoting cellular and humoral immune responses makes it an important focus of potential therapeutic interventions. Recently, a defined subset of T helper type cells, Th9 cells, has been identified by the potent production of IL-9. The involvement of the Th9 cell subset has been described in many types of inflammatory diseases, namely atopic diseases, helminth infections, experimental autoimmune encephalomyelitis and ulcerative colitis. In this review, we summarize the IL-9 biological activities, highlighting roles for IL-9 and Th9 cells in rheumatoid and psoriatic arthritis, systemic vasculitis, systemic lupus erythematosus and systemic sclerosis.
Collapse
Affiliation(s)
- F Ciccia
- Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di Reumatologia, University of Palermo, Palermo
| | - G Guggino
- Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di Reumatologia, University of Palermo, Palermo
| | - A Ferrante
- Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di Reumatologia, University of Palermo, Palermo
| | - P Cipriani
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Sezione di Reumatologia, Università di L'Aquila, L'Aquila, Italy
| | - R Giacomelli
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Sezione di Reumatologia, Università di L'Aquila, L'Aquila, Italy
| | - G Triolo
- Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di Reumatologia, University of Palermo, Palermo
| |
Collapse
|
44
|
Wang H, Bai J, Luo Z, Fu J, Wang H, Sun Z. Overexpression and varied clinical significance of Th9 versus Th17 cells in distinct subtypes of oral lichen planus. Arch Oral Biol 2017; 80:110-116. [PMID: 28412610 DOI: 10.1016/j.archoralbio.2017.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Oral lichen planus (OLP) presents with large numbers of T lymphocytes accumulating beneath the epithelium of the oral mucosa; however, its aetiology remains obscure. A potential role for an emerging novel T cell subset, Th9, in OLP has recently been suggested but remains to be clarified. The current aim was to investigate the expression and potential clinical significance of Th9 cells in distinct subtypes of OLP. MATERIALS AND METHODS Peripheral blood samples were collected from 41 OLP patients and 18 healthy controls (HCs). Flow cytometric analysis was used to detect the CD4+ T helper subset Th9 (IL-9+IL-17-CD4+ Th cells) and Th17 (IL-9-IL-17+CD4+ Th cells) expression levels. RESULTS Flow cytometry results showed significantly elevated levels of Th9 cells in reticular and erosive OLP compared to HCs. Th9 expression in erosive OLP was less than in reticular OLP, indicating that Th9 but not Th17 cells may play a predominant role in reticular disease. However, in erosive OLP patients, we found much higher levels of Th17 cells compared to reticular OLP patients and HCs, indicating that Th17 dominates in erosive OLP. Statistical analysis showed positive correlations of Th9 cells and Th17 cells in patients with reticular or erosive OLP but none in HCs. CONCLUSIONS Th9 and Th17 cells may take the predominant roles in reticular and erosive OLP respectively, and their numbers were positively correlated in reticular and erosive OLP patients. Elevated circulating Th9 cells may help maintain immune balance in OLP immunopathogenesis, which requires further investigation.
Collapse
Affiliation(s)
- Hui Wang
- Department of Oral Medicine, School of Stomatology, Capital Medical University, Beijing, China; State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China.
| | - Jingping Bai
- Department of Oral Medicine, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhenhua Luo
- Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China.
| | - Jie Fu
- Department of Oral Medicine, School of Stomatology, Capital Medical University, Beijing, China
| | - Hongjian Wang
- Department of Oral Medicine, School of Stomatology, Capital Medical University, Beijing, China
| | - Zheng Sun
- Department of Oral Medicine, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Ren W, Liu G, Chen S, Yin J, Wang J, Tan B, Wu G, Bazer FW, Peng Y, Li T, Reiter RJ, Yin Y. Melatonin signaling in T cells: Functions and applications. J Pineal Res 2017; 62. [PMID: 28152213 DOI: 10.1111/jpi.12394] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/27/2017] [Indexed: 12/21/2022]
Abstract
Melatonin affects a variety of physiological processes including circadian rhythms, cellular redox status, and immune function. Importantly, melatonin significantly influences T-cell-mediated immune responses, which are crucial to protect mammals against cancers and infections, but are associated with pathogenesis of many autoimmune diseases. This review focuses on our current understanding of the significance of melatonin in T-cell biology and the beneficial effects of melatonin in T-cell response-based diseases. In addition to expressing both membrane and nuclear receptors for melatonin, T cells have the four enzymes required for the synthesis of melatonin and produce high levels of melatonin. Meanwhile, melatonin is highly effective in modulating T-cell activation and differentiation, especially for Th17 and Treg cells, and also memory T cells. Mechanistically, the influence of melatonin in T-cell biology is associated with membrane and nuclear receptors as well as receptor-independent pathways, for example, via calcineurin. Several cell signaling pathways, including ERK1/2-C/EBPα, are involved in the regulatory roles of melatonin in T-cell biology. Through modulation in T-cell responses, melatonin exerts beneficial effects in various inflammatory diseases, such as type 1 diabetes, systemic lupus erythematosus, and multiple sclerosis. These findings highlight the importance of melatonin signaling in T-cell fate determination, and T cell-based immune pathologies.
Collapse
Affiliation(s)
- Wenkai Ren
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Gang Liu
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Shuai Chen
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jie Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jing Wang
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Bie Tan
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Tiejun Li
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yulong Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
- School of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
46
|
Luo Q, Ye J, Zeng L, Li X, Fang L, Ju B, Huang Z, Li J. Elevated expression of TIGIT on CD3 +CD4 + T cells correlates with disease activity in systemic lupus erythematosus. Allergy Asthma Clin Immunol 2017; 13:15. [PMID: 28261278 PMCID: PMC5331638 DOI: 10.1186/s13223-017-0188-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 02/18/2017] [Indexed: 01/27/2023] Open
Abstract
Objectives It is well-known that lymphocytes play an important role in systemic lupus erythematosus (SLE). T cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory domains (TIGIT) is one of immunosuppressive costimulatory molecules that mediates an inhibitory effect. However, its roles in SLE are poorly understood. This study was designed to investigate the correlation between the frequencies of TIGIT-expressing CD3+CD4+ T lymphocytes and SLE. Methods Patients with SLE were recruited from the First Affiliated Hospital of Nanchang University. Medical history, clinical manifestations, physical examination and laboratory measurements were recorded. The expression of TIGIT on CD3+ T lymphocytes, B lymphocytes, monocytes, neutrophils, CD3+CD4+ T lymphocytes and CD3+CD8+ T lymphocytes were determined by flow cytometry. The frequencies of TIGIT-expressing CD3+CD4+ T lymphocytes in patients with SLE were further analyzed for correlations with markers of autoimmune response, inflammation, urine proteins and disease activity in SLE. Results The frequency of TIGIT-expressing CD3+CD4+ T lymphocytes was significantly elevated in SLE patients compared with healthy controls (P < 0.0001). The frequency of TIGIT-expressing CD3+CD4+ T lymphocytes in patients with SLE was increased significantly in subjects with high anti-dsDNA titer (P = 0.026), high anti-Sm titer (P = 0.026), and high levels of urine microalbumin (P = 0.046). Furthermore, The frequency of TIGIT-expressing CD3+CD4+ T lymphocytes was found to be positively correlated with the Disease Activity Index (SLEDAI) score in SLE (r2 = 0.082; P = 0.044). Conclusion In SLE, the frequency of TIGIT-expressing CD3+CD4+ T lymphocytes was elevated and associated with the disease activity.
Collapse
Affiliation(s)
- Qing Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| | - Jianqing Ye
- Department of Medical College, Nanchang University, Nanchang, 330006 Jiangxi China
| | - Lulu Zeng
- Department of Medical College, Nanchang University, Nanchang, 330006 Jiangxi China
| | - Xue Li
- Department of Medical College, Nanchang University, Nanchang, 330006 Jiangxi China
| | - Le Fang
- Department of Blood Transfusion, 521 Hospital of Ordnance Industry, Xi'an, 710065 Shanxi China
| | - Beihua Ju
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| | - Zikun Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| | - Junming Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi China
| |
Collapse
|
47
|
Qi C, Shan Y, Wang J, Ding F, Zhao D, Yang T, Jiang Y. Circulating T helper 9 cells and increased serum interleukin-9 levels in patients with knee osteoarthritis. Clin Exp Pharmacol Physiol 2016; 43:528-34. [PMID: 26926842 DOI: 10.1111/1440-1681.12567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/21/2016] [Accepted: 02/24/2016] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to examine the roles of T helper 9 (Th9) cells and the serum interleukin (IL)-9 level in the pathogenesis of osteoarthritis (OA). The numbers of IL-9(+) CD4(+) CD8(-) T cells, interferon (IFN)-γ+ CD4(+) CD8(-) T cells, IL-4(+) CD4(+) CD8(-) T cells, and IL-17A(+) CD4(+) CD8(-) T cells in 25 OA patients and 13 healthy controls (HC) were examined by flow cytometry. The serum concentrations of IL-9, IL-4, IL-17A, and IFN-γ were also determined. The numbers of CD4(+) CD45RO(+) T cells, Th9 cells, Th1 cells, and Th17 cells in OA patients were significantly higher than those in HCs. Furthermore, serum IL-9, IL-17A, and IFN-γ levels in OA patients were higher than those in HCs. The number of Th9 cells was positively correlated with the number of Th17 cells in OA patients. Furthermore, greater numbers of Th9 cells were positively associated with elevated C-reactive protein, and both Th9 cells and IL-9 levels were positively correlated with the Western Ontario and McMaster Universities Osteoarthritis index in OA patients. Th9 cell numbers and IL-9 levels are correlated with OA patient symptoms and joint functionality and may be a marker of disease activity.
Collapse
Affiliation(s)
- Changlin Qi
- Genetic Diagnosis Centre, Ministry of Education, the First Hospital, Jilin University, Changchun, China
| | - Yuxing Shan
- Genetic Diagnosis Centre, Ministry of Education, the First Hospital, Jilin University, Changchun, China
| | - Jing Wang
- Genetic Diagnosis Centre, Ministry of Education, the First Hospital, Jilin University, Changchun, China
| | - Fupeng Ding
- Genetic Diagnosis Centre, Ministry of Education, the First Hospital, Jilin University, Changchun, China
| | - Ding Zhao
- Genetic Diagnosis Centre, Ministry of Education, the First Hospital, Jilin University, Changchun, China
| | - Teng Yang
- Genetic Diagnosis Centre, Ministry of Education, the First Hospital, Jilin University, Changchun, China
| | - Yanfang Jiang
- Genetic Diagnosis Centre, Ministry of Education, the First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, the First Hospital, Jilin University, Changchun, China.,Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
48
|
Wang W, Cheng ZS, Chen YF, Lin YH. Increased circulating IL-9-producing CD8 + T cells are associated with eosinophilia and high FeNO in allergic asthmatics. Exp Ther Med 2016; 12:4055-4060. [PMID: 28105134 DOI: 10.3892/etm.2016.3870] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/07/2016] [Indexed: 12/11/2022] Open
Abstract
Allergic asthma is a chronic airway disorder mediated by Th2 cells. It has been shown that IL-9-producing CD8+ cytotoxic T (Tc9) cells promote the subsequent onset of allergic airway inflammation in mice mediated by abnormal Th2 immunity. Whether Tc9 cells are associated with the immunopathogenesis of asthmatic patients remains unknown. In the present study, peripheral blood mononuclear cells (PBMCs) were separated by Ficoll-Hypaque gradient centrifugation from all subjects. The frequency of Tc9 cells was measured by flow cytometry. Serum IL-9 levels were assessed by enzyme-linked immunosorbent assay (ELISA). mRNA expression levels of IL-9, STAT6, and IRF4 in PBMCs from healthy controls and asthmatic patients were detected by reverse transcription-quantitative polymerase chain reaction. The results showed that the numbers of Tc9 cells in allergic asthmatics were significantly increased, compared with healthy controls (P<0.0001). Notably, IL-9 protein and mRNA levels were increased in allergic asthmatics and STAT6 and IRF4 mRNA levels were elevated, as compared with healthy controls. In addition, circulating numbers of Tc9 cells were positively correlated with blood eosinophil counts and fractioned exhaled nitric oxide (FeNO) levels in asthmatic patients. Moreover, the number of Tc9 cells and serum IL-9 levels in asthmatic patients were significantly decreased after treatment with glucocorticoids (P<0.05). These findings suggest that increased circulating Tc9 cells are associated with eosinophilia and high FeNO of allergic asthma, and that abnormal Tc9 immunity may contribute to the pathogenesis of allergic asthmatics.
Collapse
Affiliation(s)
- Wei Wang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhen-Shun Cheng
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yi-Fei Chen
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yu-Hui Lin
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
49
|
Zhang Y, Zhao Y, Li J, Wang S, Liu Y, Nie L, Cheng L. Interleukin-9 Promotes TNF-α and PGE2 Release in Human Degenerated Intervertebral Disc Tissues. Spine (Phila Pa 1976) 2016; 41:1631-1640. [PMID: 27802252 DOI: 10.1097/brs.0000000000001621] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Based on human disc surgical samples and isolated cells in vitro, we undertook a descriptive and mechanistic investigation of proinflammatory effects of interleukin (IL)-9 in intervertebral disc (IVD) degeneration. OBJECTIVE To investigate the proinflammatory role of IL-9 in the pathological process of IVD degeneration. SUMMARY OF BACKGROUND DATA IL-9 is known as a pleiotropic cytokine that regulates the human pathogenesis of inflammatory and autoimmune diseases. However, whether IL-9 cytokine is involved in the immuno-inflammatory pathogenesis of IVD degeneration is unclear. METHODS The IVD samples were obtained from 45 patients. Immunohistochemistry, western blot, and real-time Polymerase Chain Reaction (PCR) were performed to detect the expression of IL-9 and tumor necrosis factor alpha (TNF-α) in the degenerated IVDs. Moreover, nucleus pulposus (NP) cells were treated with 0, 1, 10, and 100 ng/mL IL-9 cytokine and stimulated with IL-9 alone at 100 ng/mL for 0, 12, 24, and 48 hours. TNF-α expression was determined by immunofluorescence staining, western blot, and real-time PCR, respectively. The amounts of TNF-α and prostaglandin E2 (PGE2) in the supernatant were quantified by enzyme-linked immunosorbent assay. Additionally, Spearman correlation analyses were performed to analyze the correlation between Pfirrmann grading score of the involved degenerated IVDs and serum levels of IL-9. RESULTS The expressions of IL-9 and TNF-α in degenerated IVD tissues were dramatically elevated in comparison with the control. IL-9 significantly up-regulated the TNF-α and PGE2 secretion of NP cells in dose- and time-dependent manner. Moreover, there is a positive correlation between IL-9 serum level and severity of involved IVD degeneration. CONCLUSION Our findings suggest that IL-9 may play a potential role in the inflammatory processes of IVD degeneration. IL-9 may be involved in the IVD degeneration, at least in part, though stimulating the release of TNF-α and PGE2 in NP cells. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Yuanqiang Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
50
|
IL-9-producing Th9 cells may participate in pathogenesis of Takayasu’s arteritis. Clin Rheumatol 2016; 35:3031-3036. [DOI: 10.1007/s10067-016-3399-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/09/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
|