1
|
Foster D, Larsen J. Polymeric Metal Contrast Agents for T 1-Weighted Magnetic Resonance Imaging of the Brain. ACS Biomater Sci Eng 2023; 9:1224-1242. [PMID: 36753685 DOI: 10.1021/acsbiomaterials.2c01386] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Imaging plays an integral role in diagnostics and treatment monitoring for conditions affecting the brain; enhanced brain imaging capabilities will improve upon both while increasing the general understanding of how the brain works. T1-weighted magnetic resonance imaging is the preferred modality for brain imaging. Commercially available contrast agents, which are often required to render readable brain images, have considerable toxicity concerns. In recent years, much progress has been made in developing new contrast agents based on the magnetic features of gadolinium, iron, or magnesium. Nanotechnological approaches for these systems allow for the protected integration of potentially harmful metals with added benefits like reduced dosage and improved transport. Polymeric enhancement of each design further improves biocompatibility while allowing for specific brain targeting. This review outlines research on polymeric nanomedicine designs for T1-weighted contrast agents that have been evaluated for performance in the brain.
Collapse
|
2
|
Dynamic MRI of the Mesenchymal Stem Cells Distribution during Intravenous Transplantation in a Rat Model of Ischemic Stroke. Life (Basel) 2023; 13:life13020288. [PMID: 36836645 PMCID: PMC9962901 DOI: 10.3390/life13020288] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Systemic transplantation of mesenchymal stem cells (MSCs) is a promising approach for the treatment of ischemia-associated disorders, including stroke. However, exact mechanisms underlying its beneficial effects are still debated. In this respect, studies of the transplanted cells distribution and homing are indispensable. We proposed an MRI protocol which allowed us to estimate the dynamic distribution of single superparamagnetic iron oxide labeled MSCs in live ischemic rat brain during intravenous transplantation after the transient middle cerebral artery occlusion. Additionally, we evaluated therapeutic efficacy of cell therapy in this rat stroke model. According to the dynamic MRI data, limited numbers of MSCs accumulated diffusely in the brain vessels starting at the 7th minute from the onset of infusion, reached its maximum by 29 min, and gradually eliminated from cerebral circulation during 24 h. Despite low numbers of cells entering brain blood flow and their short-term engraftment, MSCs transplantation induced long lasting improvement of the neurological deficit, but without acceleration of the stroke volume reduction compared to the control animals during 14 post-transplantation days. Taken together, these findings indicate that MSCs convey their positive action by triggering certain paracrine mechanisms or cell-cell interactions or invoking direct long-lasting effects on brain vessels.
Collapse
|
3
|
Multinuclear MRI in Drug Discovery. Molecules 2022; 27:molecules27196493. [PMID: 36235031 PMCID: PMC9572840 DOI: 10.3390/molecules27196493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The continuous development of magnetic resonance imaging broadens the range of applications to newer areas. Using MRI, we can not only visualize, but also track pharmaceutical substances and labeled cells in both in vivo and in vitro tests. 1H is widely used in the MRI method, which is determined by its high content in the human body. The potential of the MRI method makes it an excellent tool for imaging the morphology of the examined objects, and also enables registration of changes at the level of metabolism. There are several reports in the scientific publications on the use of clinical MRI for in vitro tracking. The use of multinuclear MRI has great potential for scientific research and clinical studies. Tuning MRI scanners to the Larmor frequency of a given nucleus, allows imaging without tissue background. Heavy nuclei are components of both drugs and contrast agents and molecular complexes. The implementation of hyperpolarization techniques allows for better MRI sensitivity. The aim of this review is to present the use of multinuclear MRI for investigations in drug delivery.
Collapse
|
4
|
Van Hoeck J, Vanhove C, De Smedt SC, Raemdonck K. Non-invasive cell-tracking methods for adoptive T cell therapies. Drug Discov Today 2021; 27:793-807. [PMID: 34718210 DOI: 10.1016/j.drudis.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
Adoptive T cell therapies (ACT) have demonstrated groundbreaking results in blood cancers and melanoma. Nevertheless, their significant cost, the occurrence of severe adverse events, and their poor performance in solid tumors are important hurdles hampering more widespread applicability. In vivo cell tracking allows instantaneous and non-invasive monitoring of the distribution, tumor homing, persistence, and redistribution to other organs of infused T cells in patients. Furthermore, cell tracking could aid in the clinical management of patients, allowing the detection of non-responders or severe adverse events at an early stage. This review provides a concise overview of the main principles and potential of cell tracking, followed by a discussion of the clinically relevant labeling strategies and their application in ACT.
Collapse
Affiliation(s)
- Jelter Van Hoeck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Christian Vanhove
- Infinity Lab, Medical Imaging and Signal Processing Group-IBiTech, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
5
|
Liu H, Deng S, Han L, Ren Y, Gu J, He L, Liu T, Yuan ZX. Mesenchymal stem cells, exosomes and exosome-mimics as smart drug carriers for targeted cancer therapy. Colloids Surf B Biointerfaces 2021; 209:112163. [PMID: 34736220 DOI: 10.1016/j.colsurfb.2021.112163] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with the capacity to differentiate into several cell types under appropriate conditions. They also possess remarkable antitumor features that make them a novel choice to treat cancers. Accumulating evidence suggest that the MSCs-derived extracellular vesicles, known as exosomes, play an essential role in the therapeutic effects of MSCs mainly by carrying biologically active factors. However, limitations such as low yield of exosomes and difficulty in isolation and purification hinder their clinical applications. To overcome these issues, research on development of exosome-mimics has attracted great attention. This systematic review represents, to the best of our knowledge, the first thorough evaluations of the innate antineoplastic features of MSCs-derived exosomes or exosome-mimics, the methods of drug loading, application as drug delivery system and their impacts on targeted cancer therapy. Importantly, we dissect the commonalities and differences as well as address the shortcomings of work accumulated over the last two decades and discuss how this information can serve as a guide map for optimal experimental design implementation ultimately aiding the effective transition into clinical trials.
Collapse
Affiliation(s)
- Hongmei Liu
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Shichen Deng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Lu Han
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Yan Ren
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China.
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, Australia.
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
6
|
Moonshi SS, Wu Y, Ta HT. Visualizing stem cells in vivo using magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1760. [PMID: 34651465 DOI: 10.1002/wnan.1760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022]
Abstract
Stem cell (SC) therapies displayed encouraging efficacy and clinical outcome in various disorders. Despite this huge hype, clinical translation of SC therapy has been disheartening due to contradictory results from clinical trials. The ability to monitor migration and engraftment of cells in vivo represents an ideal strategy in cell therapy. Therefore, suitable imaging approach to track MSCs would allow understanding of migratory and homing efficiency, optimal route of delivery and engraftment of cells at targeted location. Hence, longitudinal tracking of SCs is crucial for the optimization of treatment parameters, leading to improved clinical outcome and translation. Magnetic resonance imaging (MRI) represents a suitable imaging modality to observe cells non-invasively and repeatedly. Tracking is achieved when cells are incubated prior to implantation with appropriate contrast agents (CA) or tracers which can then be detected in an MRI scan. This review explores and emphasizes the importance of monitoring the distribution and fate of SCs post-implantation using current contrast agents, such as positive CAs including paramagnetic metals (gadolinium), negative contrast agents such as superparamagnetic iron oxides and 19 F containing tracers, specifically for the in vivo tracking of MSCs using MRI. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Shehzahdi Shebbrin Moonshi
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia
| | - Yuao Wu
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia
| | - Hang Thu Ta
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia.,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
7
|
Sanchez-Diaz M, Quiñones-Vico MI, Sanabria de la Torre R, Montero-Vílchez T, Sierra-Sánchez A, Molina-Leyva A, Arias-Santiago S. Biodistribution of Mesenchymal Stromal Cells after Administration in Animal Models and Humans: A Systematic Review. J Clin Med 2021; 10:jcm10132925. [PMID: 34210026 PMCID: PMC8268414 DOI: 10.3390/jcm10132925] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal Stromal Cells (MSCs) are of great interest in cellular therapy. Different routes of administration of MSCs have been described both in pre-clinical and clinical reports. Knowledge about the fate of the administered cells is critical for developing MSC-based therapies. The aim of this review is to describe how MSCs are distributed after injection, using different administration routes in animal models and humans. A literature search was performed in order to consider how MSCs distribute after intravenous, intraarterial, intramuscular, intraarticular and intralesional injection into both animal models and humans. Studies addressing the biodistribution of MSCs in “in vivo” animal models and humans were included. After the search, 109 articles were included in the review. Intravenous administration of MSCs is widely used; it leads to an initial accumulation of cells in the lungs with later redistribution to the liver, spleen and kidneys. Intraarterial infusion bypasses the lungs, so MSCs distribute widely throughout the rest of the body. Intramuscular, intraarticular and intradermal administration lack systemic biodistribution. Injection into various specific organs is also described. Biodistribution of MSCs in animal models and humans appears to be similar and depends on the route of administration. More studies with standardized protocols of MSC administration could be useful in order to make results homogeneous and more comparable.
Collapse
Affiliation(s)
- Manuel Sanchez-Diaz
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Maria I. Quiñones-Vico
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
- Correspondence:
| | - Raquel Sanabria de la Torre
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
| | - Trinidad Montero-Vílchez
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Alvaro Sierra-Sánchez
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
| | - Alejandro Molina-Leyva
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Salvador Arias-Santiago
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
- School of Medicine, University of Granada, 18014 Granada, Spain
| |
Collapse
|
8
|
Mohseni M, Shojaei S, Mehravi B, Mohammadi E. Natural polymeric nanoparticles as a non-invasive probe for mesenchymal stem cell labelling. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:770-776. [PMID: 32297529 DOI: 10.1080/21691401.2020.1748641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-invasive tracking of stem cells after transplant is necessary for cell therapy and tissue engineering field. Herein, we introduce natural and biodegradable nanoparticle to develop a highly efficient nanoprobe with the ability to penetrate the stem cell for tracking. Based on the use of (Gd3+) to label stem cells for magnetic resonance imaging (MRI) we synthesized nanoparticle-containing Gd3+. Gd3+ could be used as t1-weighted MRI contrast agents. In this study, chitosan-alginate nanoparticles were synthesized as a clinical Dotarem® carrier for decreased t1-weighted. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR) were utilized for nanoprobe characterization and ICP analysis was performed for Gd3+ concentration measurement. The results illustrate that nanoprobes with spherical shape and with a size of 80 nm without any aggregation were obtained. Relaxivity results suggest that r1 in the phantom was 12.8 mM-1s-1 per Gd3+ ion, which is 3.5 times larger than that for Dotarem® (r1 ∼3.6 mM-1s-1 per Gd3+ ion) and this result for synthesized nanoprobe in stem cells 3.56 mM-1s-1 per Gd3+ ion with 2.16 times larger than that for Dotarem® was reported and also enhanced signal in in-vivo imaging was observed. Chitosan-alginate nanoparticles as a novel biocompatible probe for stem cell tracking can be utilized in tissue engineering approach.
Collapse
Affiliation(s)
- Mojdeh Mohseni
- Faculty of advanced technologies in Medicine, Department of Medical nanotechnology, Iran University of Medical Sciences, Tehran, Iran.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Shojaei
- Faculty of advanced technologies in Medicine, Department of Medical nanotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Bita Mehravi
- Faculty of advanced technologies in Medicine, Department of Medical nanotechnology, Iran University of Medical Sciences, Tehran, Iran.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Mohammadi
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Papan P, Kantapan J, Sangthong P, Meepowpan P, Dechsupa N. Iron (III)-Quercetin Complex: Synthesis, Physicochemical Characterization, and MRI Cell Tracking toward Potential Applications in Regenerative Medicine. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:8877862. [PMID: 33456403 PMCID: PMC7785384 DOI: 10.1155/2020/8877862] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
In cell therapy, contrast agents T1 and T2 are both needed for the labeling and tracking of transplanted stem cells over extended periods of time through magnetic resonance imaging (MRI). Importantly, the metal-quercetin complex via coordination chemistry has been studied extensively for biomedical applications, such as anticancer therapies and imaging probes. Herein, we report on the synthesis, characterization, and labeling of the iron (III)-quercetin complex, "IronQ," in circulating proangiogenic cells (CACs) and also explore tracking via the use of a clinical 1.5 Tesla (T) MRI scanner. Moreover, IronQ had a paramagnetic T1 positive contrast agent property with a saturation magnetization of 0.155 emu/g at 1.0 T and longitudinal relaxivity (r1) values of 2.29 and 3.70 mM-1s-1 at 1.5 T for water and human plasma, respectively. Surprisingly, IronQ was able to promote CAC growth in conventional cell culture systems without the addition of specific growth factors. Increasing dosages of IronQ from 0 to 200 μg/mL led to higher CAC uptake, and maximum labeling time was achieved in 10 days. The accumulated IronQ in CACs was measured by two methodologies, an inductively coupled plasma optical emission spectrometry (ICP-EOS) and T1-weighted MRI. In our research, we confirmed that IronQ has excellent dual functions with the use of an imaging probe for MRI. IronQ can also act as a stimulating agent by favoring circulating proangiogenic cell differentiation. Optimistically, IronQ is considered beneficial for alternative labeling and in the tracking of circulation proangiogenic cells and/or other stem cells in applications of cell therapy through noninvasive magnetic resonance imaging in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Phakorn Papan
- Research Unit of Molecular Imaging Probes and Radiobiology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Kantapan
- Research Unit of Molecular Imaging Probes and Radiobiology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nathupakorn Dechsupa
- Research Unit of Molecular Imaging Probes and Radiobiology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
10
|
Perrin J, Capitao M, Mougin-Degraef M, Guérard F, Faivre-Chauvet A, Rbah-Vidal L, Gaschet J, Guilloux Y, Kraeber-Bodéré F, Chérel M, Barbet J. Cell Tracking in Cancer Immunotherapy. Front Med (Lausanne) 2020; 7:34. [PMID: 32118018 PMCID: PMC7033605 DOI: 10.3389/fmed.2020.00034] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 01/23/2020] [Indexed: 12/19/2022] Open
Abstract
The impressive development of cancer immunotherapy in the last few years originates from a more precise understanding of control mechanisms in the immune system leading to the discovery of new targets and new therapeutic tools. Since different stages of disease progression elicit different local and systemic inflammatory responses, the ability to longitudinally interrogate the migration and expansion of immune cells throughout the whole body will greatly facilitate disease characterization and guide selection of appropriate treatment regiments. While using radiolabeled white blood cells to detect inflammatory lesions has been a classical nuclear medicine technique for years, new non-invasive methods for monitoring the distribution and migration of biologically active cells in living organisms have emerged. They are designed to improve detection sensitivity and allow for a better preservation of cell activity and integrity. These methods include the monitoring of therapeutic cells but also of all cells related to a specific disease or therapeutic approach. Labeling of therapeutic cells for imaging may be performed in vitro, with some limitations on sensitivity and duration of observation. Alternatively, in vivo cell tracking may be performed by genetically engineering cells or mice so that may be revealed through imaging. In addition, SPECT or PET imaging based on monoclonal antibodies has been used to detect tumors in the human body for years. They may be used to detect and quantify the presence of specific cells within cancer lesions. These methods have been the object of several recent reviews that have concentrated on technical aspects, stressing the differences between direct and indirect labeling. They are briefly described here by distinguishing ex vivo (labeling cells with paramagnetic, radioactive, or fluorescent tracers) and in vivo (in vivo capture of injected radioactive, fluorescent or luminescent tracers, or by using labeled antibodies, ligands, or pre-targeted clickable substrates) imaging methods. This review focuses on cell tracking in specific therapeutic applications, namely cell therapy, and particularly CAR (Chimeric Antigen Receptor) T-cell therapy, which is a fast-growing research field with various therapeutic indications. The potential impact of imaging on the progress of these new therapeutic modalities is discussed.
Collapse
Affiliation(s)
- Justine Perrin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Marisa Capitao
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Marie Mougin-Degraef
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine, University Hospital, Nantes, France
| | - François Guérard
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Alain Faivre-Chauvet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine, University Hospital, Nantes, France
| | - Latifa Rbah-Vidal
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Joëlle Gaschet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Yannick Guilloux
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Françoise Kraeber-Bodéré
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine, University Hospital, Nantes, France.,Nuclear Medicine, ICO Cancer Center, Saint-Herblain, France
| | - Michel Chérel
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine, ICO Cancer Center, Saint-Herblain, France
| | | |
Collapse
|
11
|
Homing and Tracking of Iron Oxide Labelled Mesenchymal Stem Cells After Infusion in Traumatic Brain Injury Mice: a Longitudinal In Vivo MRI Study. Stem Cell Rev Rep 2019; 14:888-900. [PMID: 29911289 DOI: 10.1007/s12015-018-9828-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stem cells transplantation has emerged as a promising alternative therapeutic due to its potency at injury site. The need to monitor and non-invasively track the infused stem cells is a significant challenge in the development of regenerative medicine. Thus, in vivo tracking to monitor infused stem cells is especially vital. In this manuscript, we have described an effective in vitro labelling method of MSCs, a serial in vivo tracking of implanted stem cells at traumatic brain injury (TBI) site through 7 T magnetic resonance imaging (MRI). Proper homing of infused MSCs was carried out at different time points using histological analysis and Prussian blue staining. Longitudinal in vivo tracking of infused MSCs were performed up to 21 days in different groups through MRI using relaxometry technique. Results demonstrated that MSCs incubated with iron oxide-poly-L-lysine complex (IO-PLL) at a ratio of 50:1.5 μg/ml and a time period of 6 h was optimised to increase labelling efficiency. T2*-weighted images and relaxation study demonstrated a significant signal loss and effective decrease in transverse relaxation time on day-3 at injury site after systemic transplantation, revealed maximum number of stem cells homing to the lesion area. MRI results further correlate with histological and Prussian blue staining in different time periods. Decrease in negative signal and increase in relaxation times were observed after day-14, may indicate damage tissue replacement with healthy tissue. MSCs tracking with synthesized negative contrast agent represent a great advantage during both in vitro and in vivo analysis. The proposed absolute bias correction based relaxometry analysis could be extrapolated for stem cell tracking and therapies in various neurodegenerative diseases.
Collapse
|
12
|
Bulte JWM, Daldrup-Link HE. Clinical Tracking of Cell Transfer and Cell Transplantation: Trials and Tribulations. Radiology 2018; 289:604-615. [PMID: 30299232 PMCID: PMC6276076 DOI: 10.1148/radiol.2018180449] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 12/29/2022]
Abstract
Cell therapy has provided unprecedented opportunities for tissue repair and cancer therapy. Imaging tools for in vivo tracking of therapeutic cells have entered the clinic to evaluate therapeutic cell delivery and retention in patients. Thus far, clinical cell tracking studies have been a mere proof of principle of the feasibility of cell detection. This review centers around the main clinical queries associated with cell therapy: Have cells been delivered correctly at the targeted site of injection? Are cells still alive, and, if so, how many? Are cells being rejected by the host, and, if so, how severe is the immune response? For stem cell therapeutics, have cells differentiated into downstream cell lineages? Is there cell proliferation including tumor formation? At present, clinical cell tracking trials have only provided information on immediate cell delivery and short-term cell retention. The next big question is if these cell tracking tools can improve the clinical management of the patients and, if so, by how much, for how many, and for whom; in addition, it must be determined whether tracking therapeutic cells in every patient is needed. To become clinically relevant, it must now be demonstrated how cell tracking techniques can inform patient treatment and affect clinical outcomes.
Collapse
Affiliation(s)
- Jeff W. M. Bulte
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Departments of Chemical & Biomolecular Engineering, Biomedical Engineering, and Oncology, The Johns Hopkins University School of Medicine, 217 Traylor Bldg, 720 Rutland Ave, Baltimore, MD 21205 (J.W.M.B.); and Departments of Radiology, Molecular Imaging Program at Stanford (MIPS) and Pediatrics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, Calif (H.E.D.L.)
| | - Heike E. Daldrup-Link
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Departments of Chemical & Biomolecular Engineering, Biomedical Engineering, and Oncology, The Johns Hopkins University School of Medicine, 217 Traylor Bldg, 720 Rutland Ave, Baltimore, MD 21205 (J.W.M.B.); and Departments of Radiology, Molecular Imaging Program at Stanford (MIPS) and Pediatrics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, Calif (H.E.D.L.)
| |
Collapse
|
13
|
Qiao Y, Gumin J, MacLellan CJ, Gao F, Bouchard R, Lang FF, Stafford RJ, Melancon MP. Magnetic resonance and photoacoustic imaging of brain tumor mediated by mesenchymal stem cell labeled with multifunctional nanoparticle introduced via carotid artery injection. NANOTECHNOLOGY 2018; 29:165101. [PMID: 29438105 PMCID: PMC5863233 DOI: 10.1088/1361-6528/aaaf16] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
OBJECTIVE To evaluate the feasibility of visualizing bone marrow-derived human mesenchymal stem cells (MSCs) labeled with a gold-coated magnetic resonance (MR)-active multifunctional nanoparticle and injected via the carotid artery for assessing the extent of MSC homing in glioma-bearing mice. MATERIALS AND METHODS Nanoparticles containing superparamagnetic iron oxide coated with gold (SPIO@Au) with a diameter of ∼82 nm and maximum absorbance in the near infrared region were synthesized. Bone marrow-derived MSCs conjugated with green fluorescent protein (GFP) were successfully labeled with SPIO@Au at 4 μg ml-1 and injected via the internal carotid artery in six mice bearing orthotopic U87 tumors. Unlabeled MSCs were used as a control. The ability of SPIO@Au-loaded MSCs to be imaged using MR and photoacoustic (PA) imaging at t = 0 h, 2 h, 24 h, and 72 h was assessed using a 7 T Bruker Biospec experimental MR scanner and a Vevo LAZR PA imaging system with a 5 ns laser as the excitation source. Histological analysis of the brain tissue was performed 72 h after MSC injection using GFP fluorescence, Prussian blue staining, and hematoxylin-and-eosin staining. RESULTS MSCs labeled with SPIO@Au at 4 μg ml-1 did not exhibit cell death or any adverse effects on differentiation or migration. The PA signal in tumors injected with SPIO@Au-loaded MSCs was clearly more enhanced post-injection, as compared with the tumors injected with unlabeled MSCs at t = 72 h. Using the same mice, T2-weighted MR imaging results taken before injection and at t = 2 h, 24 h, and 72 h were consistent with the PA imaging results, showing significant hypointensity of the tumor in the presence of SPIO@Au-loaded MSCs. Histological analysis also showed co-localization of GFP fluorescence and iron, thereby confirming that SPIO@Au-labeled MSCs continue to carry their nanoparticle payloads even at 72 h after injection. CONCLUSIONS Our results demonstrated the feasibility of tracking carotid artery-injected SPIO@Au-labeled MSCs in vivo via MR and PA imaging.
Collapse
Affiliation(s)
- Yang Qiao
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- Texas A&M University College of Medicine, 8447 Riverside Pkwy., Bryan, TX 77807, USA
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Christopher J. MacLellan
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave., Houston, TX 77225, USA
| | - Feng Gao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Richard Bouchard
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave., Houston, TX 77225, USA
| | - Frederick F. Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - R. Jason Stafford
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave., Houston, TX 77225, USA
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave., Houston, TX 77225, USA
| |
Collapse
|
14
|
Liu SJ, Wang LJ, Qiao Y, Zhang H, Li LP, Sun JH, He S, Xu W, Yang X, Cai WW, Li JD, Wang BQ, Zhang RP. A promising magnetic resonance stem cell tracer based on natural biomaterials in a biological system: manganese(II) chelated to melanin nanoparticles. Int J Nanomedicine 2018; 13:1749-1759. [PMID: 29606868 PMCID: PMC5868610 DOI: 10.2147/ijn.s157508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background Melanin and manganese are both indispensable natural substances that play crucial roles in the human body. Melanin has been used as a multimodality imaging nanoplatform for biology science research because of its natural binding ability with metal ions (eg, 64Cu2+, Fe3+, and Gd3+). Because of its effects on T1 signal enhancement, Mn-based nanoparticles have been used in magnetic resonance (MR) quantitative cell tracking in vivo. Stem cell tracking in vivo is an essential technology used to characterize engrafted stem cells, including cellular viability, biodistribution, differentiation capacity, and long-term fate. Methods In the present study, manganese(II) ions chelated to melanin nanoparticles [MNP-Mn(II)] were synthesized. The characteristics, stem cell labeling efficiency, and cytotoxicity of the nanoparticles were evaluated. MR imaging of the labeled stem cells in vivo and in vitro were also further performed. In T1 relaxivity (r1), MNP-Mn(II) were significantly more abundant than Omniscan. Bone marrow-derived stem cells (BMSCs) can be labeled easily by coincubating with MNP-Mn(II), suggesting that MNP-Mn(II) had high biocompatibility. Results Cell Counting Kit-8 assays revealed that MNP-Mn(II) had almost no cytotoxicity when used to label BMSCs, even with a very high concentration (1,600 µg/mL). BMSCs labeled with MNP-Mn(II) could generate a hyperintense T1 signal both in vitro and in vivo, and the hyperintense T1 signal in vivo persisted for at least 28 days. Conclusion Taken together, our results showed that MNP-Mn(II) possessed many excellent properties for potential quantitative stem cell tracking in vivo.
Collapse
Affiliation(s)
- Shi-Jie Liu
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China.,Imaging Department, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ling-Jie Wang
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ying Qiao
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hua Zhang
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li-Ping Li
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing-Hua Sun
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sheng He
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wen Xu
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China.,Imaging Department, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xi Yang
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wen-Wen Cai
- Imaging Department, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jian-Ding Li
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin-Quan Wang
- Department of Otolaryngology, Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rui-Ping Zhang
- Imaging Department, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
15
|
Zhang M, Liu X, Huang J, Wang L, Shen H, Luo Y, Li Z, Zhang H, Deng Z, Zhang Z. Ultrasmall graphene oxide based T 1 MRI contrast agent for in vitro and in vivo labeling of human mesenchymal stem cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:2475-2483. [PMID: 28552648 DOI: 10.1016/j.nano.2017.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/08/2017] [Accepted: 03/03/2017] [Indexed: 01/08/2023]
Abstract
Herein, we report on development of a two-dimensional nanomaterial graphene oxide (GO)-based T1 magnetic resonance imaging (MRI) contrast agent (CA) for in vitro and in vivo labeling of human mesenchymal stem cells (hMSCs). The CA was synthesized by PEGylation of ultrasmall GO, followed by conjugation with a chelating agent DOTA and then gadolinium(III) to form GO-DOTA-Gd complexes. Thus-prepared GO-DOTA-Gd complexes exhibited significantly improved T1 relaxivity, and the r1 value was 14.2 mM-1s-1 at 11.7 T, approximately three times higher than Magnevist, a commercially available CA. hMSCs can be effectively labeled by GO-DOTA-Gd, leading to remarkably enhanced cellular MRI effect without obvious adverse effects on proliferation and differentiation of hMSCs. More importantly, in vivo experiment revealed that intracranial detection of 5×105 hMSCs labeled with GO-DOTA-Gd is achieved. The current work demonstrates the feasibility of the GO-based T1 MRI CA for stem cell labeling, which may find potential applications in regenerative medicine.
Collapse
Affiliation(s)
- Mengxin Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xiaoyun Liu
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Huang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Lina Wang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - He Shen
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yu Luo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Zhenjun Li
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Hailu Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zongwu Deng
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zhijun Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
16
|
Cai WW, Wang LJ, Li SJ, Zhang XP, Li TT, Wang YH, Yang X, Xie J, Li JD, Liu SJ, Xu W, He S, Cheng Z, Fan QL, Zhang RP. Effective tracking of bone mesenchymal stem cells in vivo by magnetic resonance imaging using melanin-based gadolinium 3+ nanoparticles. J Biomed Mater Res A 2016; 105:131-137. [PMID: 27588709 DOI: 10.1002/jbm.a.35891] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022]
Abstract
Tracking transplanted stem cells is necessary to clarify cellular properties and improve transplantation success. In this study, we designed and synthesized melanin-based gadolinium3+ (Gd3+ )-chelate nanoparticles (MNP-Gd3+ ) of ∼7 nm for stem cell tracking in vivo. MNP-Gd3+ possesses many beneficial properties, such as its high stability and sensitivity, shorter T1 relaxation time, higher cell labeling efficiency, and lower cytotoxicity compared with commercial imaging agents. We found that the T1 relaxivity (r1 ) of MNP-Gd3+ was significantly higher than that of Gd-DTPA; the nanoparticles were taken up by bone mesenchymal stem cells (BMSCs) via endocytosis and were broadly distributed in the cytoplasm. Based on an in vitro MTT assay, no cytotoxicity of labeled stem cells was observed for MNP-Gd3+ concentrations of less than 800 µg/mL. Furthermore, we tracked MNP-Gd3+ -labeled BMSCs in vivo using 3.0T MRI equipment. After intramuscular injection, MNP-Gd3+ -labeled BMSCs were detected, even after four weeks, by 3T MRI. We concluded that MNP-Gd3+ nanoparticles at appropriate concentrations can be used to effectively monitor and track BMSCs in vivo. MNP-Gd3+ nanoparticles have potential as a new positive MRI contrast agent in clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 131-137, 2017.
Collapse
Affiliation(s)
- Wen-Wen Cai
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Ling-Jie Wang
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Si-Jin Li
- Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Xi-Ping Zhang
- Department of Tumor Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, 310022, China
| | - Ting-Ting- Li
- Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Ying-Hua Wang
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Xi Yang
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Jun Xie
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Jian-Ding Li
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Shi-Jie Liu
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Wen Xu
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Sheng He
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford Stanford University, Stanford, California, 94305-5484
| | - Qu-Li Fan
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing City, Jiangsu Province, 210023, China
| | - Rui-Ping Zhang
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| |
Collapse
|
17
|
Schmuck EG, Koch JM, Centanni JM, Hacker TA, Braun RK, Eldridge M, Hei DJ, Hematti P, Raval AN. Biodistribution and Clearance of Human Mesenchymal Stem Cells by Quantitative Three-Dimensional Cryo-Imaging After Intravenous Infusion in a Rat Lung Injury Model. Stem Cells Transl Med 2016; 5:1668-1675. [PMID: 27460855 PMCID: PMC5189648 DOI: 10.5966/sctm.2015-0379] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/13/2016] [Indexed: 12/30/2022] Open
Abstract
To study three-dimensional (3D) cryo-imaging to measure cell biodistribution and clearance after intravenous infusion, the authors established a lung injury model in rats. Human mesenchymal stem cells (hMSCs) labeled with QTracker were infused via jugular vein. Organs were cryopreserved, followed by 3D cryo-imaging. At 60 minutes, 82 ± 9.7% of cells were detected, and at day 2, 0.06% of cells were detected. hMSCs were retained primarily in the liver, with fewer detected in lungs and spleen. Cell tracking is a critical component of the safety and efficacy evaluation of therapeutic cell products. To date, cell-tracking modalities have been hampered by poor resolution, low sensitivity, and inability to track cells beyond the shortterm. Three-dimensional (3D) cryo-imaging coregisters fluorescent and bright-field microcopy images and allows for single-cell quantification within a 3D organ volume. We hypothesized that 3D cryo-imaging could be used to measure cell biodistribution and clearance after intravenous infusion in a rat lung injury model compared with normal rats. A bleomycin lung injury model was established in Sprague-Dawley rats (n = 12). Human mesenchymal stem cells (hMSCs) labeled with QTracker655 were infused via jugular vein. After 2, 4, or 8 days, a second dose of hMSCs labeled with QTracker605 was infused, and animals were euthanized after 60, 120, or 240 minutes. Lungs, liver, spleen, heart, kidney, testis, and intestine were cryopreserved, followed by 3D cryo-imaging of each organ. At 60 minutes, 82% ± 9.7% of cells were detected; detection decreased to 60% ± 17% and 66% ± 22% at 120 and 240 minutes, respectively. At day 2, 0.06% of cells were detected, and this level remained constant at days 4 and 8 postinfusion. At 60, 120, and 240 minutes, 99.7% of detected cells were found in the liver, lungs, and spleen, with cells primarily retained in the liver. This is the first study using 3D cryo-imaging to track hMSCs in a rat lung injury model. hMSCs were retained primarily in the liver, with fewer detected in lungs and spleen. Significance Effective bench-to-bedside clinical translation of cellular therapies requires careful understanding of cell fate through tracking. Tracking cells is important to measure cell retention so that delivery methods and cell dose can be optimized and so that biodistribution and clearance can be defined to better understand potential off-target toxicity and redosing strategies. This article demonstrates, for the first time, the use of three-dimensional cryo-imaging for single-cell quantitative tracking of intravenous infused clinical-grade mesenchymal stem cells in a clinically relevant model of lung injury. The important information learned in this study will help guide future clinical and translational stem cell therapies for lung injuries.
Collapse
Affiliation(s)
- Eric G Schmuck
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jill M Koch
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - John M Centanni
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Rudolf K Braun
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
| | - Marlowe Eldridge
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
| | - Derek J Hei
- Waisman Biomanufacturing, Madison, Wisconsin, USA
| | - Peiman Hematti
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Amish N Raval
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
18
|
He X, Cai J, Liu B, Zhong Y, Qin Y. Cellular magnetic resonance imaging contrast generated by the ferritin heavy chain genetic reporter under the control of a Tet-On switch. Stem Cell Res Ther 2015; 6:207. [PMID: 26517988 PMCID: PMC4628232 DOI: 10.1186/s13287-015-0205-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/30/2015] [Accepted: 10/16/2015] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Despite the strong appeal of ferritin as a magnetic resonance imaging (MRI) reporter for stem cell research, no attempts have been made to apply this genetic imaging reporter in stem cells in an inducible manner, which is important for minimizing the potential risk related to the constitutive expression of an imaging reporter. The aim of the present study was to develop an inducible genetic MRI reporter system that enables the production of intracellular MRI contrast as needed. METHODS Ferritin heavy chain (FTH1) was genetically modified by adding a Tet-On switch. A C3H10T1/2 cell line carrying Tet-FTH1 (C3H10T1/2-FTH1) was established via lentiviral transduction. The dose- and time-dependent expression of FTH1 in C3H10T1/2 cells was assessed by western blot and immunofluorescence staining. The induced "ON" and non-induced "OFF" expressions of FTH1 were detected using a 3.0 T MRI scanner. Iron accumulation in cells was analyzed by Prussian blue staining and transmission electron microscopy (TEM). RESULTS The expression of FTH1 was both dose- and time-dependently induced, and FTH1 expression peaked in response to induction with doxycycline (Dox) at 0.2 μg/ml for 72 h. The induced expression of FTH1 resulted in a significant increase in the transverse relaxation rate of C3H10T1/2-FTH1 cells following iron supplementation. Prussian blue staining and TEM revealed extensive iron accumulation in C3H10T1/2-FTH1 cells in the presence of Dox. CONCLUSIONS Cellular MRI contrast can be produced as needed via the expression of FTH1 under the control of a Tet-On switch. This finding could lay the groundwork for the use of FTH1 to track stem cells in vivo in an inducible manner.
Collapse
Affiliation(s)
- Xiaoya He
- Department of Radiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Key Laboratory of Pediatrics in Chongqing, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Chongqing International Science and Technology Cooperation Center For Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China.
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Key Laboratory of Pediatrics in Chongqing, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Chongqing International Science and Technology Cooperation Center For Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China.
| | - Bo Liu
- Department of Radiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Key Laboratory of Pediatrics in Chongqing, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Chongqing International Science and Technology Cooperation Center For Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China.
| | - Yi Zhong
- Department of Radiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Key Laboratory of Pediatrics in Chongqing, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Chongqing International Science and Technology Cooperation Center For Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China.
| | - Yong Qin
- Department of Radiology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Key Laboratory of Pediatrics in Chongqing, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China. .,Chongqing International Science and Technology Cooperation Center For Child Development and Disorders, 136 Zhongshan 2 Road, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|