1
|
Akhtar N, Wani AK, Sharma NR, Sanami S, Kaleem S, Machfud M, Purbiati T, Sugiono S, Djumali D, Retnaning Prahardini PE, Purwati RD, Supriadi K, Rahayu F. Microbial exopolysaccharides: Unveiling the pharmacological aspects for therapeutic advancements. Carbohydr Res 2024; 539:109118. [PMID: 38643705 DOI: 10.1016/j.carres.2024.109118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Microbial exopolysaccharides (EPSs) have emerged as a fascinating area of research in the field of pharmacology due to their diverse and potent biological activities. This review paper aims to provide a comprehensive overview of the pharmacological properties exhibited by EPSs, shedding light on their potential applications in various therapeutic areas. The review begins by introducing EPSs, exploring their various sources, significance in microbial growth and survival, and their applications across different industries. Subsequently, a thorough examination of the pharmaceutical properties of microbial EPSs unveils their antioxidant, immunomodulatory, antimicrobial, antidepressant, antidiabetic, antiviral, antihyperlipidemic, hepatoprotective, anti-inflammatory, and anticancer activities. Mechanistic insights into how different EPSs exert these therapeutic effects have also been discussed in this review. The review also provides comprehensive information about the monosaccharide composition, backbone, branches, glycosidic bonds, and molecular weight of pharmacologically active EPSs from various microbial sources. Furthermore, the factors that can affect the pharmacological activities of EPSs and approaches to improve the EPSs' pharmacological activity have also been discussed. In conclusion, this review illuminates the immense pharmaceutical promise of microbial EPS as versatile bioactive compounds with wide-ranging therapeutic applications. By elucidating their structural features, biological activities, and potential applications, this review aims to catalyze further research and development efforts in leveraging the pharmaceutical potential of microbial EPS for the advancement of human health and well-being, while also contributing to sustainable and environmentally friendly practices in the pharmaceutical industry.
Collapse
Affiliation(s)
- Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India.
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Samira Sanami
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shaikh Kaleem
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Moch Machfud
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Titiek Purbiati
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Sugiono Sugiono
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Djumali Djumali
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | | | - Rully Dyah Purwati
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Khojin Supriadi
- Research Center for Food Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, (16911), Indonesia
| |
Collapse
|
2
|
Zhong Y, Wang T, Luo R, Liu J, Jin R, Peng X. Recent advances and potentiality of postbiotics in the food industry: Composition, inactivation methods, current applications in metabolic syndrome, and future trends. Crit Rev Food Sci Nutr 2022; 64:5768-5792. [PMID: 36537328 DOI: 10.1080/10408398.2022.2158174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Postbiotics are defined as "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics have unique advantages over probiotics, such as stability, safety, and wide application. Although postbiotics are research hotspots, the research on them is still very limited. This review provides comprehensive information on the scope of postbiotics, the preparation methods of inanimate microorganisms, and the application and mechanisms of postbiotics in metabolic syndrome (MetS). Furthermore, the application trends of postbiotics in the food industry are reviewed. It was found that postbiotics mainly include inactivated microorganisms, microbial lysates, cell components, and metabolites. Thermal treatments are the main methods to prepare inanimate microorganisms as postbiotics, while non-thermal treatments, such as ionizing radiation, ultraviolet light, ultrasound, and supercritical CO2, show great potential in postbiotic preparation. Postbiotics could ameliorate MetS through multiple pathways including the modulation of gut microbiota, the enhancement of intestinal barrier, the regulation of inflammation and immunity, and the modulation of hormone homeostasis. Additionally, postbiotics have great potential in the food industry as functional food supplements, food quality improvers, and food preservatives. In addition, the SWOT analyses showed that the development of postbiotics in the food industry exists both opportunities and challenges.
Collapse
Affiliation(s)
- Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Ruilin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayu Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruyi Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Duan WX, Yang XH, Zhang HF, Feng J, Zhang MY. Chemical Structure, Hypoglycemic Activity, and Mechanism of Action of Selenium Polysaccharides. Biol Trace Elem Res 2022; 200:4404-4418. [PMID: 34843085 PMCID: PMC8628488 DOI: 10.1007/s12011-021-03035-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/14/2021] [Indexed: 12/14/2022]
Abstract
Selenium polysaccharides (Se-polysaccharides) are one of important forms of organic Se, in which selenium (Se) and polysaccharides are joined by covalent bonds. In the present review, recent progress in chemical structure and hypoglycemic activity of Se-polysaccharides is summarized. In particular, the mechanism underlying hypoglycemic capacity of Se-polysaccharides is discussed, and the relationship between hypoglycemic activity and chemical structure is analyzed. Besides, strategies for further research into chemical structure and hypoglycemic activity of Se-polysaccharides are proposed. Hypoglycemic activity of Se-polysaccharides is closely related to their inhibitory effect on α-amylase and α-glucosidase, influence on insulin signal pathway especially IRS-PI3K-Akt signaling pathway, and protection capacity against oxidative stress.
Collapse
Affiliation(s)
- Wen-Xia Duan
- Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, National Engineering Laboratory for Resources Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Xiao-Hua Yang
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Hua-Feng Zhang
- Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, National Engineering Laboratory for Resources Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
- Municipal Expert Workstation for Hua-Feng Zhang, Academician and Expert Workstation in Pu'er City of Yunnan Province, Pu'er, 665600, People's Republic of China.
| | - Jing Feng
- Agrarian and Technological Institute, Peoples' Friendship University of Russia, Moscow, 119991, Russia
| | - Meng-Yuan Zhang
- Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, National Engineering Laboratory for Resources Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
- Municipal Expert Workstation for Hua-Feng Zhang, Academician and Expert Workstation in Pu'er City of Yunnan Province, Pu'er, 665600, People's Republic of China
| |
Collapse
|
4
|
Liu G, Li J, Pang B, Li Y, Xu F, Liao N, Shao D, Jiang C, Shi J. Potential role of selenium in alleviating obesity-related iron dyshomeostasis. Crit Rev Food Sci Nutr 2022; 63:10032-10046. [PMID: 35574661 DOI: 10.1080/10408398.2022.2074961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Obesity is a serious health problem in modern life and increases the risk of many comorbidities including iron dyshomeostasis. In contrast to malnourished anemia, obesity-related iron dyshomeostasis is mainly caused by excessive fat accumulation, inflammation, and disordered gut microbiota. In obesity, iron dyshomeostasis also induces disorders associated with gut microbiota, neurodegenerative injury, oxidative damage, and fat accumulation in the liver. Selenium deficiency is often accompanied by obesity or iron deficiency, and selenium supplementation has been shown to alleviate obesity and overcome iron deficiency. Selenium inhibits fat accumulation and exhibits anti-inflammatory activity. It regulates gut microbiota, prevents neurodegenerative injury, alleviates oxidative damage to the body, and ameliorates hepatic fat accumulation. These effects theoretically meet the requirements for the inhibition of factors underlying obesity-related iron dyshomeostasis. Selenium supplementation may have a potential role in the alleviation of obesity-related iron dyshomeostasis. This review verifies this hypothesis in theory. All the currently reported causes and results of obesity-related iron dyshomeostasis are reviewed comprehensively, together with the effects of selenium. The challenges and strategies of selenium supplementation are also discussed. The findings demonstrate the possibility of selenium-containing drugs or functional foods in alleviating obesity-related iron dyshomeostasis.
Collapse
Affiliation(s)
- Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Cao J, Liu X, Cheng Y, Wang Y, Wang F. Selenium-enriched Polysaccharide: an Effective and Safe Selenium Source of C57 Mice to Improve Growth Performance, Regulate Selenium Deposition, and Promote Antioxidant Capacity. Biol Trace Elem Res 2022; 200:2247-2258. [PMID: 34476677 DOI: 10.1007/s12011-021-02832-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/08/2021] [Indexed: 01/13/2023]
Abstract
Selenium-enriched polysaccharide (SeEPS) was prepared by reducing Se(IV) to elemental selenium and organic selenium in polysaccharide medium by the obtained Enterobacter cloacae strain Z0206 under aerobic conditions. In the present study, we focused on investigating the role of short-term supplementation of SeEPS at supernutritional doses in the regulation of growth performance, liver damage, antioxidant capacity, and selenium (Se) accumulation in C57 mice. Thirty-two C57 mice were randomly divided into four groups: the control group was gavaged with equal volume of phosphate-buffered saline, while the sodium selenite (Na2SeO3), selenomethionine (SeMet), and SeEPS groups were gavaged with 0.5 mg Se/kg BW of Na2SeO3, SeMet, and selenium-enriched polysaccharide (n = 8), respectively. We examined liver injury indicators, antioxidant capacity in the serum and liver, selenium deposition at different sites, selenoprotein levels, and selenocysteine-synthesizing and degradation-associated gene expression in mouse livers. SeEPS supplementation dramatically increased average daily weight gain but reduced the feed-to-gain ratio (F/G) of mice (P < 0.05). Compared to Na2SeO3 and SeMet supplementation, SeEPS supplementation at supernutritional doses did not cause the liver damage. SeEPS supplementation also markedly enhanced total antioxidant capacity (T-AOC), catalase (CAT), glutathione peroxidase (GSH-PX), and total superoxide dismutase (T-SOD) activities but reduced malondialdehyde (MDA) levels in the liver and serum (P < 0.05), while significantly increasing selenocysteine-synthesizing and degradation-related gene (SEPHS2, SEPSECS, Secisbp, Scly) expression at the mRNA level (P < 0.05), thus upregulating the mRNA levels of selenoproteins (SELENOP, SELENOK) (P < 0.05). We suggest that SeEPS could be a potential replacement for inorganic selenium to improve animals' growth performance, promote antioxidant capacity, and regulate selenium deposition.
Collapse
Affiliation(s)
- Jinping Cao
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute of Zhejiang University, Hangzhou, 310058, China
| | - Xin Liu
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute of Zhejiang University, Hangzhou, 310058, China
| | - Yuanzhi Cheng
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute of Zhejiang University, Hangzhou, 310058, China
| | - Yizhen Wang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute of Zhejiang University, Hangzhou, 310058, China
| | - Fengqin Wang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute of Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Boone-Villa D, Ventura-Sobrevilla J, Aguilera-Méndez A, Jiménez-Villarreal J. The effect of adenosine monophosphate-activated protein kinase on lipolysis in adipose tissue: an historical and comprehensive review. Arch Physiol Biochem 2022; 128:7-23. [PMID: 35143739 DOI: 10.1080/13813455.2019.1661495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
CONTEXT Lipolysis is one of the most important pathways for energy management, its control in the adipose tissue (AT) is a potential therapeutic target for metabolic diseases. Adenosine Mono Phosphate-activated Protein Kinase (AMPK) is a key regulatory enzyme in lipids metabolism and a potential target for diabetes and obesity treatment. OBJECTIVE The aim of this work is to analyse the existing information on the relationship of AMPK and lipolysis in the AT. METHODS A thorough search of bibliography was performed in the databases Scopus and Web of Knowledge using the terms lipolysis, adipose tissue, and AMPK, the unrelated publications were excluded, and the documents were analysed. RESULTS Sixty-three works were found and classified in 3 categories: inhibitory effects, stimulatory effect, and diverse relationships; remarkably, the newest researches support an upregulating relationship of AMPK over lipolysis. CONCLUSION The most probable reality is that the relationship AMPK-lipolysis depends on the experimental conditions.
Collapse
Affiliation(s)
- Daniel Boone-Villa
- School of Medicine Northern Unit, Universidad Autonoma de Coahuila, Piedras Negras, México
| | | | - Asdrúbal Aguilera-Méndez
- Institute of Biological Chemistry Research, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | | |
Collapse
|
7
|
Nutritional Status Of Selenium In Overweight And Obesity: A Systematic Review And Meta-Analysis. Clin Nutr 2022; 41:862-884. [DOI: 10.1016/j.clnu.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022]
|
8
|
Wang T, Wang J, Hu X, Huang XJ, Chen GX. Current understanding of glucose transporter 4 expression and functional mechanisms. World J Biol Chem 2020; 11:76-98. [PMID: 33274014 PMCID: PMC7672939 DOI: 10.4331/wjbc.v11.i3.76] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/22/2020] [Accepted: 09/22/2020] [Indexed: 02/05/2023] Open
Abstract
Glucose is used aerobically and anaerobically to generate energy for cells. Glucose transporters (GLUTs) are transmembrane proteins that transport glucose across the cell membrane. Insulin promotes glucose utilization in part through promoting glucose entry into the skeletal and adipose tissues. This has been thought to be achieved through insulin-induced GLUT4 translocation from intracellular compartments to the cell membrane, which increases the overall rate of glucose flux into a cell. The insulin-induced GLUT4 translocation has been investigated extensively. Recently, significant progress has been made in our understanding of GLUT4 expression and translocation. Here, we summarized the methods and reagents used to determine the expression levels of Slc2a4 mRNA and GLUT4 protein, and GLUT4 translocation in the skeletal muscle, adipose tissues, heart and brain. Overall, a variety of methods such real-time polymerase chain reaction, immunohistochemistry, fluorescence microscopy, fusion proteins, stable cell line and transgenic animals have been used to answer particular questions related to GLUT4 system and insulin action. It seems that insulin-induced GLUT4 translocation can be observed in the heart and brain in addition to the skeletal muscle and adipocytes. Hormones other than insulin can induce GLUT4 translocation. Clearly, more studies of GLUT4 are warranted in the future to advance of our understanding of glucose homeostasis.
Collapse
Affiliation(s)
- Tiannan Wang
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| | - Jing Wang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Xinge Hu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| | - Xian-Ju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Guo-Xun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
9
|
Pu Z, Liu Y, Li C, Xu M, Xie H, Zhao J. Using Network Pharmacology for Systematic Understanding of Geniposide in Ameliorating Inflammatory Responses in Colitis Through Suppression of NLRP3 Inflammasome in Macrophage by AMPK/Sirt1 Dependent Signaling. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1693-1713. [PMID: 33202149 DOI: 10.1142/s0192415x20500846] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ulcerative colitis is a chronic and recurrent inflammatory bowel disease mediated by immune response. Geniposide is the main active ingredient extracted from Gardenia jasminoides, which has been suggested to exert excellent efficacy on inflammatory disease. Herein, in this study, we aimed to uncover the systematic understanding of the mechanism and effects of geniposide in ameliorating inflammatory responses in colitis. In brief, the TCMSP server and GEO DataSets were used to analyze the systematic understanding of the mechanism and effects of geniposide in ameliorating inflammatory responses in colitis. Dextran Sulfate Sodium (DSS)-induced acute colitis of mice were administered with 25–100[Formula: see text]mg/kg of geniposide for 7 days by gavage. Lipopolysaccharide (LPS)-induced Bone Marrow Derived Macrophage (BMDM) cell or RAW264.7 cell models were treated with 20, 50 and 100[Formula: see text][Formula: see text]M of geniposide for 4[Formula: see text]h. Myeloperoxidase (MPO) activity and Interleukin-1[Formula: see text] (IL-1[Formula: see text] levels were measured using MPO activity kits and IL-1[Formula: see text] levels enzyme-linked immunosorbent assay (ELISA) kits, respectively. Additionally, Western blot was used to determine the relevant protein expression. As a result, Geniposide could ameliorate inflammatory responses and prevent colitis in DSS-induced acute colitis of mice by activating AMP-activated protein kinase (AMPK)/Transcription 1 (Sirt1) dependent signaling via the suppression of nod-like receptor protein 3 (NLRP3) inflammasome. Geniposide attenuated macrophage differentiation in DSS-induced acute colitis of mice. Geniposide suppressed NLRP3 inflammasome and induced AMPK/Sirt1 signaling in LPS-induced BMDM cell or RAW264.7 cell models. In mechanism studies, the inhibition of AMPK/Sirt1 attenuated the anti-inflammatory effects of geniposide in colitis. The activation of NLRP3 attenuated the anti-inflammatory effects of geniposide in colitis. Taken together, our results demonstrated that geniposide ameliorated inflammatory responses in colitis vai the suppression of NLRP3 inflammasome in macrophages by AMPK/Sirt1-dependent signaling.
Collapse
Affiliation(s)
- Zhichen Pu
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, P. R. China
| | - Yanhao Liu
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China
| | - Chao Li
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China
| | - Moadi Xu
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China
| | - Haitang Xie
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P. R. China
| | - Jun Zhao
- Department of Gastrointestinal Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 243031, P. R. China
| |
Collapse
|
10
|
Selenium and Selenoproteins in Adipose Tissue Physiology and Obesity. Biomolecules 2020; 10:biom10040658. [PMID: 32344656 PMCID: PMC7225961 DOI: 10.3390/biom10040658] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Selenium (Se) homeostasis is tightly related to carbohydrate and lipid metabolism, but its possible roles in obesity development and in adipocyte metabolism are unclear. The objective of the present study is to review the current data on Se status in obesity and to discuss the interference between Se and selenoprotein metabolism in adipocyte physiology and obesity pathogenesis. The overview and meta-analysis of the studies on blood Se and selenoprotein P (SELENOP) levels, as well as glutathione peroxidase (GPX) activity in obese subjects, have yielded heterogenous and even conflicting results. Laboratory studies demonstrate that Se may modulate preadipocyte proliferation and adipogenic differentiation, and also interfere with insulin signaling, and regulate lipolysis. Knockout models have demonstrated that the selenoprotein machinery, including endoplasmic reticulum-resident selenoproteins together with GPXs and thioredoxin reductases (TXNRDs), are tightly related to adipocyte development and functioning. In conclusion, Se and selenoproteins appear to play an essential role in adipose tissue physiology, although human data are inconsistent. Taken together, these findings do not support the utility of Se supplementation to prevent or alleviate obesity in humans. Further human and laboratory studies are required to elucidate associations between Se metabolism and obesity.
Collapse
|
11
|
Noor HB, Mou NA, Salem L, Shimul MF, Biswas S, Akther R, Khan S, Raihan S, Mohib MM, Sagor MA. Anti-inflammatory Property of AMP-activated Protein Kinase. Antiinflamm Antiallergy Agents Med Chem 2020; 19:2-41. [PMID: 31530260 PMCID: PMC7460777 DOI: 10.2174/1871523018666190830100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND One of the many debated topics in inflammation research is whether this scenario is really an accelerated form of human wound healing and immunityboosting or a push towards autoimmune diseases. The answer requires a better understanding of the normal inflammatory process, including the molecular pathology underlying the possible outcomes. Exciting recent investigations regarding severe human inflammatory disorders and autoimmune conditions have implicated molecular changes that are also linked to normal immunity, such as triggering factors, switching on and off, the influence of other diseases and faulty stem cell homeostasis, in disease progression and development. METHODS We gathered around and collected recent online researches on immunity, inflammation, inflammatory disorders and AMPK. We basically searched PubMed, Scopus and Google Scholar to assemble the studies which were published since 2010. RESULTS Our findings suggested that inflammation and related disorders are on the verge and interfere in the treatment of other diseases. AMPK serves as a key component that prevents various kinds of inflammatory signaling. In addition, our table and hypothetical figures may open a new door in inflammation research, which could be a greater therapeutic target for controlling diabetes, obesity, insulin resistance and preventing autoimmune diseases. CONCLUSION The relationship between immunity and inflammation becomes easily apparent. Yet, the essence of inflammation turns out to be so startling that the theory may not be instantly established and many possible arguments are raised for its clearance. However, this study might be able to reveal some possible approaches where AMPK can reduce or prevent inflammatory disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Md A.T. Sagor
- Address correspondence to this author at the Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh; Tel: +8801719130130; E-mail:
| |
Collapse
|
12
|
Cheng L, Wang Y, He X, Wei X. Preparation, structural characterization and bioactivities of Se-containing polysaccharide: A review. Int J Biol Macromol 2018; 120:82-92. [DOI: 10.1016/j.ijbiomac.2018.07.106] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022]
|
13
|
Maternal selenium status is profoundly involved in metabolic fetal programming by modulating insulin resistance, oxidative balance and energy homeostasis. Eur J Nutr 2018; 58:3171-3181. [PMID: 30506446 DOI: 10.1007/s00394-018-1861-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/14/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE High and low levels of selenium (Se) have been related to metabolic disorders in dams and in their offspring. Their relationship to oxidative balance and to AMP-activated protein kinase (AMPK) is some of the mechanisms proposed. The aim of this study is to acquire information about how Se is involved in metabolic programming. METHODS Three experimental groups of dam rats were used: control (Se: 0.1 ppm), Se supplemented (Se: 0.5 ppm) and Se deficient (Se: 0.01 ppm). At the end of lactation, the pups' metabolic profile, oxidative balance, Se levels, selenoproteins and IRS-1 hepatic expression, as well as hepatic AMPK activation were measured. RESULTS The experimental groups present deep changes in Se homeostasis, selenoproteins and IRS-1 hepatic expression, oxidative balance, AMPK activation ratio and insulin levels. They do, however, have different metabolic profiles. CONCLUSIONS High- and low-Se diets are linked to insulin resistance, yet the mechanisms involved are completely opposite.
Collapse
|
14
|
Liu J, Xu Z, Guo Z, Zhao Z, Zhao Y, Wang X. Structural investigation of a polysaccharide from the mycelium of Enterobacter cloacae and its antibacterial activity against extensively drug-resistant E. cloacae producing SHV-12 extended-spectrum β-lactamase. Carbohydr Polym 2018; 195:444-452. [DOI: 10.1016/j.carbpol.2018.04.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/16/2018] [Accepted: 04/27/2018] [Indexed: 11/29/2022]
|
15
|
Yu C, Xi L, Chen J, Jiang Q, Yi H, Wang Y, Wang X. PAM, OLA, and LNA are Differentially Taken Up and Trafficked Via Different Metabolic Pathways in Porcine Adipocytes. Lipids 2017; 52:929-938. [PMID: 29058170 DOI: 10.1007/s11745-017-4302-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
Dietary fatty acids have different effects on fat deposition in pigs. To clarify the underlying mechanisms of this difference, we compared the metabolism of palmitic (PAM, saturated), oleic (OLA, monounsaturated) and linoleic acid (LNA, polyunsaturated) in porcine adipocytes treated with 100 μM PAM, OLA or LNA. We observed that the adipocytes incubated with LNA accumulated more lipids compared with those treated with PAM and OLA. We then probed the metabolism of these fatty acids in porcine adipocytes by using isotope-labelled fatty acids. The results showed that 42% of the [1-14C] LNA, 34% of the [1-14C] PAM and 28% of the [1-14C] OLA were recovered in the cellular lipids. The gene expression analyses showed that LNA significantly increased the expression of adipogenesis- and oxidation-related genes including PPARγ, C/EBPα, ap2 and NRF1. In addition, the cells incubated with LNA showed a decreased Ser112 phosphorylation in PPARγ compared to those incubated with PAM and OLA. Furthermore, when PPARγ Ser112 phosphorylation was inhibited, no significant difference in the triacylglycerol contents in the adipocytes was observed. These results showed the dietary fatty acids had different metabolism pathways in porcine adipocytes, and LNA significantly promoted lipid accumulation, probably by regulating PPARγ phosphorylation in adipocytes.
Collapse
Affiliation(s)
- Caihua Yu
- Key Laboratory of Animal Nutrition and Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Lingling Xi
- Key Laboratory of Animal Nutrition and Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Jin Chen
- Key Laboratory of Animal Nutrition and Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Qin Jiang
- Key Laboratory of Animal Nutrition and Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Hongbo Yi
- Key Laboratory of Animal Nutrition and Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Yizhen Wang
- Key Laboratory of Animal Nutrition and Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Xinxia Wang
- Key Laboratory of Animal Nutrition and Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, College of Animal Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
16
|
Yi H, Yu C, Zhang H, Song D, Jiang D, Du H, Wang Y. Cathelicidin-BF suppresses intestinal inflammation by inhibiting the nuclear factor-κB signaling pathway and enhancing the phagocytosis of immune cells via STAT-1 in weanling piglets. Int Immunopharmacol 2015; 28:61-9. [DOI: 10.1016/j.intimp.2015.05.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022]
|
17
|
Selenium enrichment of lactic acid bacteria and bifidobacteria: A functional food perspective. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2014.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|